EP3317088B1 - Electro-hydraulic drive unit - Google Patents

Electro-hydraulic drive unit Download PDF

Info

Publication number
EP3317088B1
EP3317088B1 EP16795020.3A EP16795020A EP3317088B1 EP 3317088 B1 EP3317088 B1 EP 3317088B1 EP 16795020 A EP16795020 A EP 16795020A EP 3317088 B1 EP3317088 B1 EP 3317088B1
Authority
EP
European Patent Office
Prior art keywords
drive unit
unit according
hydraulic
cylinder
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16795020.3A
Other languages
German (de)
French (fr)
Other versions
EP3317088A1 (en
Inventor
Josef RITZL
Stefan GUTH
Roland Thurner
Ilker ÖZCANOGLU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAWE Altenstadt Holding GmbH
Original Assignee
HAWE Altenstadt Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAWE Altenstadt Holding GmbH filed Critical HAWE Altenstadt Holding GmbH
Publication of EP3317088A1 publication Critical patent/EP3317088A1/en
Application granted granted Critical
Publication of EP3317088B1 publication Critical patent/EP3317088B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/022Systems essentially incorporating special features for controlling the speed or actuating force of an output member in which a rapid approach stroke is followed by a slower, high-force working stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/775Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press

Definitions

  • the present invention relates to an electro-hydraulic drive unit, in particular for use on a machine press.
  • Electro-hydraulic drive units such as are suitable and intended in particular for use on machine presses (namely for moving the respective tool up and down) are known in various designs and designs.
  • the respective drive units are designed so that the piston (at least in one of the two directions of movement) can be moved at different speeds, namely on the one hand with a rapid traverse (with comparatively low achievable pressing force) and on the other hand with a power gear (with comparatively high achievable pressing force)
  • Two fundamentally different concepts of the electro-hydraulic drive of machine presses differ in that for the rapid downwards movement of the tool carrier / tool unit either an active loading of the sink working space of the cylinder-piston unit (s) from the (respective) hydraulic unit is required , Namely, because the permanently acting restoring force of a spring device is overcome, or the tool carrier / tool unit due to their own weight until the contact of the tool with the workpiece (braked) drops and only for the subsequent power stroke of the sink working space Cylinder-piston unit (s) from the (
  • WO 2011/003506 A1 relevant to the prior art include the WO 2011/003506 A1 . US 2010/0212521 A1 . AT 8633 U1 . DE 102012013098 A1 . WO 2011/021986 A1 . EP 103727 A1 and DE 102013000725 A1 ,
  • the present invention is concerned with electro-hydraulic drive units, as are suitable for machine presses according to the second of the above-mentioned concepts (rapid downwards movement of the tool carrier / tool unit due to its own weight).
  • Typical such electrohydraulic drive units include a cylinder-piston arrangement having a first hydraulic working space associated with a first direction of movement of the piston and a second hydraulic working space associated with an opposite second direction of movement of the piston, a hydraulic fluid storing tank, a hydraulic pump driven by an electric motor, one between the two Hydraulic pump and the cylinder-piston assembly switched, electrically controllable switching valves comprehensive valve assembly and acting on the switching valves and the electric motor machine control means of which the switching valves between acting on the first hydraulic working space and the second hydraulic working space of the cylinder-piston assembly in the pumping operation the hydraulic pump from the pressure port can be reversed.
  • Electro-hydraulic drive devices of the type in question here must in practice a number of Meet requirements that are partly in conflict with each other. Depending on the individual installation situation, more or less pronounced demands are demanded, in particular efficiency, compact dimensions, ease of maintenance, longevity, reliability, low production costs, high energy efficiency, operational safety, high dynamics, stable operating behavior even under strongly changing conditions and low noise emission.
  • the present invention has set itself the task of providing an electro-hydraulic drive unit, which forms a balanced, particularly practical compromise in terms of typical requirements, as they exist in particular in applications of machine presses.
  • the hydraulic pump is designed as a 2-quadrant hydraulic pump, which by means of a (in particular designed as a servo motor) electric motor in pumping operation (For an active movement of the piston in both directions of movement, ie downwards for pressing in power and up to raise the tool carrier / tool unit) is driven variable speed in exactly one predetermined direction of rotation and a directly (ie typically without further controls) in the tank opening tank port and a pressure port, wherein the hydraulic pump further by means of the engine control in a braking operation with the Pump operation reverse rotational and flow direction is reversible.
  • a powerful, reliable and reliable electro-hydraulic drive unit can be provided with comparatively low expenditure on equipment, which also meets the other requirements set out above to a high degree.
  • the cylinder-piston arrangement is oriented with at least substantially vertical movement axis, wherein the first direction of movement of a downward movement and the second direction of movement corresponds to an upward movement of the piston.
  • the hydraulic pump is both in a first movement phase (rapid-down), while (via the valve assembly) is a flow connection of the second hydraulic working space of the cylinder-piston assembly with the pressure port of the hydraulic pump, as well as in a second movement phase (decompression-up ), in which there is a flow connection of the first hydraulic working space of the cylinder-piston arrangement with the pressure connection of the hydraulic pump, in the braking operation uncontrollable.
  • a throttle for example in the form of a nozzle
  • a throttle is provided, which is connected in braking mode in the second movement phase in series with the hydraulic pump. This relieves the hydraulic pump and limits its stress during braking operation during the second movement phase, so that possibly operating conditions (overspeeding) impairing process safety are avoided.
  • a pressure-dependent control of the speed of the hydraulic pump driving - or in this mode - braking electric motor takes place in the decompression phase, ie in the second phase of movement during braking operation, a pressure-dependent control of the speed of the hydraulic pump driving - or in this mode - braking electric motor.
  • a pressure sensor is provided in this case, which detects the pressure prevailing in the first hydraulic working space pressure and the signal is switched to the machine control.
  • the hydraulic pump is disposed inside lying in the tank. This permits a course of the pressure line which follows the pressure outlet of the hydraulic pump, which is a considerable advantage from the point of view of operating safety and is furthermore favorable for minimizing the risk of external leaks. In addition, this is under aspects of low noise emission and a constant cooling of the hydraulic pump advantage.
  • a flange and connection block is provided with a first flange for connection to a valve block housing the switching valves and a second flange surface for connection to the cylinder of the cylinder-piston arrangement.
  • the flange and connection block can be arranged in particular to a predominant part of its volume in the tank and adjacent only with the two flange surfaces Edge areas more or less protrude from this.
  • the flange and connection block is arranged outside the tank, more preferably below its bottom.
  • the hydraulic pump can be connected in particular via a pressure line extending inside the tank with a pressure connection provided on the flange and connection block, which in turn is connected via a channel to a pressure connection provided on the first flange surface; and on the first as well as the second flange surface may be provided in each case a hydraulic interface which comprises two communicating with the two working spaces of the cylinder-piston arrangement working ports.
  • valve block is housed in a lateral recess of the tank.
  • valve block receiving recess may be arranged in one of the corner regions of the tank.
  • Yet another preferred embodiment of the invention is characterized in that a hydraulically releasable Nachsaugventil is arranged in the tank.
  • a hydraulically releasable Nachsaugventil is arranged in the tank.
  • the suction valve can in turn a connection flange for direct connection with the cylinder of the cylinder-piston assembly respectively.
  • the suction valve is completely integrated in the - arranged outside the tank - flange and connection block; only the latter is connected via its second flange directly with the cylinder of the cylinder-piston assembly.
  • the suction valve can be connected via a control line with a control output provided on the flange and connection block.
  • the control output of the flange and connection block is connected via a channel with a control fluid interface to the first flange in connection.
  • an electro-hydraulic drive unit having distinct advantages (particularly in the case of use as a machine press drive) can be provided.
  • These include in particular: By factory pre-assembled and tested units, which are equipped with a mechanical interface to the respective cylinder-piston assembly and thus easy to connect to the latter, there are minimal assembly and commissioning times on the machine.
  • the piping-reduced design and the consistent avoidance of external piping result in the greatest possible reliability and the reduction of the risk of external leaks.
  • the drive unit uses a small amount of hydraulic fluid. It has a low temperature dependence on a very high energy efficiency, so that usually neither a designated oil cooling time is provided, nor an oil cooler is needed. So can the drive unit have particularly small dimensions.
  • the noise is minimal.
  • a return stroke of the tool is possible at working speed.
