EP3318339B1 - Device and method for sorting aluminium scrap - Google Patents

Device and method for sorting aluminium scrap Download PDF

Info

Publication number
EP3318339B1
EP3318339B1 EP16197186.6A EP16197186A EP3318339B1 EP 3318339 B1 EP3318339 B1 EP 3318339B1 EP 16197186 A EP16197186 A EP 16197186A EP 3318339 B1 EP3318339 B1 EP 3318339B1
Authority
EP
European Patent Office
Prior art keywords
fractions
fraction
conveyor belt
aluminum scrap
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16197186.6A
Other languages
German (de)
French (fr)
Other versions
EP3318339A1 (en
Inventor
John Paul Hermann KETTLER
Andreas Wilhelm HAVENITH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMAG casting GmbH
Original Assignee
AMAG casting GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMAG casting GmbH filed Critical AMAG casting GmbH
Priority to EP16197186.6A priority Critical patent/EP3318339B1/en
Priority to JP2019515233A priority patent/JP7055130B2/en
Priority to US16/347,542 priority patent/US11358179B2/en
Priority to PCT/EP2017/078245 priority patent/WO2018083273A1/en
Publication of EP3318339A1 publication Critical patent/EP3318339A1/en
Application granted granted Critical
Publication of EP3318339B1 publication Critical patent/EP3318339B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • B07C5/3427Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain by changing or intensifying the optical properties prior to scanning, e.g. by inducing fluorescence under UV or x-radiation, subjecting the material to a chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0036Sorting out metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/38Collecting or arranging articles in groups

Definitions

  • the invention relates to a method for sorting, in particular crushed, aluminum scrap according to alloy groups.
  • the object of the invention is therefore to create a device and a method for sorting aluminum scrap, which is distinguished by high mass throughput and high reliability when sorting aluminum scrap into alloy groups.
  • the aluminum scrap is divided into fractions in a first process step in the inventive method for sorting, in particular comminuted, aluminum scrap according to alloy groups, then a reliable separation of the aluminum scrap can be achieved and it can also be ensured that the alloy group is determined exclusively on a single fraction , Mutual influences through superimposition of the energy spectra, as can be expected when measuring several fractions at the same time, can thus be prevented in a stable manner.
  • the fractions of the aluminum scrap are subsequently irradiated with at least one neutron source, the gamma radiation emitted by the individual fraction through this neutron irradiation is recorded by at least one detector and an energy spectrum associated with the respective fraction is formed, the chemical composition of the individual fractions can be determined can be determined easily and with high precision.
  • this fraction can be allocated to the corresponding alloy group using this relative ratio - and without any particular effort, but nevertheless reliably. Subsequently, these fractions can be sorted according to the alloy groups assigned to them. The latter among other things because no complex process calibrations, as are known from the prior art, are required.
  • alloy groups is understood to be a division of aluminum alloys into groups according to EN 573-3 / 4 for wrought aluminum alloys or cast aluminum alloys according to DIN EN 1706.
  • the method according to the invention is suitable for sorting the aluminum scrap fractions into 3xxx, 4xxx, 5xxx etc. alloy groups.
  • a fraction is understood to mean several or individual aluminum scrap particles.
  • a fraction can also be understood to mean a predefined subset of the aluminum scrap powder or granulate become.
  • NAA neutral activation analysis
  • PGNAA prompt gammaneutron activation analysis
  • scrap parts can be grouped or separated into fractions in a process-technically simple manner.
  • the chambers can each have a predefined volume and / or serve to hold fractions with the same or different grain size.
  • the reproducibility of the method can be further improved if the conveyor system has an endless conveyor belt, the neutron source provided between the load and empty run of the conveyor belt irradiates the fractions of the aluminum scrap through the conveyor belt and the gamma radiation emitted by the fractions through this neutron irradiation from above Load strand of the conveyor belt provided detector is added. Due to this arrangement of neutron source and detector according to the invention, the influence of the conveyor system on the sensitivity of the detectors can be kept very low. It is also possible in this way to achieve a particularly high mass throughput, since a more variable handling of aluminum scrap is permitted.
  • the handling can be further improved if the aluminum scrap is provided in separate chambers of the conveyor belt of the conveyor system, in particular of the conveyor belt.
  • the accuracy and reliability of the method can be further increased.
  • the neutrons can be thermalized by the moderator - that is, their kinetic energy can be reduced to below 100 meV - whereby the cross section of the neutrons with the atomic nuclei of the material of the fraction to be examined can be increased significantly.
  • the accuracy of the method can therefore be improved since the increased cross section results in a greater yield of neutron activation products.
  • the moderator as a neutron lens, the neutron field emanating from the neutron source and the direction of the radiation can also be adjusted during the thermalization of the neutrons, whereby a neutron field that is uniform over the entire examination area can be achieved. This, in turn, is conducive to the reliability of the sorting process.
  • the mass throughput in the process can be further increased if several fractions are irradiated with a neutron source at the same time.
  • a neutron source for example, to subject fractions arranged side by side and / or one behind the other simultaneously to a measurement - the reproducibility of the method can be further increased on the basis of the comparability of the measurement of several simultaneously irradiated fractions.
  • the mass throughput of the method can be increased further.
  • detectors are provided next to one another and / or one behind the other and each assigned to a fraction for measuring the gamma radiation emitted by this fraction, it can be made possible to subject several aluminum scrap fractions to a measurement simultaneously, with a mutual influence on the emitted gamma radiation of an individual fraction being reduced.
  • the mass throughput of the process can thus be significantly increased while the process accuracy is still high.
  • these detectors are laterally shielded from one another, it can be ensured that the emitted gamma radiation only hits the detector assigned to the respective fraction, in particular when measuring several fractions simultaneously. A falsification of the measurement due to a superposition of the gamma radiation to be detected from several fractions can therefore be avoided.
  • lead shielding can prevent the gamma radiation not emitted by the sample from reaching the detectors (for example, by neutron activation of other materials in the system).
  • lead shielding represents a simple embodiment variant. A more reliable, reproducible method can thus be created.
  • a structurally simple and high-precision device for sorting, in particular crushed, aluminum scrap according to alloy groups with a high mass throughput can be achieved with a conveyor system for conveying fractions of the aluminum scrap, with a measuring device, which measuring device has at least one neutron source for irradiating the fractions conveyed by the conveyor system, at least one detector for recording the gamma radiation emitted by the fractions through this neutron irradiation and a computing unit for allocating the fractions to an alloy group depending on their respective relative ratio of the weight proportions of at least two of their alloy elements, which relative ratio is determined by the computing unit from the energy spectrum of the gamma radiation detected by the respective fraction, and with a sorting system which sorts the fractions conveyed by the conveyor system according to the alloy group allocated to them by the measuring device.
  • a comparatively high mass throughput and high selectivity can be achieved by the device according to the invention if the neutron source is provided between the load and empty run of the conveyor belt of the conveyor system.
  • the neutron source or lenses etc. can thus be provided comparatively close to the conveyor belt without having to fear contact with the conveyor system or the aluminum scrap conveyed by it.
  • a safe irradiation of the fractions can be expected, which can promote the reliability of the device in sorting the aluminum scrap according to alloy groups.
  • the conveyor system of the conveyor system can be used to divide the aluminum scrap if it has separate chambers.
  • the volume of the fraction can also be limited in a structurally simple manner, which can benefit the selectivity of the method and the sorting quality of the device.
  • the conveyor belt can have a plurality of chambers arranged in rows next to one another and columns one behind the other in order to increase the mass throughput of the device.
  • the selectivity provided by the device and thus its sorting quality can be further improved if a lens designed as a moderator is provided between the neutron source and the fraction.
  • FIG. 1 and Fig. 2 A method 1 for sorting crushed or shredded aluminum scrap 2 is shown, in which the aluminum scrap 2 is crushed and / or sieved and / or sieved and / or homogenized with a device 3, for example, or subsequently divided into fractions 4 and / or is isolated. These fractions 4 are finally sorted by a sorting system 5 according to alloy groups 6.1 (for example: wrought aluminum alloy of alloy group 6xxx), 6.2 (wrought aluminum alloy of alloy group 7xxx), 6.3 (cast aluminum alloy of alloy group 3xx-AlSiCu).
  • alloy groups 6.1 for example: wrought aluminum alloy of alloy group 6xxx
  • 6.2 wrought aluminum alloy of alloy group 7xxx
  • 6.3 cast aluminum alloy of alloy group 3xx-AlSiCu
  • the aluminum scrap 2 is filled into chambers 14 which are separated from one another and thus divided into individual fractions 4.
  • a fraction 4 can consist of a single or several aluminum scrap parts or also aluminum scrap granules or powders of the aluminum scrap 2.
  • the conveyor system 15 can only represent a conveyor belt 115 which separates the fractions 4 from the separating device 3 transported by the PGNAA measuring system 7 to the sorting system 5.
  • the delimited chambers 14 are formed by drivers 15.1 and longitudinal webs 15.2 of an endless conveyor belt 15.3 of a conveyor system 15.
  • the fractions 4 of the aluminum scrap 2 are fed to a PGNAA measuring device 7, which is data-connected to the sorting system 5.
  • the fractions 4 are irradiated with neutron radiation 8 from a neutron source 9 and the gamma radiation 10 emitted by the individual fractions 4 due to the activation of their atomic nuclei in this way is recorded by a detector 11. There are therefore data on the gamma rays 10 of the individual fractions 4.
  • the measurement data of the detector 11 are fed to a computing unit 12 of the measuring device 7.
  • the energy spectra associated with each of the fractions 4 can be formed.
  • a relative ratio of the weight fractions of at least two alloying elements of this fraction 4 is determined on the basis of the energy spectrum of the respective fraction.
  • the fractions 4 are individually assigned to an alloy group 6.1, 6.2, 6.3 on the basis of the relative ratios of the weight proportions of alloy elements by the computing unit 12.
  • the PGNAA measuring device 7 controls the sorting system 5 or is in data connection with the sorting system 5 such that a fraction 4 is sorted out into a respective container 13 according to the alloy group 6.1 or 6.2 or 6.3 corresponding to it.
  • Such a conveyor system 15 can enable a particularly high mass throughput in the process but can also be used to separate the aluminum scrap 2 into fractions 4.
  • the neutron source 9 is provided, which thus irradiates the fractions 4 of the aluminum scrap 2 through the load strand 15.4 of the conveyor belt 15.3.
  • the gamma radiation 10 emitted by the fractions 4 is recorded by the detector 11 provided above the load strand of the conveyor belt 15.3.
  • This type of arrangement of the neutron source 9 and the detector 11 creates a compact device and also enables the conveyor system 15 to have a slight interference effect on the measurement, especially since the empty strand 15.5 of the conveyor belt 15.3 has no influence on the irradiation of the fractions 4.
  • the method according to the invention therefore not only has a high mass throughput but also a high selectivity.
  • the neutron radiation 8 is guided from the neutron source 9 via a lens 16 before the neutron radiation 8 strikes the fractions 4.
  • the divergent neutron radiation 8 emerging from the neutron source 9 is homogenized and homogenized, so that it can be ensured that the neutron radiation 8 arriving at the fractions 4 is comparable in each chamber 14.
  • the lens 16 is designed as a moderator 17, as a result of which the neutrons of the neutron radiation 8 are thermalized, that is to say slowed down to kinetic energies below approximately 100 meV.
  • the cross section of the neutron radiation 8 with the atomic nuclei of the fractions 4 can thus be greatly increased, from which the measuring accuracy of the method benefits.
  • a plurality of detectors 11 are provided next to one another in the PGNAA measuring system in order to measure the gamma radiation 10 emitted by the fractions 4.
  • Fig. 1 16 detectors 11, in particular, are distributed over four rows 19 and four columns 20, correspondingly to those arranged in this way Chambers 14 of the conveyor belt 15.3. A high degree of parallelism for a high mass throughput can thus be achieved.
  • shields 18 are provided on the detectors 11.
  • the fact that these are shielded from one another on the side can advantageously ensure that only the gamma radiation 10 emitted by the fraction 4 assigned to the detector 11 strikes the respective detector 11.
  • the emitted gamma radiation 10 from a foreign fraction 4 could otherwise otherwise overlap with the gamma radiation 10 to be measured and thus falsify the energy spectrum.
  • a lead shield 18 has proven itself to form a reliable shield.

