EP3320694B1 - Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung - Google Patents

Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung Download PDF

Info

Publication number
EP3320694B1
EP3320694B1 EP16760706.8A EP16760706A EP3320694B1 EP 3320694 B1 EP3320694 B1 EP 3320694B1 EP 16760706 A EP16760706 A EP 16760706A EP 3320694 B1 EP3320694 B1 EP 3320694B1
Authority
EP
European Patent Office
Prior art keywords
circuit board
printed circuit
membrane
mems
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16760706.8A
Other languages
English (en)
French (fr)
Other versions
EP3320694A1 (de
Inventor
Andrea Rusconi Clerici Beltrami
Ferruccio Bottoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USound GmbH
Original Assignee
USound GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USound GmbH filed Critical USound GmbH
Publication of EP3320694A1 publication Critical patent/EP3320694A1/de
Application granted granted Critical
Publication of EP3320694B1 publication Critical patent/EP3320694B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to a MEMS printed circuit board module for a sound transducer arrangement for generating and / or detecting surge waves in the audible wavelength spectrum with a printed circuit board and a multilayer piezoelectric structure, by means of which a membrane provided for this purpose can be set into oscillation and / or vibrations of a membrane can be detected. Furthermore, the invention relates to a sound transducer arrangement for generating and / or detecting sound waves in the audible wavelength spectrum comprising a membrane, a cavity and a MEMS printed circuit board module comprising a printed circuit board and a multilayer piezoelectric structure, by means of which the membrane can be vibrated and / or Vibrations of the membrane can be detected.
  • the invention relates to a manufacturing method for a corresponding MEMS printed circuit board module and / or a corresponding sound transducer arrangement.
  • MEMS stands for microelectromechanical systems.
  • the term "cavity" is to be understood as a cavity by means of which the sound pressure of the MEMS-wave transducer can be amplified. Such systems are particularly installed in electronic devices that offer little space, but must withstand high loads.
  • a MEMS transducer is known for generating and / or detecting sound waves in the audible wavelength spectrum with a carrier substrate, a cavity formed in the carrier substrate, and a multilayer piezoelectric membrane structure.
  • the semiconductor silicon is used as the material for carrier substrates.
  • this material is very expensive, which has a negative effect on the manufacturing costs of such MEMS sound transducers.
  • the document DE 10 2010 005654 A1 shows a signaling device with an electric acoustic signal transmitter having a piezoceramic disc on a metal membrane.
  • the object is achieved by a MEMS printed circuit board module, a sound transducer arrangement and a manufacturing method according to the independent patent claims.
  • the MEMS board module includes a circuit board.
  • the printed circuit board is preferably made of an electrically insulating material and preferably comprises at least one electrical conductive layer.
  • the MEMS PCB module includes a structure.
  • the structure is multilayered and piezoelectric. By means of this structure, a membrane provided for this purpose can be set in vibration. Alternatively or additionally, vibrations of the membrane can be detected by means of the piezoelectric structure.
  • the structure thus acts as an actuator and / or sensor.
  • the multilayer piezoelectric structure is directly connected to the printed circuit board. In this case, preferably at least one layer of the structure is formed by the conductive layer of the printed circuit board.
  • the proposed MEMS circuit board module can be easily and inexpensively manufactured. In this way, it is also possible to embed electrical components directly into the printed circuit board and to connect them with the components provided for this purpose, such as the structure solely by means of simple plated-through holes.
  • the proposed MEMS PCB module by the at least partially integrative formation of the structure in the circuit board very can be designed to save space, since additional components, in particular additional carrier substrates, can be saved.
  • the use of a corresponding printed circuit board technology results in considerable cost savings, since the high cost factor of the expensive silicon for the carrier substrate is eliminated. Likewise, in this way, if required, even larger speakers can be produced inexpensively.
  • the circuit board is designed as a structural support, in particular as a support frame, of the structure.
  • the structure which preferably comprises at least one cantilever or cantilever, is thus deflectable relative to the printed circuit board along a lifting axis or z-axis.
  • the structural support therefore serves as a base or support element for the structure which can be deflected relative thereto.
  • the circuit board has a recess.
  • the recess preferably extends completely through the printed circuit board.
  • the structure is arranged frontally in the region of an opening of the recess.
  • the structure is arranged inside the recess.
  • the recess extends along the z-axis or lifting axis, in the direction of which the membrane provided for this purpose is able to oscillate. In this way, the recess at least partially forms a cavity of the sound transducer assembly.
  • the MEMS printed circuit board module can thus be designed to save space, since additional components, in particular additional housing parts, for dimensioning the cavity can be made smaller or even completely saved.
  • the volume of the cavity can be adjusted by increasing the size of the cut-out in the circuit board itself to the individual application, if a higher sound pressure is required.
  • the recess may be closed by the circuit board itself or by a housing part.
  • the cavity of the transducer assembly can be quickly, easily and inexpensively adapted to the particular application by means of the recess.
  • the structure is fixedly connected to the printed circuit board in an anchoring area facing the printed circuit board, in particular by means of lamination.
  • the structure is embedded in the printed circuit board and / or laminated in its anchoring area.
  • the structure can thus be inexpensively integrated during the manufacturing process of the circuit board in this. Previous manufacturing steps for connecting the membrane to a silicon substrate can thus be dispensed with.
  • its anchoring area is at least two sides, i. at least from the top and the bottom, with the circuit board, in particular with the respective corresponding layers of the circuit board, connected, in particular glued.
  • the structure is an actuator structure.
  • the actuator structure is preferably formed from at least one piezoelectric layer. If the acoustic transducer arrangement for which the MEMS printed circuit board module is provided, for example as a loudspeaker, the actuator structure can be excited in such a way that an intended membrane for generating sound energy is set in vibration. On the other hand, if the sound transducer arrangement functions as a microphone, the vibrations are converted by the actuator structure into electrical signals.
  • the actuator structure can thus be individually and inexpensively adapted to different requirements, in particular via an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • the structure is a sensor structure.
  • the sensor structure preferably forms a position sensor, by means of which the deflection of a membrane provided for this purpose can be detected and evaluated. Based on the evaluation, the actuator structure can be controlled controlled, so that the membrane depending on the circumstances is deflected. External influences and aging effects can be compensated in this way.
  • the structure comprises at least one supporting layer of metal, in particular of copper.
  • the support layer preferably has a thickness of 1 to 50 ⁇ m. Due to the electrically conductive base layer, the electronic components of the MEMS board module can be interconnected. By using the very fine support layer, the structure is very compact.
  • the printed circuit board is a multilayer fiber composite component.
  • the printed circuit board has several layers of electrically insulating material. Between the insulating layers, electrical conductive layers of copper are arranged, which can be interconnected by means of plated-through holes. Since the structure is directly connected to the printed circuit board, the connections necessary for the functioning of the MEMS printed circuit board module can be realized in a cost-effective and space-saving manner by a printed circuit board designed in this way.
  • the printed circuit board is a laminated fiber composite component.
  • a printed circuit board is formed, the individual layers are connected to each other so stable that the functioning of the system is guaranteed even with shocks or other external influences.
  • the printed circuit board has at least one electrical conductive layer made of metal.
  • the electrical conductive layer forms the base layer of the structure.
  • the structure has at least one piezoelectric layer, which is preferably electrically coupled to the supporting layer.
  • the necessary for the deflection of the membrane mechanical movement of the structure can thus be easily realized, since the electrical voltage of the support layer can be used directly and without additional contacts of the piezoelectric layer.
  • the piezoelectric layer is advantageously electrically decoupled from the carrier layer. The decoupling is carried out by an arranged between the piezoelectric layer and the supporting layer insulating layer.
  • the multilayer structure has two piezoelectric layers. These are preferably each arranged between two electrode layers. In this case, one, in particular four electrode layers, may be formed by the carrier layer.
  • the support layer is preferably made of a metal, in particular copper. If the structure has multiple piezoelectric layers, the structure can generate more force and cause greater deflection. In this regard, it is further advantageous if the structure has more than two piezoelectric layers.
  • a piezoelectric layer of the structure is designed as a sensor and another piezoelectric layer as an actuator.
  • a piezoelectric layer may also comprise a plurality of separate regions, one of which is formed as a sensor and another region as an actuator.
  • the piezoelectric layer is preferably arranged between two electrode layers.
  • the support layer forms one of these two electrode layers.
  • the structure has a central region, to which a coupling element is attached.
  • the coupling element and the printed circuit board are preferably made of the same material, in particular a fiber composite material.
  • the coupling element can be connected to the membrane provided for this purpose so that it can be deflected as a result of a lifting movement of the structure in the z-direction or along the lifting axis.
  • the structure has an actuator / sensor region.
  • This area is in each case arranged between the anchoring area and the central area. Additionally or alternatively, the actuator / sensor area is connected to the central area via at least one flexible connecting element.
  • the voltage generated via the piezoelectric effect can be detected by the sensor system and provided for evaluation, so that the actual position of the membrane can be determined in a simple manner.
  • the actuator / sensor region Through the actuator / sensor region, different geometries can be formed to efficiently control different regions and vibration modes. By integrated into the circuit board structure and the actuator / sensor area, the performance and sound quality of the transducer assembly can be increased without additional space requirements.
  • An ASIC is advantageously completely encapsulated embedded in the circuit board.
  • additional electrical components are completely encapsulated embedded in the circuit board.
  • the functionality of the transducer assembly can be made without additional carrier material.
  • the ASIC or the additional electrical components can be integrated in the manufacturing process in the circuit board and connected by means of plated through holes with the associated components.
  • circuit board has at least one external contact for electrical connection to an external device having.
  • the external contact is arranged freely accessible on an outer side of the printed circuit board module.
  • the acoustic transducer assembly comprises a diaphragm, a cavity and a MEMS printed circuit board module.
  • the MEMS circuit board module comprises a multilayer piezoelectric structure. By means of the piezoelectric structure, the membrane is set into vibration. Alternatively or additionally, vibrations of the membrane can be detected by means of the structure.
  • the MEMS circuit board module is formed according to the preceding description, wherein said features may be present individually or in any combination.
  • the transducer assembly By integrated into the circuit board structure, the transducer assembly can be produced inexpensively.
  • the structure, in particular its support layer, can be easily embedded in the printed circuit board during the layered production and connected to the required electronic components. As a result, different types of circuit board can be realized in a simple manner.
  • the membrane is connected directly in its edge region with the circuit board.
  • the sound transducer arrangement comprises a membrane module.
  • the membrane module has the membrane and a membrane frame.
  • the membrane frame holds the membrane in its edge area.
  • the membrane module is connected via the membrane frame to the MEMS printed circuit board module.
  • the modular construction of the sound transducer arrangement makes it possible to independently test the individual modules, in particular the MEMS printed circuit board module and the membrane module, prior to assembly for its functionality. Faulty modules can by the inventive Sound transducer assembly are identified early, so that the number of defective systems can be reduced in this way.
