EP3332041B1 - Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet - Google Patents
Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet Download PDFInfo
- Publication number
- EP3332041B1 EP3332041B1 EP16750160.0A EP16750160A EP3332041B1 EP 3332041 B1 EP3332041 B1 EP 3332041B1 EP 16750160 A EP16750160 A EP 16750160A EP 3332041 B1 EP3332041 B1 EP 3332041B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- steel component
- sheet
- component
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 38
- 238000010438 heat treatment Methods 0.000 title claims description 33
- 238000011282 treatment Methods 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 230000005855 radiation Effects 0.000 claims description 17
- 239000000463 material Substances 0.000 description 7
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910000712 Boron steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/06—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
- F27B9/062—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
- F27B9/066—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated heated by lamps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/12—Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/12—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
- F27B2009/122—Preheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/12—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
- F27B2009/124—Cooling
Definitions
- the invention relates to a method for targeted, component-zone-specific heat treatment of sheet metal components and to a heat treatment device for carrying out the method.
- press hardening was developed to produce a component from hardened steel sheet.
- Steel sheets are first heated to an austenite temperature of between 850°C and 950°C, then placed in a press tool, quickly formed and rapidly quenched to a martensite temperature of around 250°C using the water-cooled tool.
- This creates a hard, solid martensite structure with a strength of around 1,500 MPa.
- a steel sheet hardened in this way has only a low elongation at break, which is disadvantageous in certain areas in the event of a vehicle collision. The kinetic energy cannot be converted into deformation heat. In this case, the component will break brittlely and also risk injuring the occupants.
- the furnace system has a conventional, universal production furnace for heating the sheet steel parts to a temperature close to, but below, the AC3 temperature, i.e. the temperature at which the transformation of the ferrite into austenite ends, wherein the furnace system also has a profiling furnace with at least one level.
- the at least one level has an upper and a lower part, as well as a product-specific intermediate flange inserted into a corresponding holder, wherein the product-specific intermediate flange is designed to impose a predetermined temperature profile on the component with temperatures above the AC3 temperature for areas to be hardened and below the AC3 temperature for softer areas.
- the temperature profile is imposed by means of heat radiation. Since the process provides for heating the components in the production furnace only to a temperature below the AC3 temperature and the heat for heating defined areas to a temperature above the AC3 temperature is introduced in a later process step in the profiling furnace, very precise temperature control in the production furnace is not necessary, so that the disadvantage of the poorer controllability of gas burners compared to electric heaters can be accepted in favor of the cost-effectiveness of the cheaper energy source gas. The disadvantage of this process is that the areas with different temperatures cannot be separated exactly. In addition, the heat exchange via radiation takes place relatively slowly, so that several profiling furnaces have to be operated in parallel in order to be able to utilize the possible capacity of the continuous furnace.
- a furnace system and a method for operating a furnace system are known, wherein a radiant heat source is arranged within the furnace system and a metallic component can be thermally treated within the furnace system with two different temperature ranges. Furthermore, an air flow is circulated in a second area of the furnace system, with which a second temperature range is thermally treated due to forced convection.
- the first area of the metallic component is heated to at least AC3 by means of radiant heat and/or its temperature is kept at at least AC3 and the second area is cooled by convection from a temperature of at least AC3 to a temperature below AC3 or the second area is heated by convection to a temperature below AC3, the different temperature zones created thereby being thermally separated from one another by a separating device. It is difficult to thermally separate the temperature ranges in the furnace from one another.
- the separating device must be adapted to the contour of the metallic component in order to enable effective temperature separation. As a result, the furnace can only be used for other applications after conversion. Component geometries can be used, although furnace conversion is complex due to the size of the furnace, especially the size of a roller hearth furnace.
- an AlSi layer to form on the component as corrosion protection during heat treatment and to be firmly bonded to the component.
- the AlSi can be diffused into the surface of the component. This usually occurs at temperatures of more than 930°C.
- All known devices require a relatively large amount of space.
- All known types of heat introduction have the disadvantage that the energy cannot be introduced into specific areas of the component in a selective manner, but rather neighboring areas are also exposed to heat energy, so that a selective temperature generation above the AC3 temperature directly next to areas with temperatures below the AC3 temperature is only possible to a limited extent.
