EP3331933A1 - Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte - Google Patents

Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte

Info

Publication number
EP3331933A1
EP3331933A1 EP16747507.8A EP16747507A EP3331933A1 EP 3331933 A1 EP3331933 A1 EP 3331933A1 EP 16747507 A EP16747507 A EP 16747507A EP 3331933 A1 EP3331933 A1 EP 3331933A1
Authority
EP
European Patent Office
Prior art keywords
koh
component
glycol
polyol
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16747507.8A
Other languages
English (en)
French (fr)
Inventor
Bert Klesczewski
Edward Browne
Stephanie GRÜNERT
Mandy VON CHAMIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Intellectual Property GmbH and Co KG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP3331933A1 publication Critical patent/EP3331933A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • C08G18/4241Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols from dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the subject matter of the present invention relates to a process for the production of polyester urethane flexible foams with increased compression hardness, as well as the polyester urethane flexible foams obtainable therefrom.
  • Polyurethane (PU) soft foam fabrics are used in a variety of industrial and domestic technical applications, such as noise reduction, mattress making, furniture upholstery, and the automotive industry.
  • the preparation of the flexible polyurethane foams is usually carried out by reacting di- and polyisocyanates with compounds containing at least two hydrogen atoms reactive with isocyanate groups, in the presence of blowing agents and customary auxiliaries and additives.
  • customary flexible polyurethane foams have low compression hardnesses of max. approx. 6 kPa according to DIN EN ISO 3386-. Demands for higher compression hardnesses have not been fulfilled so far.
  • WO 2005/097863-A discloses a process for the preparation of polyurethane foams using the polymer polyols in admixture with compounds having at least two isocyanate-reactive hydrogen atoms. The process is aimed at the production of rigid foams in particular.
  • AI 1 to 60 wt .-% of a polymer polyol component comprising at least one Polynierpolyoi having a hydroxyl number of 10 to 100 mg KOH / g, soft as filler 5 to 50 wt .-% of a polymer and as the base polyol at least one polyether polyol and / or at least one Polyethercarbonatepolyol having a content of ethylene oxide of 30 to 90 wt .-%, of propylene oxide 10 to 70 wt .-% and of carbon dioxide from 0 to 35 wt .-%, each based on the total amount of propylene oxide, ethylene oxide and carbon dioxide in the polyether polyol or Polyethercabonatpolyol or in their mixtures contains,
  • A2) 40 to 99 wt .-% of a polyester polyol component comprising at least one
  • Polyester polyol having a hydroxyl number of 30 to 90 mg KOH / g
  • one or more additives selected from the group consisting of Christsverzögerem, cell regulators, pigments, dyes, flame retardants, plasticizers, fungistatic and bacteriostatic substances, fillers and release agents.
  • Component A contains 1 to 60% by weight of component Al and 40 to 99% by weight of component A2, preferably 5 to 50% by weight of component Al and 50 to 95% by weight of component A2, particularly preferably 10 to 40% by weight % Of component AI and 60 to 90% by weight of component A2.
  • Polymer polyols are understood as meaning polyols which contain fractions of monomers which are suitable for radical polymerization in a base polyol and which contain solid polymers.
  • the polyether polyols and polyether carbonate polyols used as base polyol have a hydroxyl number according to DIN 53240 of> 20 mg KOH / g to ⁇ 250 mg KOH / g, preferably from> 20 to ⁇ 12 mg KOH / g and more preferably> 20 mg KOH / g to ⁇ 80 mg KOH / g and a proportion of ethylene oxide of 30 to 90 wt .-% and of propylene oxide from 10 to 70 wt .-% and 0 to 35 wt .-% of carbon dioxide, preferably from 40 to 80 parts by weight.
  • the preparation of the Polyetherpolyoie can be carried out by catalytic addition of ethylene oxide and propylene oxide and optionally one or more further Aikylenoxiden to one or more H-functional starter compounds.
  • the polyethercarbonate polyol (s) to be used according to the invention may e.g. by catalytic reaction of ethylene oxide and propylene oxide, optionally other alkylene oxides, and carbon dioxide in the presence of H-functional starter substances (see for example EP-A 2046861).
  • alkylene oxides As further alkylene oxides (epoxides) it is possible to use alkylene oxides having 2 to 24 carbon atoms.
  • the alkylene oxides having 2 to 24 carbon atoms are, for example, one or more compounds selected from the group consisting of 1-butene oxide. 2,3-butene oxide, 2-methyl-1-yl-1,2-propenoxid (isobutene oxide), 1-pentene oxide, 2,3-pentene oxide, 2-methyl-1,2-butene oxide, 3-methyl-1,2 butene oxide, 1 -hexene oxide. 2, 3 -hexene oxide, 3,4-hexene oxide, 2-methyl-1, 2-pentenoxide, 4-M ethyl-1, 2-pentenoxide.
  • 1,2-butylene oxide is used as further alkylene oxide.
  • the alkylene oxides can be fed to the reaction mixture individually, in a mixture or in succession. They may be random or block copolymers. If the alkylene oxides are metered in succession, then the products produced (polyether (carbonate) poiyole) contain polyether chains with block structures.
  • the H-functional starter compounds have functionalities of> 2 to ⁇ 6, preferably> 2 to ⁇ 4 and are preferably hydroxy-functional (OH-functional). Examples of hydroxy-functional starter compounds are propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol.
  • the starter compound used is preferably 1,2-propylene glycol and / or glycerol and / or trimethyloipropane and / or sorbitol.
  • the polymer polyols are obtained by free-radical polymerization of olefinically unsaturated monomers or mixtures of olefinically unsaturated monomers in the described polyether polyols.
  • monomers are butadiene, styrene, ⁇ -methylstyrene, methylstyrene, ethylstyrene, acrylonitrile, methacrylonitrile, methyl methacrylate, acrylic esters.
  • Preference is given to using styrene and / or acrylonitrile. Particularly preferred styrene and acrylonitrile.
  • the ratio of these two monomers is preferably 20:80 to 80:20, especially 70:30 to 30:70 parts by weight.
  • the initiation of the radical polymerization is carried out with conventional radical-forming initiators.
  • initiators are organic peroxides such as benzoyl peroxide, tert. Butyl octoate, dideanoyl peroxide; Azo compounds such as azoisobutyronitrile or 2,2'-azobis (2-methylbutyronitrile).
  • the filler content of the polymer is 5 to 50 wt .-%, preferably 10 to 40 wt .-%, particularly preferably 20 to 35 wt .-% (based on the mass of polymer polyol).
  • the polymer polyol has a hydroxyl number according to DIN 53240 of 10 to 100 mg KOH / g, preferably from> 15 to ⁇ 80 mg KOH / g and more preferably> 20 mg KOH / g to ⁇ 60 mg KOH / g.
  • polyester polyols used in the invention are obtainable by polycondensation of one or more di carboxylic acids A2.1 and at least one di- and / or polyhydric aliphatic alcohols A2.2, wherein the polycondensation can be carried out at least partially in the presence of a catalyst.
  • component A2 contains a polyester which is at least 95% by weight aliphatic polyester and whose Aikoholkomponente A2.2 is at least 90 wt .-% selected from the group consisting of Ethylengiykol, diethylene glycol and / or trimethylolpropane.
  • the polyesterpolyols A2 used have an acid number of less than 5 mg KOH / g, preferably less than 4 mg KOH g. This can be achieved by terminating the polycondensation when the acid number of the resulting reaction product is less than 5 mg KOH g, preferably less than 4 mg KOH g.
  • the polyester polyols A2 used have a hydroxyl number of 40 mg KOH g to 85 mg KOH g. preferably from 45 to 75 mg KOH g and a functionality of 2 to 6, preferably from 2 to 3, particularly preferably from 2.2 to 2.8 on.
  • Polyester component number of OH end groups / 'number of molecules (II)
  • the number of molecules is obtained by subtracting the moles of ester groups formed from the sum of the moles of all starting materials.
  • the number of moles of ester groups formed corresponds to the number of moles of water of reaction formed.
  • carboxylic anhydrides correspondingly less water is produced; when low-molecular alkyl esters are used, low-molecular-weight alcohol is formed at the water's part.
  • the number of OH end groups is obtained by sipping the moles of carboxyl groups converted into ester groups from the moles of OH nip used.
  • Component A2.1 comprises organic dicarboxylic acids having 2 to 12, preferably 2 to 10, carbon atoms between the carboxyl groups.
  • Suitable dicarboxylic acids are, for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid.
  • Component A2.1 may contain one or more dicarboxylic acids which are prepared by a fermentative process or have a biological origin. In addition to the aliphatic dicarboxylic acids mentioned, an amount of up to 10% by weight, based on A2.1. of aromatic dicarboxylic acid, such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid and / or their Diaikylester be used.
  • Component A2.2 comprises dihydric and / or polyhydric aliphatic alcohols and / or polyether alcohols having a molecular mass of> 62 g / mol to ⁇ 400 g mol. These include, for example, 1, 4-dihydroxycyclohexane, 1, 2-propanediol.
  • 1,3-propanediol 2-methylpropanediol-1,3, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, neopentyl glycol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, dibutylene glycol, tripropylene glycol, Glycerol, pentaerythritol and / or trimethylolpropane.
  • neopentyl glycol diethylene glycol, triethylene glycol, trimethylolpropane and / or glycerol, particularly preferably ethylene glycol, diethylene glycol and / or trimethylolpropane.