  • Additional functions such as tool clamping and crowning can be integrated into the drive unit without any additional effort or connected to it.
  • the drive unit requires no accumulator and no proportional directional control valves. Equally, it is absolutely not necessary to use any pressure sensors, although those may definitely be provided with advantage in certain embodiments of the drive unit according to the invention (see above).
  • a variable displacement pump is not required. It is possible to realize highly dynamic machine presses (eg press brakes) with a rapid traverse speed of, for example, 200-230 mm / sec.
  • the in the FIGS. 1 and 2 shown electrohydraulic drive unit comprises as main components a cylinder-piston assembly 1 with vertical axis of movement Y, a hydraulic fluid-storing tank 2, a hydraulic unit 3 with an electric motor 4 and driven by this hydraulic pump 5 and a valve block 6 with a plurality arranged thereon or housed therein hydraulically active elements (in particular valves) and a change-oil filter 20.
  • the cylinder-piston assembly 1 comprises in known manner such a linear in a cylinder 7 displaceable, with a piston rod 8 connected piston 9, through which the interior of the cylinder 7 is divided into two working spaces, namely a first hydraulic working space 10 which is so associated with a first movement direction Y1 of the piston, that during this increases its volume, and a second hydraulic working space 11, which is associated with a second movement direction Y2 of the piston, which is opposite to the first movement direction Y1, during which it increases its volume.
  • a first hydraulic working space 10 which is so associated with a first movement direction Y1 of the piston, that during this increases its volume
  • a second hydraulic working space 11 which is associated with a second movement direction Y2 of the piston, which is opposite to the first movement direction Y1, during which it increases its volume.
  • In the existing installation position corresponds to the first direction of movement Y1 of the downward movement of the piston 9 and piston rod 8 and the second direction of movement Y2 their upward movement.
  • the tank 2 which is ventilated via a ventilation filter 12, so that ambient pressure prevails therein (so-called "open system”), has an L-shape. He thus has a lateral recess 13 in which the valve block 6 is housed. On one of the side walls of the tank 2, a level sensor 34 is arranged.
  • the hydraulic pump 5 is disposed inside the tank 2 ("under oil"). However, the drive 4 serving electric motor 4 is located outside of the tank 2, flanged to the bottom 14. Also in the tank 2 are a suction valve 15 and (with a major part of its volume) a flange and terminal block 16. However, the latter protrudes through corresponding openings in the side wall 17 and the bottom 14 of the tank 2 out of this.
  • a first flange 19 for Connection provided with the valve block 6; and on the protruding through the bottom 14 of the tank 2 portion of the flange and terminal block 16 is a second flange 21 for connection to the cylinder 7 of the cylinder-piston assembly 1.
  • 21 is respectively a hydraulic interface is provided, which comprises two with the two working spaces 10, 11 of the cylinder-piston assembly 1 communicating working ports A, B.
  • the flange and connection block 16 has an opening 22, in which the Nachsaugventil 15 is inserted. This has in turn a connection flange for direct connection with the cylinder 7 of the cylinder-piston assembly 1.
  • the Nachsaugventil 15 is hydraulically unlocked, what it over a - within the tank 2 misplaced - control line 23 with a on the flange and terminal block 16th is provided, which in turn communicates via a - the flange and terminal block 16 passing through - channel and provided on the first flange 19 control fluid interface with a control output of the valve block 6.
  • a near-ground opening intake 24 is provided at the tank side of the hydraulic pump 5, which forms the suction side in their pumping operation.
  • the pressure side of the hydraulic pump 5, at which the pumped hydraulic fluid exits in its pumping operation is connected via a pressure hose 25, which is laid inside the tank 2, to a pressure connection provided on the flange and connection block 16. which, in turn, communicates with a pressurized fluid port of the valve block 6 via a channel passing through the flange and port block 16 and a pressure fluid interface provided on the first flange surface 19.
  • Fig. 3 The arrangement and connection of the switching valves and other components (suction valve, throttle, pressure limiting valves, filters, etc.) of the hydraulic circuit is in Fig. 3 illustrated. (To avoid any misunderstanding, it should be noted that in Fig. 3 the valve block 6 symbolizing line the physical valve block 6 FIGS. 1 and 2 including the bodily flange and terminal block 16; these two after the FIGS.
  • the suction valve 15 By the suction valve 15, the first working space 10 of the cylinder-piston assembly 7 is filled directly from the tank 2.
  • This Phase II extends to a - stored in the machine control - switching point, the freely programmable and is suitably chosen near the touchdown of the tool on the workpiece.
  • the servomotor 27 is at a standstill.
  • the switching valves S2, S4 and S5 are reversed, d. H. the switching valves S2 and S5 are deactivated (switch position "0"), and the switching valve S4 is activated (switch position "I").
  • the first working space 10 of the cylinder-piston arrangement 7 is brought into fluid communication with the pressure side 29 of the hydraulic pump 5 via the switching valve S4.
  • the second working space 11 of the cylinder-piston arrangement 7 is brought into fluid communication with the tank side via the pressure-limiting valve 30, the switching valve S3, the flow path bT of the switching valve S5 and the oil filter 20.
  • the servomotor 27 For force pressing (phase IV), the servomotor 27 is set in operation with its direction of rotation corresponding to the pumping operation of the hydraulic pump 5 (clockwise rotation according to the operating state R *). This operating state of the switching valves S1 to S6 and the servomotor 27 is also maintained over the subsequent holding phase (phase V).
  • the servomotor 27 For decompressing the hydraulic fluid in the first working chamber 10 (phase VI), the servomotor 27 is reversed. It now rotates counterclockwise, ie in its braking mode L *, so that hydraulic fluid is conveyed from the first working chamber 10 via the switching valve S4 and the throttle 31 (designed as a nozzle) into the tank 2 in a controlled manner.
  • the switching valves S4, S5 and S6 are reversed, d. H.
  • the switching valves S4 and S6 are deactivated (switching state "0") and the switching valve S5 is activated (switching state "I").
  • the suction valve 15 is opened (unlocked).
  • the second working space 11 of the cylinder-piston arrangement 7 is connected to the pressure side 29 of the hydraulic pump 5 via the admission pressure valve 32 and the two switching valves S3 and S2 (in each case through the path protected by the check valve).
  • the piston 9 is raised in the rapid-stroke (Phase VII). If necessary, the lifting of the piston 9 can be subdivided into two subphases, in which the rapid lifting is first preceded by a slow lifting. During this first partial phase, the hydraulic fluid displaced from the first working space 10 can flow into the tank 2 via the switching valve S4 (path aT) and the oil filter 20, with the suction valve 15 not yet unlocked.
  • the hydraulic pump 5 can, if necessary, be put into operation to hydraulic fluid via the (open) switching valve S1 through the oil filter 20 to promote.
  • an oil cooler 33 can be connected to the oil filter 20, connected in series therewith.
  • Fig. 3 is illustrated that the switching valves S1, S2, S3, S4 and S6 are equipped with a switch position monitoring 34. In the case of lower safety requirements, this can possibly be dispensed with, in which case the switching valve S3 can also be omitted.
  • an optional oil cooler 33 is provided, this is preferably arranged directly outside on one of the side walls of the tank 2.
  • the oil supply to the oil cooler 33 takes place via a - inside the tank 2 laid pipe, which is connected to a provided on the flange and terminal block 16 cooling power connection, which in turn via a - the flange and terminal block 16 passing through - channel and at the the first flange 19 provided cooling flow interface with a cooling flow connection of the valve block 6 communicates.
  • FIGS. 5 to 7 documented second preferred embodiment of the invention is explained - due to the existing parallels - to a considerable extent by the above explanations to that of the FIGS. 1 to 4 affected first embodiment. To avoid repetition, reference is made to the latter. However, special attention should be drawn to the relevant deviations discussed below as follows:
  • the flange and port block 16 ' is not located in the tank, but rather (completely) outside the tank 2'. It is located below the tank 2 ', ie below its bottom 14.
  • This allows a particularly compact design.
  • Fig. 6 recognizable that in the first embodiment in the decompression phase effective, with the hydraulic pump functionally connected in series throttle is omitted.
  • This is related to the (in the second embodiment provided) pressure-dependent control of the decompression by appropriate control of the hydraulic pump 5 in braking operation by the controller, for which purpose the signal of a hydraulic pressure in the first hydraulic working chamber detecting pressure sensor 34 is connected to the controller.
  • the filtering of the hydraulic fluid is designed differently.
  • a filter unit 35 is provided such that in the pumping operation of the hydraulic pump 5, the entire hydraulic fluid delivered by the latter is cleaned by the filter 20 '. Only when the filter 20 'is obstructed does the hydraulic fluid delivered by the hydraulic pump 5' flow via the "small" bypass 36, in which the check valve 37 acts as a pressure relief valve and opens when the filter 20 'is laden or clogged, in order to prevent filter breakage.
  • the hydraulic fluid flows past the filter unit 35 via the "large" bypass 38.
  • Fig. 6 shows, for safety reasons, a shut-off valve S7 added. This locks in his non-energized Position the hydraulic pump 5 from the other valve assembly and prevents in this way an unintentional pressure build-up in the system.