  • the cavity is at least partially formed by a recess of the circuit board.
  • the cavity is formed by a housing part, in particular made of metal or plastic.
  • the housing part is preferably connected to the MEMS printed circuit board module on the side facing away from the membrane module. The cavity can be quickly, easily and inexpensively adapted to the particular application without having to change the circuit board.
  • the membrane advantageously has a, in particular multi-layer, reinforcing element.
  • the reinforcing element By the reinforcing element, the sensitive membrane is protected from damage caused by excessive movement of the membrane due to excessive sound pressure or external shock or shock.
  • the membrane is connected in an inner connection region with a coupling element of the MEMS printed circuit board module. Through the structure, a lifting movement can be generated, by means of which the membrane is deflectable.
  • a manufacturing method for a MEMS printed circuit board module and / or a sound transducer arrangement is also proposed.
  • the MEMS circuit board module and the sound transducer assembly are formed according to the foregoing description, wherein said features may be present individually or in any combination.
  • a multilayer printed circuit board is produced.
  • at least one metallic conductive layer and a plurality of printed circuit board carrier layers are interconnected by lamination.
  • the printed circuit board carrier layers are in particular made of fiber composite material.
  • a multilayer piezoelectric structure is formed and connected to the circuit board in an anchoring area facing the circuit board directly and firmly connected by lamination. A piezoelectric layer of the structure is thus laminated into the multilayer printed circuit board, in particular directly on the conductive layer.
  • the layered structure of printed circuit boards made of copper foils and conductor plate carrier layers, in particular carrier material, can thus be easily and inexpensively connected to the production of the structure.
  • all necessary for functionality, embedded in the circuit board components can be easily contacted with each other.
  • only the individual conductive layers must be connected by means of plated-through holes by the manufacturing method according to the invention.
  • the PCB geometry can be inexpensively adapted to individual applications.
  • the FIG. 1 shows a MEMS circuit board module 1 in a sectional view.
  • the MEMS printed circuit board module 1 is suitable for a sound transducer arrangement 2 (cf. FIGS. 6 and 7 ) for generating and / or detecting sound waves in the audible wavelength spectrum.
  • the MEMS printed circuit board module 1 essentially comprises a printed circuit board 4 and a multilayer piezoelectric structure 5.
  • the printed circuit board 4 is a multilayer composite fiber component with at least one electrical conductive layer 8 made of metal.
  • the printed circuit board 4 comprises an ASIC 27 and / or passive electronic additional components 28 which are completely integrated in the printed circuit board 4.
  • the ASIC 27 and / or the passive electronic additional components 28 are thus completely encapsulated by the printed circuit board 4.
  • the printed circuit board 4 has a recess 17 with a first opening 18 and a second opening 19 opposite the first opening 18.
  • the recess 17 thus extends completely through the printed circuit board 4. It is a continuous hole, so that the circuit board 4 is formed as a circumferentially closed frame, in particular as a support frame 15.
  • this support frame 15 in addition to the ASIC 27, the additional components 28 and the structure 5, in an anchoring region 21, integrated.
  • the structure 5 is connected directly to the circuit board 4 inside the recess 17.
  • the circuit board 4 accordingly forms a structural support, which carries the structure 5 and with respect to which the structure 5 can be deflected.
  • the piezoelectric structure 5 has a support layer 7 and a piezoelectric functional region 9. In its outer area, the structure 5 has the anchoring area 21. In this the printed circuit board 4 facing anchoring region 21, the structure 5 is fixed to the circuit board 4, in particular the conductive layer 8, respectively.
  • the conductive layer 8 essentially forms the base layer 7 of the structure 5, which is integrated in the printed circuit board 4 in this way.
  • the structure 5 has a central region 22, which is arranged substantially centrally in the interior of the recess 17.
  • the structure 5 is connected in this central region 21 via at least one flexible connecting element 26 with a coupling element 23.
  • the coupling element 23 and the printed circuit board 4 are preferably made of the same material, in particular a fiber composite material.
  • the structure 5 can deflect the coupling element 23 relative to the printed circuit board 4 in the z-direction or along the lifting axis from the neutral position shown here.
  • the recess 17 at least partially forms a cavity 20 of the sound transducer arrangement 2, which is completely shown in FIGS. 6 and 7.
  • the circuit board 4 also has an external contact 29 for electrical connection to an external device, not shown here.
  • FIG. 2 shows a detail of the MEMS circuit board module 1 according to FIG. 1 in cross-section, in particular in the connection region between the printed circuit board 4 and the structure 5.
  • the multilayer printed circuit board 4 is a laminated fiber composite component comprising at least a first conductive layer 8 and a second conductive layer 34.
  • the two conductive layers 8, 34 are electrically decoupled from each other by printed circuit board carrier layers 14.
  • the structure 5 is connected to the circuit board 4 in its anchoring area 21.
  • the first conductive layer 8 of the printed circuit board 4 forms the base layer 7 of the structure 5.
  • the piezoelectric functional area 9 (cf. FIGS. 4 and 5 ) is supported by the support layer 7.
  • the support layer 7 is laminated in the circuit board 4 and thus verbuden with this directly.
  • the functional area 9 is firmly connected to the printed circuit board 4 via the supporting layer 7.
  • the functional layer 9 can be laminated on the support layer 7.
  • FIG. 3 A further embodiment of the MEMS circuit board module 1 is shown, wherein the following substantially addresses the differences with respect to the embodiment already described.
  • the same reference numerals are used in the following description of the other embodiments for the same features. Provided these are not explained again in detail, their design and mode of action corresponds to the features already described above. The differences described below can be combined with the features of the respective preceding and following embodiments.
  • FIG. 3 shows the MEMS circuit board module 1 in a detail section, in which case the structure 5 is not arranged in the interior of the recess 17, but in the region of the first opening 18.
  • the first conductive layer 8 is connected directly to the base layer 7. It would also be conceivable to connect the structure 5 in the region of the second opening 19 with the printed circuit board 4.
  • the functional region 9 is at least partially embedded in the printed circuit board 4 and is supported by the carrier layer 7 in the region of the first opening 18.
  • the circuit board 4 accordingly forms a structural support, which carries the structure 5 and with respect to which the structure 5 can be deflected.
  • the second conductive layer 34 is connected to the ASIC 27.
  • the ASIC 27 represents an encapsulated control, which is electrically connected to the second conductive layer 34.
  • the ASIC 27 is encapsulated in a cavity of the circuit board 4.
  • the ASIC 27 may also be coated or cast with synthetic resin.
  • the additional electrical component 28 may be coupled to one of the conductive layers 8, 34.
  • FIG. 4 shows a detailed view of the piezoelectric structure 5.
  • the structure 5 has the support layer 7 and the functional area 9.
  • the functional area 9 comprises a piezoelectric layer 10, which preferably consists of lead zirconate titanate (PZT) and / or aluminum nitride (ALN).
  • PZT lead zirconate titanate
  • APN aluminum nitride
  • the piezoelectric layer 10 is embedded between an upper electrode layer 12 and a lower electrode layer 13.
  • the base course 7 of the printed circuit board 4 forms the lower electrode layer 13, wherein the structure 5 is embedded or integrated directly into the printed circuit board 4 via this.
  • FIG. 5 a further embodiment of the structure 5 is shown.
  • This embodiment has, according to the in FIG. 4 Structure 5 shown a piezoelectric layer 10, which are sandwiched between two electrode layers 12, 13 are arranged.
  • This combination of layers forms the basis for the exemplary embodiment described below.
  • this exemplary embodiment in comparison to the embodiment described in FIG. 4 illustrated embodiment for the same features same reference numerals. If these are not explained again, their design and mode of action corresponds to the features already described above.
  • the structure 5 in addition to the two electrode layers 12, 13 and the piezoelectric layer 10, an insulating layer 11 which is formed in particular of silicon oxide.
  • the lower electrode layer 13 is not formed in this embodiment by the support layer 7 of the circuit board 4 itself, but by an additional layer in the functional area 9. Through the insulating layer 11, the lower electrode layer 13 is electrically decoupled from the support layer 7.
  • FIG. 6 shows a first embodiment of the transducer assembly 2 in a sectional view.
  • the sound transducer assembly 2 comprises the MEMS printed circuit board module 1, the membrane 6 and the membrane frame 16.
  • the membrane 6 is accommodated in the z-direction or along the lifting axis of the membrane frame 16.
  • the membrane 6 and the membrane frame 16 essentially form a membrane module 3.
  • the printed circuit board 4 is connected in its outer frame region to an outer connection region 33 of the membrane module 3, in particular to the membrane frame 16.
  • an inner Connection region 32 is formed. The membrane 6 thus spans the membrane frame 16 and is stiffened in its central region.
  • the recess 17 at least partially forms a cavity 20 of the acoustic transducer assembly 2.
  • the cavity 20 is closed by a housing part 30 on the side of the MEMS printed circuit board module 1 facing away from the membrane frame 16.
  • the housing part 30 is formed of metal or plastic and has a housing cavity 35, which forms the cavity 20 in addition to the recess 17.
  • the size of the housing cavity 35 can be selected depending on the sound pressure to be generated.
  • the structure 5 is arranged below the membrane 6 and / or substantially parallel to it.
  • the base layer 7 of the structure 5 is directly connected to one of the conductive layers 8, 34 of the printed circuit board 4 and deflected relative thereto in the z-direction.
  • the piezoelectric layer 10 is designed to produce a unidirectional or bidirectional lifting movement of the structure 5 for the deflection of the membrane 6.
  • the piezoelectric layer 10 thus cooperates with the membrane 6 in order to convert electrical signals into acoustically perceptible sound waves. Alternatively, the acoustically perceptible sound waves can be converted into electrical signals.
  • the structure 5 is connected via not shown in the figures contacts with the ASIC 27.
  • the sound transducer assembly 2 can thus be controlled or operated via the ASIC 27 so that, for example, by the piezoelectric structure 5, the membrane 6 for generating sound energy relative to the membrane frame 16 can be vibrated.
  • FIG. 7 shows a further embodiment of the transducer assembly 2, wherein the following essentially addresses the differences with respect to the embodiment already described.
  • a reinforcing element 31 is arranged, which itself is not connected to the membrane frame 16.
  • the reinforcing element 31 can therefore oscillate together with the membrane 6 in relation to the membrane frame 16 in the z-direction.
  • the inner connecting portion 32 of the diaphragm 6 is stiffened in this way.
  • the membrane frame 16 is formed in this embodiment of the circuit board 4 itself and consequently of the same material. The membrane frame 16 and the circuit board 4 are thus integrally formed.
  • the sound transducer assembly 2 no separate housing parts 30.
  • the cavity 20 is here formed and closed by the circuit board 4 itself.
  • a design of the membrane frame 16 according to the first embodiment of the transducer assembly 2 is also conceivable.
  • FIG. 8 shows a third embodiment of a structure 5 in a plan view.
  • the structure 5, which is designed in particular as a cantilever arm, has at least one actuator region 24 and a sensor region 25.
  • the actuator / sensor region 24, 25 is arranged between the anchoring region 21 and the central region 22.
  • the connection to the central region 22 is effected via at least one flexible connecting element 26.
  • the sensor region 25 is preferably designed as a position sensor in order to provide the ASIC 27 with a sensor signal dependent on the diaphragm deflection.
  • the elastic vibration properties of the connecting element 26 are taken into account.
  • the over the piezoelectric Effect generated voltage which is approximately proportional to the deflection of the structure 5, via the electrode layers 12, 13 (see. Fig. 4 and 5 ) and evaluated. Based on the control signal, the structure 5 can be controlled by the ASIC 27.
  • the sensor region 25 and the actuator region 24 are formed by a common piezoelectric layer 10.
  • at least one region is a sensor region 25, by means of which two actuator regions 24 are spaced apart from one another.
  • the actuator regions 24 are electrically isolated from each other.
  • the two regions 24, 25 may be formed from mutually different material, in particular from lead zirconate titanate or aluminum nitride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Micromachines (AREA)

