EP3332041B1 - Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet - Google Patents

Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet Download PDF

Info

Publication number
EP3332041B1
EP3332041B1 EP16750160.0A EP16750160A EP3332041B1 EP 3332041 B1 EP3332041 B1 EP 3332041B1 EP 16750160 A EP16750160 A EP 16750160A EP 3332041 B1 EP3332041 B1 EP 3332041B1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel component
sheet
component
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16750160.0A
Other languages
German (de)
English (en)
Other versions
EP3332041A1 (fr
EP3332041C0 (fr
Inventor
Frank WILDEN
Jörg Winkel
Andreas Reinartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Publication of EP3332041A1 publication Critical patent/EP3332041A1/fr
Application granted granted Critical
Publication of EP3332041B1 publication Critical patent/EP3332041B1/fr
Publication of EP3332041C0 publication Critical patent/EP3332041C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • F27B9/066Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated heated by lamps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • F27B2009/122Preheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/12Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
    • F27B2009/124Cooling

Definitions

  • the invention relates to a method for targeted, component-zone-specific heat treatment of sheet metal components and to a heat treatment device for carrying out the method.
  • press hardening was developed to produce a component from hardened steel sheet.
  • Steel sheets are first heated to an austenite temperature of between 850°C and 950°C, then placed in a press tool, quickly formed and rapidly quenched to a martensite temperature of around 250°C using the water-cooled tool.
  • This creates a hard, solid martensite structure with a strength of around 1,500 MPa.
  • a steel sheet hardened in this way has only a low elongation at break, which is disadvantageous in certain areas in the event of a vehicle collision. The kinetic energy cannot be converted into deformation heat. In this case, the component will break brittlely and also risk injuring the occupants.
  • the furnace system has a conventional, universal production furnace for heating the sheet steel parts to a temperature close to, but below, the AC3 temperature, i.e. the temperature at which the transformation of the ferrite into austenite ends, wherein the furnace system also has a profiling furnace with at least one level.
  • the at least one level has an upper and a lower part, as well as a product-specific intermediate flange inserted into a corresponding holder, wherein the product-specific intermediate flange is designed to impose a predetermined temperature profile on the component with temperatures above the AC3 temperature for areas to be hardened and below the AC3 temperature for softer areas.
  • the temperature profile is imposed by means of heat radiation. Since the process provides for heating the components in the production furnace only to a temperature below the AC3 temperature and the heat for heating defined areas to a temperature above the AC3 temperature is introduced in a later process step in the profiling furnace, very precise temperature control in the production furnace is not necessary, so that the disadvantage of the poorer controllability of gas burners compared to electric heaters can be accepted in favor of the cost-effectiveness of the cheaper energy source gas. The disadvantage of this process is that the areas with different temperatures cannot be separated exactly. In addition, the heat exchange via radiation takes place relatively slowly, so that several profiling furnaces have to be operated in parallel in order to be able to utilize the possible capacity of the continuous furnace.
  • a furnace system and a method for operating a furnace system are known, wherein a radiant heat source is arranged within the furnace system and a metallic component can be thermally treated within the furnace system with two different temperature ranges. Furthermore, an air flow is circulated in a second area of the furnace system, with which a second temperature range is thermally treated due to forced convection.
  • the first area of the metallic component is heated to at least AC3 by means of radiant heat and/or its temperature is kept at at least AC3 and the second area is cooled by convection from a temperature of at least AC3 to a temperature below AC3 or the second area is heated by convection to a temperature below AC3, the different temperature zones created thereby being thermally separated from one another by a separating device. It is difficult to thermally separate the temperature ranges in the furnace from one another.
  • the separating device must be adapted to the contour of the metallic component in order to enable effective temperature separation. As a result, the furnace can only be used for other applications after conversion. Component geometries can be used, although furnace conversion is complex due to the size of the furnace, especially the size of a roller hearth furnace.
  • an AlSi layer to form on the component as corrosion protection during heat treatment and to be firmly bonded to the component.
  • the AlSi can be diffused into the surface of the component. This usually occurs at temperatures of more than 930°C.
  • All known devices require a relatively large amount of space.
  • All known types of heat introduction have the disadvantage that the energy cannot be introduced into specific areas of the component in a selective manner, but rather neighboring areas are also exposed to heat energy, so that a selective temperature generation above the AC3 temperature directly next to areas with temperatures below the AC3 temperature is only possible to a limited extent.
  • measures must be taken, for example in the form of partitions, in order to maintain hard and ductile component areas directly next to one another after press hardening.
  • the object of the invention is to provide a method for the targeted heat treatment of sheet metal components, whereby a demarcation with minimized transition zones can be created between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature.