Description

Die vorliegende Erfindung betrifft eine elektrohydraulische Antriebseinheit, insbesondere zur Verwendung an einer Maschinenpresse.The present invention relates to an electro-hydraulic drive unit, in particular for use on a machine press.

Elektrohydraulische Antriebseinheiten, wie sie insbesondere zur Verwendung an Maschinenpressen (namentlich zum Auf- und Abbewegen des betreffenden Werkzeugs) geeignet und bestimmt sind, sind in verschiedenen Ausführungen und Bauweisen bekannt. Typischerweise sind die betreffenden Antriebseinheiten dahingehend ausgelegt, dass der Kolben (zumindest in einer der beiden Bewegungsrichtungen) mit unterschiedlichen Geschwindigkeiten bewegt werden kann, nämlich einerseits mit einem Eilgang (mit vergleichsweise geringer erzielbarer Presskraft) und andererseits mit einem Kraftgang (mit vergleichsweise hoher erzielbarer Presskraft). Zwei grundlegend verschiedene Konzepte des elektrohydraulischen Antriebs von Maschinenpressen unterscheiden sich dahingehend, dass für die Eil-Abwärtsbewegung der Werkzeugträger/Werkzeug-Einheit entweder eine aktive Beaufschlagung des Senken-Arbeitsraumes der Zylinder-Kolben-Einheit(en) aus dem (jeweiligen) Hydraulikaggregat erforderlich ist, namentlich weil die permanent wirkende Rückstellkraft einer Federeinrichtung zu überwinden ist, oder aber die Werkzeugträger/Werkzeug-Einheit aufgrund ihres Eigengewichts bis zum Kontakt des Werkzeugs mit dem Werkstück (gebremst) absinkt und allein für den anschließenden Kraftgang der Senken-Arbeitsraumes der Zylinder-Kolben-Einheit(en) aus dem (jeweiligen) Hydraulikaggregat beaufschlagt wird. Zum insoweit einschlägigen Stand der Technik zählen beispielsweise die WO 2011/003506 A1 , US 2010/0212521 A1 , AT 8633 U1 , DE 102012013098 A1 , WO 2011/021986 A1 , EP 103727 A1 und DE 102013000725 A1 .Electro-hydraulic drive units, such as are suitable and intended in particular for use on machine presses (namely for moving the respective tool up and down) are known in various designs and designs. Typically, the respective drive units are designed so that the piston (at least in one of the two directions of movement) can be moved at different speeds, namely on the one hand with a rapid traverse (with comparatively low achievable pressing force) and on the other hand with a power gear (with comparatively high achievable pressing force) , Two fundamentally different concepts of the electro-hydraulic drive of machine presses differ in that for the rapid downwards movement of the tool carrier / tool unit either an active loading of the sink working space of the cylinder-piston unit (s) from the (respective) hydraulic unit is required , Namely, because the permanently acting restoring force of a spring device is overcome, or the tool carrier / tool unit due to their own weight until the contact of the tool with the workpiece (braked) drops and only for the subsequent power stroke of the sink working space Cylinder-piston unit (s) from the (respective) hydraulic power unit is acted upon. For example, relevant to the prior art include the WO 2011/003506 A1 . US 2010/0212521 A1 . AT 8633 U1 . DE 102012013098 A1 . WO 2011/021986 A1 . EP 103727 A1 and DE 102013000725 A1 ,