  • the alcohols mentioned have boiling points at which a discharge can be avoided together with water of reaction and tend at the usual reaction temperatures also not to undesirable side reactions.
  • the polyester condensation may be carried out with or without suitable catalysts known to those skilled in the art.
  • the ester condensation reaction can be carried out at reduced pressure and elevated temperature with simultaneous removal by distillation of the water formed in the condensation reaction, or low molecular weight alcohol. It can also be carried out by the azeotrope process in the presence of an organic solvent such as toluene as an entrainer or by the carrier gas method, ie by expelling the resulting water with an inert gas such as nitrogen or carbon dioxide.
  • an organic solvent such as toluene as an entrainer or by the carrier gas method, ie by expelling the resulting water with an inert gas such as nitrogen or carbon dioxide.
  • the reaction temperature in the polycondensation is preferably> 150 ° C to ⁇ 250 ° C.
  • the temperature may also be in a range from> 180 ° C to ⁇ 230 ° C.
  • component A may contain further isocyanate-reactive group-containing compounds A3.
  • These are compounds with at least two isocyanate-reactive hydrogen atoms and a molecular weight of 32 to 399 used. These include hydroxyl groups and / or amino groups and / or thiol groups and / or carboxyl groups Compounds, preferably compounds having hydroxyl groups and / or amino groups, which serve as chain extenders or crosslinking agents. As a rule, these compounds have from 2 to 8, preferably from 2 to 4, hydrogen atoms reactive toward isocyanates. For example, ethanolamine, diethanolamine, triethanolamine, sorbitol and / or glycerol can be used. Further examples are described in EP-A 0 007 502, pages 16-17.
  • component B aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates are used, as they are e.g. by W. Siefken in Justus Liebigs Annalen der Chemie, 562 pages 75 to 136, for example those of the formula (I)
  • n 2 - 4, preferably 2 -3,
  • Q is an aliphatic hydrocarbon radical having 2 to 18, preferably 6 to 10 C atoms, a cycloaliphatic hydrocarbon radical having 4 to 15, preferably 6 to 13 C atoms or an araliphatic hydrocarbon radical having 8 to 15, preferably 8 to 13, C atoms.
  • polyisocyanates as described in EP-A 0 007 502, pages 7-8.
  • Particularly preferred are generally the technically readily available polyisocyanates, for example the 2,4- and 2,6-toluene diisocyanate, and any mixtures of these isomers ("TDI”);
  • Polyphenylpolymethylenpolyisocyanate, as by aniline-formaldehyde condensation and subsequent phosgenation are prepared (“crude MDI”) and carbodiimide, urethane, allophanate, isocyanurate, urea groups or biuret polyisocanates (“modified polyisocyanates”), in particular those modified polyisocyanates derived from 2,4- and / or 2,6-toluene diisocyanate or
  • component B at least one compound selected from the group consisting of 2,4- and 2,6-tolylene diisocyanate, 4,4'- and 2 is derived from 4,4'- and / or 2,4
  • the preparation of the polyurethane according to the invention is carried out at a coefficient of from 75 to 120, preferably from 85 to 15.
  • the physical blowing agent for example, carbon dioxide and / or volatile organic substances, e.g. Dichloromethane, used.
  • additives and additives are used, such as
  • reaction retarders eg acidic substances such as hydrochloric acid or organic acid halides
  • cell regulators such as paraffins or fatty alcohols or dimethylpolysiloxanes
  • Pigments such as, for example, tricresyl phosphate
  • stabilizers against aging and weathering effects e.g., tricresyl phosphate
  • Plasticizers such as barium sulfate, kieselguhr, soot or slag solids
  • fillers such as barium sulfate, kieselguhr, soot or slag solids
  • auxiliaries and additives are described, for example, in EP-A 0 000 389, pages 18 to 21. Further examples of additives and additives which may optionally be used according to the invention and details of the manner of use and mode of action of these auxiliary substances and additives are given in the Kunststoff-Handbuch. Volume VI I, edited by (i.Oertei, Carl Hanser Verlag, Kunststoff, 3rd edition, 1993, for example, at pages 104-127.
  • the catalysts used are preferably: aliphatic tertiary amines (for example trimethylamine, tetramethylbutanediamine, 3-dimethylaminopropylamine, N, N-bis (3-dimethylaminopropyl) -N-isopropanolamine), cycloaliphatic tertiary amines (for example 1,4-diaza ( 2,2,2) bicyclooctane), aliphatic aminoethers (for example bisdimethylaminoethyl ether, 2- (2-dimethylaminoethoxy) ethanol and N, N, N-tri methyl-1-N-hydroxyethyl-bisaminoethyl ether), cycloaliphatic aminoethers (for example ⁇ - ⁇ ), aliphatic amide, cycloaliphatic Amidme, urea and derivatives of urea (such as Aminoalk lharnsto ffe, see, for example, EP-A
  • Tin (II) salts of carboxylic acids can also be used as catalysts, it being preferable for the respective underlying carboxylic acid to have from 2 to 20 carbon atoms. Particularly preferred are the tin (II) salt of 2-ethylhexanoic acid (ie stannous (2-ethylhexanoate)), the stannous salt of 2-butyloctanoic acid, the tin (II) salt of 2-ethylhexanoate. Hexyl decanoic acid, the stannous salt of neodecanoic acid, the stannous salt of oleic acid, the stannous salt of ricinoleic acid, and stannous laurate.
  • 2-ethylhexanoic acid ie stannous (2-ethylhexanoate
  • 2-butyloctanoic acid 2-butyloctanoic acid
  • Tin (IV) compounds such as dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate or dioctyltin diacetate may also be used as catalysts. Of course, all mentioned catalysts can also be used as mixtures.
  • isocyanate-based foams are known per se and e.g. in DE-A 1 694 142, DE-A 1 694 2 1 5 and DE-A 1 720 768 and in the Plastics Handbook Volume VII, Polyurethane, edited by Vieweg and Höchtlein, Carl Hanser Verlag Kunststoff 1966, and in the new edition of this Buches, edited by (i.Oertel, Carl Hanser Verlag Kunststoff, Vienna 1993, described.
  • the polyurethane foams can be prepared by various methods of slabstock foam molding or in molds.
  • the reaction components are reacted by the known one-step process, the prepolymer process or the semiprepolymer process, preferably using mechanical equipment as described in US Pat. No. 2,764,565.
  • the foaming can also be carried out in closed molds.
  • the reaction mixture is introduced into a mold.
  • a molding material is metal, for example aluminum, or plastic, eg epoxy resin in question.
  • the mold foams the foamable reaction mixture and forms the molding.
  • the foaming of the mold can be carried out in such a way that the molded part has cell structure on its surface.
  • the molded part has a compact skin and a / eil igen core.
  • According to the invention can be in Proceed in this connection so that one enters into the mold so much foamable reaction mixture that the foam formed just fills the mold. But you can also work so that one enters more foamable reaction mixture into the mold, as is necessary for filling the mold interior with foam. In the latter case, what is referred to as "overcharging” is thus worked on, such a procedure being known, for example, from US 3,178,490 and US 3,182,104.
  • the polyurethane foams are preferably prepared by continuous foaming in blocks.
  • the process according to the invention is preferably used for the production of flexible polyurethane foams having a bulk density (also referred to as density) of from 18 kg.sup.-3 to 80 kg.sup.-3 , more preferably from 20 kg to from 3 to 70 kg.sup.- 3
  • a bulk density also referred to as density
  • Process polyurethane soft foams obtainable by the process of the invention are likewise provided by the present invention.
  • Polyol AI 31% filler polymer polyol prepared by in situ polymerization of styrene and acrylonitrile (40:60 ratio) in a 2000 molecular weight polyether polyol, calculated functionality 2.0, and a 50/50 ratio of ethylene oxide and propylene oxide.
  • the polymer polyol thus obtained had a hydroxyl value of 38 mg KOH / g and a viscosity of 4625 mPa.s at 25 ° C.
  • Polyol A2 Polyester polyol based on trimethylolpropane, diethylene glycol and adipic acid having a hydroxyl number of 60 mg KOH / g, available as Desmophen® 2200 B (Bayer MaterialScience AG, Leverkusen)
  • A5-1 siloxane-based foam stabilizer Tegostab® B 8324, (Evonik
  • Isocyanate B-1 Mixture of 80% by weight 2,4- and 20% by weight 2,6-toluene diisocyanate, available under the name Desmodur® T 80, (Bayer MaterialScience AG, Leverkusen)
  • A5-3 (catalyst): Niax® A 30, amine catalyst, (Momentive Performance Materials GmbH, Leverkusen)
  • A5-4 (catalyst): Addocat® 1 17, amine catalyst, (Rhein Chemie Rheinau mbH.
  • the viscosity was determined according to DI 53019 at a shear rate of 5 s -1 .
  • the hydroxyl number was determined according to DIN 53240.
  • Polyurethane foams were prepared according to the recipes given in the table below.
  • Examples 1 and 2 are examples according to the invention, examples 3 and 4 are comparative examples.
  • the results show that in the inventive use of Polymerpoiyolen type AI and otherwise identical formulation at the same NCO index foams are obtained with increased compression hardness compared to the foam according to Example 3.
  • Example 4 demonstrates that the use of an excessive proportion of polymer polyols of the AI is not suitable for the production of foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Verfahren zur Herstellung Polvesterurethanweichschaumstoffen mit erhöhter Stauchhärte. Der Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von Polyesterurethanweichschaumstoffen mit erhöhter Stauchhärte, erhältlich durch Einsatz einer Polyolkomponente A, enthaltend A1) ein Polymerpolyol mit einem Polyoxyethylen-Polyoxypropylen-Polyether als Basispolyol und A2) ein Polyesterpolyol mit einer Hydroxylzahl von 30 bis 90 mg KOH/g; sowie die daraus erhältlichen Polyesterurethanweichschaumstoffe.