Description

Die Erfindung betrifft ein Verfahren zur Sortierung von, insbesondere zerkleinertem, Aluminiumschrott nach Legierungsgruppen.The invention relates to a method for sorting, in particular crushed, aluminum scrap according to alloy groups.

Aus dem Stand der Technik ( US 2010/0017020 A1 ) ist ein Verfahren zur Aufbereitung von metallischem Schrott (beispielsweise Aluminium) bekannt, wobei der Schrott in Fraktionen aufgeteilt wird, welche Fraktionen durch eine Röntgenquelle mit Röntgenstrahlung bestrahlt werden. Dabei wird die von der Fraktion abgegebene Gammastrahlung von einem Detektor aufgenommen und ein der Fraktion zugehöriges Energiespektrum gebildet, anhand dessen auf die Materialzusammensetzung der Fraktion geschlossen wird. Entsprechend der auf diese Weise festgelegten Materialzusammensetzung werden die Fraktionen in Materialgruppen sortiert. Ein solches Verfahren ist jedoch nicht dazu geeignet, Fraktionen in einzelne Legierungsgruppen (bspw. von Aluminium) zu sortieren, da keine ausreichende Genauigkeit bei der Zuordnung der Energiespektren erreicht werden kann. Zudem erlauben derartige Verfahren - nicht zuletzt aufgrund der vergleichsweise hohen Messdauer - einen relativ geringen Massendurchsatz.From the state of the art ( US 2010/0017020 A1 ) is known a method for processing metallic scrap (for example aluminum), the scrap being divided into fractions, which fractions are irradiated with X-rays by an X-ray source. The gamma radiation emitted by the fraction is recorded by a detector and an energy spectrum belonging to the fraction is formed, on the basis of which the material composition of the fraction is deduced. The fractions are sorted into material groups according to the material composition determined in this way. However, such a method is not suitable for sorting fractions into individual groups of alloys (for example of aluminum), since it is not possible to achieve sufficient accuracy in the assignment of the energy spectra. In addition, methods of this type allow a relatively low mass throughput, not least because of the comparatively long measuring time.

Die Erfindung hat sich daher die Aufgabe gestellt, eine Vorrichtung und ein Verfahren zur Sortierung von Aluminiumschrott zu schaffen, welche sich durch hohen Massendurchsatz und hohe Zuverlässigkeit bei der Sortierung von Aluminiumschrott in Legierungsgruppen auszeichnet.The object of the invention is therefore to create a device and a method for sorting aluminum scrap, which is distinguished by high mass throughput and high reliability when sorting aluminum scrap into alloy groups.