Die vorliegende Erfindung befasst sich mit elektrohydraulischen Antriebseinheiten, wie sie sich für Maschinenpressen gemäß der zweiten der weiter oben angesprochenen Konzeptionen (Eil-Abwärtsbewegung der Werkzeugträger/Werkzeug-Einheit infolge des Eigengewichts) eignen. Typische derartige elektrohydraulische Antriebseinheiten umfassen eine Zylinder-Kolben-Anordnung mit einem einer ersten Bewegungsrichtung des Kolbens zugeordneten ersten hydraulischen Arbeitsraum und einem einer entgegengesetzten zweiten Bewegungsrichtung des Kolbens zugeordneten zweiten hydraulischen Arbeitsraum, einen Hydraulikflüssigkeit bevorratenden Tank, eine mittels eines Elektromotors angetriebene Hydraulikpumpe, eine zwischen die Hydraulikpumpe und die Zylinder-Kolben-Anordnung geschaltete, elektrisch ansteuerbare Schaltventile umfassende Ventilanordnung und eine auf die Schaltventile und den Elektromotor einwirkende Maschinensteuerung, mittels derer die Schaltventile zwischen einer Beaufschlagung des ersten hydraulischen Arbeitsraums und des zweiten hydraulischen Arbeitsraums der Zylinder-Kolben-Anordnung im Pumpbetrieb der Hydraulikpumpe aus deren Druckanschluss umsteuerbar sind.The present invention is concerned with electro-hydraulic drive units, as are suitable for machine presses according to the second of the above-mentioned concepts (rapid downwards movement of the tool carrier / tool unit due to its own weight). Typical such electrohydraulic drive units include a cylinder-piston arrangement having a first hydraulic working space associated with a first direction of movement of the piston and a second hydraulic working space associated with an opposite second direction of movement of the piston, a hydraulic fluid storing tank, a hydraulic pump driven by an electric motor, one between the two Hydraulic pump and the cylinder-piston assembly switched, electrically controllable switching valves comprehensive valve assembly and acting on the switching valves and the electric motor machine control means of which the switching valves between acting on the first hydraulic working space and the second hydraulic working space of the cylinder-piston assembly in the pumping operation the hydraulic pump from the pressure port can be reversed.

Elektrohydraulische Antriebseinrichtungen der hier in Rede stehenden Art müssen in der Praxis eine Reihe von Anforderungen erfüllen, die teilweise in einem Konflikt zueinander stehen. Gefordert werden, je nach der individuellen Einbausituation mehr oder weniger ausgeprägt, insbesondere Leistungsfähigkeit, kompakte Abmessungen, Wartungsfreundlichkeit, Langlebigkeit, Zuverlässigkeit, geringe Herstellungskosten, hohe Energieeffizienz, Betriebssicherheit, hohe Dynamik, stabiles Betriebsverhalten auch unter stark wechselnden Bedingungen und geringe Lärmemission.Electro-hydraulic drive devices of the type in question here must in practice a number of Meet requirements that are partly in conflict with each other. Depending on the individual installation situation, more or less pronounced demands are demanded, in particular efficiency, compact dimensions, ease of maintenance, longevity, reliability, low production costs, high energy efficiency, operational safety, high dynamics, stable operating behavior even under strongly changing conditions and low noise emission.

Die vorliegende Erfindung hat sich zur Aufgabe gemacht, eine elektrohydraulische Antriebseinheit bereitzustellen, die im Hinblick auf typische Anforderungen, wie sie insbesondere bei Anwendungen an Maschinenpressen bestehen, einen ausgewogenen, besonders praxistauglichen Kompromiss bildet.The present invention has set itself the task of providing an electro-hydraulic drive unit, which forms a balanced, particularly practical compromise in terms of typical requirements, as they exist in particular in applications of machine presses.

Gelöst wird diese Aufgabenstellung gemäß der vorliegenden Erfindung, indem, wie im Anspruch 1 angegeben, bei einer die weiter oben dargelegten Merkmale aufweisenden elektrohydraulischen Antriebseinheit die Hydraulikpumpe als 2-Quadranten-Hydraulikpumpe ausgeführt ist, welche mittels eines (insbesondere als Servomotor ausgeführten) Elektromotors im Pumpbetrieb (für eine aktive Bewegung des Kolbens in beide Bewegungsrichtungen, d. h. abwärts zum Pressen im Kraftgang sowie aufwärts zum Anheben der Werkzeugträger/Werkzeug-Einheit) in genau einer vorgegebenen Drehrichtung drehzahlvariabel angetrieben ist und einen unmittelbar (d. h. typischerweise ohne weitergehende Steuerelemente) im Tank mündenden Tankanschluss und einen Druckanschluss aufweist, wobei die Hydraulikpumpe weiterhin mittels der Maschinensteuerung in einen Bremsbetrieb mit zum Pumpbetrieb umgekehrter Dreh- und Durchströmungsrichtung umsteuerbar ist. Auf diese Weise lässt sich mit vergleichsweise geringem apparativen Aufwand eine leistungsfähige, zuverlässige und betriebssichere elektrohydraulische Antriebseinheit bereitstellen, welche auch die weiteren weiter oben dargelegten Anforderungen in hohem Maße erfüllt.This object is achieved according to the present invention by, as indicated in claim 1, in one of the features set forth above having electro-hydraulic drive unit, the hydraulic pump is designed as a 2-quadrant hydraulic pump, which by means of a (in particular designed as a servo motor) electric motor in pumping operation (For an active movement of the piston in both directions of movement, ie downwards for pressing in power and up to raise the tool carrier / tool unit) is driven variable speed in exactly one predetermined direction of rotation and a directly (ie typically without further controls) in the tank opening tank port and a pressure port, wherein the hydraulic pump further by means of the engine control in a braking operation with the Pump operation reverse rotational and flow direction is reversible. In this way, a powerful, reliable and reliable electro-hydraulic drive unit can be provided with comparatively low expenditure on equipment, which also meets the other requirements set out above to a high degree.

Besonders bevorzugt ist bei der erfindungsgemäßen elektrohydraulischen Antriebseinheit die Zylinder-Kolben-Anordnung mit zumindest im Wesentlichen senkrechter Bewegungsachse orientiert, wobei die erste Bewegungsrichtung einer Abwärtsbewegung und die zweite Bewegungsrichtung einer Aufwärtsbewegung des Kolbens entspricht. Und die Hydraulikpumpe ist sowohl in einer ersten Bewegungsphase (Eilgang-Abwärts), während (über die Ventilanordnung) eine Strömungsverbindung des zweiten hydraulischen Arbeitsraums der Zylinder-Kolben-Anordnung mit dem Druckanschluss der Hydraulikpumpe besteht, als auch in einer zweiten Bewegungsphase (Dekompression-Aufwärts), in der eine Strömungsverbindung des ersten hydraulischen Arbeitsraums der Zylinder-Kolben-Anordnung mit dem Druckanschluss der Hydraulikpumpe besteht, in den Bremsbetrieb unsteuerbar.Particularly preferably, in the electro-hydraulic drive unit according to the invention, the cylinder-piston arrangement is oriented with at least substantially vertical movement axis, wherein the first direction of movement of a downward movement and the second direction of movement corresponds to an upward movement of the piston. And the hydraulic pump is both in a first movement phase (rapid-down), while (via the valve assembly) is a flow connection of the second hydraulic working space of the cylinder-piston assembly with the pressure port of the hydraulic pump, as well as in a second movement phase (decompression-up ), in which there is a flow connection of the first hydraulic working space of the cylinder-piston arrangement with the pressure connection of the hydraulic pump, in the braking operation uncontrollable.