Description

Verfahren zur Hersteilung Polvesterurethanweichschaumstofi'en mit erhöhter Stauchhärte
Der Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von Polyesterurethanweichschaumstoffen mit erhöhter Stauchhärte, sowie die daraus erhältlichen Polyesterurethanweichschaumstoffe.
Polyurethan(PU)-weichschaum Stoffe werden in einer Vielzahl von technischen Anwendungen in Industrie und im privaten Bereich eingesetzt, beispielsweise zur Geräuschdämmung, zur Herstellun von Matratzen, zur Polsterung von Möbeln, sowie in der Automobilindustrie.
Die Herstellung der Polyurethanweichschaumstoffe erfolgt üblicherweise durch Umsetzung von Di- und Polyisocyanaten mit Verbindungen, die mindestens zwei mit Isocyanatgruppen reaktive Wasserstoffatome enthalten, in Gegenwart von Treibmitteln und üblichen Hilfs- und Zusatzstoffen. Nach üblichen Methoden herstellbare Polyurethanweichschaumstoffe weisen jedoch niedrige Stauchhärten von max. ca. 6 kPa nach DIN EN ISO 3386- lauf. Forderungen nach höheren Stauchhärten waren bislang nicht erfüllbar.
WO 2005/097863- A offenbart ein Verfahren zur Herstellung von Polyurethanschaumstoffen unter Verwendung vom Poiymerpolyolen in Mischung mit Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen. Das Verfahren zielt auf die Herstellung speziell von Hartschaumstoffen ab.
Es bestand ein großer Bedarf Polyurethanweichschaumstoffe herzustellen, die eine erhöhte Stauchhärte aufweisen.
Diese Aufgabe wird überraschenderweise gelöst durch ein Verfahren zur Herstellung von Polyurethanweichschaumstoffen, erhältlich durch Reaktion von
Komponente A enthaltend
AI) 1 bis 60 Gew.-% einer Polymerpolyolkomponente umfassend mindestens ein Polynierpolyoi mit einer Hydroxyizahl von 10 bis 100 mg KOH/g, weiches als Füllstoff 5 bis 50 Gew.-% eines Polymers und als Basispolyol mindestens ein Polyetherpolyol und/oder mindestens ein Polyethercarbonatpolyol mit einem Anteil an Ethylenoxid von 30 bis 90 Gew.-% ,an Propyienoxid von 10 bis 70 Gew.-% und an Kohlendioxid von 0 bis 35 Gew.-%, jeweils bezogen auf die Gesamtmenge an Propyienoxid , Ethylenoxid sowie Kohlendioxid im Polyetherpolyol bzw. Polyethercabonatpolyol bzw. in deren Mischungen, enthält,
und
A2) 40 bis 99 Gew.-% einer Polyesterpolyolkomponente umfassend mindestens ein
Polyesterpolyol mit einer Hydro xylzahl von 30 bis 90 mg KOH/g,
und gegebenenfalls
A3) ein oder mehrere gegenüber Isocyanaten reaktionsfähige Gruppen aufweisende Verbindungen, die sich von AI und A2 unterscheiden,
mit
B) Di und/oder Polyisocyanaten,
C) Wassel-,
D) gegebenenfalls physikalischen Treibmitteln
E) gegebenenfalls Hilfs- und Zusatzstoffen, wie z.B.
a) Katalysatoren,
b) oberflächenaktive Zusatzstoffen,
c) ein oder mehrere Additiven ausgewählt aus der Gruppe bestehend aus Reaktionsverzögerem, Zellreglern, Pigmenten, Farbstoffen, Flammschutzmitteln, Weichmachern, fungistatisch und bakteriostatisch wirkenden Substanzen, Füllstoffen und Trennmitteln.
Beschreibung der Komponente A:
Komponente A enthält 1 bis 60 Gew.-% Komponente AI und 40 bis 99 Gew.-% Komponente A2, bevorzugt 5 bis 50 Gew.-% Komponente AI und 50 bis 95 Gew.-% Komponente A2 , besonders bevorzugt 10 bis 40 Gew.-% Komponente AI und 60 bis 90 Gew.-% Komponente A2.
Beschreibung der Komponente AI :
Unter Polymerpolyolen werden Polyole verstanden, die Anteile von durch radikaiische Polymerisation geeigneter Monomere in einem Basispolyol erzeugten festen Polymeren enthalten.
Die als Basispolyol verwendeten Poiyetherpolyole und Polyethercarbonatpolyole haben eine Hydroxylzahl gemäß DIN 53240 von > 20 mg KOH/g bis < 250 mg KOH/g, vorzugsweise von > 20 bis < 1 12 mg KOH/g und besonders bevorzugt > 20 mg KOH/g bis < 80 mg KOH/g und einen Anteil an Ethylenoxid von 30 bis 90 Gew.-% und an Propylenoxid von 10 bis 70 Gew.-% sowie von 0 bis 35 Gew.-% an Kohlendioxid, bevorzugt von 40 bis 80 Gew.-% an Ethylenoxid und von 20 bis 60 Gew.-% an Propvlenoxid sowie von 0 bis 30 Gew.-% an Kohlendioxid und besonders bevorzugt von 35 bis 75 Gew.-% an Ethylenoxid und von 25 bis 40 Gew.-% an Propvlenoxid sowie von 0 bis 25 Gew.-% an Kohlendioxid, jeweils bezogen auf die Gesamtmenge an Propylenoxid und Ethylenoxid sowie Kohlendioxid im Poiyetherpolyoi bzw. Polyethercarbonatpolyol bzw. in deren Mischungen.
Die Hersteilung der Polyetherpolyoie kann durch katalytische Addition von Ethylenoxid und Propylenoxid und gegebenenfalls von einem oder mehreren weiteren Aikylenoxiden an eine oder mehrere H -funktionelle Starterverbindungen erfolgen. Die erfindungsgemäß zu verwenden en Polyethercarbonatpolyol e können z.B. durch katalytische Umsetzung von Ethylenoxid und Propylenoxid, ggf. weiteren Aikylenoxiden, und Kohlendioxid in Anwesenheit von H-funktioneilen Starter Substanzen erhalten werden (siehe z.B. EP-A 2046861).
Für beide Verbindungsgruppen gelten unabhängig voneinander die folgenden beiden Abschnitte:
Als weitere Alkylenoxide (Epoxide) können Alkylenoxide mit 2 bis 24 Kohlenstoffatomen eingesetzt werden. Bei den Aikylenoxiden mit 2 bis 24 Kohlenstoffatomen handelt es sich beispielsweise um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus 1 -Butenoxid. 2,3-Butenoxid, 2- M etil yl - 1 ,2-propenox id (Isobutenoxid), 1 -Pentenoxid, 2,3-Pentenoxid, 2 -Methyl- 1 ,2-butenoxid, 3 -Methyl- 1 ,2-butenoxid, 1 -Hexenoxid. 2, 3 -Hexenoxid, 3,4-Hexenoxid, 2 -Methyl- 1 ,2-pentenoxid, 4-M ethyl- 1 ,2-pentenoxid. 