- measures must be taken, for example in the form of partitions, in order to maintain hard and ductile component areas directly next to one another after press hardening.
- the object of the invention is to provide a method for the targeted heat treatment of sheet metal components, whereby a demarcation with minimized transition zones can be created between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature.
- a further object of the invention is to provide a heat treatment device for the targeted, component-zone-specific heat treatment of sheet metal components, which takes up relatively little space and with which it is possible to achieve a demarcation between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature without any sealing measures, whereby the transition zones between the areas are minimized.
- this object is achieved by a method having the features of independent claim 1.
- Advantageous further developments of the method arise from the subclaims 2 to 8.
- the object is further achieved by a heat treatment device according to claim 9.
- Advantageous further developments of the heat treatment device arise from the subclaims 10 to 14.
- a temperature below the AC3 temperature can be impressed on the sheet steel component in one or more first areas and a temperature above the AC3 temperature in one or more second areas.
- the AC3 temperature like the recrystallization temperature, is alloy-dependent. For the materials usually used for vehicle body components, the AC3 temperature is around 870°C, while the recrystallization temperature at which the ferrite-pearlite structure is established is around 800°C.
- the method is characterized in that the sheet steel component is first preheated in a gas-heated production furnace, the sheet steel component is then transferred to a thermal post-treatment station, wherein in the thermal post-treatment station a radiant heat source is brought over the component, with which the first region or the plurality of first regions of the sheet steel component are optionally held at a temperature below the AC3 temperature or are further cooled and the second region or the plurality of second regions of the sheet steel component are optionally heated to or held at a temperature above the AC3 temperature.
- the component can be brought to a temperature below the AC3 temperature or above the AC3 temperature.
- the one or more first areas of the sheet steel component are kept at a temperature below the AC3 temperature or are cooled further in the post-treatment station and the one or more second areas of the sheet steel component are heated to a temperature above the AC3 temperature if they have a lower temperature when they are introduced into the post-treatment station, or kept at a temperature above the AC3 temperature if they already have this temperature when they are introduced into the post-treatment station.
- Natural convection for example, can be used for cooling. Forced convection by blowing on the corresponding areas of the component is also possible. The blowing can be provided from above, i.e. the side of the component facing the radiant heat source, or from below, i.e. the side of the sheet steel component facing away from the radiant heat source. It is also conceivable to provide contact cooling from the underside of the component, i.e. the side of the sheet steel component facing away from the radiant heat source.
- the gas-heated production furnace does not have to be adapted to the geometry of the sheet steel component to be treated, in particular no part geometry-dependent separating device is provided in the furnace.
- a standard furnace can be used that does not need to be converted when production changes.
- a standard roller hearth furnace or a batch furnace can be used.
- Continuous furnaces generally have a large capacity and are particularly suitable for mass production because they can be loaded and operated without great effort.
- the production furnace is gas-fired.
- gas firing is the most economical way of heating a production furnace. Controlling the furnace temperature does not place any increased quality requirements, as the entire sheet steel component is heated to an essentially uniform temperature.
- the radiant heat source can be moved over the component.
- the radiant heat source is pivotable, for example pivotable essentially horizontally, arranged in the post-treatment station and pivotable over the component and also pivotable away again. This means that after heat treatment, the component can easily be picked up by a handling device, for example an industrial robot, and transported further without the radiant heat source interfering with the movement.
- the post-treatment station is directly connected to the production furnace.
- the production furnace can be a roller hearth furnace, for example.
- the components are transported through the furnace using rollers.
- the post-treatment station can be directly connected to the furnace by extending the roller conveyor accordingly.
- One possible effect of this arrangement is, for example, that the component cools down as little as possible in the ambient air. It is also possible to have several post-treatment stations connected to the furnace in order to minimize the cycle time.
- the production furnace is gas-fired and can be heated with gas burners, for example.
- the radiant heat source is a field with surface emitters, so-called VCSELs (Vertical Cavity Surface Emitting Lasers), which emit radiation in the infrared range.
- VCSELs Vertical Cavity Surface Emitting Lasers
- Such a field consists of a large number, typically several thousand, very small lasers (microlasers) with diameters in the ⁇ m range, which are arranged in the field with a typical distance of approx. 40 ⁇ m between the individual lasers.