Besonders bevorzugt ist dabei eine Drossel (beispielsweise in Form einer Düse) vorgesehen, welche im Bremsbetrieb in der zweiten Bewegungsphase in Reihe mit der Hydraulikpumpe geschaltet ist. Dies entlastet die Hydraulikpumpe und limitiert deren Beanspruchung im Bremsbetrieb während der zweiten Bewegungsphase, so dass möglicherweise die Prozesssicherheit beeinträchtigende Betriebszustände (Überdrehen) vermieden werden. In alternativer Weiterbildung, die ohne eine derartige Drossel auskommt, erfolgt in der Dekompressionsphase, d. h. in der zweiten Bewegungsphase während des Bremsbetriebs eine druckabhängige Steuerung der Drehzahl des die Hydraulikpumpe antreibenden - bzw. bei diesem Betriebsmodus - bremsenden Elektromotors. Insoweit ist in diesem Falle ein Drucksensor vorgesehen, der den im ersten hydraulischen Arbeitsraum herrschenden Druck erfasst und dessen Signal auf die Maschinensteuerung geschaltet ist.Particularly preferred is a throttle (for example in the form of a nozzle) is provided, which is connected in braking mode in the second movement phase in series with the hydraulic pump. This relieves the hydraulic pump and limits its stress during braking operation during the second movement phase, so that possibly operating conditions (overspeeding) impairing process safety are avoided. In Alternative development that does not require such a throttle, takes place in the decompression phase, ie in the second phase of movement during braking operation, a pressure-dependent control of the speed of the hydraulic pump driving - or in this mode - braking electric motor. In that regard, a pressure sensor is provided in this case, which detects the pressure prevailing in the first hydraulic working space pressure and the signal is switched to the machine control.

Gemäß einer anderen bevorzugten Weiterbildung der Erfindung ist die Hydraulikpumpe innen liegend in dem Tank angeordnet. Dies erlaubt einen innerhalb des Tanks verlegten Verlauf der sich an den Druckausgang der Hydraulikpumpe anschließenden Druckleitung, was unter Gesichtspunkten der Betriebssicherheit einen erheblichen Vorteil darstellt und weiterhin günstig ist zur Minimierung des Risikos externer Leckagen. Zudem ist dies unter Aspekten einer geringen Geräuschemission und einer ständigen Kühlung der Hydraulikpumpe von Vorteil.According to another preferred embodiment of the invention, the hydraulic pump is disposed inside lying in the tank. This permits a course of the pressure line which follows the pressure outlet of the hydraulic pump, which is a considerable advantage from the point of view of operating safety and is furthermore favorable for minimizing the risk of external leaks. In addition, this is under aspects of low noise emission and a constant cooling of the hydraulic pump advantage.

Eine wiederum andere bevorzugte Weiterbildung der erfindungsgemäßen elektrohydraulischen Antriebseinheit zeichnet sich dadurch aus, dass ein Flansch- und Anschlussblock vorgesehen ist mit einer ersten Flanschfläche zur Verbindung mit einem die Schaltventile beherbergenden Ventilblock und einer zweiten Flanschfläche zur Verbindung mit dem Zylinder der Zylinder-Kolben-Anordnung. Der Flansch- und Anschlussblock kann dabei insbesondere zu einem überwiegenden Teil seines Volumens in dem Tank angeordnet sein und nur mit den beiden Flanschflächen benachbarten Randbereichen mehr oder weniger weit aus diesem herausragen. Gemäß einer alternativen bevorzugten Weiterbildung ist der Flansch- und Anschlussblock indessen außerhalb des Tanks angeordnet, und zwar besonders bevorzugt unterhalb von dessen Boden. Im Sinne obiger Ausführungen kann die Hydraulikpumpe dabei insbesondere über eine innerhalb des Tanks verlaufende Druckleitung mit einem an dem Flansch- und Anschlussblock vorgesehenen Druckanschluss verbunden sein, welcher seinerseits über einen Kanal mit einem an der ersten Flanschfläche vorgesehenen Druckanschluss in Verbindung steht; und an der ersten wie auch der zweiten Flanschfläche kann jeweils eine hydraulische Schnittstelle vorgesehen sein, welche zwei mit den beiden Arbeitsräumen der Zylinder-Kolben-Anordnung kommunizierende Arbeitsanschlüsse umfasst.Yet another preferred development of the electro-hydraulic drive unit according to the invention is characterized in that a flange and connection block is provided with a first flange for connection to a valve block housing the switching valves and a second flange surface for connection to the cylinder of the cylinder-piston arrangement. The flange and connection block can be arranged in particular to a predominant part of its volume in the tank and adjacent only with the two flange surfaces Edge areas more or less protrude from this. According to an alternative preferred development, however, the flange and connection block is arranged outside the tank, more preferably below its bottom. In the sense of the above embodiments, the hydraulic pump can be connected in particular via a pressure line extending inside the tank with a pressure connection provided on the flange and connection block, which in turn is connected via a channel to a pressure connection provided on the first flange surface; and on the first as well as the second flange surface may be provided in each case a hydraulic interface which comprises two communicating with the two working spaces of the cylinder-piston arrangement working ports.

Gemäß einer wiederum anderen bevorzugten Weiterbildung der Erfindung ist der Ventilblock in einer seitlichen Aussparung des Tanks untergebracht. Insbesondere kann eine derartige, den Ventilblock aufnehmende Aussparung in einem der Eckbereiche des Tanks angeordnet sein.According to yet another preferred embodiment of the invention, the valve block is housed in a lateral recess of the tank. In particular, such, the valve block receiving recess may be arranged in one of the corner regions of the tank.

Eine nochmals andere bevorzugte Weiterbildung der Erfindung zeichnet sich dadurch aus, dass in dem Tank ein hydraulisch entsperrbares Nachsaugventil angeordnet ist. Besonders vorteilhaft ist die Anordnung des Nachsaugventils in einem Durchbruch des weiter oben beschriebenen, zu einem überwiegenden Teil seines Volumens in dem Tank angeordneten Flansch- und Anschlussblocks; das Nachsaugventil kann dabei seinerseits einen Anschlussflansch zur unmittelbaren Verbindung mit dem Zylinder der Zylinder-Kolben-Anordnung aufweisen. In einer bevorzugten alternativen Weiterbildung ist das Nachsaugventil vollständig in den - außerhalb des Tanks angeordneten - Flansch- und Anschlussblock integriert; nur letzterer ist dabei über seine zweite Flanschfläche unmittelbar mit dem Zylinder der Zylinder-Kolben-Anordnung verbunden. Und das Nachsaugventil kann über eine Steuerleitung mit einem an dem Flansch- und Anschlussblock vorgesehenen Steuerausgang verbunden sein. Der Steuerausgang des Flansch- und Anschlussblocks steht dabei über einen Kanal mit einer Steuerfluid-Schnittstelle an der ersten Flanschfläche in Verbindung.Yet another preferred embodiment of the invention is characterized in that a hydraulically releasable Nachsaugventil is arranged in the tank. Particularly advantageous is the arrangement of the Nachsaugventils in a breakthrough of the above-described, arranged to a major part of its volume in the tank flange and terminal block; The suction valve can in turn a connection flange for direct connection with the cylinder of the cylinder-piston assembly respectively. In a preferred alternative development, the suction valve is completely integrated in the - arranged outside the tank - flange and connection block; only the latter is connected via its second flange directly with the cylinder of the cylinder-piston assembly. And the suction valve can be connected via a control line with a control output provided on the flange and connection block. The control output of the flange and connection block is connected via a channel with a control fluid interface to the first flange in connection.