2-Ethyl- 1 ,2-butenoxid, 1-Heptenoxid, 1-Octenoxid, 1-Nonenoxid, 1 -Decenoxid, 1 -Undecenoxid, 1-Dodecenoxid, 4-Methyl- 1 ,2-pentenoxid, Butadienmonoxid, Isoprenmonoxid, Cyclopentenoxid, Cyclohexenoxid, Cycloheptenoxid, Cyclooctenoxid, Styroloxid, Methylstyroloxid, Pinenoxid, ein- oder mehrfach epoxidierte Fette als Mono-, Di- und Triglyceride, epoxidierte Fettsäuren, Ci-C24-Ester von epoxidierten Fettsäuren, Epichlorhydrin, Glycidol, und Derivate des Glycidols, wie beispielsweise Methylglycidylether, Ethylglycidylether, 2-Ethylhexylglycidylether, Allylglycidylether, Glycidylmethacrylat sowie epoxidfunktionelle Alkyoxysilane, wie beispielsweise 3-Glycidyloxypropyltrimethoxysilan, 3 -Glycidyioxypropyltriethoxysilan, 3 -Glycidyloxypropyltripropoxysilan, 3 -Glycidyloxypropyl- methyl-dimethoxysilan, 3 -Glycidyloxypropylethyldiethoxysilan, 3 -Glycidyloxy- propyltrlisopropoxysilan. Vorzugsweise wird als weiteres Alkylenoxid 1,2 Butylenoxid eingesetzt. Die Alkylenoxide können dem Reaktionsgemisch einzeln, im Gemisch oder nacheinander zugeführt werden. Es kann sich um statistische oder um Block-Copolymere handeln. Werden die Alkylenoxide nacheinander dosiert, so enthalten die hergestellten Produkte (Polyether(carbonat)poiyole) Polyetherketten mit Blockstrukturen. Die H- funktionellen Starterverbindungen weisen Funktionalitäten von > 2 bis < 6, bevorzugt > 2 bis < 4 auf und sind vorzugsweise hydroxyfunktionell (OH-funktionell ). Beispiele für hydroxyfunktionelle Starterverbindungen sind Propylenglykol, Ethyienglykol, Diethylenglykol, Dipropylenglykol. 1 ,2-Butandiol, 1 ,3-Butandiol, 1 ,4-Butandiol, Hexandiol, Pentandiol, 3-Methyl- 1 ,5-penianiliol. 1 , 12-Dodecandiol, Glycerin, Trimethyloipropan, Triethanolamin, Pentaerythrit, Sorbitol, Saccharose, Hydrochinon, Brenzcatechin, Resorcin, Bisphenol F, Bisphenol A, 1,3,5 -Trihy droxyb enzol, methylolgruppenhaltige Kondensate aus Formaldehyd und Phenol oder Melamin oder Harnstoff. Vorzugsweise wird als Starterverbindung 1 .2- Propylenglykol und /oder Glycerin und/oder Trimethyloipropan und /oder Sorbitol eingesetzt.
Die Polymerpoiyole werden durch radikalische Polymerisation olefmisch ungesättigter Monomere oder Mischungen olefmisch ungesättigter Monomere in den beschriebenen Polyetherpolyolen erhalten. Beispiele für derartige Monomere sind Butadien, Styrol, a- Methylstyrol, Methylstyrol, Ethylstyrol, Acrylnitril, Methacrylnitril, Methylmethacrylat, Acrylsäureester. Bevorzugt werden Styrol und/oder Acrylnitril verwendet. Besonders bevorzugt Styrol und Acrylnitril. Bei der Verwendung von Styrol und Acrylnitril ist das Verhältnis dieser beiden Monomeren vorzugsweise 20:80 bis 80:20, insbesondere 70:30 bis 30:70 Gewichtsteile. Die Initiierung der radikalischen Polymerisation erfolgt mit üblichen radikalbildenden Initiatoren. Beispiele für derartige Initiatoren sind organische Peroxide wie Benzoylperoxid, tert. -Butyloctoat, Didesanoylperoxid; Azoverbindungen wie Azoisobutyronitril oder 2,2'-Azobis(2-methylbutyronitril). Der Füllstoffanteil des Polymers beträgt 5 bis 50 Gew.-%, bevorzugt 10 bis 40 Gew.-%, besonders bevorzugt 20 bis 35 Gew.-% (bezogen auf die Masse an Polymerpolyol).
Das Polymerpolyol weist eine Hydroxylzahl gemäß DIN 53240 von 10 bis 100 mg KOH/g, vorzugsweise von > 15 bis < 80 mg KOH/g und besonders bevorzugt > 20 mg KOH/g bis < 60 mg KOH/g auf.
Beschreibung der Komponente A2:
Die erfindungsgemäß eingesetzten Polyesterpolyole sind erhältlich durch Polykondensation von einer oder mehreren Di carbonsäuren A2.1 und mindestens einem zwei- und/ oder mehrwertigen aliphatischen Alkoholen A2.2 , wobei die Polykondensation zumindest teilweise in Gegenwart eines Katalysators durchgeführt werden kann. Vorzugsweise enthält Komponente A2 einen Polyester, der zu mindestens 95 Gew.-% ein aliphatischer Polyester ist und dessen Aikoholkomponente A2.2 zu wenigstens 90 Gew.-% aus der Gruppe bestehend aus Ethylengiykol, Diethylenglykol und/oder Trimethylolpropan ausgewählt ist.
Die eingesetzten Polyesterpolyole A2 weisen eine Säurezahi von weniger als 5 mg KOH/'g, bevorzugt von weniger als 4 mg KOH g auf. Dies kann dadurch erreicht werden, indem die Polykondensation beendet wird, wenn die Säurezahi des erhaltenen Reaktionsproduktes weniger als 5 mg KOH g, bevorzugt weniger als 4 mg KOH g beträgt. Die eingesetzten Polyesterpolyole A2 weisen eine Hydroxylzahl von 40 mg KOH g bis 85 mg KOH g. bevorzugt von 45 bis 75 mg KOH g und eine Funktionalität von 2 bis 6, bevorzugt von 2 bis 3, besonders bevorzugt von 2,2 bis 2,8 auf.
Funktionalität d. Polyesterkomponente = Anzahl der OH-Endgruppen /' Anzahl der Moleküle (II)
Die Anzahl der Moleküle erhält man, indem man von der Summe der Mole aller Einsatzstoffe die Mole an gebildeten Estergruppen abzieht. Im Fall, dass nur Polycarbonsäuren eingesetzt werden, entspricht die Molzahl an gebildeten Estergruppen der Molzahl an entstandenem Reaktionswasser. Bei Carbonsäureanhydriden entsteht entsprechend weniger Wasser, beim Einsatz von niedermolekularen Alkylestem entsteht an Steile des Wassers niedermolekularer Alkohol.
Die Anzahl der OH-Endgruppen erhält man, indem man von den Molen an eingesetzten OH- nippen die Mole an in Estergruppen überführte Carboxylgruppen abzieht.
Komponente A2.1 umfasst organische Dicarbonsäuren mit 2 bis 12, bevorzugt 2 bis 10 Kohlenstoffatomen zwischen den Carboxylgruppen. Geeignete Dicarbonsäuren sind beispielsweise Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure. Azelainsäure, Sebacinsäure, Undeacandisäure, Dodecandisäure, Tridecandisäure und/oder Tetradeacandisäure oder ihrer Anhydride und/oder ihre niedermolekularen Dialkylester. Bevorzugt sind Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und/oder Sebacinsäure, besonders bevorzugt Bernsteinsäure, Adipinsäure, Azelainsäure und Sebacinsäure. In der Komponente A2.1 kann eine oder mehrere Dicarbonsäuren enthalten sein, die nach einem fermentativen Verfahren herstellt wird oder einen biologischen Ursprung aufweist. Zusätzlich zu den genannten aliphatischen Dicarbonsäuren kann eine Menge von bis zu 10 Gew.-% bezogen auf A2.1. an aromatischer Dicarbonsäure, wie beispielsweise Phthalsäure, Phthalsäureanhydrid, Isophthalsäure, Terephthalsäure und/oder deren Diaikylester verwendet werden.