- Such VCSELs deliver radiation with a very narrow line width compared to infrared LEDs and an extremely forward-directed radiation characteristic. This makes it possible to imprint different temperatures on a substrate with great edge accuracy. Furthermore, very high power densities of over 100 W/cm2 are achieved on the irradiated area with this microlaser technology.
- the surface emitters emit radiation in the near infrared range between 780 nm and 3 ⁇ m, for example radiation of 808 nm or 980 nm wavelength.
- the surface emitters can be controlled in groups.
- the surface emitters can also be controlled individually. Mixed forms are also possible, whereby individual surface emitters can be controlled individually and other surface emitters can be controlled in groups.
- the surface emitters located above the first areas of the component can be controlled so that they radiate with less power than the Surface emitters that are located above the second areas of the component. It is also possible to adapt the radiation power to a three-dimensional component profile in which, for example, the areas of the component that are closer to the surface emitters are irradiated with lower power than the component areas that are further away from the surface emitters due to the three-dimensional geometry of the component.
- the control can, for example, relate to the pulse lengths and/or the frequency.
- the control can also be based on which temperature is to be reached in the individual areas.
- the corresponding temperature for example the AC3 temperature, depends on the alloy.
- Another parameter for the control can be the thermal conductivity of the substrate, which can also be alloy-dependent.
- the production furnace has several zones with different temperatures, whereby the sheet steel component is heated in a first zone or one of the first zones to a temperature above approximately 900°C, and whereby it is cooled in the zones following in the direction of flow to such an extent that it has a temperature of less than approximately 900°C, for example approximately 600°C, when transferred to the post-treatment station.
- an AlSi coating can diffuse into the component and the component can then cool down to such an extent that a pearlitic-ferritic structure is established.
- the second areas of the component can be heated up very quickly to temperatures above the AC3 temperature again using the surface emitter field, so that an austenitic structure is formed in these areas.
- a heat treatment device comprises a gas-heated production furnace for preheating a sheet steel component and a thermal post-treatment station for imparting a temperature profile to the sheet steel component, and is characterized in that the post-treatment station comprises a radiant heat source, wherein the radiant heat source comprises an array of surface emitters (VCSELs) which emit radiation in the infrared range.
- VCSELs surface emitters
- a corresponding temperature profile can be economically imposed on sheet steel components with several first and/or second regions, which can also have a complex shape, since the surface emitters used here result in a more selective treatment of the first and second regions of the sheet steel component in the post-treatment station than is possible in the production furnace.
- Fig.1 shows a heat treatment device 100 according to the invention in a plan view.
- a sheet steel component 200 is placed on an infeed table 120 of the heat treatment device 100 by a first handling device 130. From the infeed table 120, sheet steel components 200 enter the continuous furnace designed production furnace 110 and pass through it in the direction of the arrow, whereby their temperature increases to a temperature, for example, above the AC3 temperature. Viewed in the direction of flow behind the production furnace 110 there is an outlet table 121 designed as a post-treatment station 150, onto which the heated sheet steel components 200 arrive after passing through the production furnace 110.
- the post-treatment station 150 has a radiant heat source 151 in the form of a surface radiator with an array of surface emitters.
- the radiant heat source 151 is designed to be pivotable.
- the figure shows the situation in which the temperature profile has already been impressed on the sheet steel component 200.
- the radiant heat source 151 was pivoted over the sheet steel component 200 so that the infrared radiation could hit the sheet steel component.
- the radiant heat source is now pivoted away from the sheet steel component 200 so that a second handling device 131 can grip the sheet steel component 200 and transport it further without the radiant heat source 151 disturbing the movement.
- thermal post-treatment stations 150 can also be provided.
- the number of thermal post-treatment stations 150 that can advantageously be provided depends on the ratio of the cycle times of the production furnace 110 and the thermal post-treatment station 150, wherein the cycle times depend on the temperatures to be reached and thus depend, among other things, on the material being processed as well as the geometry and material thickness of the sheet steel component 200.
- Fig.2 shows a sheet steel component 200 with first areas 210 and second areas 220 in a top view.