Die Erfindung löst die gestellte Aufgabe hinsichtlich des Verfahrens durch die Merkmale des Anspruchs 1.The invention achieves the stated object with regard to the method by the features of claim 1.

Wird bei dem erfindungsgemäßen Verfahren zur Sortierung von, insbesondere zerkleinerten, Aluminiumschrott nach Legierungsgruppen in einem ersten Verfahrensschritt der Aluminiumschrott in Fraktionen aufgeteilt, so kann gegebenenfalls eine zuverlässige Vereinzelung des Aluminiumschrotts erreicht und zudem sichergestellt werden, dass die Bestimmung der Legierungsgruppe ausschließlich an einer einzelnen Fraktion erfolgt. Gegenseitige Beeinflussungen durch Überlagerungen der Energiespektren, wie diese bei der gleichzeitigen Messung mehrerer Fraktionen zu erwarten sind, können somit standfest verhindert werden.
Werden in weiterer Folge die Fraktionen des Aluminiumschrotts mit mindestens einer Neutronenquelle bestrahlt, die von der einzelnen Fraktion durch diese Neutronenbestrahlung abgegebene Gammastrahlung jeweils von mindestens einem Detektor aufgenommen und daraus ein, der jeweiligen Fraktion zugehöriges Energiespektrum gebildet, so kann die chemische Zusammensetzung der einzelnen Fraktionen auf einfache Weise und mit hoher Präzision ermittelt werden.
Wird zudem anhand solch eines Energiespektrum ein relatives Verhältnis der Gewichtsanteile von mindestens zwei Legierungselementen dieser Fraktion bestimmt, so können diese Fraktion anhand diesem relativen Verhältnis der ihr entsprechenden Legierungsgruppe zugeteilt werden - und zwar ohne besonderem Aufwand aber dennoch zuverlässig. In weiterer Folge können diese Fraktionen nach den ihnen zugteilten Legierungsgruppen sortiert werden. Letzteres unter anderem deshalb, weil keine aufwendige Verfahrenskalibrierungen, wie diese aus dem Stand der Technik bekannt sind, erforderlich sind.
If the aluminum scrap is divided into fractions in a first process step in the inventive method for sorting, in particular comminuted, aluminum scrap according to alloy groups, then a reliable separation of the aluminum scrap can be achieved and it can also be ensured that the alloy group is determined exclusively on a single fraction , Mutual influences through superimposition of the energy spectra, as can be expected when measuring several fractions at the same time, can thus be prevented in a stable manner.
If the fractions of the aluminum scrap are subsequently irradiated with at least one neutron source, the gamma radiation emitted by the individual fraction through this neutron irradiation is recorded by at least one detector and an energy spectrum associated with the respective fraction is formed, the chemical composition of the individual fractions can be determined can be determined easily and with high precision.
If a relative ratio of the proportions by weight of at least two alloy elements of this fraction is also determined on the basis of such an energy spectrum, this fraction can be allocated to the corresponding alloy group using this relative ratio - and without any particular effort, but nevertheless reliably. Subsequently, these fractions can be sorted according to the alloy groups assigned to them. The latter among other things because no complex process calibrations, as are known from the prior art, are required.

Im Allgemeinen wird unter dem Begriff Legierungsgruppen eine Einteilung der Aluminiumlegierungen in Gruppen nach der EN 573-3/4 für Aluminiumknetlegierungen oder Aluminiumgusslegierungen nach DIN EN 1706 verstanden. So eignet sich das erfindungsgemäße Verfahren beispielsweise dazu, die Aluminiumschrott-Fraktionen in 3xxx-, 4xxx-, 5xxx- etc. Legierungsgruppen zu sortieren. Weiter wird im Allgemeinen festgehalten, dass unter einer Fraktion mehrere oder auch einzelne Aluminiumschrott-Partikel verstanden werden. Unter einer Fraktion kann aber ebenso eine vordefinierte Teilmenge des Aluminiumschrott-Pulvers bzw. -Granulats verstanden werden. Im Allgemeinen wird zudem festgehalten, dass das, dem Verfahren zugrunde liegende Messverfahren (Detektion und Ausbildung des Energiespektrums), als "neutron-activation-analysis" (NAA) bzw. im Speziellen als "prompt-gammaneutron-activation-analysis" (PGNAA) ausgebildet sein kann.In general, the term alloy groups is understood to be a division of aluminum alloys into groups according to EN 573-3 / 4 for wrought aluminum alloys or cast aluminum alloys according to DIN EN 1706. For example, the method according to the invention is suitable for sorting the aluminum scrap fractions into 3xxx, 4xxx, 5xxx etc. alloy groups. Furthermore, it is generally stated that a fraction is understood to mean several or individual aluminum scrap particles. However, a fraction can also be understood to mean a predefined subset of the aluminum scrap powder or granulate become. In general, it is also stated that the measurement method on which the method is based (detection and formation of the energy spectrum) as "neutron activation analysis" (NAA) or in particular as "prompt gammaneutron activation analysis" (PGNAA) can be trained.

Wird der Aluminiumschrott in voneinander abgegrenzten Kammern vorgesehen und damit in Fraktionen aufgeteilt, so kann auf verfahrenstechnisch einfache Weise eine Gruppierung oder Vereinzelung von Schrottteilen in Fraktionen erfolgen. Beispielsweise können die Kammern jeweils ein vordefiniertes Volumen aufweisen und/oder zur Aufnahme von Fraktionen mit gleicher oder unterschiedlicher Korngröße dienen.If the aluminum scrap is provided in separate chambers and thus divided into fractions, then scrap parts can be grouped or separated into fractions in a process-technically simple manner. For example, the chambers can each have a predefined volume and / or serve to hold fractions with the same or different grain size.

Werden die Fraktionen der Neutronenquelle von einer Förderanlage zur Bestrahlung zugeführt, kann damit nicht nur ein vergleichsweise hoher Massendurchsatz ermöglicht werden, sondern auch die Handhabung des Verfahrens weiter erleichtert werden, um für eine reproduzierbare Sortierung von Aluminiumschrott nach Legierungsgruppen zu sorgen.If the fractions of the neutron source are fed from a conveyor system for irradiation, this not only enables a comparatively high mass throughput, but also simplifies the handling of the process in order to ensure reproducible sorting of aluminum scrap according to alloy groups.

Die Reproduzierbarkeit des Verfahrens kann weiter verbessert werden, wenn die Förderanlage einen endlosen Fördergurt aufweist, die zwischen Last- und Leertrum des Fördergurts vorgesehene Neutronenquelle die Fraktionen des Aluminiumschrotts durch den Fördergurt hindurch bestrahlt und die von den Fraktionen durch diese Neutronenbestrahlung abgegebene Gammastrahlung von dem oberhalb des Lasttrums des Fördergurts vorgesehenen Detektor aufgenommen wird. Aufgrund dieser erfindungsgemäßen Anordnung von Neutronenquelle und Detektor kann der Einfluss der Förderanlage auf die Sensitivität der Detektoren sehr gering gehalten werden. Auch ist es derart möglich, einen besonders hohen Massendurchsatz zu erreichen, da eine variablere Handhabung von Aluminiumschrott zugelassen wird. Nicht zuletzt können derart Grundlagen für ein Verfahren geschaffen werden, mehrere Fraktionen zugleich und auf besonders einfache Weise detektiert werden - und zwar selbst mit vergleichsweise wenigen Einrichtungen, etwa Detektoren etc. Dennoch wird vom erfindungsgemäßen Verfahren stets eine hohe Trennschärfe gewährleistet.The reproducibility of the method can be further improved if the conveyor system has an endless conveyor belt, the neutron source provided between the load and empty run of the conveyor belt irradiates the fractions of the aluminum scrap through the conveyor belt and the gamma radiation emitted by the fractions through this neutron irradiation from above Load strand of the conveyor belt provided detector is added. Due to this arrangement of neutron source and detector according to the invention, the influence of the conveyor system on the sensitivity of the detectors can be kept very low. It is also possible in this way to achieve a particularly high mass throughput, since a more variable handling of aluminum scrap is permitted. Last but not least, the basis for a method can be created in this way, several fractions can be detected simultaneously and in a particularly simple manner - even with comparatively few devices, such as detectors etc. Nevertheless A high degree of selectivity is always guaranteed by the method according to the invention.