  • a further object of the invention is to provide a heat treatment device for the targeted, component-zone-specific heat treatment of sheet metal components, which takes up relatively little space and with which it is possible to achieve a demarcation between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature without any sealing measures, whereby the transition zones between the areas are minimized.
  • this object is achieved by a method having the features of independent claim 1.
  • Advantageous further developments of the method arise from the subclaims 2 to 8.
  • the object is further achieved by a heat treatment device according to claim 9.
  • Advantageous further developments of the heat treatment device arise from the subclaims 10 to 14.
  • a temperature below the AC3 temperature can be impressed on the sheet steel component in one or more first areas and a temperature above the AC3 temperature in one or more second areas.
  • the AC3 temperature like the recrystallization temperature, is alloy-dependent. For the materials usually used for vehicle body components, the AC3 temperature is around 870°C, while the recrystallization temperature at which the ferrite-pearlite structure is established is around 800°C.
  • the method is characterized in that the sheet steel component is first preheated in a gas-heated production furnace, the sheet steel component is then transferred to a thermal post-treatment station, wherein in the thermal post-treatment station a radiant heat source is brought over the component, with which the first region or the plurality of first regions of the sheet steel component are optionally held at a temperature below the AC3 temperature or are further cooled and the second region or the plurality of second regions of the sheet steel component are optionally heated to or held at a temperature above the AC3 temperature.
  • the component can be brought to a temperature below the AC3 temperature or above the AC3 temperature.
  • the one or more first areas of the sheet steel component are kept at a temperature below the AC3 temperature or are cooled further in the post-treatment station and the one or more second areas of the sheet steel component are heated to a temperature above the AC3 temperature if they have a lower temperature when they are introduced into the post-treatment station, or kept at a temperature above the AC3 temperature if they already have this temperature when they are introduced into the post-treatment station.
  • Natural convection for example, can be used for cooling. Forced convection by blowing on the corresponding areas of the component is also possible. The blowing can be provided from above, i.e. the side of the component facing the radiant heat source, or from below, i.e. the side of the sheet steel component facing away from the radiant heat source. It is also conceivable to provide contact cooling from the underside of the component, i.e. the side of the sheet steel component facing away from the radiant heat source.
  • the gas-heated production furnace does not have to be adapted to the geometry of the sheet steel component to be treated, in particular no part geometry-dependent separating device is provided in the furnace.
  • a standard furnace can be used that does not need to be converted when production changes.
  • a standard roller hearth furnace or a batch furnace can be used.
  • Continuous furnaces generally have a large capacity and are particularly suitable for mass production because they can be loaded and operated without great effort.
  • the production furnace is gas-fired.
  • gas firing is the most economical way of heating a production furnace. Controlling the furnace temperature does not place any increased quality requirements, as the entire sheet steel component is heated to an essentially uniform temperature.
  • the radiant heat source can be moved over the component.
  • the radiant heat source is pivotable, for example pivotable essentially horizontally, arranged in the post-treatment station and pivotable over the component and also pivotable away again. This means that after heat treatment, the component can easily be picked up by a handling device, for example an industrial robot, and transported further without the radiant heat source interfering with the movement.
  • the post-treatment station is directly connected to the production furnace.
  • the production furnace can be a roller hearth furnace, for example.
  • the components are transported through the furnace using rollers.
  • the post-treatment station can be directly connected to the furnace by extending the roller conveyor accordingly.
  • One possible effect of this arrangement is, for example, that the component cools down as little as possible in the ambient air. It is also possible to have several post-treatment stations connected to the furnace in order to minimize the cycle time.
  • the production furnace is gas-fired and can be heated with gas burners, for example.
  • the radiant heat source is a field with surface emitters, so-called VCSELs (Vertical Cavity Surface Emitting Lasers), which emit radiation in the infrared range.
  • VCSELs Vertical Cavity Surface Emitting Lasers
  • Such a field consists of a large number, typically several thousand, very small lasers (microlasers) with diameters in the ⁇ m range, which are arranged in the field with a typical distance of approx. 40 ⁇ m between the individual lasers.
  • Such VCSELs deliver radiation with a very narrow line width compared to infrared LEDs and an extremely forward-directed radiation characteristic. This makes it possible to imprint different temperatures on a substrate with great edge accuracy. Furthermore, very high power densities of over 100 W/cm2 are achieved on the irradiated area with this microlaser technology.
  • the surface emitters emit radiation in the near infrared range between 780 nm and 3 ⁇ m, for example radiation of 808 nm or 980 nm wavelength.
  • the surface emitters can be controlled in groups.