- the first areas 210 should have a high degree of ductility in the later finished part. If the sheet steel component 200 is a vehicle body part, these first areas 210 can be, for example, the areas where the later finished part is connected to the rest of the vehicle body.
- the second areas 220 of the sheet steel component 200 should have a high degree of hardness in the later finished part.
- Fig.3 shows an example of another sheet steel component 200, here a B-pillar 200 for vehicles in plan view after carrying out the method according to the invention.
- the B-pillar is the connection between the vehicle floor and the vehicle roof in the middle of the passenger compartment.
- the pillars in the vehicle, and therefore also the B-pillar have the life-saving task of stabilizing the passenger compartment against vertical deformation. Much more important is the absorption of forces in the event of a side impact so that the vehicle occupants remain unharmed.
- the B-pillar 200 has first areas 210 with high ductility and second areas 220 with high hardness.
- the B-pillar 200 was provided with the first areas 210 and second areas 220 shown here by means of the method according to the invention in the heat treatment device according to the invention, with the second areas 220 additionally being tempered.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Claims (14)
- Procédé d'application d'un profil de température à un composant en tôle d'acier (200), une température inférieure à la température AC3 pouvant être appliquée au composant en tôle d'acier (200) dans une ou plusieurs premières zones (210) et une température supérieure à la température AC3 pouvant être appliquée dans une ou plusieurs deuxièmes zones (220),
caractérisé en ce que
le composant en tôle d'acier (200) est d'abord préchauffé dans un four de production chauffé au gaz (110), le composant en tôle d'acier (200) est ensuite transféré vers un poste de post-traitement thermique (150) ; dans le poste de post-traitement thermique (150), une source de chaleur rayonnante (151) étant placée sur le composant, avec laquelle les une ou plusieurs premières zones (210) du composant en tôle d'acier (200) sont sélectivement maintenues à une température inférieure à la température AC3 ou refroidies davantage et les une ou plusieurs deuxièmes zones (220) du composant en tôle d'acier (200) sont sélectivement chauffées ou maintenues à une température supérieure à la température AC3, la source de chaleur rayonnante (151) étant un réseau de lasers à cavité verticale à émission de surface, VCSEL, qui émettent un rayonnement dans le domaine infrarouge. - Procédé selon la revendication 1, caractérisé en ce que les émetteurs de surface émettent un rayonnement dans le domaine du proche infrarouge entre 780 nm et 3 µm.
- Procédé selon la revendication 1 ou 2, caractérisé en ce que les émetteurs de surface peuvent être commandés en groupes.
- Procédé selon la revendication 1 ou 2, caractérisé en ce que les émetteurs de surface peuvent être commandés individuellement.
- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composant en tôle d'acier (200) est chauffé dans le four de production (110) à une température inférieure à la température AC3.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le composant en tôle d'acier (200) est chauffé dans le four de production (110) à une température supérieure à la température AC3.
- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le four de production (110) présente plusieurs zones de températures différentes, le composant en tôle d'acier (200) étant chauffé dans une première zone ou dans plusieurs premières zones à une température supérieure à environ 900 °C, celui-ci étant refroidi dans les zones suivantes dans la direction de l'écoulement dans une mesure telle qu'il présente une température inférieure à environ 900 °C lors du transfert vers le poste de post-traitement.
- Procédé selon la revendication 7, caractérisé en ce que le composant en tôle d'acier (200) est refroidi dans les zones suivant la première zone ou les premières zones dans la direction de l'écoulement dans une mesure telle qu'il présente une température d'environ 600 °C lors du transfert vers le poste de post-traitement.
- Dispositif de traitement thermique (100), présentant un four de production chauffé au gaz (110) pour préchauffer un composant en tôle d'acier (200) et un poste de post-traitement thermique (150) pour appliquer un profil de température au composant en tôle d'acier (200),
caractérisé en ce que
le poste de post-traitement (150) présente une source de chaleur rayonnante (151), la source de chaleur rayonnante (151) présentant un réseau de lasers à cavité verticale à émission de surface, VCSEL, qui émettent un rayonnement dans le domaine infrarouge. - Dispositif de traitement thermique (100) selon la revendication 8, caractérisé en ce que les émetteurs de surface peuvent émettre un rayonnement dans le domaine du proche infrarouge.
- Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que les émetteurs de surface peuvent être commandés en groupes.
- Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que les émetteurs de surface peuvent être commandés individuellement.
- Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 à 11, caractérisé en ce que le poste de post-traitement (150) est directement raccordé au four de production (110).
- Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 à 12, caractérisé en ce que la source de chaleur rayonnante (151) est agencée de manière pivotante dans le poste de post-traitement (150).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015215179.4A DE102015215179A1 (de) | 2015-08-07 | 2015-08-07 | Verfahren zur Wärmebehandlung und Wärmebehandlungsvorrichtung |
PCT/EP2016/068746 WO2017025460A1 (fr) | 2015-08-07 | 2016-08-05 | Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3332041A1 EP3332041A1 (fr) | 2018-06-13 |
EP3332041B1 true EP3332041B1 (fr) | 2024-04-10 |
EP3332041C0 EP3332041C0 (fr) | 2024-04-10 |
Family
ID=56618158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16750160.0A Active EP3332041B1 (fr) | 2015-08-07 | 2016-08-05 | Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180231311A1 (fr) |
EP (1) | EP3332041B1 (fr) |
CN (1) | CN108026603B (fr) |
DE (1) | DE102015215179A1 (fr) |
ES (1) | ES2978873T3 (fr) |
PL (1) | PL3332041T3 (fr) |
WO (1) | WO2017025460A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015113407B4 (de) | 2015-08-13 | 2018-01-11 | Ebner Industrieofenbau Gmbh | Ofenvorrichtung zum Wärmebehandeln einer Metallplatine |
DE102017128574B3 (de) | 2017-12-01 | 2019-03-14 | Ebner Industrieofenbau Gmbh | Temperiereinheit für eine Ofenvorrichtung zum Wärmebehandeln einer Platine |
DE102020106139A1 (de) * | 2020-03-06 | 2021-09-09 | Schwartz Gmbh | Thermisches Behandeln eines Bauteils |
DE102021003946A1 (de) | 2021-07-30 | 2023-02-02 | Neuman Aluminium Austria Gmbh | Verfahren zur wärmebehandlung metallischer halbzeuge und wärmebehandlungssystem |
DE102022130154A1 (de) | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermisches Behandeln eines metallischen Bauteils |
DE102022130152A1 (de) * | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermisches Behandeln eines metallischen Bauteils |
DE102022130153A1 (de) | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermisches Behandeln eines metallischen Bauteils |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008030279A1 (de) * | 2008-06-30 | 2010-01-07 | Benteler Automobiltechnik Gmbh | Partielles Warmformen und Härten mittels Infrarotlampenerwärmung |
DE102011057007A1 (de) * | 2011-12-23 | 2013-06-27 | Benteler Automobiltechnik Gmbh | Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil |
DE102011056444A1 (de) * | 2011-12-14 | 2013-08-08 | Voestalpine Metal Forming Gmbh | Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen |
WO2017080624A1 (fr) * | 2015-11-13 | 2017-05-18 | Hardmesch Ab | Dispositif et procédé pour fournir un traitement thermique sélectif sur une tôle métallique |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7977611B2 (en) * | 2007-07-19 | 2011-07-12 | United Technologies Corporation | Systems and methods for providing localized heat treatment of metal components |
DE102007057855B3 (de) | 2007-11-29 | 2008-10-30 | Benteler Automobiltechnik Gmbh | Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität |
JP4575976B2 (ja) * | 2008-08-08 | 2010-11-04 | アイシン高丘株式会社 | 局所的加熱装置及び方法 |
DE102009014670B4 (de) * | 2009-03-27 | 2011-01-13 | Thyssenkrupp Sofedit S.A.S | Verfahren und Warmumformanlage zur Herstellung von pressgehärteten Formbauteilen aus Stahlblech |