Das Verfahren kann in der Handhabung weiter verbessert werden, wenn der Aluminiumschrott in voneinander abgegrenzten Kammern des Fördergurts der Förderanlage, insbesondere des Förderbands, vorgesehen wird.The handling can be further improved if the aluminum scrap is provided in separate chambers of the conveyor belt of the conveyor system, in particular of the conveyor belt.

Wird die Neutronenbestrahlung über eine als Moderator ausgebildete Linse geführt, bevor diese auf die Fraktion trifft, so kann die Genauigkeit und Zuverlässigkeit des Verfahrens weiter erhöht werden. Die Neutronen können durch den Moderator thermalisiert werden - also in ihrer kinetischen Energie auf unter 100 meV reduziert werden - wodurch der Wirkungsquerschnitt der Neutronen mit den Atomkernen des Materials der zu untersuchenden Fraktion deutlich erhöhbar ist. Die Genauigkeit des Verfahrens kann demnach verbessert werden, da durch den erhöhten Wirkungsquerschnitt eine größere Ausbeute an Neutronen-Aktivierungsprodukten anfällt. Durch die Funktion des Moderators als Neutronenlinse kann zugleich während der Thermalisierung der Neutronen, das von der Neutronenquelle ausgehende Neutronenfeld vergleichmäßigt werden und auch die Richtung der Strahlung eingestellt wird, wodurch ein über den gesamten Untersuchungsbereich gleichmäßiges Neutronenfeld erreicht werden kann. Dies ist wiederum der Zuverlässigkeit des Sortierverfahrens zuträglich.If the neutron radiation is guided over a lens designed as a moderator before it hits the fraction, the accuracy and reliability of the method can be further increased. The neutrons can be thermalized by the moderator - that is, their kinetic energy can be reduced to below 100 meV - whereby the cross section of the neutrons with the atomic nuclei of the material of the fraction to be examined can be increased significantly. The accuracy of the method can therefore be improved since the increased cross section results in a greater yield of neutron activation products. Through the function of the moderator as a neutron lens, the neutron field emanating from the neutron source and the direction of the radiation can also be adjusted during the thermalization of the neutrons, whereby a neutron field that is uniform over the entire examination area can be achieved. This, in turn, is conducive to the reliability of the sorting process.

Der Massendurchsatz im Verfahren kann weiter erhöht werden, wenn mehrere Fraktionen gleichzeitig mit einer Neutronenquelle bestrahlt werden. Derart ist es etwa möglich, nebeneinander und/oder hintereinander angeordnete Fraktionen simultan einer Messung zu unterziehen - die Reproduzierbarkeit des Verfahrens kann aufgrund der Vergleichbarkeit der Messung mehrerer gleichzeitig bestrahlter Fraktionen weiter erhöhen werden.The mass throughput in the process can be further increased if several fractions are irradiated with a neutron source at the same time. In this way it is possible, for example, to subject fractions arranged side by side and / or one behind the other simultaneously to a measurement - the reproducibility of the method can be further increased on the basis of the comparability of the measurement of several simultaneously irradiated fractions.

Sind zudem mehrere Detektoren zur Messung der von den Fraktionen abgegebenen Gammastrahlung nebeneinander und/oder hintereinander vorgesehen, kann der der Massendurchsatz des Verfahrens weiter erhöht werden.If, in addition, several detectors are provided for measuring the gamma radiation emitted by the fractions next to one another and / or one behind the other, the mass throughput of the method can be increased further.

Sind dabei Detektoren nebeneinander und/oder hintereinander vorgesehenen und jeweils einer Fraktion zur Messung der von dieser Fraktion abgegebenen Gammastrahlung zugeordneten, so kann ermöglicht werden, mehrere Aluminiumschrott-Fraktionen simultan einer Messung zu unterziehen, wobei eine gegenseitige Beeinflussung der emittierten Gammastrahlung einzelner Fraktion reduziert wird. Der Massendurchsatz des Verfahrens kann damit bei dennoch hoher Verfahrensgenauigkeit deutlich erhöht werden. Sind diese Detektoren dabei seitlich voneinander abgeschirmt, so kann standfest sichergestellt werden, dass - insbesondere bei simultaner Messung mehrerer Fraktionen - die emittierte Gammastrahlung nur in den der jeweiligen Fraktion zugeordneten Detektor trifft. Eine Verfälschung der Messung aufgrund einer Überlagerung der zu detektierenden Gammastrahlung mehrerer Fraktionen ist demnach vermeidbar. So kann demnach vermieden werden, dass durch unerwünschte Streuung der Gammastrahlung an den Detektoren eine erhöhte Hintergrund- bzw. Störstrahlung in die Detektoren trifft. Zudem kann durch gezielte geometrische Anordnung der Bleiabschirmung vermieden werden, dass nicht von der Probe emittierte Gammastrahlung (etwa durch Neutronen-Aktivierung anderer Materialien in der Anlage) in die Detektoren trifft. Eine Bleiabschirmung stellt diesbezüglich eine einfache Ausführungsvariante dar. Ein zuverlässigeres, reproduzierbares Verfahren kann somit geschaffen werden.If detectors are provided next to one another and / or one behind the other and each assigned to a fraction for measuring the gamma radiation emitted by this fraction, it can be made possible to subject several aluminum scrap fractions to a measurement simultaneously, with a mutual influence on the emitted gamma radiation of an individual fraction being reduced. The mass throughput of the process can thus be significantly increased while the process accuracy is still high. If these detectors are laterally shielded from one another, it can be ensured that the emitted gamma radiation only hits the detector assigned to the respective fraction, in particular when measuring several fractions simultaneously. A falsification of the measurement due to a superposition of the gamma radiation to be detected from several fractions can therefore be avoided. It can thus be avoided that an increased background or interference radiation strikes the detectors due to undesired scattering of the gamma radiation at the detectors. In addition, a targeted geometric arrangement of the lead shielding can prevent the gamma radiation not emitted by the sample from reaching the detectors (for example, by neutron activation of other materials in the system). In this regard, lead shielding represents a simple embodiment variant. A more reliable, reproducible method can thus be created.

Hinsichtlich der Vorrichtung wird die gestellte Aufgabe durch die Merkmale des Anspruchs gelöst.With regard to the device, the object is achieved by the features of the claim.