Description

  • Die vorliegende Erfindung betrifft ein MEMS-Leiterplattenmodul für eine Schallwandleranordnung zum Erzeugen und/oder Erfassen von Schwallwellen im hörbaren Wellenlängenspektrum mit einer Leiterplatte und einer mehrschichtigen piezoelektrischen Struktur, mittels der eine dafür vorgesehene Membran in Schwingung versetzbar und/oder Schwingungen einer Membran erfassbar sind. Des Weiteren betriff die Erfindung eine Schallwandleranordnung zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum mit einer Membran, einer Kavität und einem MEMS-Leiterplattenmodul, das eine Leiterplatte und eine mehrschichtige piezoelektrische Struktur umfasst, mittels der die Membran in Schwingung versetzbar und/oder Schwingungen der Membran erfassbar sind. Zudem betrifft die Erfindung ein Herstellungsverfahren für ein entsprechendes MEMS-Leiterplattenmodul und/oder eine entsprechende Schallwandleranordnung. Die Bezeichnung MEMS steht für mikroelektromechanische Systeme. Unter der Begrifflichkeit "Kavität" ist ein Hohlraum zu verstehen, mittels dem der Schalldruck des MEMS-Schwallwandlers verstärkt werden kann. Derartige Systeme werden besonders in elektronischen Geräten verbaut, die nur wenig Bauraum bieten, jedoch hohen Belastungen Stand halten müssen. Aus der DE 10 2013 114 826 ist ein MEMS-Schallwandler zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum mit einem Trägersubstrat, einem in dem Trägersubstrat ausgebildeten Hohlraum und einer mehrschichtigen piezoelektrischen Membranstruktur bekannt. Bei derartigen MEMS-Schallwandlern wird der Halbleiter Silicium als Material für Trägersubstrate verwendet. Dieses Material ist jedoch sehr teuer, was sich negativ auf die Herstellungskosten derartiger MEMS-Schallwandler auswirkt.
  • Das Dokument DE 10 2010 005654 A1 zeigt eine Signalgebereinrichtung mit einem elektrischen akustischen Signalgeber, der eine Piezokeramikscheibe auf einer Metallmembran aufweist.
  • Aufgabe der vorliegenden Erfindung ist es somit, ein MEMS-Leiterplattenmodul, eine Schallwandleranordnung sowie ein Herstellungsverfahren zu schaffen, so dass die Herstellungskosten reduziert werden können.
  • Die Aufgabe wird gelöst durch ein MEMS-Leiterplattenmodul, eine Schallwandleranordnung sowie ein Herstellungsverfahren gemäß den unabhängigen Patentansprüchen.
  • Vorgeschlagen wird ein MEMS-Leiterplattenmodul für eine Schallwandleranordnung zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum. Das MEMS-Leiterplattenmodul umfasst eine Leiterplatte. Die Leiterplatte ist vorzugsweise aus einem elektrisch isolierendem Material hergestellt und umfasst vorzugsweise zumindest eine elektrische Leitschicht. Neben der Leiterplatte umfasst das MEMS-Leiterplattenmodul eine Struktur. Die Struktur ist mehrschichtig und piezoelektrisch ausgebildet. Mittels dieser Struktur ist eine dafür vorgesehene Membran in Schwingung versetzbar. Alternativ oder zusätzlich sind mittels der piezoelektrischen Struktur Schwingungen der Membran erfassbar. Die Struktur wirkt demnach als Aktuator und/oder Sensor. Die mehrschichtige piezoelektrische Struktur ist mit der Leiterplatte unmittelbar verbunden. Dabei ist vorzugsweise zumindest eine Schicht der Struktur durch die Leitschicht der Leiterplatte ausgebildet.
  • Durch diese integrative Ausbildung der Struktur in die Leiterplatte kann das vorgeschlagene MEMS-Leiterplattenmodul einfach und kostengünstig hergestellt werden. Auf diese Weise ist es möglich, zudem elektrische Komponenten direkt in die Leiterplatte einzubetten und mit den dafür vorgesehenen Bauteilen, wie der Struktur allein durch einfache Durchkontaktierungen zu verbinden.
  • Ebenso kann das vorgeschlagene MEMS-Leiterplattenmodul durch die zumindest teilweise integrative Ausbildung der Struktur in die Leiterplatte sehr brauraumsparend ausgebildet werden, da zusätzliche Bauteile, insbesondere zusätzliche Trägersubstrate, eingespart werden können. Zudem resultiert aus der Verwendung einer entsprechenden Leiterplattentechnologie eine erhebliche Kostenersparnis, da der hohe Kostenfaktor des teuren Siliziums für das Trägersubstrat entfällt. Ebenso können auf diese Weise bei Bedarf auch flächenmäßig größere Lautsprecher günstig hergestellt werden.
  • Vorteilhaft ist es, wenn die Leiterplatte als Strukturträger, insbesondere als Tragrahmen, der Struktur ausgebildet ist. Die Struktur, die vorzugsweise zumindest einen Kantilever bzw. Kragarm umfasst, ist somit gegenüber der Leiterplatte entlang einer Hubachse bzw. z-Achse auslenkbar. Der Strukturträger dient demnach als Basis bzw. Tragelement für die gegenüber diesem auslenkbare Struktur.
  • Ferner ist es diesbezüglich vorteilhaft, wenn die Leiterplatte eine Aussparung aufweist. Die Aussparung erstreckt sich vorzugsweise vollständig durch die Leiterplatte hindurch. Die Struktur ist stirnseitig im Bereich einer Öffnung der Aussparung angeordnet. Alternativ ist die Struktur im Inneren der Aussparung angeordnet. Vorzugsweise erstreckt sich die Aussparung entlang der z-Achse bzw. Hubachse, in deren Richtung die dafür vorgesehene Membran zu schwingen vermag. Auf diese Weise bildet die Aussparung zumindest teilweise eine Kavität der Schallwandleranordnung. Das MEMS-Leiterplattenmodul kann somit sehr bauraumsparend ausgebildet werden, da zusätzliche Bauteile, insbesondere zusätzliche Gehäuseteile, zur vollständigen Ausbildung der Kavität kleiner dimensioniert oder sogar vollständig eingespart werden können. Das Volumen der Kavität kann durch eine Vergrößerung der Aussparung in der Leiterplatte selbst an den individuellen Anwendungsfall angepasst werden, wenn ein höherer Schalldruck benötigt wird. Ebenso kann die Aussparung durch die Leiterplatte selbst oder durch ein Gehäuseteil verschlossen sein. Die Kavität der Schallwandleranordnung kann mittels der Aussparung schnell, einfach und kostengünstig an den jeweiligen Anwendungsfall angepasst werden.
  • Zudem ist es von Vorteil, wenn die Struktur in einem der Leiterplatte zugewandten Verankerungsbereich fest, insbesondere mittels Lamination, mit der Leiterplatte verbunden ist. Alternativ oder zusätzlich ist die Struktur in der Leiterplatte eingebettet und/oder in ihrem Verankerungsbereich einlaminiert. Die Struktur kann somit kostengünstig bereits während des Herstellungsverfahrens der Leiterplatte in diese integriert werden. Vorangegangene Herstellungsschritte zum Verbinden der Membran mit einem Siliziumsubstrat können somit entfallen. Wenn die Struktur in die Leiterplatte eingebettet ist, ist deren Verankerungsbereich von zumindest zwei Seiten, d.h. zumindest von der Ober- und der Unterseite, mit der Leiterplatte, insbesondere mit den jeweils korrespondierenden Schichten der Leiterplatte, verbunden, insbesondere verklebt.
  • Vorteilhaft ist es, wenn die Struktur eine Aktuatorstruktur ist. Die Aktuatorstruktur ist vorzugsweise aus zumindest einer piezoelektrischen Schicht ausgebildet. Fungiert die Schallwandleranordnung, für die das MEMS-Leiterplattenmodul vorgesehen ist, beispielsweise als Lautsprecher, so ist die Aktuatorstruktur derart anregbar, dass eine dafür vorgesehene Membran zur Erzeugung von Schallenergie in Schwingung versetzt wird. Fungiert die Schallwandleranordnung hingegen als Mikrofon, werden die Schwingungen durch die Aktuatorstruktur in elektrische Signale umgewandelt. Die Aktuatorstruktur kann somit, insbesondere über eine anwendungsspezifische integrierte Schaltung (ASIC), individuell und kostengünstig an verschiedene Anforderungen angepasst werden.
  • Alternativ oder zusätzlich ist es von Vorteil, wenn die Struktur eine Sensorstruktur ist. Die Sensorstruktur bildet dabei vorzugsweise einen Positionssensor aus, mittels dem die Auslenkung einer dafür vorgesehenen Membran erfassbar und auswertbar ist. Auf Basis der Auswertung kann die Aktuatorstruktur geregelt angesteuert werden, so dass die Membran je nach Gegebenheit ausgelenkt wird. Äußere Einflüsse und Alterungseffekte können auf diese Weise kompensiert werden.
  • Alternativ oder ergänzend ist es von Vorteil, wenn die Struktur zumindest eine Tragschicht aus Metall, insbesondere aus Kupfer, umfasst. Die Tragschicht weist vorzugsweise eine Dicke von 1 bis 50 µm auf. Durch die elektrisch leitfähige Tragschicht, können die elektronischen Bauelemente des MEMS-Leiterplattenmoduls miteinander verbunden werden. Durch die Verwendung der sehr feinen Tragschicht ist die Struktur sehr kompakt ausgebildet.