DE102010004081C5 (de) * | 2010-01-06 | 2016-11-03 | Benteler Automobiltechnik Gmbh | Verfahren zum Warmformen und Härten einer Platine |
ES2345029B1 (es) * | 2010-04-19 | 2011-07-18 | Autotech Engineering, Aie | Componente estructural de un vehiculo y procedimiento de fabricacion. |
JP2011255413A (ja) * | 2010-06-11 | 2011-12-22 | Toyoda Iron Works Co Ltd | 鋼板の加熱装置、プレス成形品の製造方法、およびプレス成形品 |
US20110315281A1 (en) * | 2010-06-24 | 2011-12-29 | Magna International Inc. | Tailored Properties By Post Hot Forming Processing |
DE102010048209C5 (de) * | 2010-10-15 | 2016-05-25 | Benteler Automobiltechnik Gmbh | Verfahren zur Herstellung eines warmumgeformten pressgehärteten Metallbauteils |
PT2497840T (pt) * | 2011-03-10 | 2017-08-08 | Schwartz Gmbh | Sistema de forno para o aquecimento parcial de peças de chapa metálica |
WO2013000001A1 (fr) * | 2011-06-30 | 2013-01-03 | Ebner Industrieofenbau Gesellschaft M.B.H. | Procédé de réchauffement d'un élément façonné pour une trempe à la presse effectuée par la suite et four continu destiné au réchauffement par endroits d'un élément façonné préchauffé à une température prédéfinie à une température plus élevée |
JP5746960B2 (ja) * | 2011-12-15 | 2015-07-08 | 豊田鉄工株式会社 | 赤外線加熱装置 |
US9951395B2 (en) * | 2012-03-13 | 2018-04-24 | Asteer Co., Ltd. | Method for strengthening steel plate member |
DE102012102194A1 (de) | 2012-03-15 | 2013-09-19 | Benteler Automobiltechnik Gmbh | Ofenanlage sowie Verfahren zum Betreiben der Ofenanlage |
US20150211084A1 (en) * | 2012-03-29 | 2015-07-30 | Aisin Takaoka Co., Ltd. | Metal processing method and metal product processed thereby |
JP5740419B2 (ja) * | 2013-02-01 | 2015-06-24 | アイシン高丘株式会社 | 鋼板の赤外線加熱方法、加熱成形方法、赤外炉および車両用部品 |
DE102013104229B3 (de) * | 2013-04-25 | 2014-10-16 | N. Bättenhausen Industrielle Wärme- und Elektrotechnik GmbH | Vorrichtung zum Presshärten von Bauteilen |
HUE051924T2 (hu) * | 2014-01-23 | 2021-03-29 | Schwartz Gmbh | Hõkezelési eljárás |
DE102014101539B9 (de) * | 2014-02-07 | 2016-08-11 | Benteler Automobiltechnik Gmbh | Warmformlinie und Verfahren zur Herstellung von warmumgeformten Blechprodukten |
DE102014110415B4 (de) * | 2014-07-23 | 2016-10-20 | Voestalpine Stahl Gmbh | Verfahren zum Aufheizen von Stahlblechen und Vorrichtung zur Durchführung des Verfahrens |
BR112017005904A2 (pt) * | 2014-09-22 | 2017-12-12 | Autotech Eng A I E | ?deformações controladas em peças metálicas? |
EP2998410A1 (fr) * | 2014-09-22 | 2016-03-23 | Autotech Engineering A.I.E. | Procédé de traitement thermique au laser de pièces trempées sous presse |
DE102015112293A1 (de) * | 2015-07-28 | 2017-02-02 | Hydro Aluminium Rolled Products Gmbh | Verfahren und Vorrichtung zur planheitsadaptiven Temperaturänderung von Metallbändern |
HUE042089T2 (hu) * | 2015-10-15 | 2019-06-28 | Automation Press And Tooling A P & T Ab | Részleges sugárzással való hevítési módszer az alakítva edzett alkatrészek gyártásához és a gyártási eljárás kialakításához |
CN110036121A (zh) * | 2016-12-22 | 2019-07-19 | 自动工程有限公司 | 用于加热坯料的方法以及加热系统 |
-
2015
- 2015-08-07 DE DE102015215179.4A patent/DE102015215179A1/de active Pending
-
2016
- 2016-08-05 ES ES16750160T patent/ES2978873T3/es active Active
- 2016-08-05 EP EP16750160.0A patent/EP3332041B1/fr active Active
- 2016-08-05 US US15/751,002 patent/US20180231311A1/en not_active Abandoned
- 2016-08-05 WO PCT/EP2016/068746 patent/WO2017025460A1/fr active Application Filing
- 2016-08-05 PL PL16750160.0T patent/PL3332041T3/pl unknown
- 2016-08-05 CN CN201680046328.4A patent/CN108026603B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008030279A1 (de) * | 2008-06-30 | 2010-01-07 | Benteler Automobiltechnik Gmbh | Partielles Warmformen und Härten mittels Infrarotlampenerwärmung |