Aus den vorstehenden Erläuterungen ist ersichtlich, dass sich in Anwendung der vorliegenden Erfindung eine elektrohydraulische Antriebseinheit mit ausgeprägten Vorteilen (insbesondere im Falle der Verwendung als Antrieb einer Maschinenpresse) bereitstellen lässt. Hierzu zählen insbesondere: Durch werksseitig vormontierte und geprüfte Einheiten, welche mit einer mechanischen Schnittstelle zur jeweiligen Zylinder-Kolben-Anordnung ausgestattet und somit leicht mit letzterem zu verbinden sind, ergeben sich minimale Montage- und Inbetriebnahmezeiten an der Maschine. Durch das rohrleitungsreduzierte Design und den konsequenten Verzicht auf externe Verrohrung ergeben sich größtmögliche Zuverlässigkeit und die Reduzierung der Gefahr externer Leckagen. Die Antriebseinheit kommt mit einer geringen Menge an Hydraulikflüssigkeit aus. Sie verfügt bei geringer Temperaturabhängigkeit über eine sehr hohe energetische Effizienz, so dass in der Regel weder eine ausgewiesene Ölkühlzeit vorzusehen ist, noch ein Ölkühler benötigt wird. So kann die Antriebseinheit besonders geringe Baumaße aufweisen. Die Geräuschentwicklung ist minimal. Mittels der Ventilsteuerung ist ein Rückhub des Werkzeugs in Arbeitsgeschwindigkeit möglich. Hierdurch sind besonders kurze Zykluszeiten und eine dementsprechend hohe Produktivität möglich. Zusatzfunktionen wie Werkzeugklemmung und Bombierung lassen sich ohne Mehraufwand in die Antriebseinheit integrieren bzw. an diese anbinden. Die Antriebseinheit kommt ohne Druckspeicher und ohne proportionale Wegeventile aus. Ebenso wenig bedarf es zwingend irgend welcher Drucksensoren, wobei solche allerdings bei bestimmten Ausgestaltungen der erfindungsgemäße Antriebseinheit durchaus mit Vorteil vorgesehen sein können (s. o.). Auch eine Verstellpumpe ist nicht erforderlich. Es lassen sich hochdynamische Maschinenpressen (z. B. Abkantpressen) realisieren mit einer Eilgang-Geschwindigkeit von beispielsweise 200-230mm/sec.It will be appreciated from the foregoing discussion that in application of the present invention, an electro-hydraulic drive unit having distinct advantages (particularly in the case of use as a machine press drive) can be provided. These include in particular: By factory pre-assembled and tested units, which are equipped with a mechanical interface to the respective cylinder-piston assembly and thus easy to connect to the latter, there are minimal assembly and commissioning times on the machine. The piping-reduced design and the consistent avoidance of external piping result in the greatest possible reliability and the reduction of the risk of external leaks. The drive unit uses a small amount of hydraulic fluid. It has a low temperature dependence on a very high energy efficiency, so that usually neither a designated oil cooling time is provided, nor an oil cooler is needed. So can the drive unit have particularly small dimensions. The noise is minimal. By means of the valve control a return stroke of the tool is possible at working speed. As a result, particularly short cycle times and a correspondingly high productivity are possible. Additional functions such as tool clamping and crowning can be integrated into the drive unit without any additional effort or connected to it. The drive unit requires no accumulator and no proportional directional control valves. Equally, it is absolutely not necessary to use any pressure sensors, although those may definitely be provided with advantage in certain embodiments of the drive unit according to the invention (see above). A variable displacement pump is not required. It is possible to realize highly dynamic machine presses (eg press brakes) with a rapid traverse speed of, for example, 200-230 mm / sec.

Im Folgenden wird die vorliegende Erfindung anhand zweier in der Zeichnung veranschaulichter bevorzugter Ausführungsbeispiele näher erläutert. Dabei zeigt

Fig. 1
in perspektivischer Ansicht eine elektrohydraulische Antriebseinheit nach einem ersten Ausführungsbeispiel der Erfindung ohne die zugehörige Maschinensteuerung,
Fig. 2
die elektrohydraulische Antriebseinheit nach Fig. 1 bei teilweise geschnittenen Seitenwänden des Tanks zur Veranschaulichung von dessen Einbauten, allerdings ohne die Zylinder-Kolben-Einheit,
Fig. 3
den Hydraulikschaltplan zu der elektrohydraulischen Antriebseinheit nach den Figuren 1 und 2,
Fig. 4
in Form eines Diagramms die Ansteuerung der Schaltventile und des Elektromotors der elektrohydraulischen Antriebseinheit nach den Figuren 1 bis 3 und die sich ergebende Bewegung des Kolbens,
Fig. 5
in perspektivischer Ansicht eine elektrohydraulische Antriebseinheit nach einem zweiten Ausführungsbeispiel der Erfindung ohne die zugehörige Maschinensteuerung,
Fig. 6
den Hydraulikschaltplan zu der elektrohydraulischen Antriebseinheit nach Fig. 5 (ohne die zugehörige Maschinensteuerung) und
Fig. 7
ein die Ansteuerung der Schaltventile und des Elektromotors der elektrohydraulischen Antriebseinheit nach den Figuren 5 und 6 und die sich ergebende Bewegung des Kolbens veranschaulichendes Funktionsdiagramm.
In the following, the present invention is explained in more detail with reference to two illustrated in the drawing preferred embodiments. It shows
Fig. 1
in a perspective view of an electro-hydraulic drive unit according to a first embodiment of the invention without the associated machine control,
Fig. 2
the electro-hydraulic drive unit after Fig. 1 with partially cut side walls of the tank to illustrate its internals, but without the cylinder-piston unit,
Fig. 3
the hydraulic circuit diagram to the electro-hydraulic drive unit after the FIGS. 1 and 2 .
Fig. 4
in the form of a diagram, the control of the switching valves and the electric motor of the electro-hydraulic drive unit according to the FIGS. 1 to 3 and the resulting movement of the piston,
Fig. 5
a perspective view of an electro-hydraulic drive unit according to a second embodiment of the invention without the associated machine control,
Fig. 6
the hydraulic circuit diagram to the electro-hydraulic drive unit according to Fig. 5 (without the associated machine control) and
Fig. 7
a control of the switching valves and the electric motor of the electro-hydraulic drive unit after the Figures 5 and 6 and the resulting movement of the piston illustrating functional diagram.