  • Des Weiteren ist es vorteilhaft, wenn die Leiterplatte ein mehrschichtiges Faserverbundbauteil ist. Die Leiterplatte weist dabei mehrere Schichten aus elektrisch isolierendem Material auf. Zwischen den isolierenden Schichten sind elektrische Leitschichten aus Kupfer angeordnet, welche mittels Durchkontaktierungen miteinander verbunden sein können. Da die Struktur unmittelbar mit der Leiterplatte verbunden ist, können die zur Funktionsfähigkeit des MEMS-Leiterplattenmoduls notwendigen Verbindungen durch eine derartig ausgebildete Leiterplatte kostengünstig und bauraumsparend realisiert werden.
  • Zusätzlich oder alternativ ist es von Vorteil, wenn die Leiterplatte ein laminiertes Faserverbundbauteil ist. Auf diese Weise ist eine Leiterplatte ausgebildet, deren einzelne Schichten derart stabil miteinander verbunden sind, dass auch bei Stößen oder anderen äußeren Einflüssen die Funktionsfähigkeit des Systems gewährleistet ist.
  • Alternativ oder ergänzend ist es von Vorteil, wenn die Leiterplatte zumindest eine elektrische Leitschicht aus Metall aufweist. Um die Leiterplatte kompakt und ohne zusätzliche Bauteile mit der Struktur zu verbinden, ist es vorteilhaft, wenn die elektrische Leitschicht die Tragschicht der Struktur ausbildet.
  • Einen weiteren Vorteil stellt es dar, wenn die Struktur zumindest eine Piezoschicht aufweist, welche mit der Tragschicht vorzugsweise elektrisch gekoppelt ist. Die zur Auslenkung der Membran notwendige mechanische Bewegung der Struktur kann somit einfach realisiert werden, da die elektrische Spannung der Tragschicht direkt und ohne zusätzliche Kontakte von der Piezoschicht genutzt werden kann. Ebenso kann durch die Auslenkung der Membran eine elektrische Spannung erzeugt und somit die Schallwellen erfasst werden. Alternativ oder zusätzlich ist die Piezoschicht von der Tragschicht vorteilhafterweise elektrisch entkoppelt. Die Entkopplung erfolgt dabei durch eine zwischen Piezoschicht und Tragschicht angeordnete Isolierschicht.
  • Vorteilhaft ist es, wenn die mehrschichtige Struktur zwei piezoelektrische Schichten aufweist. Diese sind vorzugsweise jeweils zwischen zwei Elektrodenschichten angeordnet. Hierbei kann eine der, insbesondere vier Elektrodenschichten, durch die Tragschicht ausgebildet sein. Die Tragschicht besteht hierfür vorzugsweise aus einem Metall, insbesondere Kupfer. Wenn die Struktur mehrere piezoelektrische Schichten aufweist, kann die Struktur mehr Kraft erzeugen und eine größere Auslenkung bewirken. Diesbezüglich ist es ferner vorteilhaft, wenn die Struktur mehr als zwei piezoelektrische Schichten aufweist.
  • Vorteilhaft ist es, wenn eine Piezoschicht der Struktur als Sensor und eine andere Piezoschicht als Aktuator ausgebildet ist. Alternativ kann auch eine Piezoschicht mehrere voneinander getrennte Bereiche umfassen, von denen ein Bereich als Sensor und ein anderer Bereich als Aktuator ausgebildet ist.
  • Um bei einer Auslenkung der Piezoschicht ein elektrisches Signal erfassen zu können und/oder um die Piezoschicht über das Anlegen einer Spannung aktiv auslenken zu können, ist die Piezoschicht vorzugsweise zwischen zwei Elektrodenschichten angeordnet. Die Tragschicht bildet dabei eine dieser beiden Elektrodenschichten.
  • Vorteilhaft ist es, wenn die Struktur einen Zentralbereich aufweist, an dem ein Koppelelement befestigt ist. Das Koppelelement und die Leiterplatte sind dabei vorzugsweise aus dem gleichen Material, insbesondere einem Faserverbundmaterial, hergestellt. Das Koppelelement ist mit der dafür vorgesehenen Membran verbindbar, so dass diese infolge einer Hubbewegung der Struktur in z-Richtung bzw. entlang der Hubachse ausgelenkbar ist.
  • Ein weiterer Vorteil ist es, wenn die Struktur einen Aktuator-/Sensorbereich aufweist. Dieser Bereich ist jeweils zwischen dem Verankerungsbereich und dem Zentralbereich angeordnet. Ergänzend oder alternativ ist der Aktuator-/Sensorbereich über zumindest ein flexibles Verbindungselement mit dem Zentralbereich verbunden. Die über den piezoelektrischen Effekt generierte Spannung kann von der Sensorik erfasst und zur Auswertung bereitgestellt werden, so dass die IST-Position der Membran in einfacher Art und Weise ermittelt werden kann. Durch den Aktuator-/Sensorbereich können unterschiedliche Geometrien ausgebildet werden, um verschiedene Bereiche und Vibrationsmodi effizient zu kontrollieren. Durch die in die Leiterplatte integrierte Struktur sowie den Aktuator-/Sensorbereich kann die Leistungsfähigkeit und die Klangqualität der Schallwandleranordnung ohne zusätzlichen Platzbedarf gesteigert werden.
  • Ein ASIC ist vorteilhafterweise vollständig gekapselt in die Leiterplatte eingebettet. Alternativ oder zusätzlich sind auch elektrische Zusatzkomponenten vollständig gekapselt in die Leiterplatte eingebettet. Die Funktionsfähigkeit der Schallwandleranordnung kann ohne zusätzliches Trägermaterial hergestellt werden. Der ASIC bzw. die elektrische Zusatzkomponenten können im Herstellungsverfahren in die Leiterplatte integriert und mittels Durchkontaktierungen mit den zugehörigen Bauteilen verbunden werden.
  • Einen weiteren Vorteil stellt es dar, wenn die Leiterplatte zumindest einen Außenkontakt zum elektrischen Verbinden mit einer externen Vorrichtung aufweist. Der Außenkontakt ist dabei frei zugänglich an einer Außenseite des Leiterplattenmoduls angeordnet.
  • Vorgeschlagen wird zudem eine Schallwandleranordnung zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum. Die Schallwandleranordnung weist eine Membran, eine Kavität und ein MEMS-Leiterplattenmodul auf. Das MEMS-Leiterplattenmodul umfasst eine mehrschichtige piezoelektrische Struktur. Mittels der piezoelektrischen Struktur ist die Membran in Schwingungen versetzbar. Alternativ oder ergänzend sind mittels der Struktur Schwingungen der Membran erfassbar. Das MEMS-Leiterplattenmodul ist gemäß der vorangegangenen Beschreibung ausgebildet, wobei die genannten Merkmale einzeln oder in beliebiger Kombination vorhanden sein können.
  • Durch die in die Leiterplatte integrierte Struktur kann die Schallwandleranordnung kostengünstig hergestellt werden. Die Struktur, insbesondere deren Tragschicht, kann während der schichtweisen Herstellung einfach in die Leiterplatte eingebettet und mit den erforderlichen elektronischen Komponenten verbunden werden. Dadurch können auf einfache Art und Weise auch unterschiedliche Leiterplattenformen realisiert werden.
  • Vorteilhafterweise ist die Membran in ihrem Randbereich unmittelbar mit der Leiterplatte verbunden. Alternativ ist es von Vorteil, wenn die Schallwandleranordnung ein Membranmodul umfasst. Das Membranmodul weist die Membran und einen Membranrahmen auf. Der Membranrahmen hält die Membran in ihrem Randbereich. Ergänzend oder alternativ ist das Membranmodul über den Membranrahmen mit dem MEMS-Leiterplattenmodul verbunden. Der modulare Aufbau der Schallwandleranordnung ermöglicht es, die einzelnen Module, insbesondere das MEMS-Leiterplattenmodul und das Membranmodul vor dem Zusammenfügen unabhängig voneinander auf seine Funktionsfähigkeit zu testen. Fehlerbehaftete Module können durch die erfindungsgemäße Schallwandleranordnung früh identifiziert werden, so dass die Anzahl defekter Systeme auf diese Weise reduziert werden kann.
  • Einen weiteren Vorteil stellt es dar, wenn die Kavität zumindest teilweise durch eine Aussparung der Leiterplatte ausgebildet ist. Alternativ oder zusätzlich ist die Kavität durch ein Gehäuseteil, insbesondere aus Metall oder Kunststoff, ausgebildet. Das Gehäuseteil ist vorzugsweise an der dem Membranmodul abgewandten Seite mit dem MEMS-Leiterplattenmodul verbunden. Die Kavität kann dadurch schnell, einfach und kostengünstig an den jeweiligen Anwendungsfall angepasst werden, ohne herbei die Leiterplatte verändern zu müssen.
  • Die Membran weist vorteilhafterweise ein, insbesondere mehrschichtiges, Verstärkungselement auf. Durch das Verstärkungselement ist die empfindliche Membran vor Beschädigungen durch zu große Bewegungen der Membran aufgrund von zu hohem Schalldruck oder äußeren Erschütterungen oder Stößen geschützt. Alternativ oder ergänzend ist die Membran in einem inneren Verbindungsbereich mit einem Koppelelement des MEMS-Leiterplattenmoduls verbunden. Durch die Struktur kann eine Hubbewegung erzeugt werden, mittels der die Membran auslenkbar ist.
  • Vorgeschlagen wird zudem ein Herstellungsverfahren für ein MEMS-Leiterplattenmodul und/oder eine Schallwandleranordnung. Das MEMS-Leiterplattenmodul und die Schallwandleranordnung sind gemäß der vorangegangenen Beschreibung ausgebildet, wobei die genannten Merkmale einzeln oder in beliebiger Kombination vorhanden sein können. Bei dem vorgeschlagenen Herstellungsverfahren wird eine mehrschichtige Leiterplatte hergestellt. Hierfür werden zumindest eine metallische Leitschicht und mehrere Leiterplatten-Trägerschichten durch Lamination miteinander verbunden. Die Leiterplatten-Trägerschichten sind dabei insbesondere aus Faserverbundmaterial. Eine mehrschichtige piezoelektrische Struktur wird ausgebildet und mit der Leiterplatte in einem der Leiterplatte zugewandten Verankerungsbereich unmittelbar und fest durch Lamination verbunden. Eine Piezoschicht der Struktur ist somit in die mehrschichtige Leiterplatte, insbesondere unmittelbar auf die Leitschicht, einlaminiert.