Komponente A2.2 umfasst zwei- und/oder mehrwertige aliphatische Alkohole und/oder Poiyetheralkohole mit einer Molekülmasse von > 62 g/mol bis < 400 g'mol. Hierzu zählen beispielsweise 1 ,4-Dihydroxycyclohexan, 1 ,2-Propandiol. 1,3-Propandiol, 2-Methylpropandiol- 1,3, 1,5-Pentandiol, 1 ,6-Hexandiol, 1,8-Octandiol, Neopentylglykol, Ethylenglyol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylengiykol, Tripropylengiykoi, Dibutylenglykoi, Tripropylengiykoi, Glycerin, Pentaerythrit und/oder Trimethylolpropan. Bevorzugt sind hierbei Neopentylglykol, Diethylenglykol, Triethylenglykol, Trimethylolpropan und/oder Glycerin, besonders bevorzugt Ethyienglykol, Diethylenglkol und/Oder Trimethylolpropan.
Die genannten Alkohole weisen Siedepunkte auf, bei denen ein Austragen zusammen mit Reaktionswasser vermieden werden kann und neigen bei den üblichen Reaktionstemperaturen auch nicht zu unerwünschten Nebenreaktionen.
Die Polyesterkondensation kann mit oder ohne geeignete Katalysatoren ausgeführt werden, die dem Fachmann bekannt sind.
Die Esterkondensationsreaktion kann bei verringertem Druck und erhöhter Temperatur bei gleichzeitigem destillativen Entfernen des bei der Kondensationsreaktion entstehenden Wassers, bzw. niedermolekularen Alkohols durchgeführt werden. Ebenso kann sie nach dem Azeotrop- Verfahren in Gegenwart eines organischen Lösungsmittels wie Toluol als Schleppmittel oder nach dem Trägergas -Verfahren, also durch Austreiben des entstehenden Wassers mit einem inerten Gas wie Stickstoff oder Kohlendioxid erfolgen.
Die Reaktionstemperatur bei der Polykondensation beträgt bevorzugt > 150 °C bis < 250 °C. Die Temperatur kann auch in einem Bereich von > 180 °C bis < 230 °C liegen.
Zusätzlich zu Komponente AI und A2 kann Komponente A weitere gegenüber Isocyanaten reaktionsfähige ruppen aufweisende Verbindungen A3 enthalten. Dabei handelt es sich um Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und einem Molekulargewicht von 32 bis 399 eingesetzt. Hierunter sind Hydroxylgruppen und/oder Aminogruppen und/oder Thiolgruppen und/oder Carboxylgruppen aufweisende Verbindungen zu verstehen, vorzugsweise Hydroxylgruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8, vorzugsweise 2 bis 4. gegenüber Isocyanaten reaktionsfähige Wasserstoffatome auf. Beispielsweise können Ethanolamin, Diethanolamin, Triethanolamin, Sorbit und/oder Glycerin eingesetzt werden. Weitere Beispiele werden in EP-A 0 007 502, Seiten 16 - 17, beschrieben.
Beschreibung der Komponente B
Als Komponente B werden aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate eingesetzt, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562. Seiten 75 bis 136, beschrieben werden, beispielsweise solche der Formel (I)
Q(NCO)n (I) in der
n = 2 - 4, vorzugsweise 2 -3,
und
Q einen aliphatischen Kohlenwasserstoffrest mit 2 - 18, vorzugsweise 6 - 10 C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 - 15, vorzugsweise 6 - 13 C-Atomen oder einen araliphatischen Kohlenwasserstoffrest mit 8 - 15, vorzugsweise 8 - 13 C-Atomen bedeuten.
Beispielsweise handelt es sich um solche Polyisocyanate, wie sie in der EP-A 0 007 502, Seiten 7 - 8, beschrieben werden. Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat, sowie beliebige Gemische dieser Isomeren („TDI"); Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgen ierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Hamstoffgruppen oder Biuretgruppen aufweisenden Polyisocanate ("modifizierte Polyisocyanate"), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6-Toluylendiisocyanat bzw. vom 4,4'- und/oder 2,4'-Diphenylmethandiisocyanat ableiten. Vorzugsweise wird als Komponente B mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus 2,4- und 2,6-Toluylendiisocyanat, 4,4'- und 2,4'- und 2,2'-Diphenyimethandiisocyanat und Polyphenylpolymethylenpolyisocyanat („Mehrkem-MDI") eingesetzt. Die Kennzahl (Isocyanat Index) gibt das Verhältnis der tatsächlich eingesetzten Isocyanat- Menge zur stöchiometrischen, d.h. berechneten Isocyanat-Gruppen (NCO)-Menge an: Kennzahl = [(Isocyanat-Menge eingesetzt) : (Isocyanat-Menge berechnet)] * 100 (II)
Die Herstellung der erfindungsgemäßen P olyur ethans chaumsto ffe in erfolgt bei einer Kennzahl von 75 bis 120, vorzugsweise von 85 bis 1 15.
Beschreibung der Komponente D
Als physikalische Treibmittel werden beispielsweise Kohlendioxid und/oder leicht flüchtige organische Substanzen, wie z.B. Dichlormethan, eingesetzt.
Beschreibung der Komponente E
Als Komponente E werden gegebenenfalls H i l fs- und Zusatzstoffe verwendet wie
a) Katalysatoren (Aktivatoren),
b) oberflächenaktive Zusatzstoffe (Tenside), wie Emulgatoren und Schaumstabilisatoren, c) ein oder mehrere Additive ausgewählt aus der Gruppe bestehend aus wie Reaktionsverzögerer (z.B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide), Zeilregler (wie beispielsweise Paraffine oder Fettalkohole oder Dimethylpolysiloxane), Pigmente, Farbstoffe, Flammschutzmittel (wie beispielsweise Trikresylphosphat), Stabilisatoren gegen Alterungs- und Witterungseinflüsse,
Weichmacher, fungistatisch und bakteriostatisch wirkende Substanzen, Füllstoffe (wie beispielsweise Bariumsulfat, Kieselgur, Ruß- oder S chlämmkr eide) und Trennmittel.
Diese gegebenenfalls mitzuverwendenden Hilfs- und Zusatzstoffe werden beispielsweise in der EP-A 0 000 389, Seiten 18 - 21 , beschrieben. Weitere Beispiele von gegebenenfalls erfindungsgemäß mitzuverwendenden H il s- und Zusatzstoffe sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser H ilfs- und Zusatzstoffe sind im Kunststoff- Handbuch. Band VI I, herausgegeben von ( i . Oertei, Carl-Hanser- Verlag, München, 3. Auflage, 1993, z.B. auf den Seiten 104-127 beschrieben.