  • the surface emitters can also be controlled individually. Mixed forms are also possible, whereby individual surface emitters can be controlled individually and other surface emitters can be controlled in groups.
  • the surface emitters located above the first areas of the component can be controlled so that they radiate with less power than the Surface emitters that are located above the second areas of the component. It is also possible to adapt the radiation power to a three-dimensional component profile in which, for example, the areas of the component that are closer to the surface emitters are irradiated with lower power than the component areas that are further away from the surface emitters due to the three-dimensional geometry of the component.
  • the control can, for example, relate to the pulse lengths and/or the frequency.
  • the control can also be based on which temperature is to be reached in the individual areas.
  • the corresponding temperature for example the AC3 temperature, depends on the alloy.
  • Another parameter for the control can be the thermal conductivity of the substrate, which can also be alloy-dependent.
  • the production furnace has several zones with different temperatures, whereby the sheet steel component is heated in a first zone or one of the first zones to a temperature above approximately 900°C, and whereby it is cooled in the zones following in the direction of flow to such an extent that it has a temperature of less than approximately 900°C, for example approximately 600°C, when transferred to the post-treatment station.
  • an AlSi coating can diffuse into the component and the component can then cool down to such an extent that a pearlitic-ferritic structure is established.
  • the second areas of the component can be heated up very quickly to temperatures above the AC3 temperature again using the surface emitter field, so that an austenitic structure is formed in these areas.
  • a heat treatment device comprises a gas-heated production furnace for preheating a sheet steel component and a thermal post-treatment station for imparting a temperature profile to the sheet steel component, and is characterized in that the post-treatment station comprises a radiant heat source, wherein the radiant heat source comprises an array of surface emitters (VCSELs) which emit radiation in the infrared range.
  • VCSELs surface emitters
  • a corresponding temperature profile can be economically imposed on sheet steel components with several first and/or second regions, which can also have a complex shape, since the surface emitters used here result in a more selective treatment of the first and second regions of the sheet steel component in the post-treatment station than is possible in the production furnace.
  • Fig.1 shows a heat treatment device 100 according to the invention in a plan view.
  • a sheet steel component 200 is placed on an infeed table 120 of the heat treatment device 100 by a first handling device 130. From the infeed table 120, sheet steel components 200 enter the continuous furnace designed production furnace 110 and pass through it in the direction of the arrow, whereby their temperature increases to a temperature, for example, above the AC3 temperature. Viewed in the direction of flow behind the production furnace 110 there is an outlet table 121 designed as a post-treatment station 150, onto which the heated sheet steel components 200 arrive after passing through the production furnace 110.
  • the post-treatment station 150 has a radiant heat source 151 in the form of a surface radiator with an array of surface emitters.
  • the radiant heat source 151 is designed to be pivotable.
  • the figure shows the situation in which the temperature profile has already been impressed on the sheet steel component 200.
  • the radiant heat source 151 was pivoted over the sheet steel component 200 so that the infrared radiation could hit the sheet steel component.
  • the radiant heat source is now pivoted away from the sheet steel component 200 so that a second handling device 131 can grip the sheet steel component 200 and transport it further without the radiant heat source 151 disturbing the movement.
  • thermal post-treatment stations 150 can also be provided.
  • the number of thermal post-treatment stations 150 that can advantageously be provided depends on the ratio of the cycle times of the production furnace 110 and the thermal post-treatment station 150, wherein the cycle times depend on the temperatures to be reached and thus depend, among other things, on the material being processed as well as the geometry and material thickness of the sheet steel component 200.
  • Fig.2 shows a sheet steel component 200 with first areas 210 and second areas 220 in a top view.
  • the first areas 210 should have a high degree of ductility in the later finished part. If the sheet steel component 200 is a vehicle body part, these first areas 210 can be, for example, the areas where the later finished part is connected to the rest of the vehicle body.
  • the second areas 220 of the sheet steel component 200 should have a high degree of hardness in the later finished part.
  • Fig.3 shows an example of another sheet steel component 200, here a B-pillar 200 for vehicles in plan view after carrying out the method according to the invention.
  • the B-pillar is the connection between the vehicle floor and the vehicle roof in the middle of the passenger compartment.
  • the pillars in the vehicle, and therefore also the B-pillar have the life-saving task of stabilizing the passenger compartment against vertical deformation. Much more important is the absorption of forces in the event of a side impact so that the vehicle occupants remain unharmed.
  • the B-pillar 200 has first areas 210 with high ductility and second areas 220 with high hardness.
  • the B-pillar 200 was provided with the first areas 210 and second areas 220 shown here by means of the method according to the invention in the heat treatment device according to the invention, with the second areas 220 additionally being tempered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (14)