  • Der lagenweise Aufbau von Leiterplatten aus Kupferfolien und Leiter-Plattenträgerschichten, insbesondere Trägermaterial, kann somit einfach und kostengünstig mit der Herstellung der Struktur verbunden werden. Auf diese Weise können alle zur Funktionsfähigkeit notwendigen, in die Leiterplatte eingebetteten Komponenten einfach miteinander kontaktiert werden. Hierfür müssen durch das erfindungsgemäße Herstellungsverfahren lediglich die einzelnen Leitschichten mittels Durchkontaktierungen verbunden werden. Ebenso kann die Leiterplattengeometrie kostengünstig an individuelle Anwendungsfälle angepasst werden.
  • Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigt:
  • Figur 1
    ein MEMS-Leiterplattenmodul in einer Schnittansicht,
    Figur 2
    einen Detailausschnitt des gemäß Figur 1 dargestellten MEMS-Leiterplattenmoduls im Verbindungsbereich zwischen einer piezoelektrischen Struktur und einer Leiterplatte,
    Figur 3
    ein weiteres Ausführungsbeispiel des MEMS-Leiterplattenmoduls in einem Detailausschnitt,
    Figur 4
    eine schematische Detailansicht einer piezoelektrischen Struktur,
    Figur 5
    ein zweites Ausführungsbeispiel einer piezoelektrischen Struktur in einer schematischen Detailansicht,
    Figur 6
    eine Schallwandleranordnung in einer Schnittansicht,
    Figur 7
    ein zweites Ausführungsbeispiel einer Schallwandleranordnung in einer Schnittansicht,
    Figur 8
    ein drittes Ausführungsbeispiel einer piezoelektrischen Struktur mit einem Aktuator-/Sensorbereich in einer Draufsicht.
  • Bei der nachfolgenden Figurenbeschreibung werden, um die Beziehungen zwischen den verschiedenen Elementen zu definieren, bezugnehmen auf die jeweils in den Figuren dargestellte Lage der Objekte relative Begriffe, wie beispielsweise oberhalb, unterhalb, oben, unten, darüber, links, rechts, vertikal oder horizontal, verwendet. Es versteht sich von selbst, dass sich diese Begrifflichkeiten bei einer Abweichung von der in den Figuren dargestellten Lage der Vorrichtung und/oder Elemente verändern können. Demnach würde beispielsweise bei einer in Bezug auf die Figuren dargestellten invertierten Orientierung der Vorrichtung und/oder Elemente ein in der nachfolgenden Figurenbeschreibung als oberhalb spezifiziertes Merkmal nunmehr unterhalb angeordnet sein. Die verwendeten Relativbegriffe dienen somit lediglich zur einfacheren Beschreibung der relativen Beziehungen zwischen den einzelnen im nachfolgenden beschriebenen Vorrichtungen und/oder Elemente.
  • Die Figur 1 zeigt ein MEMS-Leiterplattenmodul 1 in einer Schnittansicht. Das MEMS-Leiterplattenmodul 1 ist für eine Schallwandleranordnung 2 (vgl. Figuren 6 und 7) zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum vorgesehen. Das MEMS-Leiterplattenmodul 1 umfasst im Wesentlichen eine Leiterplatte 4 und eine mehrschichtige piezoelektrische Struktur 5. Die Leiterplatte 4 ist ein mehrschichtiges Faserverbundbauteil mit zumindest einer elektrischen Leitschicht 8 aus Metall. Die Leiterplatte 4 umfasst einen ASIC 27 und/oder passive elektronische Zusatzkomponenten 28, die vollständig in die Leiterplatte 4 integriert sind.
  • Der ASIC 27 und/oder die passive elektronische Zusatzkomponenten 28 sind somit durch die Leiterplatte 4 vollständig gekapselt.
  • Die Leiterplatte 4 weist eine Aussparung 17 mit einer ersten Öffnung 18 und einer der ersten Öffnung 18 gegenüberliegenden zweiten Öffnung 19 auf. Die Aussparung 17 erstreckt sich somit vollständig durch die Leiterplatte 4 hindurch. Sie ist ein durchgehendes Loch, so dass die Leiterplatte 4 als umfangsmäßig geschlossener Rahmen, insbesondere als Tragrahmen 15, ausgebildet ist. In diesem Tragrahmen 15 ist neben dem ASIC 27, den Zusatzkomponenten 28 auch die Struktur 5, in einem Verankerungsbereich 21, integriert.
  • Die Struktur 5 ist im Inneren der Aussparung 17 unmittelbar mit der Leiterplatte 4 verbunden. Die Leiterplatte 4 bildet demnach einen Strukturträger, der die Struktur 5 trägt und gegenüber diesen die Struktur 5 ausgelenkt werden kann. Die piezoelektrische Struktur 5 weist eine Tragschicht 7 und einen piezoelektrischen Funktionsbereich 9 auf. In ihrem äußeren Bereich weist die Struktur 5 den Verankerungsbereich 21 auf. In diesem der Leiterplatte 4 zugewandten Verankerungsbereich 21 ist die Struktur 5 fest mit der Leiterplatte 4, insbesondere der Leitschicht 8, verbunden. Die Leitschicht 8 bildet dabei im Wesentlichen die Tragschicht 7 der Struktur 5 aus, die auf diese Weise in die Leiterplatte 4 integriert ist.
  • Zudem weist die Struktur 5 einen Zentralbereich 22 auf, der im Wesentlichen mittig im Inneren der Aussparung 17 angeordnet ist. Die Struktur 5 ist in diesem Zentralbereich 21 über zumindest ein flexibles Verbindungselement 26 mit einem Koppelelement 23 verbunden. Das Koppelelement 23 und die Leiterplatte 4 sind vorzugsweise aus dem gleichen Material, insbesondere einem Faserverbundmaterial, hergestellt. Die Struktur 5 kann das Koppelelement 23 gegenüber der Leiterplatte 4 in z-Richtung bzw. entlang der Hubachse aus der vorliegend dargestellten Neutralstellung auslenken.
  • Die Aussparung 17 bildet zumindest teilweise eine Kavität 20 der in den Figuren 6 und 7 vollständig dargestellten Schallwandleranordnung 2 aus. Die Leiterplatte 4 weist zudem einen Außenkontakt 29 zum elektrischen Verbinden mit einer hier nicht dargestellten externen Vorrichtung auf.
  • Figur 2 zeigt einen Detailausschnitt des MEMS-Leiterplattenmoduls 1 gemäß Figur 1 im Querschnitt, insbesondere im Verbindungsbereich zwischen der Leiterplatte 4 und der Struktur 5. Die mehrschichtige Leiterplatte 4 ist ein laminiertes Faserverbundbauteil, das zumindest eine erste Leitschicht 8 und eine zweite Leitschicht 34 aufweist. Die beiden Leitschichten 8, 34 sind durch Leiterplatten-Trägerschichten 14 elektrisch voneinander entkoppelt. Die Struktur 5 ist in ihrem Verankerungsbereich 21 mit der Leiterplatte 4 verbunden. Dabei bildet die erste Leitschicht 8 der Leiterplatte 4 die Tragschicht 7 der Struktur 5 aus. Der piezoelektrische Funktionsbereich 9 (vgl. Figuren 4 und 5) wird von der Tragschicht 7 getragen.
  • Die Tragschicht 7 ist in die Leiterplatte 4 einlaminiert und somit mit dieser unmittelbar verbuden. Der Funktionsbereich 9 ist über die Tragschicht 7 fest mit der Leiterplatte 4 verbunden. Die Funktionsschicht 9 kann auf der Tragschicht 7 auflaminiert sein.
  • Über einen Außenkontakt 29, welcher an einer Seite der Leiterplatte 4 angeordnet ist, können externe Vorrichtungen mit der Schallwandleranordnung 2 verbunden werden. Hierfür kann die Leiterplatte 4 im Bereich der zweiten Leitschicht 34 die Zusatzkomponenten 28 bzw. den ASIC 27 (vgl. Figur 3) aufweisen, wobei diese in Figur 2 nur schematisch angedeutet sind.
  • In der Figur 3 ist eine weitere Ausführungsform des MEMS-Leiterplattenmoduls 1 gezeigt, wobei folgend im Wesentlichen auf die Unterschiede in Bezug auf die bereits beschriebene Ausführungsform eingegangen wird. So werden bei der nachfolgenden Beschreibung der weiteren Ausführungsformen für gleiche Merkmale gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals detailliert erläutert werden, entspricht deren Ausgestaltung und Wirkweise den vorstehend bereits beschriebenen Merkmalen. Die nachfolgend beschriebenen Unterschiede können mit den Merkmalen der jeweils vorstehenden und nachfolgenden Ausführungsbeispiele kombiniert werden.
  • Figur 3 zeigt das MEMS-Leiterplattenmodul 1 in einem Detailschnitt, wobei hier die Struktur 5 nicht im Inneren der Aussparung 17, sondern im Bereich der ersten Öffnung 18 angeordnet ist. Dabei ist die erste Leitschicht 8 unmittelbar mit der Tragschicht 7 verbunden. Es wäre auch denkbar, die Struktur 5 im Bereich der zweiten Öffnung 19 mit der Leiterplatte 4 zu verbinden. Der Funktionsbereich 9 ist zumindest teilweise in die Leiterplatte 4 eingebettet und wird im Bereich der ersten Öffnung 18 von der Tragschicht 7 getragen. Die Leiterplatte 4 bildet demnach einen Strukturträger, der die Struktur 5 trägt und gegenüber diesen die Struktur 5 ausgelenkt werden kann.