Als Katalysatoren werden bevorzugt eingesetzt: aliphatische tertiäre Amine (beispielsweise Trimethylamin, T etramethy lbutandiamin, 3-Dimethylaminopropylamin, N,N-Bis(3-dimethyl- aminopropyl)-N-isopropanolamin), cycloaliphatische tertiäre Amine (beispielsweise 1 ,4-Diaza(2,2,2)bicyclooctan), aliphatische Aminoether (beispielsweise Bisdimethylaminoethylether, 2-(2-Dimethylaminoethoxy)ethanol und N,N, N-Tri methy 1 -N- hydroxyethyl-bisaminoethylether), cycloaliphatische Aminoether (beispielsweise Ν-ΕίπνΜοφηοίϊη), aliphatische Amidme, cycloaliphatische Amidme, Harnstoff und Derivate des Harnstoffs (wie beispielsweise Aminoalk lharnsto ffe , siehe zum Beispiel EP-A 0 176 013, insbesondere (3 -Dimethy 1 aminopropylamin) -harnsto ff) . Als Katalysatoren können auch Zinn(II)-Salze von Carbonsäuren eingesetzt werden, wobei vorzugsweise die jeweils zugrundeliegende Carbonsäure von 2 bis 20 Kohlenstoffatome aufweist. Besonders bevorzugt sind das Zinn(II)-Salz der 2-Ethylhexansäure (d.h. Zinn(II)-(2- ethylhexanoat)), das Zinn(II)-Salz der 2-Butyloctansäure, das Zinn(II)-Salz der 2- Hexyldecansäure, das Zinn(II)-Salz der Neodecansäure, das Zinn(II)-Salz der Ölsäure, das Zinn(II)-Salz der Ricinoisäure und Zinn(II)laurat. Es können auuch Zinn(IV)-Verbindungen, wie z.B. Dibutyizinnoxid, Dibutylzinndichlorid, Dibutyizinndiacetat, Dibutylzinndilaurat, Dibutyizinnmaleat oder Dioctylzinndiacetat als Katalysatoren eingesetzt werden. Selbstverständlich können alle genannten Katalysatoren auch als Gemische eingesetzt werden.
Durchführung des Verfahrens zur Herstellung von Polyurethanschaumstoffen
Die Herstellung von Schaumstoffen auf Isocyanatbasis ist an sich bekannt und z.B. in DE-A 1 694 142, DE-A 1 694 2 1 5 und DE-A 1 720 768 sowie im Kunststoff-Handbuch Band VII, Polyurethane, herausgegeben von Vieweg und Höchtlein, Carl Hanser Verlag München 1966, sowie in der Neuauflage dieses Buches, herausgegeben von ( i. Oertel, Carl Hanser Verlag München, Wien 1993, beschrieben.
Die Polyurethanschaumstoffe können nach verschiedenen Verfahren der Blockschaumstoffherstellung oder aber in Formen hergestellt werden. Zur Durchführung des erfindungsgemäßen Verfahrens werden die Reaktionskomponenten nach dem an sich bekannten Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerv erfahren zur Umsetzung gebracht, wobei man sich vorzugsweise maschineller Einrichtungen bedient wie sie in US 2 764 565 beschrieben werden. Bei der Schaumstoffherstellung kann erfindungsgemäß die Verschäumung auch in geschlossenen Formen durchgeführt werden. Dabei wird das Reaktionsgemisch in eine Form eingetragen. Als Formmaterial kommt Metall, z.B. Aluminium, oder Kunststoff, z.B. Epoxidharz in Frage. In der Form schäumt das schaumfähige Reaktionsgemisch auf und bildet den Formkörper. Die Formverschäumung kann dabei so durchgeführt werden, dass das Formteil an seiner Oberfläche Zellstruktur aufweist. Sie kann aber auch so durchgeführt werden, dass das Formteil eine kompakte Haut und einen /eil igen Kern aufweist. Erfindungsgemäß kann man in diesem Zusammenhang so vorgehen, dass man in die Form so viel schaumfähiges Reaktionsgemisch einträgt, daß der gebildete Schaumstoff die Form gerade ausfüllt. Man kann aber auch so arbeiten, dass man mehr schaumfähiges Reaktionsgemisch in die Form einträgt, als zur Ausfüllung des Forminneren mit Schaumstoff notwendig ist. Im letztgenannten Fall wird somit unter sog.„overcharging" gearbeitet; eine derartige Verfahrensweise ist z. B. aus US 3 178 490 und US 3 182 104 bekannt.
Bei der Formverschäumung werden vielfach an sich bekannte „äußere Trennmittel" wie Siliconöle mitverwendet. Man kann aber auch sogenannte„innere Trennmittel", verwenden, gegebenenfalls im Gemisch mit äußeren Trennmitteln, wie dies beispielsweise aus DE-OS 21 21 670 und DE-OS 23 07 589 hervorgeht.
Die Polyurethanschaumstoffe werden vorzugsweise durch kontinuierliche Verschäumung in Blöcken hergestellt.
Vorzugsweise wird das erfindungsgemäße Verfahren angewandt zur Herstellung von Polyurethanweichschaumstoffen mit einer Rohdichte (auch als Raumgewicht bezeichnet) von 18 kg m~3 bis 80 kg m~3, besonders bevorzugt von 20 kg in 3 bis 70 kg m"3. Die gemäß dem erfindungsgemäßen Verfahren erhältlichen P olyurethanweichs chaumsto ffe sind ebenfalls Gegenstand der vorliegenden Erfindung.
Beispiele
Polyol AI : Polymerpolyol mit 31 % Füllstoff, hergestellt durch in-situ -Polymerisation von Styrol und Acrylnitril (Verhältnis 40:60) in einem Polyetherpolyol mit Molmasse 2000, berechneter Funktionalität 2,0 und einem Verhältnis von Ethylenoxid und Propylenoxid von 50/50. Das so erhaltene Polymerpolyol wies eine Hydroxylzahl 38 mg KOH/g und eine Viskosität 4625 mPa.s bei 25 °C auf.
Polyol A2: Polyesterpolyol auf Basis Trimethylolpropan, Diethylenglykol und Adipinsäure mit Hydroxylzahl 60 mg KOH/g, erhältlich als Desmophen® 2200 B (Bayer MaterialScience AG, Leverkusen)
A5-1 (Stabilisator): Siloxan-basierter Schaumstabilisator Tegostab® B 8324, (Evonik
Goldschmidt GmbH, Essen)
A5-2 (Stabilisator): Siloxan-basierter Schaumstabiiisator Tegostab® B 8301, (Evonik
Goldschmidt GmbH, Essen)
Isocyanat B-l : Gemisch aus 80 Gew.-% 2,4- und 20 Gew.-% 2,6-Toluylendiisocyanat, erhältlich unter dem Namen Desmodur® T 80, (Bayer MaterialScience AG, Leverkusen)
A5-3 (Katalysator): Niax ® A 30, Aminkatalysator, (Momentive Performance Materials GmbH, Leverkusen) A5-4 (Katalysator): Addocat ® 1 17, Aminkatalysator, (Rhein Chemie Rheinau mbH.
Mannheim)
Die Viskosität wurde gemäß DI 53019 bei einer Scherrate von 5 s'1 bestimmt.
Die Hydroxylzahl wurde gemäß DIN 53240 bestimmt.
Es wurden Polyurethanschäume gemäß den in der nachfolgenden Tabelle angegebenen Rezepturen hergestellt.
Aufgeführt sind die Anteile der Komponenten in Gewichts-Teilen.
Die Rohdichte und Stauchhärte wurden gemäß DIN EN I SO 3386-1 bestimmt. Tabelle 1: Polyurethan- Weichschaumstoffe
Die Beispiele 1 und 2 sind erfindungsgemäße Beispiele, die Beispiele 3 und 4 sind Vergleichsbeispiele. Die Ergebnisse belegen, dass bei erfindungsgemäßer Verwendung der Polymerpoiyolen vom Typ AI und ansonsten identischer Rezeptur bei gleichem NCO-index Schaumstoffe mit erhöhter Stauchhärte erhalten werden im Vergleich zum Schaumstoff gemäß Beispiel 3. Beispiel 4 belegt, dass die Verwendung eines übermäßigen Anteils an Polymerpolyols vom Typ AI nicht zur Herstellung von Schaumstoffen geeignet ist.