Eine konstruktiv einfach realisierte und hochpräzise Vorrichtung in der Sortierung von, insbesondere zerkleinertem, Aluminiumschrott nach Legierungsgruppen mit hohem Massendurchsatz ist erreichbar mit einer Förderanlage zur Förderung von Fraktionen des Aluminiumschrotts, mit einer Messeinrichtung, welche Messeinrichtung mindestens eine Neutronenquelle zur Bestrahlung der von der Förderanlage geförderten Fraktionen, wenigstens einen Detektor zur Aufnahme der von den Fraktionen durch diese Neutronenbestrahlung abgegebenen Gammastrahlung und eine Recheneinheit zur Zuteilung der Fraktionen zu einer Legierungsgruppe in Abhängigkeit ihres jeweiligen relativen Verhältnisses der Gewichtsanteile mindestens zweier ihrer Legierungselemente aufweist, welches relative Verhältnis von der Recheneinheit aus dem Energiespektrum der von der jeweiligen Fraktion detektierten Gammastrahlung bestimmt wird, und mit einer Sortieranlage, welche die von der Förderanlage geförderten Fraktionen nach der, ihnen von der Messeinrichtung zugteilten Legierungsgruppe sortiert.A structurally simple and high-precision device for sorting, in particular crushed, aluminum scrap according to alloy groups with a high mass throughput can be achieved with a conveyor system for conveying fractions of the aluminum scrap, with a measuring device, which measuring device has at least one neutron source for irradiating the fractions conveyed by the conveyor system, at least one detector for recording the gamma radiation emitted by the fractions through this neutron irradiation and a computing unit for allocating the fractions to an alloy group depending on their respective relative ratio of the weight proportions of at least two of their alloy elements, which relative ratio is determined by the computing unit from the energy spectrum of the gamma radiation detected by the respective fraction, and with a sorting system which sorts the fractions conveyed by the conveyor system according to the alloy group allocated to them by the measuring device.

Ein vergleichsweise hoher Massendurchsatz und eine hohe Trennschärfe sind durch die erfindungsgemäße Vorrichtung erreichbar, wenn die Neutronenquelle zwischen Last- und Leertrum des Fördergurts der Förderanlage vorgesehen ist. Es wird dadurch nämlich eine Vorrichtung zur Verfügung gestellt, die es erlaubt, Fraktionen besonders variabel anzuordnen bzw. der Messeinrichtung zuzuführen, ohne Beeinträchtigungen in Hinblick auf die Reproduzierbarkeit in Kauf nehmen zu müssen. Des Weiteren kann damit die Neutronenquelle bzw. können Linsen etc. vergleichsweise nahe am Fördergurt vorgesehen werden, ohne eine Berührung mit der Förderanlage oder des von dieser geförderten Aluminiumschrotts befürchten zu müssen. Mit einer sicheren Bestrahlung der Fraktionen kann gerechnet werden, was die Zuverlässigkeit der Vorrichtung in der Sortierung des Aluminiumschrotts nach Legierungsgruppen förderlich sein kann.A comparatively high mass throughput and high selectivity can be achieved by the device according to the invention if the neutron source is provided between the load and empty run of the conveyor belt of the conveyor system. In this way, a device is made available which allows fractions to be arranged in a particularly variable manner or fed to the measuring device without having to accept impairments with regard to reproducibility. Furthermore, the neutron source or lenses etc. can thus be provided comparatively close to the conveyor belt without having to fear contact with the conveyor system or the aluminum scrap conveyed by it. A safe irradiation of the fractions can be expected, which can promote the reliability of the device in sorting the aluminum scrap according to alloy groups.

Die Förderanlage der Förderanlage kann zur Aufteilung des Aluminiumschrotts genutzt werden, wenn dieser voneinander abgegrenzte Kammern aufweist. Entsprechend der konstruktiven Ausführung der Kammern kann zudem auch das Volumen der Fraktion auf konstruktiv einfache Weise begrenzt werden, was der Trennschärfe des Verfahrens und der Sortierqualität der Vorrichtung zugute kommen kann.The conveyor system of the conveyor system can be used to divide the aluminum scrap if it has separate chambers. Depending on the design of the chambers, the volume of the fraction can also be limited in a structurally simple manner, which can benefit the selectivity of the method and the sorting quality of the device.

Konstruktiv einfach gelöst, kann der Fördergurt mehrere in Reihen nebeneinander und Spalten hintereinander angeordnete Kammern aufweisen, um damit den Massendurchsatz der Vorrichtung zu erhöhen.In a structurally simple manner, the conveyor belt can have a plurality of chambers arranged in rows next to one another and columns one behind the other in order to increase the mass throughput of the device.

Die durch die Vorrichtung zur Verfügung gestellt Trennschärfe und damit deren Sortierqualität können weiter verbessert werden, wenn zwischen Neutronenquelle und Fraktion eine als Moderator ausgebildete Linse vorgesehen ist.The selectivity provided by the device and thus its sorting quality can be further improved if a lens designed as a moderator is provided between the neutron source and the fraction.

In den Figuren ist beispielsweise der Erfindungsgegenstand anhand einer Ausführungsvariante näher dargestellt. Es zeigen

Fig. 1
eine schematische Draufsicht auf eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens und
Fig. 2
eine Schnittansicht durch die in Fig. 1 dargestellte Vorrichtung.
In the figures, for example, the subject of the invention is shown in more detail using an embodiment variant. Show it
Fig. 1
a schematic plan view of an apparatus for performing the method according to the invention and
Fig. 2
a sectional view through the in Fig. 1 shown device.

Nach Fig. 1 und Fig. 2 wird ein Verfahren 1 zur Sortierung von zerkleinertem bzw. geschreddertem Aluminiumschrott 2 gezeigt, bei welchem der Aluminiumschrott 2 mit einer Einrichtung 3 beispielsweise auf 10 bis 120 mm zerkleinert und/oder gesiebt und/oder homogenisiert wird bzw. in weiterer Folge in Fraktionen 4 aufgeteilt und/oder vereinzelt wird. Diese Fraktionen 4 werden schließlich von einer Sortieranlage 5 nach Legierungsgruppen 6.1 (z.B.: Aluminiumknetlegierung der Legierungsgruppe 6xxx), 6.2 (Aluminiumknetlegierung der Legierungsgruppe 7xxx), 6.3 (Aluminiumgusslegierung der Legierungsgruppe 3xx-AlSiCu) sortiert.To Fig. 1 and Fig. 2 A method 1 for sorting crushed or shredded aluminum scrap 2 is shown, in which the aluminum scrap 2 is crushed and / or sieved and / or sieved and / or homogenized with a device 3, for example, or subsequently divided into fractions 4 and / or is isolated. These fractions 4 are finally sorted by a sorting system 5 according to alloy groups 6.1 (for example: wrought aluminum alloy of alloy group 6xxx), 6.2 (wrought aluminum alloy of alloy group 7xxx), 6.3 (cast aluminum alloy of alloy group 3xx-AlSiCu).

Wie in Fig. 1 und 2 gezeigt, wird der Aluminiumschrott 2 in voneinander abgegrenzte Kammern 14 eingefüllt und damit in einzelne Fraktionen 4 aufgeteilt. Im Allgemeinen wird erwähnt, dass eine Fraktion 4 aus einem einzelnen oder mehreren Aluminiumschrottteilen bzw. auch Aluminiumschrottgranulaten oder -pulvern des Aluminiumschrotts 2 bestehen kann.As in Fig. 1 and 2 shown, the aluminum scrap 2 is filled into chambers 14 which are separated from one another and thus divided into individual fractions 4. In general, it is mentioned that a fraction 4 can consist of a single or several aluminum scrap parts or also aluminum scrap granules or powders of the aluminum scrap 2.