Die in den Figuren 1 und 2 gezeigte elektrohydraulische Antriebseinheit nach einem ersten Ausführungsbeispiel der Erfindung umfasst als Hauptkomponenten eine Zylinder-Kolben-Anordnung 1 mit vertikaler Bewegungsachse Y, einen Hydraulikflüssigkeit bevorratenden Tank 2, ein Hydraulikaggregat 3 mit einem Elektromotor 4 und einer durch diesen angetriebenen Hydraulikpumpe 5 und einen Ventilblock 6 mit mehreren daran angeordneten bzw. darin untergebrachten hydraulisch wirksamen Elementen (insbesondere Ventilen) sowie einem Wechsel-Ölfilter 20. Die Zylinder-Kolben-Anordnung 1 umfasst in als solches bekannter Weise einen in einem Zylinder 7 linear verschiebbaren, mit einer Kolbenstange 8 verbundenen Kolben 9, durch welchen der Innenraum des Zylinders 7 in zwei Arbeitsräume unterteilt wird, nämlich einen ersten hydraulischen Arbeitsraum 10 , welcher dergestalt einer ersten Bewegungsrichtung Y1 des Kolbens zugeordnet ist, dass er während dieser sein Volumen vergrößert, und einen zweiten hydraulischen Arbeitsraum 11, welcher dergestalt einer - der ersten Bewegungsrichtung Y1 entgegengesetzten zweiten Bewegungsrichtung Y2 des Kolbens zugeordnet ist, dass er während dieser sein Volumen vergrößert. Bei der bestehenden Einbaulage entspricht die erste Bewegungsrichtung Y1 der Abwärtsbewegung von Kolben 9 und Kolbenstange 8 und die zweite Bewegungsrichtung Y2 deren Aufwärtsbewegung.The in the FIGS. 1 and 2 shown electrohydraulic drive unit according to a first embodiment of the invention comprises as main components a cylinder-piston assembly 1 with vertical axis of movement Y, a hydraulic fluid-storing tank 2, a hydraulic unit 3 with an electric motor 4 and driven by this hydraulic pump 5 and a valve block 6 with a plurality arranged thereon or housed therein hydraulically active elements (in particular valves) and a change-oil filter 20. The cylinder-piston assembly 1 comprises in known manner such a linear in a cylinder 7 displaceable, with a piston rod 8 connected piston 9, through which the interior of the cylinder 7 is divided into two working spaces, namely a first hydraulic working space 10 which is so associated with a first movement direction Y1 of the piston, that during this increases its volume, and a second hydraulic working space 11, which is associated with a second movement direction Y2 of the piston, which is opposite to the first movement direction Y1, during which it increases its volume. In the existing installation position corresponds to the first direction of movement Y1 of the downward movement of the piston 9 and piston rod 8 and the second direction of movement Y2 their upward movement.

Der Tank 2, der über einen Belüftungsfilter 12 belüftet ist, so dass in ihm Umgebungsdruck herrscht (sog. "offenes System"), weist eine L-Form auf. Er verfügt somit über eine seitliche Aussparung 13, in welcher der Ventilblock 6 untergebracht ist. An einer der Seitenwände des Tanks 2 ist ein Füllstandssensor 34 angeordnet.The tank 2, which is ventilated via a ventilation filter 12, so that ambient pressure prevails therein (so-called "open system"), has an L-shape. He thus has a lateral recess 13 in which the valve block 6 is housed. On one of the side walls of the tank 2, a level sensor 34 is arranged.

Die Hydraulikpumpe 5 ist innen in dem Tank 2 ("unter Öl") angeordnet. Der ihrem Antrieb dienende Elektromotor 4 befindet sich allerdings außerhalb des Tanks 2, an dessen Boden 14 angeflanscht. Ebenfalls in dem Tank 2 befinden sich ein Nachsaugventil 15 sowie (mit einem überwiegenden Teil seines Volumens) ein Flansch- und Anschlussblock 16. Letzterer ragt allerdings durch entsprechende Öffnungen in der Seitenwand 17 und dem Boden 14 des Tanks 2 aus diesem heraus. An dem durch die Seitenwand 17 des Tanks herausragenden Abschnitt 18 des Flansch- und Anschlussblocks 16 ist eine erste Flanschfläche 19 zur Verbindung mit dem Ventilblock 6 vorgesehen; und an dem durch den Boden 14 des Tanks 2 herausragenden Abschnitt des Flansch- und Anschlussblocks 16 befindet sich eine zweite Flanschfläche 21 zur Verbindung mit dem Zylinder 7 der Zylinder-Kolben-Anordnung 1. An der ersten sowie der zweiten Flanschfläche 19, 21 ist jeweils eine hydraulische Schnittstelle vorgesehen, welche zwei mit den beiden Arbeitsräumen 10, 11 der Zylinder-Kolben-Anordnung 1 kommunizierende Arbeitsanschlüsse A, B umfasst.The hydraulic pump 5 is disposed inside the tank 2 ("under oil"). However, the drive 4 serving electric motor 4 is located outside of the tank 2, flanged to the bottom 14. Also in the tank 2 are a suction valve 15 and (with a major part of its volume) a flange and terminal block 16. However, the latter protrudes through corresponding openings in the side wall 17 and the bottom 14 of the tank 2 out of this. At the protruding through the side wall 17 of the tank portion 18 of the flange and terminal block 16 is a first flange 19 for Connection provided with the valve block 6; and on the protruding through the bottom 14 of the tank 2 portion of the flange and terminal block 16 is a second flange 21 for connection to the cylinder 7 of the cylinder-piston assembly 1. At the first and the second flange 19, 21 is respectively a hydraulic interface is provided, which comprises two with the two working spaces 10, 11 of the cylinder-piston assembly 1 communicating working ports A, B.

Der Flansch- und Anschlussblock 16 weist einen Durchbruch 22 auf, in welchen das Nachsaugventil 15 eingesetzt ist. Dieses verfügt seinerseits über einen Anschlussflansch zur unmittelbaren Verbindung mit dem Zylinder 7 der Zylinder-Kolben-Anordnung 1. Das Nachsaugventil 15 ist hydraulisch entsperrbar, wozu es über eine - innerhalb des Tanks 2 verlegte - Steuerleitung 23 mit einem an dem Flansch- und Anschlussblock 16 vorgesehenen Steueranschluss verbunden ist, welcher seinerseits über einen - den Flansch- und Anschlussblock 16 durchsetzenden - Kanal und eine an der ersten Flanschfläche 19 vorgesehene Steuerfluid-Schnittstelle mit einem Steuerausgang des Ventilblocks 6 kommuniziert.The flange and connection block 16 has an opening 22, in which the Nachsaugventil 15 is inserted. This has in turn a connection flange for direct connection with the cylinder 7 of the cylinder-piston assembly 1. The Nachsaugventil 15 is hydraulically unlocked, what it over a - within the tank 2 misplaced - control line 23 with a on the flange and terminal block 16th is provided, which in turn communicates via a - the flange and terminal block 16 passing through - channel and provided on the first flange 19 control fluid interface with a control output of the valve block 6.

An der Tankseite der Hydraulikpumpe 5, welche in deren Pumpbetrieb die Saugseite bildet, ist ein bodennah mündender Ansaugstutzen 24 vorgesehen. Die Druckseite der Hydraulikpumpe 5, an der in deren Pumpbetrieb die geförderte Hydraulikflüssigkeit austritt, ist demgegenüber über einen - innerhalb des Tanks 2 verlegten - Druckschlauch 25 mit einem an dem Flansch- und Anschlussblock 16 vorgesehenen Druckanschluss verbunden, welcher seinerseits über einen den Flansch- und Anschlussblock 16 durchsetzenden Kanal und eine an der ersten Flanschfläche 19 vorgesehene Druckfluid-Schnittstelle mit einem Druckfluid-Anschluss des Ventilblocks 6 kommuniziert.At the tank side of the hydraulic pump 5, which forms the suction side in their pumping operation, a near-ground opening intake 24 is provided. In contrast, the pressure side of the hydraulic pump 5, at which the pumped hydraulic fluid exits in its pumping operation, is connected via a pressure hose 25, which is laid inside the tank 2, to a pressure connection provided on the flange and connection block 16. which, in turn, communicates with a pressurized fluid port of the valve block 6 via a channel passing through the flange and port block 16 and a pressure fluid interface provided on the first flange surface 19.