Claims

Patentansprüche :
Verfahren zur Herstellung von Polyurethanweichschaumstoffen, erhältlich durch Reaktion von Komponente A enthaltend
AI) 1 bis 60 Gew.-% einer Poiymerpolyolkomponente umfassend mindestens ein Polymerpolyol mit einer Hydroxylzahl von 10 bis 100 mg KOH/'g, welches als Füllstoff 5 bis 50 Gew.-% eines Polymers und als Basispolyol mindestens ein Polyetherpolyol und/oder mindestens ein Polyethercarbonatpolyol mit einem Anteil an Ethylenoxid von 30 bis 90 Gew.-% , an Propylenoxid von 10 bis 70 Gew.-% und an Kohlendioxid von 0 bis 35 Gew.-%, bezogen auf die Gesamtmenge an Propylenoxid, Ethylenoxid sowie Kohlendioxid im Polyetherpolyol bzw. Poiyethercabonatpolyol bzw. in deren Mischungen, enthält,
und
A2) 40 bis 99 Gew.-% einer Polyesterpolyoikomponente umfassend mindestens ein
Polyesterpolyol mit einer Hydroxylzahl von 30 bis 90 mg KOH/g,
und gegebenenfalls
A3) ein oder mehrere gegenüber Isocyanaten reaktionsfähige Gruppen aufweisende Verbindungen, die sich von AI und A2 unterscheiden,
mit
B) Di und/oder Polyisocyanaten,
C) Wasser,
D) gegebenenfalls physikalischen Treibmitteln
E) gegebenenfalls Hilfs- und Zusatzstoffen, wie z.B.
a) Katalysatoren,
b) ob erftächenaktive Zusatzstoffen,
c) ein oder mehrere Additiven ausgewählt aus der Gruppe bestehend aus Reaktionsverzögerem, Zellreglern. Pigmenten, Farbstoffen, Flammschutzmitteln, Weichmachern, fungistatisch und bakteriostatisch wirkenden Substanzen, Füllstoffen und Trennmitteln.
2. Verfahren gemäß Anspruch 1, wobei Komponente A 5 bis 50 Gew.-% Komponente AI und 50 bis 95 Gew.-% Komponente A2, bevorzugt 10 bis 40 Gew.-% Komponente AI und 60 bis 90 Gew.-% Komponente A2 enthält.
Verfahren gemäß Anspruch 1 oder 2, wobei die als Basispolyol verwendeten Polyetherpolyole und Polyethercarbonatpolyole einen Anteil von 40 bis 80 Gew.-% an Ethylenoxid und von 20 bis 60 Gew.-% an Propylenoxid sowie von 0 bis 30 Gew.-% an Kohlendioxid, bevorzugt von 35 bis 75 Gew.-% an Ethylenoxid und von 25 bis 40 Gew.-% an Propylenoxid sowie von 0 bis 25 Gew.-% an Kohlendioxid, jeweils bezogen auf die Gesamtmenge an Propylenoxid und Ethylenoxid sowie Kohlendioxid im Polyetherpolyol bzw. Polyethercarbonatpolyol bzw. in deren Mischungen, aufweisen.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, wobei die als Basispoiyol verwendeten Polyetherpolyoie und Polyethercarbonatpolyole eine Hydroxylzahl gemäß DI 53240 von > 20 mg KOH/g bis < 250 mg KOH/g, vorzugsweise von > 20 bis < 112 mg KOH/g und besonders bevorzugt > 20 mg KOH/g bis < 80 mg KOH/g aufweisen.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei das Füllstoffpolymer durch radikalische Polymerisation von Styrol, -Methylstyrol, Methylstyrol, Ethylstyrol, Acrylnitril, Methacrylnitril, Methylmethacrylat, Acrylsäureester oder Mischungen dieser Monomere, bevorzugt von Styrol und/oder Acrylnitril, erhältlich ist.
6. Verfahren gemäß Anspruch 5, wobei Styrol und Acrylnitril im Verhältnis 20:80 bis 80:20 Gewichtsteile, insbesondere 70:30 bis 30:70 Gewichtsteile verwendet werden.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei der Füllstoffanteil des Polymers 10 bis 40 Gew.-%, bevorzugt 20 bis 35 Gew.-% (bezogen auf die Masse an Polymerpolyol) beträgt.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, wobei das Polymerpolyol eine Hydroxylzahl gemäß DIN 53240 von > 15 bis < 80 mg KOH g, bevorzugt > 20 mg KOH/g bis < 60 mg
KOH/g aufweist.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei Komponente A2 zu mindestens 95 Gew.-% ein aliphatischer Polyester ist.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei die Alkoholkomponente des Polyesters A2 zu mindestens 90 Gew.-% auf zwei- und/oder mehrwertigen aliphatische Alkoholen und/oder Polyetheralkoholen mit einer Molekülmasse von > 62 g/mol bis < 400 g/mol basiert.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, wobei die Alkoholkomponente des Polyesters A2 zu mindestens 90 Gew.-% aus 1 ,4-Dihydroxycyclohexan, 1 ,2-Propandiol, 1 ,3-Propandiol, 2-Methylpropandiol- 1 .3. 1 ,5-Pentandiol, 1 ,6-Hexandiol, 1,8-Octandiol, Neopentylglykol, Ethylenglyol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol,
Dipropylenglykol, Tripropylenglykol, Dibutylenglykol, Tripropylenglykol, Glycerin, Pentaerythrit und/oder Trimethylolpropan, bevorzugt zu mindestens 90 Gew.-% aus Neopentylglykol, Diethylenglykol, Triethylenglykol, Trimethylolpropan und/oder Glycerin besteht.
12. Verfahren gemäß einem der Ansprüche 1 bis 1 1 , wobei die Carbonsäurekomponente des Polyesters A2 auf organischen Dicarbonsäuren mit 2 bis 12, bevorzugt 2 bis 10 Kohlenstoffatomen basiert.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, wobei die Carbonsäurekomponente des
Polyesters A2 zu mindestens 90 Gew.-% aus aliphatischen Dicarbonsäuren besteht.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, wobei die Poiyesterpolyoikomponente A2 eine Säurezahl von weniger als 5 mg KOH/g, bevorzugt von weniger als 4 mg KOH/g, eine Hydroxylzahl von 40 mg KOH/g bis 85 mg KOH/g, bevorzugt von 45 bis 75 mg KOH/g, und eine Funktionalität von 2 bis 6, bevorzugt von 2 bis 3, besonders bevorzugt von 2,2 bis 2,8, aufweist.
1 . Polyurethanweichschaumstoffe erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 14.
EP16747507.8A 2015-08-04 2016-08-03 Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte Withdrawn EP3331933A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15179656 2015-08-04
PCT/EP2016/068518 WO2017021439A1 (de) 2015-08-04 2016-08-03 Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte

Publications (1)

Publication Number Publication Date
EP3331933A1 true EP3331933A1 (de) 2018-06-13

Family

ID=53776467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16747507.8A Withdrawn EP3331933A1 (de) 2015-08-04 2016-08-03 Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte

Country Status (5)

Country Link
US (1) US20180223030A1 (de)
EP (1) EP3331933A1 (de)
JP (1) JP6892853B2 (de)
CN (1) CN107849216B (de)
WO (1) WO2017021439A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474391B (zh) * 2019-02-25 2023-01-03 三洋化成工业株式会社 软质聚氨酯泡沫制造用多元醇组合物和软质聚氨酯泡沫
CN110041492B (zh) * 2019-05-07 2022-04-08 温州凯格机械设备有限公司 一种聚氨酯微型软质泡沫塑料
CN111440180B (zh) * 2020-04-07 2021-04-20 万华化学集团股份有限公司 阻燃聚合物多元醇及其制备方法和用途
US20230383083A1 (en) 2020-10-01 2023-11-30 Cabot Corporation Flexible Polyurethane Foam and Formulation Thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568705A (en) * 1984-05-17 1986-02-04 Basf Wyandotte Corporation Graft polymer dispersion in a mixture of low molecular weight polyols and polyether polyols and polyurethane foams prepared therefrom
US4656196A (en) * 1986-01-09 1987-04-07 Scotfoam Corporation Process for preparing in situ reticulated polyurethane foam
JPH0952932A (ja) * 1995-08-09 1997-02-25 Sanyo Chem Ind Ltd 軟質ポリウレタンモールドフォームの製造方法
DE19705993A1 (de) * 1997-02-17 1998-08-20 Basf Ag Verfahren zur Herstellung einer homogenen entmischungsstabilen Polyolkomponente
DE10007693A1 (de) * 2000-02-19 2001-08-23 Basf Ag Verfahren zur Herstellung von hydrophilen flammgeschützten Polyurethanweichschaumstoffen
US6759447B1 (en) * 2003-01-06 2004-07-06 Air Products And Chemicals, Inc. Physical properties of polyurethane foams using tertiary amino alkyl amide catalysts
DE10319393A1 (de) * 2003-04-30 2004-11-18 Bayer Materialscience Ag Flexible Formteile aus geschäumten Polyurethan und ihre Verwendung
DE102004017294A1 (de) * 2004-04-05 2005-10-20 Basf Ag Verfahren zur Herstellung von Polyurethan-Schaumstoffen
DE102005040617A1 (de) * 2005-08-27 2007-03-22 Bayer Materialscience Ag Verfahren zur Herstellung von Polyesterpolyolen und deren Verwendung
US7828991B2 (en) * 2006-12-08 2010-11-09 Bayer Materialscience Llc Polyether polyols based on cashew nutshell liquid and flexible foams
EP2308913B1 (de) * 2008-07-30 2016-04-20 Mitsui Chemicals, Inc. Polyesterpolyol, zusammensetzung für polyurethan, zusammensetzung für polyurethanschaumstoff, polyurethanharz und polyurethanschaumstoff
US9212250B2 (en) * 2009-11-04 2015-12-15 Stepan Company Method of improving mechanical strength of flexible polyurethane foams made from bio-based polyols, the polyol compositions utilized therein and the foams produced thereby
BR112012013911B1 (pt) * 2009-12-11 2019-11-12 Basf Se processo para produzir uma espuma de poliuretano moldada, espuma de poliuretano moldada, e, uso de uma espuma de poliuretano moldada
JP2011208059A (ja) * 2010-03-30 2011-10-20 Sumika Bayer Urethane Kk 車両用インストルメントパネルに使用する半硬質ポリウレタンフォーム、およびその製造方法
CN102858835A (zh) * 2010-04-28 2013-01-02 旭硝子株式会社 硬质发泡合成树脂的制造方法
US9115246B2 (en) * 2010-04-30 2015-08-25 Basf Se Polyether polyols, process for preparing polyether polyols and their use for producing polyurethanes
WO2013045405A1 (en) * 2011-09-29 2013-04-04 Bayer Intellectual Property Gmbh Polyurethane microcellular elastomer, the preparation process and the use thereof
CN104080827B (zh) * 2012-01-18 2016-04-27 巴斯夫欧洲公司 制备硬质聚氨酯泡沫的方法
EP2894180A1 (de) * 2014-01-08 2015-07-15 Bayer MaterialScience AG Polymerpolyole mit einem Polyether-Carbonat-Polyol als das Basispolyol

Also Published As

Publication number Publication date
WO2017021439A1 (de) 2017-02-09
CN107849216A (zh) 2018-03-27
US20180223030A1 (en) 2018-08-09
JP6892853B2 (ja) 2021-06-23
CN107849216B (zh) 2020-11-13
JP2018522129A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
EP2451856B1 (de) Verfahren zur herstellung von flammgeschützten polyurethanschaumstoffen mit guten dauergebrauchseigenschaften
EP2912081B1 (de) Verfahren zur herstellung von polyurethanweichschaumstoffen auf basis von polyesterpolyolen
EP1650240B1 (de) Weichelastische Polyurethan Schaumstoffe geringer Rohdichten und Stauchhärte
EP2828309B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
EP2804886B1 (de) Verfahren zur herstellung von polyurethan-hartschäumen
EP2820057B1 (de) Polyetheresterpolyole und ihre verwendung zur herstellung von polyurethan-hartschaumstoffen
EP2714758B1 (de) Hochelastische polyurethanschaumstoffe, enthaltend ricinusöl
EP2678367B1 (de) Polyesterpolyole auf basis aromatischer dicarbonsäuren und daraus hergestellte polyurethanhartschäume
EP2922886B1 (de) Verfahren zur herstellung von flexiblen polyurethan- weichschaumstoffen mit hohem komfort und niedrigen hystereseverlusten
EP1935912B1 (de) Verfahren zur Herstellung von PIPA-Polyolen zur Herstellung von hochelastischen Polyurethan-Weichschaumstoffen
EP3331933A1 (de) Verfahren zur herstellung polyesterurethanweichschaumstoffen mit erhöhter stauchhärte
WO2017097729A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP3768744A1 (de) Verfahren zur herstellung von polyurethanweichschaumstoffen
EP3768746A1 (de) Verfahren zur herstellung von polyurethanweichschaumstoffen mit hoher rohdichte
EP3536727A1 (de) Polyurethanschaumstoffe basierend auf polyethercarbonatpolyolen
EP0711798B1 (de) Verfahren zur Herstellung von zelligen Polyurethanen
EP3596148B1 (de) Verfahren zur herstellung von polyurethan-stiefeln
EP3548534B1 (de) Verfahren zur herstellung von tdi-basierten polyurethanweichschaumstoffen enthaltend organische säureanhydride und/oder organische säurechloride
EP4043510A1 (de) Verfahren zur herstellung von polyurethan-schaumstoff

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230620