DE102011056444A1 (de) * | 2011-12-14 | 2013-08-08 | Voestalpine Metal Forming Gmbh | Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen |
DE102011057007A1 (de) * | 2011-12-23 | 2013-06-27 | Benteler Automobiltechnik Gmbh | Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil |
WO2017080624A1 (fr) * | 2015-11-13 | 2017-05-18 | Hardmesch Ab | Dispositif et procédé pour fournir un traitement thermique sélectif sur une tôle métallique |
Non-Patent Citations (1)
Title |
---|
MOENCH HOLGER ET AL: "High Power VCSEL Systems : A tool for digital thermal processing", LASER TECHNIK JOURNAL, vol. 11, no. 2, 1 April 2014 (2014-04-01), pages 43 - 47, XP055828652, ISSN: 1613-7728, DOI: 10.1002/latj.201400024 * |
Also Published As
Publication number | Publication date |
---|---|
EP3332041A1 (fr) | 2018-06-13 |
CN108026603A (zh) | 2018-05-11 |
PL3332041T3 (pl) | 2024-08-26 |
ES2978873T3 (es) | 2024-09-23 |
WO2017025460A1 (fr) | 2017-02-16 |
US20180231311A1 (en) | 2018-08-16 |
CN108026603B (zh) | 2020-06-09 |
EP3332041C0 (fr) | 2024-04-10 |
DE102015215179A1 (de) | 2017-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3332041B1 (fr) | Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet | |
EP2497840B2 (fr) | Système de four pour le réchauffage partiel d'ébauches métalliques | |
EP2905346B1 (fr) | Procede de traitement de la chaleur | |
DE102011101991B3 (de) | Wärmebehandlung von härtbaren Blechbauteilen | |
EP3172345B1 (fr) | Procédé de chauffage de tôles d'acier | |
DE102011056444B3 (de) | Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen | |
EP3212348B1 (fr) | Procédé de fabrication d'un élément structurel par formage d'une plaque en acier | |
AT15097U1 (de) | Wärmebehandlungsvorrichtung | |
EP3420111B1 (fr) | Procédé de traitement thermique ciblé sur les zones d'une pièce | |
DE102017110864B3 (de) | Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlblechbauteile mit unterschiedlichen Blechdicken | |
AT15722U1 (de) | Wärmebehandlungsverfahren und Wärmebehandlungsvorrichtung | |
EP3408420B1 (fr) | Procédé de traitement thermique d'un composant métallique | |
DE102013108044B3 (de) | Kühlkörper mit Abstandhalter | |
DE102016124539B4 (de) | Verfahren zum Herstellen lokal gehärteter Stahlblechbauteile | |
EP3408416B1 (fr) | Procédé de traitement thermique et dispositif de traitement thermique | |
WO2017137259A1 (fr) | Procédé de traitement thermique et dispositif de traitement thermique | |
DE112016003023T5 (de) | System zum kondensieren von material mit einem laser und verfahren dazu | |
DE102022130153A1 (de) | Thermisches Behandeln eines metallischen Bauteils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180305 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210803 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
REG | Reference to a national code |
Ref document number: 502016016460 Country of ref document: DE Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C21D0008040000 Ipc: C21D0001340000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F27B 9/06 20060101ALI20231220BHEP Ipc: C21D 9/48 20060101ALI20231220BHEP Ipc: C21D 8/04 20060101ALI20231220BHEP Ipc: F27D 11/12 20060101ALI20231220BHEP Ipc: F27B 9/12 20060101ALI20231220BHEP Ipc: C21D 1/34 20060101AFI20231220BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016016460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240424 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240502 |
|
P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240427 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2978873 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240923 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 9 Effective date: 20240827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240711 |