  • Die zweite Leitschicht 34 ist mit dem ASIC 27 verbunden. Der ASIC 27 stellt dabei eine eingekapselte Steuerung dar, welche mit der zweiten Leitschicht 34 elektrisch verbunden ist. Im dargestellten Ausführungsbeispiel ist der ASIC 27 in einem Hohlraum der Leiterplatte 4 eingekapselt. Alternativ oder zusätzlich kann der ASIC 27 jedoch auch mit Kunstharz umhüllt oder eingegossen sein. Ebenso wie der ASIC 27 kann auch die elektrische Zusatzkomponente 28 mit einer der Leitschichten 8, 34 gekoppelt sein.
  • Figur 4 zeigt eine Detailansicht der piezoelektrischen Struktur 5. Die Struktur 5 weist die Tragschicht 7 sowie den Funktionsbereich 9 auf. Der Funktionsbereich 9 umfasst eine Piezoschicht 10, die vorzugsweise aus Blei-Zirkonat-Titanat (PZT) und/oder Aluminiumnitrid (ALN) besteht. Um bei einer Auslenkung der Piezoschicht 10 ein elektrisches Signal erfassen zu können und/oder um die Piezoschicht 10 über das Anlegen einer Spannung aktiv auslenken zu können, ist die Piezoschicht 10 zwischen einer oberen Elektrodenschicht 12 und einer unteren Elektrodenschicht 13 eingebettet. Die Tragschicht 7 der Leiterplatte 4 bildet dabei die untere Elektrodenschicht 13 aus, wobei die Struktur 5 über diese unmittelbar in die Leiterplatte 4 eingebettet bzw. integriert ist.
  • In Figur 5 ist eine weitere Ausführungsform der Struktur 5 dargestellt. Dieses Ausführungsbeispiel weist gemäß der in Figur 4 dargestellten Struktur 5 eine Piezoschicht 10 auf, die sandwichartig zwischen zwei Elektrodenschichten 12, 13 angeordnet sind. Diese Schichtkombination stellt die Basis für das nachfolgend beschriebene Ausführungsbeispiel dar. Bei der nachfolgenden Beschreibung dieses Ausführungsbeispiels werden im Vergleich zu dem in Figur 4 dargestellten Ausführungsbeispiel für gleiche Merkmale gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals erläutert werden, entspricht deren Ausgestaltung und Wirkweise den vorstehend bereits beschriebenen Merkmalen.
  • Gemäß dem in Figur 5 dargestellten Ausführungsbeispiel weist die Struktur 5 neben den beiden Elektrodenschichten 12, 13 und der Piezoschicht 10 eine Isolierschicht 11 auf, die insbesondere aus Siliciumoxid ausgebildet ist. Die untere Elektrodenschicht 13 wird in diesem Ausführungsbeispiel nicht durch die Tragschicht 7 der Leiterplatte 4 selbst, sondern durch eine zusätzliche Schicht in dem Funktionsbereich 9 ausgebildet. Durch die Isolierschicht 11 ist die untere Elektrodenschicht 13 von der Tragschicht 7 elektrisch entkoppelt.
  • Figur 6 zeigt eine erste Ausführungsform der Schallwandleranordnung 2 in einer Schnittansicht. Die Schallwandleranordnung 2 umfasst das MEMS-Leiterplattenmodul 1, die Membran 6 und den Membranrahmen 16. Die Membran 6 ist in z-Richtung bzw. entlang der Hubachse schwingbar von dem Membranrahmen 16 aufgenommen. Die Membran 6 und der Membranrahmen 16 bilden im Wesentlichen ein Membranmodul 3 aus. Die Leiterplatte 4 ist in ihrem äußeren Rahmenbereich mit einem äußeren Verbindungsbereich 33 des Membranmoduls 3, insbesondere mit dem Membranrahmen 16, verbunden. Zwischen der Membran 6 und dem Koppelelement 23 ist ein innerer Verbindungsbereich 32 ausgebildet. Die Membran 6 überspannt somit den Membranrahmen 16 und ist in ihrem mittleren Bereich versteift.
  • Die Aussparung 17 bildet zumindest teilweise eine Kavität 20 der Schallwandleranordnung 2 aus. Die Kavität 20 ist an der dem Membranrahmen 16 abgewandten Seite des MEMS-Leiterplattenmoduls 1 von einem Gehäuseteil 30 verschlossen. Das Gehäuseteil 30 ist aus Metall oder Kunststoff ausgebildet und weist einen Gehäusehohlraum 35 auf, welcher zusätzlich zur Aussparung 17 die Kavität 20 ausbildet. Die Größe des Gehäusehohlraums 35 kann in Abhängigkeit des zu erzeugenden Schalldrucks gewählt werden.
  • Die Struktur 5 ist unterhalb der Membran 6 und/oder im Wesentlichen parallel zu dieser angeordnet. Die Tragschicht 7 der Struktur 5 ist unmittelbar mit einer der Leitschichten 8, 34 der Leiterplatte 4 verbunden und gegenüber dieser in z-Richtung auslenkbar. Die Piezoschicht 10 ist ausgebildet, um eine uni- oder bidirektionale Hubbewegung der Struktur 5 zur Auslenkung der Membran 6 hervorzurufen. Die Piezoschicht 10 wirkt demnach mit der Membran 6 zusammen, um elektrische Signale in akustisch wahrnehmbare Schallwellen zu wandeln. Alternativ können die akustisch wahrnehmbaren Schallwellen in elektrische Signale umgewandelt werden.
  • Die Struktur 5 ist über in den Figuren nicht weiter dargestellten Kontakte mit dem ASIC 27 verbunden. Die Schallwandleranordnung 2 kann somit über den ASIC 27 angesteuert bzw. betrieben werden, so dass beispielsweise durch die piezoelektrische Struktur 5 die Membran 6 zur Erzeugung von Schallenergie gegenüber dem Membranrahmen 16 in Schwingung versetzt werden kann.
  • In der Figur 7 ist eine weitere Ausführungsform der Schallwandleranordnung 2 gezeigt, wobei folgend im Wesentlichen auf die Unterschiede in Bezug auf die bereits beschriebene Ausführungsform eingegangen wird. So werden bei der nachfolgenden Beschreibung der weiteren Ausführungsformen für gleiche Merkmale gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals detailliert erläutert werden, entspricht deren Ausgestaltung und Wirkweise den vorstehend bereits beschriebenen Merkmalen. Die nachfolgend beschriebenen Unterschiede können mit den Merkmalen der jeweils vorstehenden und nachfolgenden Ausführungsbeispiele kombiniert werden.
  • An einer Unterseite der Membran 6 ist, insbesondere in ihrem mittleren Bereich, ein Verstärkungselement 31 angeordnet, welches selbst nicht mit dem Membranrahmen 16 verbunden ist. Das Verstärkungselement 31 kann somit gemeinsam mit der Membran 6 gegenüber dem Membranrahmen 16 in z-Richtung schwingen. Zudem ist der innere Verbindungsbereich 32 der Membran 6 auf diese Weise versteift. Der Membranrahmen 16 ist in diesem Ausführungsbeispiel von der Leiterplatte 4 selbst und folglich aus dem gleichen Material ausgebildet. Der Membranrahmen 16 und die Leiterplatte 4 sind somit einteilig ausgebildet.
  • Gemäß Figur 7 weist die Schallwandleranordnung 2 keine separaten Gehäuseteile 30 auf. Die Kavität 20 wird hier durch die Leiterplatte 4 selbst ausgebildet und verschlossen. Eine Ausbildung des Membranrahmens 16 gemäß dem ersten Ausführungsbeispiel der Schallwandleranordnung 2 ist jedoch ebenso denkbar.
  • Figur 8 zeigt ein drittes Ausführungsbeispiel einer Struktur 5 in einer Draufsicht. Die Struktur 5, der insbesondere als Kragarm ausgebildet ist, weist zumindest einen Aktuatorbereich 24 und einen Sensorbereich 25 auf. Der Aktuator-/Sensorbereich 24, 25 ist zwischen dem Verankerungsbereich 21 und dem Zentralbereich 22 angeordnet. Die Verbindung mit dem Zentralbereich 22 erfolgt über zumindest ein flexibles Verbindungselement 26. Der Sensorbereich 25 ist dabei vorzugsweise als Positionssensor ausgebildet, um dem ASIC 27 ein von der Membranauslenkung abhängiges Sensorsignal bereitzustellen. Hierbei werden die elastischen Schwingungseigenschaften des Verbindungselementes 26 berücksichtigt. Die über den piezoelektrischen Effekt generierte Spannung, welche näherungsweise proportional zur Auslenkung der Struktur 5 ist, wird über die Elektrodenschichten 12, 13 (vgl. Fig. 4 und 5) abgegriffen und ausgewertet. Basierend auf dem Steuersignal kann die Struktur 5 von dem ASIC 27 geregelt angesteuert werden.
  • Der Sensorbereich 25 und der Aktuatorbereich 24 sind durch eine gemeinsame piezoelektrische Schicht 10 ausgebildet. Dabei ist zumindest ein Bereich ein Sensorbereich 25, durch welchen zwei Aktuatorbereiche 24 voneinander beabstandet sind. Die Aktuatorbereiche 24 sind elektrisch voneinander isoliert. Die beiden Bereiche 24, 25 können aus zueinander unterschiedlichem Material, insbesondere aus Blei-Zirkonat-Titanat oder Aluminiumnitrid, ausgebildet sein.
  • Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind möglich.
  • Bezugszeichenliste
  • 1
    MEMS-Leiterplattenmodul
    2
    Schallwandleranordnung
    3
    Membranmodul
    4
    Leiterplatte
    5
    Struktur
    6
    Membran
    7
    Tragschicht
    8
    Erste Leitschicht
    9
    Funktionsbereich
    10
    Piezoschicht
    11
    Isolierschicht
    12
    Obere Elektrodenschicht
    13
    Untere Elektrodenschicht
    14
    Leiterplatten-Trägerschichten
    15
    Tragrahmen
    16
    Membranrahmen
    17
    Aussparung
    18
    Erste Öffnung
    19
    Zweite Öffnung
    20
    Kavität
    21
    Verankerungsbereich
    22
    Zentralbereich
    23
    Koppelelement
    24
    Aktuatorbereich
    25
    Sensorbereich
    26
    Verbindungselement
    27
    ASIC
    28
    Zusatzkomponenten
    29
    Außenkontakt
    30
    Gehäuseteil
    31
    Verstärkungselement
    32
    Innerer Verbindungsbereich
    33
    Äußerer Verbindungsbereich
    34
    Zweite Leitschicht
    35
    Gehäusehohlraum