Die Förderanlage 15 kann in der einfachsten konstruktiven Ausführung lediglich ein Förderband 115 darstellen, das die Fraktionen 4 von der Vereinzelungseinrichtung 3 durch die PGNAA-Messanlage 7 zur Sortieranlage 5 transportiert. Wie im Ausführungsbeispiel ersichtlich, werden die abgegrenzten Kammern 14 werden durch Mitnehmer 15.1 und Längsstege 15.2 eines endlosen Fördergurts 15.3 einer Förderanlage 15 gebildet.In the simplest design, the conveyor system 15 can only represent a conveyor belt 115 which separates the fractions 4 from the separating device 3 transported by the PGNAA measuring system 7 to the sorting system 5. As can be seen in the exemplary embodiment, the delimited chambers 14 are formed by drivers 15.1 and longitudinal webs 15.2 of an endless conveyor belt 15.3 of a conveyor system 15.

Die Fraktionen 4 des Aluminiumschrotts 2 werden einer PGNAA-Messeinrichtung 7 zugeführt, welche mit der Sortieranlage 5 datenverbunden ist. In der PGNAA-Messeinrichtung 7 werden die Fraktionen 4 mit Neutronenstrahlung 8 einer Neutronenquelle 9 bestrahlt und die von den einzelnen Fraktionen 4 aufgrund der derart erfolgten Aktivierung ihrer Atomkerne emittierte Gammastrahlung 10 jeweils von einem Detektor 11 aufgenommen. Es liegen demnach Daten zu den Gammastrahlungen 10 der einzelnen Fraktionen 4 vor. Die Messdaten des Detektors 11 werden einer Recheneinheit 12 der Messeinrichtung 7 zugeführt. Somit können zu den Fraktionen 4 jeweils diesen zugehörige Energiespektren gebildet werden. Anhand des Energiespektrums der jeweiligen Fraktion wird ein relatives Verhältnis der Gewichtsanteile von mindestens zwei Legierungselementen dieser Fraktion 4 bestimmt. In weiterer Folge werden die Fraktionen 4 auf Grundlage der relativen Verhältnisse der Gewichtsanteile von Legierungselementen von der Recheneinheit 12 somit individuell einer Legierungsgruppe 6.1, 6.2, 6.3 zugeordnet.The fractions 4 of the aluminum scrap 2 are fed to a PGNAA measuring device 7, which is data-connected to the sorting system 5. In the PGNAA measuring device 7, the fractions 4 are irradiated with neutron radiation 8 from a neutron source 9 and the gamma radiation 10 emitted by the individual fractions 4 due to the activation of their atomic nuclei in this way is recorded by a detector 11. There are therefore data on the gamma rays 10 of the individual fractions 4. The measurement data of the detector 11 are fed to a computing unit 12 of the measuring device 7. Thus, the energy spectra associated with each of the fractions 4 can be formed. A relative ratio of the weight fractions of at least two alloying elements of this fraction 4 is determined on the basis of the energy spectrum of the respective fraction. Subsequently, the fractions 4 are individually assigned to an alloy group 6.1, 6.2, 6.3 on the basis of the relative ratios of the weight proportions of alloy elements by the computing unit 12.

Entsprechend dieser Zuordnung steuert die PGNAA-Messeinrichtung 7 die Sortieranlage 5 derart an bzw. steht mit der Sortieranlage 5 derart in Datenverbindung, dass eine Fraktion 4 nach der ihr entsprechenden Legierungsgruppe 6.1 oder 6.2 oder 6.3 in ein jeweiliges Behältnis 13 aussortiert werden.In accordance with this assignment, the PGNAA measuring device 7 controls the sorting system 5 or is in data connection with the sorting system 5 such that a fraction 4 is sorted out into a respective container 13 according to the alloy group 6.1 or 6.2 or 6.3 corresponding to it.

Eine derartige Förderanlage 15 kann einen besonders hohen Massendurchsatz im Verfahren ermöglichen aber auch zur Vereinzelung des Aluminiumschrotts 2 in Fraktionen 4 dienen.Such a conveyor system 15 can enable a particularly high mass throughput in the process but can also be used to separate the aluminum scrap 2 into fractions 4.

Wie der Fig. 2 weiter zu entnehmen, ist zwischen Lasttrum 15.4 und Leertrum 15.5 des Fördergurts 15.3 die Neutronenquelle 9 vorgesehen, die sohin die Fraktionen 4 des Aluminiumschrotts 2 durch den Lasttrum 15.4 des Fördergurt 15.3 hindurch bestrahlt. Die von den Fraktionen 4 abgegebene Gammastrahlung 10 wird von oberhalb des Lasttrums des Fördergurts 15.3 vorgesehenen Detektor 11 aufgenommen. Diese Art der Anordnung der Neutronenquelle 9 und des Detektors 11 schafft eine kompakte Vorrichtung und ermöglicht zudem einen geringen Störeinfluss der Förderanlage 15 auf die Messung, zumal damit das Leertrum 15.5 des Fördergurts 15.3 keinen Einfluss auf die Bestrahlung der Fraktionen 4 hat. Das erfindungsgemäße Verfahren weist daher nicht nur einen hohen Massendurchsatz sondern auch eine hohe Trennschärfe auf.Again Fig. 2 To further see, between the load strand 15.4 and the empty strand 15.5 of the conveyor belt 15.3, the neutron source 9 is provided, which thus irradiates the fractions 4 of the aluminum scrap 2 through the load strand 15.4 of the conveyor belt 15.3. The gamma radiation 10 emitted by the fractions 4 is recorded by the detector 11 provided above the load strand of the conveyor belt 15.3. This type of arrangement of the neutron source 9 and the detector 11 creates a compact device and also enables the conveyor system 15 to have a slight interference effect on the measurement, especially since the empty strand 15.5 of the conveyor belt 15.3 has no influence on the irradiation of the fractions 4. The method according to the invention therefore not only has a high mass throughput but also a high selectivity.

Wie insbesondere der Fig. 2 entnommen werden kann, wird die Neutronenstrahlung 8 aus der Neutronenquelle 9 über eine Linse 16 geführt, bevor die Neutronenstrahlung 8 auf die Fraktionen 4 trifft. Dadurch wird die divergente, aus der Neutronenquelle 9 austretende Neutronenstrahlung 8 vergleichmäßigt und homogenisiert, so dass sichergestellt werden kann, dass die auf die Fraktionen 4 eintreffende Neutronenstrahlung 8 in jeder Kammer 14 vergleichbar ist. Dies ermöglicht wiederum, mehrere Fraktionen 4 gleichzeitig mit der Neutronenstrahlung 8 der Neutronenquelle 9 zu beaufschlagen. Zudem ist die Linse 16 als Moderator 17 ausgebildet, wodurch die Neutronen der Neutronenstrahlung 8 thermalisiert, also auf kinetische Energien unter etwa 100meV verlangsamt werden. Der Wirkungsquerschnitt der Neutronenstrahlung 8 mit den Atomkernen der Fraktionen 4 kann damit stark erhöht werden, wovon die Messgenauigkeit des Verfahrens profitiert.Like especially the Fig. 2 can be removed, the neutron radiation 8 is guided from the neutron source 9 via a lens 16 before the neutron radiation 8 strikes the fractions 4. As a result, the divergent neutron radiation 8 emerging from the neutron source 9 is homogenized and homogenized, so that it can be ensured that the neutron radiation 8 arriving at the fractions 4 is comparable in each chamber 14. This in turn enables several fractions 4 to be exposed to the neutron radiation 8 from the neutron source 9 at the same time. In addition, the lens 16 is designed as a moderator 17, as a result of which the neutrons of the neutron radiation 8 are thermalized, that is to say slowed down to kinetic energies below approximately 100 meV. The cross section of the neutron radiation 8 with the atomic nuclei of the fractions 4 can thus be greatly increased, from which the measuring accuracy of the method benefits.