  1. Procédé d'application d'un profil de température à un composant en tôle d'acier (200), une température inférieure à la température AC3 pouvant être appliquée au composant en tôle d'acier (200) dans une ou plusieurs premières zones (210) et une température supérieure à la température AC3 pouvant être appliquée dans une ou plusieurs deuxièmes zones (220),
    caractérisé en ce que
    le composant en tôle d'acier (200) est d'abord préchauffé dans un four de production chauffé au gaz (110), le composant en tôle d'acier (200) est ensuite transféré vers un poste de post-traitement thermique (150) ; dans le poste de post-traitement thermique (150), une source de chaleur rayonnante (151) étant placée sur le composant, avec laquelle les une ou plusieurs premières zones (210) du composant en tôle d'acier (200) sont sélectivement maintenues à une température inférieure à la température AC3 ou refroidies davantage et les une ou plusieurs deuxièmes zones (220) du composant en tôle d'acier (200) sont sélectivement chauffées ou maintenues à une température supérieure à la température AC3, la source de chaleur rayonnante (151) étant un réseau de lasers à cavité verticale à émission de surface, VCSEL, qui émettent un rayonnement dans le domaine infrarouge.
  2. Procédé selon la revendication 1, caractérisé en ce que les émetteurs de surface émettent un rayonnement dans le domaine du proche infrarouge entre 780 nm et 3 µm.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les émetteurs de surface peuvent être commandés en groupes.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que les émetteurs de surface peuvent être commandés individuellement.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composant en tôle d'acier (200) est chauffé dans le four de production (110) à une température inférieure à la température AC3.
  6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le composant en tôle d'acier (200) est chauffé dans le four de production (110) à une température supérieure à la température AC3.
  7. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le four de production (110) présente plusieurs zones de températures différentes, le composant en tôle d'acier (200) étant chauffé dans une première zone ou dans plusieurs premières zones à une température supérieure à environ 900 °C, celui-ci étant refroidi dans les zones suivantes dans la direction de l'écoulement dans une mesure telle qu'il présente une température inférieure à environ 900 °C lors du transfert vers le poste de post-traitement.
  8. Procédé selon la revendication 7, caractérisé en ce que le composant en tôle d'acier (200) est refroidi dans les zones suivant la première zone ou les premières zones dans la direction de l'écoulement dans une mesure telle qu'il présente une température d'environ 600 °C lors du transfert vers le poste de post-traitement.
  9. Dispositif de traitement thermique (100), présentant un four de production chauffé au gaz (110) pour préchauffer un composant en tôle d'acier (200) et un poste de post-traitement thermique (150) pour appliquer un profil de température au composant en tôle d'acier (200),
    caractérisé en ce que
    le poste de post-traitement (150) présente une source de chaleur rayonnante (151), la source de chaleur rayonnante (151) présentant un réseau de lasers à cavité verticale à émission de surface, VCSEL, qui émettent un rayonnement dans le domaine infrarouge.
  10. Dispositif de traitement thermique (100) selon la revendication 8, caractérisé en ce que les émetteurs de surface peuvent émettre un rayonnement dans le domaine du proche infrarouge.
  11. Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que les émetteurs de surface peuvent être commandés en groupes.
  12. Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que les émetteurs de surface peuvent être commandés individuellement.
  13. Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 à 11, caractérisé en ce que le poste de post-traitement (150) est directement raccordé au four de production (110).
  14. Dispositif de traitement thermique (100) selon l'une quelconque des revendications 8 à 12, caractérisé en ce que la source de chaleur rayonnante (151) est agencée de manière pivotante dans le poste de post-traitement (150).
EP16750160.0A 2015-08-07 2016-08-05 Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet Active EP3332041B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015215179.4A DE102015215179A1 (de) 2015-08-07 2015-08-07 Verfahren zur Wärmebehandlung und Wärmebehandlungsvorrichtung
PCT/EP2016/068746 WO2017025460A1 (fr) 2015-08-07 2016-08-05 Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet

Publications (3)

Publication Number Publication Date
EP3332041A1 EP3332041A1 (fr) 2018-06-13
EP3332041B1 true EP3332041B1 (fr) 2024-04-10
EP3332041C0 EP3332041C0 (fr) 2024-04-10

Family

ID=56618158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16750160.0A Active EP3332041B1 (fr) 2015-08-07 2016-08-05 Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet

Country Status (7)

Country Link
US (1) US20180231311A1 (fr)
EP (1) EP3332041B1 (fr)
CN (1) CN108026603B (fr)
DE (1) DE102015215179A1 (fr)
ES (1) ES2978873T3 (fr)
PL (1) PL3332041T3 (fr)
WO (1) WO2017025460A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015113407B4 (de) 2015-08-13 2018-01-11 Ebner Industrieofenbau Gmbh Ofenvorrichtung zum Wärmebehandeln einer Metallplatine
DE102017128574B3 (de) 2017-12-01 2019-03-14 Ebner Industrieofenbau Gmbh Temperiereinheit für eine Ofenvorrichtung zum Wärmebehandeln einer Platine
DE102020106139A1 (de) * 2020-03-06 2021-09-09 Schwartz Gmbh Thermisches Behandeln eines Bauteils
DE102021003946A1 (de) 2021-07-30 2023-02-02 Neuman Aluminium Austria Gmbh Verfahren zur wärmebehandlung metallischer halbzeuge und wärmebehandlungssystem
DE102022130154A1 (de) 2022-11-15 2024-05-16 Schwartz Gmbh Thermisches Behandeln eines metallischen Bauteils
DE102022130152A1 (de) * 2022-11-15 2024-05-16 Schwartz Gmbh Thermisches Behandeln eines metallischen Bauteils
DE102022130153A1 (de) 2022-11-15 2024-05-16 Schwartz Gmbh Thermisches Behandeln eines metallischen Bauteils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030279A1 (de) * 2008-06-30 2010-01-07 Benteler Automobiltechnik Gmbh Partielles Warmformen und Härten mittels Infrarotlampenerwärmung
DE102011057007A1 (de) * 2011-12-23 2013-06-27 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
DE102011056444A1 (de) * 2011-12-14 2013-08-08 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen
WO2017080624A1 (fr) * 2015-11-13 2017-05-18 Hardmesch Ab Dispositif et procédé pour fournir un traitement thermique sélectif sur une tôle métallique