Claims (15)

  1. MEMS-Leiterplattenmodul (1) für eine Schallwandleranordnung (2) zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum mit
    einer Leiterplatte (4) und
    einer mehrschichtigen piezoelektrischen Struktur (5), mittels der eine dafür vorgesehene Membran (6) in Schwingungen versetzbar und/oder Schwingungen der Membran (6) erfassbar sind,
    dadurch gekennzeichnet,
    dass die mehrschichtige piezoelektrische Struktur (5) mit der Leiterplatte (4) in einem der Leiterplatte (4) zugewandten Verankerungsbereich (21) unmittelbar und fest verbunden ist.
  2. MEMS-Leiterplattenmodul nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Leiterplatte (4) als Strukturträger, insbesondere als Tragrahmen (15), der Struktur (5) ausgebildet ist.
  3. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Leiterplatte (4) eine, sich vorzugsweise vollständig durch diese hindurch erstreckende, Aussparung (17) aufweist, wobei die Struktur (5) insbesondere stirnseitig im Bereich einer Öffnung (18, 19) der Aussparung (17) oder im Inneren der Aussparung (17) angeordnet ist.
  4. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Verankerungsbereich (21) der Struktur (5) in die Leiterplatte (4) eingebettet und/oder in diese einlaminiert ist.
  5. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Struktur (5) eine Aktuator- und/oder Sensorstruktur ist und/oder
    zumindest eine Tragschicht (7) aus Metall, insbesondere Kupfer, umfasst, welche vorzugsweise eine Dicke von 1 bis 50 µm aufweist.
  6. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Leiterplatte (4) ein mehrschichtiges und/oder laminiertes Faserverbundbauteil ist und/oder
    zumindest eine elektrische Leitschicht (8) aus Metall aufweist, welche die Tragschicht (7) der Struktur (5) bildet.
  7. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Struktur (5) zumindest eine Piezoschicht (10) aufweist, welche mit der Tragschicht (7) elektrisch gekoppelt und/oder von dieser, insbesondere mittels einer dazwischen angeordneten Isolierschicht (11), elektrisch entkoppelt ist.
  8. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Piezoschicht (10) zwischen zwei Elektrodenschichten (12, 13) angeordnet ist, wobei vorzugsweise die Tragschicht (7) eine dieser beiden Elektrodenschichten (12, 13) bildet.
  9. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Struktur (5) einen Zentralbereich (22) aufweist, an dem ein Koppelelement (23) befestigt ist, wobei das Koppelelement (23) und die Leiterplatte (4) vorzugsweise aus dem gleichen Material, insbesondere einem Faserverbundmaterial, hergestellt sind.
  10. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein ASIC (27) und/oder passive elektronische Zusatzkomponenten (28) vollständig gekapselt in die Leiterplatte (4) eingebettet sind.
  11. MEMS-Leiterplattenmodul nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Leiterplatte (4) zumindest einen Außenkontakt (29) zum elektrischen Verbinden mit einer externen Vorrichtung aufweist.
  12. Schallwandleranordnung (2) zum Erzeugen und/oder Erfassen von Schallwellen im hörbaren Wellenlängenspektrum mit einer Membran (6) und
    einem MEMS-Leiterplattenmodul (1),
    das eine Leiterplatte (4) und
    eine mehrschichtige piezoelektrische Struktur (5) umfasst, mittels der die Membran (6) in Schwingungen versetzbar und/oder Schwingungen der Membran (6) erfassbar sind,
    dadurch gekennzeichnet,
    dass das MEMS-Leiterplattenmodul (1) nach einem oder mehreren der vorherigen Ansprüche ausgebildet ist.
  13. Schallwandleranordnung nach einem vorherigen Anspruch, dadurch gekennzeichnet, dass die Membran (6) in ihrem Randbereich unmittelbar mit der Leiterplatte (4) verbunden ist oder
    dass die Schallwandleranordnung (2) ein Membranmodul (3) umfasst, das die Membran (6) und einen Membranrahmen (16) aufweist, der die Membran (6) in ihrem Randbereich hält und/oder über den das Membranmodul (3) mit dem MEMS-Leiterplattenmodul (1) verbunden ist.
  14. Schallwandleranordnung nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schallwandleranordnung (2) eine Kavität (20) umfasst, die zumindest teilweise durch eine Aussparung (17) der Leiterplatte (4) und/oder ein Gehäuseteil (30), insbesondere aus Metall oder Kunststoff, ausgebildet ist, das vorzugsweise an der dem Membranmodul (3) abgewandten Seite mit dem MEMS-Leiterplattenmodul (1) verbunden ist.
  15. Herstellungsverfahren für ein MEMS-Leiterplattenmodul (1) und/oder eine Schallwandleranordnung (2) nach einem oder mehreren der vorherigen Ansprüche,
    bei dem eine mehrschichtige Leiterplatte (4) hergestellt wird,
    indem zumindest eine metallische Leitschicht (8) und mehrere Leiterplatten-Trägerschichten (14), insbesondere aus Faserverbundmaterial, durch Lamination miteinander verbunden werden,
    dadurch gekennzeichnet,
    dass eine mehrschichtige piezoelektrische Struktur (5) ausgebildet wird und mit der Leiterplatte (4) in einem der Leiterplatte (4) zugewandten Verankerungsbereich (21) unmittelbar und fest durch Lamination verbunden wird.
EP16760706.8A 2015-10-01 2016-09-05 Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung Active EP3320694B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015116640.2A DE102015116640B4 (de) 2015-10-01 2015-10-01 MEMS-Leiterplattenmodul mit integrierter piezoelektrischer Struktur sowie Schallwandleranordnung
PCT/EP2016/070796 WO2017055012A1 (de) 2015-10-01 2016-09-05 Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung

Publications (2)

Publication Number Publication Date
EP3320694A1 EP3320694A1 (de) 2018-05-16
EP3320694B1 true EP3320694B1 (de) 2019-11-13

Family

ID=56877029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16760706.8A Active EP3320694B1 (de) 2015-10-01 2016-09-05 Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung

Country Status (10)

Country Link
US (1) US10433063B2 (de)
EP (1) EP3320694B1 (de)
KR (1) KR20180061187A (de)
CN (1) CN108141669B (de)
AU (1) AU2016332481B2 (de)
CA (1) CA2997567A1 (de)
DE (1) DE102015116640B4 (de)
HK (1) HK1250192A1 (de)
SG (2) SG11201802051UA (de)
WO (1) WO2017055012A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015116640B4 (de) * 2015-10-01 2024-09-05 USound GmbH MEMS-Leiterplattenmodul mit integrierter piezoelektrischer Struktur sowie Schallwandleranordnung
DE102017114142A1 (de) * 2017-06-26 2018-12-27 USound GmbH Schallwandleranordnung mit einer MEMS-Einheit
DE102017125117A1 (de) * 2017-10-26 2019-05-02 USound GmbH Schallwandleranordnung
WO2019144370A1 (zh) * 2018-01-26 2019-08-01 刘端 Mems压电扬声器及其制备方法
CN110085735B (zh) * 2018-01-26 2024-08-02 安徽奥飞声学科技有限公司 Mems压电扬声器及其制备方法
DE102018203812A1 (de) 2018-03-13 2019-09-19 Christian-Albrechts-Universität Zu Kiel Ferroelektrisches material, mems-bauteil mit einem ferroelektrischen material, mems-vorrichtung mit einem ersten mems-bauteil, verfahren zur herstellung eines mems-bauteils und verfahren zur herstellung eines cmos-kompatiblen mems-bauteils
TWI707586B (zh) * 2018-08-14 2020-10-11 美律實業股份有限公司 微機電揚聲器
EP3620756B1 (de) * 2018-09-10 2021-07-14 Deutsches Institut für Lebensmitteltechnik e.V. Druckfestes gehäuse mit stromdurchführung
TWI683460B (zh) * 2018-11-30 2020-01-21 美律實業股份有限公司 揚聲器結構
CN110856085B (zh) * 2018-11-30 2021-07-09 美律电子(深圳)有限公司 扬声器结构
DE102019101325A1 (de) * 2019-01-17 2020-07-23 USound GmbH Herstellungsverfahren für mehrere MEMS-Schallwandler
CN110290449A (zh) * 2019-05-09 2019-09-27 安徽奥飞声学科技有限公司 一种音频装置及电子设备
DE102019116080A1 (de) * 2019-06-13 2020-12-17 USound GmbH MEMS-Schallwandler mit einer aus Polymer ausgebildeten Membran
DE102020200771B4 (de) 2020-01-23 2023-03-30 Vitesco Technologies Germany Gmbh Fluidsensorvorrichtung zum Erfassen des Füllstands und/oder der Qualität eines Fluids und Verfahren zum Herstellen derselben
IT202000010261A1 (it) 2020-05-07 2021-11-07 St Microelectronics Srl Attuatore piezoelettrico dotato di una struttura deformabile avente migliorate proprieta' meccaniche e relativo procedimento di fabbricazione
IT202000010264A1 (it) * 2020-05-07 2021-11-07 St Microelectronics Srl Attuatore piezoelettrico avente un sensore di deformazione e relativo procedimento di fabbricazione

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848036B1 (fr) * 2002-11-28 2005-08-26 St Microelectronics Sa Support pour resonateur acoustique, resonateur acoustique et circuit integre correspondant
US8120232B2 (en) * 2009-01-20 2012-02-21 Palo Alto Research Center Incorporated Sensors and actuators using piezo polymer layers
KR101609270B1 (ko) 2009-08-12 2016-04-06 삼성전자주식회사 압전형 마이크로 스피커 및 그 제조 방법
KR101573517B1 (ko) * 2009-10-12 2015-12-02 삼성전자주식회사 압전형 마이크로 스피커
DE102010005654A1 (de) 2010-01-19 2011-07-21 E.G.O. Elektro-Gerätebau GmbH, 75038 Signalgebeeinrichtung mit einem elektrischen akustischen Signalgeber
CN102075836B (zh) * 2011-01-18 2012-11-21 张家港市玉同电子科技有限公司 单膜式压电陶瓷扬声器
US9106994B2 (en) * 2013-03-14 2015-08-11 Abatech Electronics Co., Ltd. Ultra-slim speaker structure
US9596756B2 (en) * 2013-09-06 2017-03-14 Apple Inc. Electronic device with printed circuit board noise reduction using elastomeric damming and damping structures
CN203722817U (zh) * 2013-11-20 2014-07-16 张家港市玉同电子科技有限公司 用于手机、平板电脑中的单晶压电陶瓷发声器结构
DE102013114826A1 (de) 2013-12-23 2015-06-25 USound GmbH Mikro-elektromechanischer Schallwandler mit schallenergiereflektierender Zwischenschicht
US9309105B2 (en) 2014-03-06 2016-04-12 Infineon Technologies Ag Sensor structure for sensing pressure waves and ambient pressure
DE102014106753B4 (de) * 2014-05-14 2022-08-11 USound GmbH MEMS-Lautsprecher mit Aktuatorstruktur und davon beabstandeter Membran
DE102015116640B4 (de) * 2015-10-01 2024-09-05 USound GmbH MEMS-Leiterplattenmodul mit integrierter piezoelektrischer Struktur sowie Schallwandleranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3320694A1 (de) 2018-05-16
SG11201802051UA (en) 2018-04-27
DE102015116640A1 (de) 2017-04-06
KR20180061187A (ko) 2018-06-07
AU2016332481A1 (en) 2018-04-12
AU2016332481B2 (en) 2020-07-16
CN108141669A (zh) 2018-06-08
HK1250192A1 (zh) 2018-11-30
DE102015116640B4 (de) 2024-09-05
US10433063B2 (en) 2019-10-01
US20180249252A1 (en) 2018-08-30
SG10202002939QA (en) 2020-05-28
WO2017055012A1 (de) 2017-04-06
CN108141669B (zh) 2021-01-22
CA2997567A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP3320694B1 (de) Mems-leiterplattenmodul mit integrierter piezoelektrischer struktur sowie schallwandleranordnung
EP3381202B1 (de) Flexible mems-leiterplatteneinheit sowie schallwandleranordnung
EP3143778B1 (de) Mems-schallwandler sowie schallwandleranordnung mit stopper-mechanismus
EP3295683B1 (de) Schallwandleranordnung mit mems-schallwandlern
EP1199758B1 (de) Elektromechanisches Funktionsmodul
EP3136751A1 (de) Mems-lautsprecher mit positionssensor
DE102005008514B4 (de) Mikrofonmembran und Mikrofon mit der Mikrofonmembran
EP3135044A1 (de) Lautsprecheranordnung mit leiterplattenintegriertem asic
DE102008053327A1 (de) Anordnung mit einem Mikrofon
WO2009000641A1 (de) Akustisches sensorelement
EP3170171A1 (de) Ultraschallsensorvorrichtung für ein kraftfahrzeug, fahrerassistenzsystem sowie kraftfahrzeug
DE102018105501B4 (de) Abschirmvorrichtung für eine Ultraschallsensorvorrichtung und Verfahren zur Herstellung einer Ultraschallsensorvorrichtung
DE202022100478U1 (de) MEMS-Schallwandler mit Elektronikeinheit
DE202022100038U1 (de) MEMS-Schallwandler mit einer verdickten piezoelektrischen Schicht
DE102017216907B4 (de) Mikromechanische Sensorvorrichtung und Verfahren zur Herstellung derselben
DE202022100037U1 (de) MEMS-Schallwandler mit einer verstärkten Membran
WO2017097474A1 (de) Schallwandleranordnung mit ringförmigen verbindungsbereichen und verfahren zur herstellung einer schallwandleranordnung mit ringförmigen verbindungsbereichen
EP3374235B1 (de) Akustischer sensor zum aussenden und/oder empfangen von akustischen signalen
DE202022100477U1 (de) MEMS-Schallwandler mit luftdurchlässigem, porösem Schutzelement
DE102015224039A1 (de) Mikrofonsensor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUSCONI CLERICI BELTRAMI, ANDREA

Inventor name: BOTTONI, FERRUCCIO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1202939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007587

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007587

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191113

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240924

Year of fee payment: 9