Um insbesondere einen hohen Massendurchsatz zu ermöglichen, sind in der PGNAA-Messanlage mehrere Detektoren 11 nebeneinander vorgesehen, um die von den Fraktionen 4 abgegebene Gammastrahlung 10 zu messen. Wie der Fig. 1 entnommen werden kann, sind hierbei insbesondere 16 Detektoren 11, auf vier Reihen 19 und vier Spalten 20 verteilt, und zwar einsprechend den derart angeordneten Kammern 14 des Fördergurts 15.3. Eine hohe Parallelität für einen hohen Massendurchsatz kann damit erreicht werden.In order to enable, in particular, a high mass throughput, a plurality of detectors 11 are provided next to one another in the PGNAA measuring system in order to measure the gamma radiation 10 emitted by the fractions 4. Again Fig. 1 16 detectors 11, in particular, are distributed over four rows 19 and four columns 20, correspondingly to those arranged in this way Chambers 14 of the conveyor belt 15.3. A high degree of parallelism for a high mass throughput can thus be achieved.

Wie aus den Fig. 1 und 2 ersichtlich, sind an den Detektoren 11 jeweils Abschirmungen 18 vorgesehen. Dadurch, dass diese seitlich voneinander abgeschirmt sind, kann vorteilhafterweise sichergestellt werden, dass nur die von der dem Detektor 11 zugeordneten Fraktion 4 emittierte Gammastrahlung 10 in den jeweiligen Detektor 11 trifft. Die emittierte Gammastrahlung 10 einer fremden Fraktion 4 könnte sich andernfalls ansonsten mit der zu messenden Gammastrahlung 10 überlagern und somit das Energiespektrum verfälschen. Zur Ausbildung einer zuverlässigen Abschirmung hat sich eine Bleiabschirmung 18 bewährt.Like from the Fig. 1 and 2 can be seen, shields 18 are provided on the detectors 11. The fact that these are shielded from one another on the side can advantageously ensure that only the gamma radiation 10 emitted by the fraction 4 assigned to the detector 11 strikes the respective detector 11. The emitted gamma radiation 10 from a foreign fraction 4 could otherwise otherwise overlap with the gamma radiation 10 to be measured and thus falsify the energy spectrum. A lead shield 18 has proven itself to form a reliable shield.

Claims (14)

  1. Method for sorting, more particularly comminuted, aluminum scrap (2) according to alloy groups (6.1, 6.2, 6.3), in which method
    the aluminum scrap (2) is divided into fractions (4),
    fractions (4) of the aluminum scrap (2) are irradiated by at least one neutron source (9),
    the gamma radiation (10) emitted by the individual fraction (4) by this neutron irradiation is each received by at least one detector (11), and
    an energy spectrum belonging to the respective fraction (4) is formed therefrom, on the basis of which energy spectrum a relative ratio of the weight fractions of at least two alloying elements of this fraction (4) is determined and this fraction (4) is assigned on the basis of this relative ratio to the alloy group (6.1, 6.2, 6.3) corresponding to it, and thereafter
    the fractions (4) are sorted according to the alloy groups assigned to them (6.1, 6.2, 6.3).
  2. Method according to claim 1, characterized in that the aluminum scrap (2) is provided in chambers (14) delimited from one another and is thus divided into fractions (4).
  3. Method according to claim 1 or 2, characterized in that the fractions (4) are fed to the neutron source (9) by a conveyor system (15) for irradiation.
  4. Method according to claim 3, characterized in that the conveyor system (15) has an endless conveyor belt (15.3), and that the neutron source (9) provided between the load strand and the empty strand (15.4, 15.5) of the conveyor belt (15.3) irradiates the fractions (4) of the aluminum scrap (2) through the conveyor belt (15.3) and the gamma radiation (10) emitted by the fractions (4) by this neutron irradiation is absorbed by the detector (11) provided above the load strand (15.4) of the conveyor belt (15.3).
  5. Method according to claim 3 or 4, characterized in that the aluminum scrap (2) is provided in mutually delimited chambers (14) of the conveyor belt (15.3) of the conveyor system (15), more particularly the conveyor belt (115).
  6. Method according to one of claims 1 to 5, characterized in that the neutron irradiation is guided through a lens (16) designed as a moderator (17) before it hits the fraction (4).
  7. Method according to one of claims 1 to 6, characterized in that several fractions (4) are irradiated simultaneously by the neutron source (9).
  8. Method according to one of claims 1 to 7, characterized in that a plurality of detectors (11) for measuring the gamma radiation (10) emitted by the fractions (4) are provided next to and/or behind one another.
  9. Method according to claim 8, characterized in that the detectors (11) provided side by side and/or one behind the other and each associated with a fraction (4) for measuring the gamma radiation (10) emitted therefrom are laterally shielded from one another, more particularly by a lead shield (18).
  10. Device for sorting, more particularly comminuted, aluminum scrap (2) according to alloy groups (6.1, 6.2, 6.3)
    having a conveyor system (15) for conveying fractions (4) of the aluminum scrap (2),
    having a measuring device (7), which measuring device (7) comprises at least one neutron source (9) for irradiating the fractions (4) conveyed by the conveyor system (15), at least one detector (11) for receiving the gamma radiation (10) emitted by the fractions (4) through this neutron irradiation, and a computing unit (12) for assigning the fractions (4) to an alloy group (6.1, 6.2, 6.3) as a function of their respective relative ratio of the weight fractions of at least two of their alloying elements, which relative ratio is determined by the computing unit (12) from the energy spectrum of the gamma radiation (10) detected from the respective fraction (4),
    and having a sorting installation (5) which sorts the fractions (4) conveyed by the conveyor system (15) according to the alloy group (6.1, 6.2, 6.3) assigned to them by the measuring device (7).
  11. Device according to claim 11, characterized in that the neutron source (9) is provided between the load and empty strand (15.4, 15.5) of the conveyor belt (15.3) of the conveyor system (15).
  12. Device according to claim 10 or 11, characterized in that the conveyor belt (15.3) of the conveyor system (15) has chambers (14) delimited from one another for dividing and conveying fractions (4).
  13. Device according to claim 12, characterized in that the conveyor belt (15.3) has a plurality of chambers (14) arranged in rows (19) next to one another and columns (20) one behind the other.
  14. Device according to one of claims 11 to 13, characterized in that a lens (16) designed as a moderator (17) is provided between neutron source (9) and fraction (4).
EP16197186.6A 2016-11-03 2016-11-03 Device and method for sorting aluminium scrap Active EP3318339B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16197186.6A EP3318339B1 (en) 2016-11-03 2016-11-03 Device and method for sorting aluminium scrap
JP2019515233A JP7055130B2 (en) 2016-11-03 2017-11-03 Equipment and methods for sorting
US16/347,542 US11358179B2 (en) 2016-11-03 2017-11-03 Apparatus and method for sorting
PCT/EP2017/078245 WO2018083273A1 (en) 2016-11-03 2017-11-03 Device and method for sorting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16197186.6A EP3318339B1 (en) 2016-11-03 2016-11-03 Device and method for sorting aluminium scrap

Publications (2)