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977611B2 (en) * 2007-07-19 2011-07-12 United Technologies Corporation Systems and methods for providing localized heat treatment of metal components
DE102007057855B3 (de) 2007-11-29 2008-10-30 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
JP4575976B2 (ja) * 2008-08-08 2010-11-04 アイシン高丘株式会社 局所的加熱装置及び方法
DE102009014670B4 (de) * 2009-03-27 2011-01-13 Thyssenkrupp Sofedit S.A.S Verfahren und Warmumformanlage zur Herstellung von pressgehärteten Formbauteilen aus Stahlblech
DE102010004081C5 (de) * 2010-01-06 2016-11-03 Benteler Automobiltechnik Gmbh Verfahren zum Warmformen und Härten einer Platine
ES2345029B1 (es) * 2010-04-19 2011-07-18 Autotech Engineering, Aie Componente estructural de un vehiculo y procedimiento de fabricacion.
JP2011255413A (ja) * 2010-06-11 2011-12-22 Toyoda Iron Works Co Ltd 鋼板の加熱装置、プレス成形品の製造方法、およびプレス成形品
US20110315281A1 (en) * 2010-06-24 2011-12-29 Magna International Inc. Tailored Properties By Post Hot Forming Processing
DE102010048209C5 (de) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines warmumgeformten pressgehärteten Metallbauteils
PT2497840T (pt) * 2011-03-10 2017-08-08 Schwartz Gmbh Sistema de forno para o aquecimento parcial de peças de chapa metálica
WO2013000001A1 (fr) * 2011-06-30 2013-01-03 Ebner Industrieofenbau Gesellschaft M.B.H. Procédé de réchauffement d'un élément façonné pour une trempe à la presse effectuée par la suite et four continu destiné au réchauffement par endroits d'un élément façonné préchauffé à une température prédéfinie à une température plus élevée
JP5746960B2 (ja) * 2011-12-15 2015-07-08 豊田鉄工株式会社 赤外線加熱装置
US9951395B2 (en) * 2012-03-13 2018-04-24 Asteer Co., Ltd. Method for strengthening steel plate member
DE102012102194A1 (de) 2012-03-15 2013-09-19 Benteler Automobiltechnik Gmbh Ofenanlage sowie Verfahren zum Betreiben der Ofenanlage
US20150211084A1 (en) * 2012-03-29 2015-07-30 Aisin Takaoka Co., Ltd. Metal processing method and metal product processed thereby
JP5740419B2 (ja) * 2013-02-01 2015-06-24 アイシン高丘株式会社 鋼板の赤外線加熱方法、加熱成形方法、赤外炉および車両用部品
DE102013104229B3 (de) * 2013-04-25 2014-10-16 N. Bättenhausen Industrielle Wärme- und Elektrotechnik GmbH Vorrichtung zum Presshärten von Bauteilen
HUE051924T2 (hu) * 2014-01-23 2021-03-29 Schwartz Gmbh Hõkezelési eljárás
DE102014101539B9 (de) * 2014-02-07 2016-08-11 Benteler Automobiltechnik Gmbh Warmformlinie und Verfahren zur Herstellung von warmumgeformten Blechprodukten
DE102014110415B4 (de) * 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Verfahren zum Aufheizen von Stahlblechen und Vorrichtung zur Durchführung des Verfahrens
BR112017005904A2 (pt) * 2014-09-22 2017-12-12 Autotech Eng A I E ?deformações controladas em peças metálicas?
EP2998410A1 (fr) * 2014-09-22 2016-03-23 Autotech Engineering A.I.E. Procédé de traitement thermique au laser de pièces trempées sous presse
DE102015112293A1 (de) * 2015-07-28 2017-02-02 Hydro Aluminium Rolled Products Gmbh Verfahren und Vorrichtung zur planheitsadaptiven Temperaturänderung von Metallbändern
HUE042089T2 (hu) * 2015-10-15 2019-06-28 Automation Press And Tooling A P & T Ab Részleges sugárzással való hevítési módszer az alakítva edzett alkatrészek gyártásához és a gyártási eljárás kialakításához
CN110036121A (zh) * 2016-12-22 2019-07-19 自动工程有限公司 用于加热坯料的方法以及加热系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030279A1 (de) * 2008-06-30 2010-01-07 Benteler Automobiltechnik Gmbh Partielles Warmformen und Härten mittels Infrarotlampenerwärmung
DE102011056444A1 (de) * 2011-12-14 2013-08-08 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen
DE102011057007A1 (de) * 2011-12-23 2013-06-27 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen eines Kraftfahrzeugbauteils sowie Kraftfahrzeugbauteil
WO2017080624A1 (fr) * 2015-11-13 2017-05-18 Hardmesch Ab Dispositif et procédé pour fournir un traitement thermique sélectif sur une tôle métallique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOENCH HOLGER ET AL: "High Power VCSEL Systems : A tool for digital thermal processing", LASER TECHNIK JOURNAL, vol. 11, no. 2, 1 April 2014 (2014-04-01), pages 43 - 47, XP055828652, ISSN: 1613-7728, DOI: 10.1002/latj.201400024 *