Publication Number Publication Date
EP3318339A1 EP3318339A1 (en) 2018-05-09
EP3318339B1 true EP3318339B1 (en) 2020-01-29

Family

ID=57240949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16197186.6A Active EP3318339B1 (en) 2016-11-03 2016-11-03 Device and method for sorting aluminium scrap

Country Status (4)

Country Link
US (1) US11358179B2 (en)
EP (1) EP3318339B1 (en)
JP (1) JP7055130B2 (en)
WO (1) WO2018083273A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3669818B1 (en) 2018-12-20 2022-05-11 Ivoclar Vivadent AG Dental multicolour grinding block
WO2021099549A1 (en) * 2019-11-21 2021-05-27 Hydro Aluminium Rolled Products Gmbh Method and device for analysing and/or sorting scrap metal
WO2022255494A1 (en) * 2021-06-04 2022-12-08 日本製鉄株式会社 Crushing system and shredder scrap production method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633732A (en) 1967-07-13 1972-01-11 Brogdex Co Apparatus and method for filling boxes with a preselected quantity of discrete articles
CA1125221A (en) 1979-05-10 1982-06-08 Ernest H. Sancken Cleated belt forage conveyor
FI73527C (en) 1979-08-06 1987-10-09 Commw Scient Ind Res Org Method and apparatus for simultaneously measuring the chemical concentrations of silicon and aluminum components in materials.
DE3275274D1 (en) 1982-06-07 1987-03-05 Sczimarowski Klaus Device for sorting metal pieces
DE3229371C2 (en) 1982-08-06 1985-04-25 Nordischer Maschinenbau Rud. Baader GmbH + Co KG, 2400 Lübeck Device for conveying and dispensing fish
FI943179A (en) * 1993-07-09 1995-01-10 Gamma Metrics Improving the measurement accuracy of the bulk material analyzer
JPH07209493A (en) * 1994-01-11 1995-08-11 Toshiba Corp Selecting device of radioactive waste and selecting method thereof
JPH11512967A (en) 1995-08-09 1999-11-09 アルキャン・インターナショナル・リミテッド Classification method of material pieces
US6266390B1 (en) 1998-09-21 2001-07-24 Spectramet, Llc High speed materials sorting using x-ray fluorescence
EP1554060B1 (en) * 2002-10-11 2006-11-29 Force Technology A system and a method of automatically sorting objects
FR2869107B1 (en) 2004-04-14 2006-08-04 Sarp Ind Sa USE OF THE NEUTRONIC ACTIVATION TECHNIQUE FOR PHYSICO-CHEMICAL CHARACTERIZATION OF THE CONSTITUENTS
ES2536201T3 (en) 2006-08-11 2015-05-21 Thermo Fisher Scientific Inc. Bulk material analyzer assembly that includes structural beams containing radiation protection material
US7886915B2 (en) 2008-03-19 2011-02-15 Shulman Alvin D Method for bulk sorting shredded scrap metal
US20100017020A1 (en) 2008-07-16 2010-01-21 Bradley Hubbard-Nelson Sorting system
CN103442815B (en) * 2011-01-07 2015-04-22 休伦瓦雷钢铁公司 Scrap metal sorting system
JP5805911B2 (en) * 2013-06-20 2015-11-10 ポニー工業株式会社 Radiation measurement sorting apparatus and radiation measurement sorting method
US9702845B2 (en) * 2015-02-19 2017-07-11 Palo Alto Research Center Incorporated Systems for electrochemical sorting of metals and alloys
US10710119B2 (en) * 2016-07-18 2020-07-14 UHV Technologies, Inc. Material sorting using a vision system
DE102015122818A1 (en) * 2015-12-23 2017-06-29 Hydro Aluminium Rolled Products Gmbh Method and device for the recycling of metal scrap
DE102016108745A1 (en) * 2016-05-11 2017-11-16 Hydro Aluminium Rolled Products Gmbh Method and device for the alloy-dependent sorting of metal scrap, in particular aluminum scrap
CN109794426A (en) * 2017-11-16 2019-05-24 钢铁研究总院 Full-automatic online aviation aluminium classifying and reclaiming system based on LIBS technology

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20210001376A1 (en) 2021-01-07
US11358179B2 (en) 2022-06-14
JP2019535491A (en) 2019-12-12
JP7055130B2 (en) 2022-04-15
WO2018083273A1 (en) 2018-05-11
EP3318339A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
EP1711800B1 (en) Method and device for determining the material of an object
DE102016208320B3 (en) Device for sorting materials, in particular scrap particles, by means of X-ray fluorescence
DE2648434A1 (en) METHODS OF ANALYZING COAL OR COOK
EP3318339B1 (en) Device and method for sorting aluminium scrap
WO2018219406A1 (en) Method and device for multielement analysis on the basis of neutron activation, and use
DE112006001584T5 (en) Energy dissimilar litter imaging system
EP3410104B1 (en) Method and device for multi-element analysis based on neutron activation and use
DE2727989C3 (en) Device for the determination of uranium and / or thorium in ore samples
DE2122214A1 (en) Method for quantitative measurement of the concentration of individual elements, as well as device for carrying out the method
WO2005065848A1 (en) Device and method for separating bulk materials
DE3000602A1 (en) METHOD AND DEVICE FOR DETERMINING THE TYPE OF TRANSPORTED MATERIAL
EP0096092B1 (en) Device for sorting metal pieces
DE3035929A1 (en) DEVICE FOR DETERMINING THE VOLUME SHARES OF A MULTI-COMPONENT MIXTURE BY TRANSITING SEVERAL GAMMALINES
DE19824039B4 (en) Method and device for testing bulk material, in particular building rubble and / or excavated soil, for the content of radionuclides
DE1598841A1 (en) Device for analyzing and / or separating mixtures
DE69938455T2 (en) METHOD FOR SIMULATING THE RESPONSE OF A DETECTOR FOR RADIOACTIVE ELEMENTS AND RADIOGRAPHY PROCESSING METHODS USING THIS SIMULATION
WO2009053073A2 (en) Device for the online determination of the contents of a substance, and method for using such a device
EP3052966B1 (en) X-ray detector
DE2426794A1 (en) DEVICE FOR RADIATION DETECTION AND METHOD OF DETERMINING THE PRESENCE OF AN ELEMENT OF INTEREST IN A SAMPLE
EP1526376A1 (en) Method and apparatus for determining a basis weight and/or a chemical composition of a conveyed material specimen
DE102017111935B4 (en) Method and apparatus for multi-element analysis based on neutron activation and computer program product therefor
DE102013114497A1 (en) Method and device for evaluating X-ray spectra
EP2439557B1 (en) Method for determining the ß-activity of carbon isotope C14
WO2007006541A1 (en) Method and arrangement for examining an object to be measured by means of invasive radiation
EP0068441B1 (en) Device for analyzing mineral substances using the method of neutron activation analysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B07C 5/342 20060101AFI20180827BHEP

Ipc: B07C 5/38 20060101ALN20180827BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B07C 5/342 20060101AFI20180913BHEP

Ipc: B07C 5/38 20060101ALN20180913BHEP

INTG Intention to grant announced

Effective date: 20180928

RIC1 Information provided on ipc code assigned before grant

Ipc: B07C 5/38 20060101ALN20180918BHEP

Ipc: B07C 5/342 20060101AFI20180918BHEP

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190130

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190711

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008514

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008514

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221118

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8

Ref country code: CH

Payment date: 20231201

Year of fee payment: 8

Ref country code: AT

Payment date: 20231117

Year of fee payment: 8