Also Published As

Publication number Publication date
EP3332041A1 (fr) 2018-06-13
CN108026603A (zh) 2018-05-11
PL3332041T3 (pl) 2024-08-26
ES2978873T3 (es) 2024-09-23
WO2017025460A1 (fr) 2017-02-16
US20180231311A1 (en) 2018-08-16
CN108026603B (zh) 2020-06-09
EP3332041C0 (fr) 2024-04-10
DE102015215179A1 (de) 2017-02-09

Similar Documents

Publication Publication Date Title
EP3332041B1 (fr) Procédé de traitement thermique d'un élément en tôle d'acier et dispositif de traitement thermique à cet effet
EP2497840B2 (fr) Système de four pour le réchauffage partiel d'ébauches métalliques
EP2905346B1 (fr) Procede de traitement de la chaleur
DE102011101991B3 (de) Wärmebehandlung von härtbaren Blechbauteilen
EP3172345B1 (fr) Procédé de chauffage de tôles d'acier
DE102011056444B3 (de) Verfahren und Vorrichtung zum partiellen Härten von Blechbauteilen
EP3212348B1 (fr) Procédé de fabrication d'un élément structurel par formage d'une plaque en acier
AT15097U1 (de) Wärmebehandlungsvorrichtung
EP3420111B1 (fr) Procédé de traitement thermique ciblé sur les zones d'une pièce
DE102017110864B3 (de) Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlblechbauteile mit unterschiedlichen Blechdicken
AT15722U1 (de) Wärmebehandlungsverfahren und Wärmebehandlungsvorrichtung
EP3408420B1 (fr) Procédé de traitement thermique d'un composant métallique
DE102013108044B3 (de) Kühlkörper mit Abstandhalter
DE102016124539B4 (de) Verfahren zum Herstellen lokal gehärteter Stahlblechbauteile
EP3408416B1 (fr) Procédé de traitement thermique et dispositif de traitement thermique
WO2017137259A1 (fr) Procédé de traitement thermique et dispositif de traitement thermique
DE112016003023T5 (de) System zum kondensieren von material mit einem laser und verfahren dazu
DE102022130153A1 (de) Thermisches Behandeln eines metallischen Bauteils

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

REG Reference to a national code

Ref document number: 502016016460

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C21D0008040000

Ipc: C21D0001340000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F27B 9/06 20060101ALI20231220BHEP

Ipc: C21D 9/48 20060101ALI20231220BHEP

Ipc: C21D 8/04 20060101ALI20231220BHEP

Ipc: F27D 11/12 20060101ALI20231220BHEP

Ipc: F27B 9/12 20060101ALI20231220BHEP

Ipc: C21D 1/34 20060101AFI20231220BHEP

INTG Intention to grant announced

Effective date: 20240111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016460

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240424

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240502

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240427

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2978873

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240923

U20 Renewal fee paid [unitary effect]

Year of fee payment: 9

Effective date: 20240827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240711