Die Anordnung und Verschaltung der Schaltventile und sonstigen Komponenten (Nachsaugventil, Drossel, Druckbegrenzungsventile, Filter, etc.) der Hydraulikschaltung ist in Fig. 3 veranschaulicht. (Zur Vermeidung von Missverständnissen ist darauf hinzuweisen, dass in Fig. 3 die den Ventilblock 6 symbolisierende Linie den körperlichen Ventilblock 6 aus Figuren 1 und 2 samt dem körperlichen Flansch- und Anschlussblock 16 umfasst; diese beiden nach den Figuren 1 und 2 baulich getrennten Bauteile könnten durchaus auch zu einem einheitlichen Bauteil zusammengefasst werden.) In besonderer Weise von Bedeutung für die Steuerung der Bewegungsabläufe der Antriebseinheit, d. h. der Abwärts- und Aufwärtsbewegung von Kolben 9 und Kolbenstange 8 sind dabei die insgesamt sechs von der Maschinensteuerung 26 angesteuerten Schaltventile S1 bis S6 sowie der ebenfalls von der Maschinensteuerung 26 angesteuerte, als Servomotor 27 ausgeführte Elektromotor 4 des Hydraulikaggregats 3. Die Ansteuerung der Schaltventile S1 bis S6 sowie des Servomotors 27 in den einzelnen Teilabschnitten und Phasen eines vollständigen Zyklus' ist dabei in dem Diagramm nach Fig. 4 veranschaulicht.The arrangement and connection of the switching valves and other components (suction valve, throttle, pressure limiting valves, filters, etc.) of the hydraulic circuit is in Fig. 3 illustrated. (To avoid any misunderstanding, it should be noted that in Fig. 3 the valve block 6 symbolizing line the physical valve block 6 FIGS. 1 and 2 including the bodily flange and terminal block 16; these two after the FIGS. 1 and 2 structurally separate components could well be combined into a single component.) In a special way of importance for the control of the motion sequences of the drive unit, ie the downward and upward movement of piston 9 and piston rod 8 are the total of six controlled by the machine control 26 switching valves S1 to S6 as well as the electric motor 4 of the hydraulic unit 3, which is also controlled by the machine control 26 and designed as a servomotor 27. The actuation of the switching valves S1 to S6 and the servomotor 27 in the individual sections and phases of a complete cycle is shown in the diagram Fig. 4 illustrated.

Und zwar ist in während des Haltens das Kolbens im oberen Totpunkt (Phase I) der Servomotor 27 im Stillstand (Betriebszustand "0"); und keines der sechs Schaltventile S1 bis S6 ist aktiviert, so dass alle Schaltventile die in Fig. 3 gezeigte Stellung (Schaltstellung "0") einnehmen. In diesem Schaltzustand wird der Kolben 9 redundant durch die Gruppe aus geschlossenem Schaltventil S2 und geschlossenem Druckbegrenzungsventil 30 sowie das ebenfalls geschlossene Schaltventil S3 in dem Sinne gehalten, dass das Gewicht von den mit der Kolbenstange 8 verbundenen Komponenten (z. B. Werkzeugträger und Werkzeug) der jeweiligen Maschine durch die in dem zweiten hydraulischen Arbeitsraum 11 eingespannte Hydraulikflüssigkeit gehalten werden. (Das auf den maximal zulässigen Systemdruck zuzüglich eines Zuschlags eingestellte Sicherheitsventil 28 ist ohnehin im normalen Betrieb stets geschlossen.)Namely, while in the holding, the piston at the top dead center (phase I), the servomotor 27 at a standstill (operating state "0"); and none of the six switching valves S1 to S6 is activated, so that all switching valves the in Fig. 3 shown position (switch position "0") take. In this switching state, the piston 9 is held redundantly by the group of closed switching valve S2 and closed pressure limiting valve 30 as well as the likewise closed switching valve S3 in the sense that the weight of the components connected to the piston rod 8 (eg tool carrier and tool) the respective machine are held by the hydraulic fluid clamped in the second hydraulic working space 11. (The safety valve 28, which is set to the maximum permissible system pressure plus an additional charge, is always closed in normal operation anyway.)

Zur Bewegung Eil-Abwärts von Kolben 9 und Kolbenstange 8 (Phase II) sind mit Ausnahme des Schaltventils S4 sämtliche Schaltventile, d. h. die Schaltventile S1, S2, S3, S5 und S6 aktiviert (Schaltstellung "I"). Der zweite Arbeitsraum 11 (Heben-Arbeitsraum) der Zylinder-KolbenEinheit 7 steht über die (geöffneten) Schaltventile S2 und S3 und das gemäß bP geöffnete Schaltventil S5 mit dem Druckanschluss 29 der Hydraulikpumpe 5 in Verbindung. Der Servomotor 27 dreht im Linkslauf (Betriebszustand L*), d. h. in seinem Bremsbetrieb, um die durch das Eigengewicht der von der Antriebseinheit angetriebenen, mit der Kolbenstange 8 verbundenen angetriebenen Maschinenkomponente (Werkzeugträger plus Werkzeug) induzierte Abwärtsbewegung des Kolbens 9 gesteuert zu bremsen. Durch das Nachsaugventil 15 wird der erste Arbeitsraum 10 der Zylinder-Kolben-Anordnung 7 direkt aus dem Tank 2 gefüllt. Diese Phase II erstreckt sich bis zu einem - in der Maschinensteuerung hinterlegten - Umschaltpunkt, der frei programmierbar und zweckmäßigerweise nahe dem Aufsetzpunkt des Werkzeugs auf dem Werkstück gewählt ist.For the movement Eil-down of piston 9 and piston rod 8 (phase II), all switching valves, ie the switching valves S1, S2, S3, S5 and S6 are activated (switching position "I") with the exception of the switching valve S4. The second working space 11 (lifting-working space) of the cylinder-piston unit 7 is connected to the pressure port 29 of the hydraulic pump 5 via the (opened) switching valves S2 and S3 and the open in accordance with bP switching valve S5. The servomotor 27 rotates counterclockwise (operating state L *), ie in its braking mode, in order to brake the downward movement of the piston 9 induced by the dead weight of the driven machine component driven by the drive unit and connected to the piston rod 8 (tool carrier plus tool). By the suction valve 15, the first working space 10 of the cylinder-piston assembly 7 is filled directly from the tank 2. This Phase II extends to a - stored in the machine control - switching point, the freely programmable and is suitably chosen near the touchdown of the tool on the workpiece.

In der Lastwechselphase III befindet sich der Servomotor 27 im Stillstand. Die Schaltventile S2, S4 und S5 werden umgesteuert, d. h. die Schaltventile S2 und S5 werden deaktiviert (Schaltstellung "0"), und das Schaltventil S4 wird aktiviert (Schaltstellung "I"). Auf diese Weise wird der erste Arbeitsraum 10 der Zylinder-Kolben-Anordnung 7 über das Schaltventil S4 mit der Druckseite 29 der Hydraulikpumpe 5 in Strömungsverbindung gebracht. Der zweite Arbeitsraum 11 der Zylinder-Kolben-Anordnung 7 wird demgegenüber über das Druckbegrenzungsventil 30, das Schaltventil S3, den Strömungspfad bT des Schaltventils S5 und den Ölfilter 20 mit der Tankseite in Strömungsverbindung gebracht.In the load change phase III, the servomotor 27 is at a standstill. The switching valves S2, S4 and S5 are reversed, d. H. the switching valves S2 and S5 are deactivated (switch position "0"), and the switching valve S4 is activated (switch position "I"). In this way, the first working space 10 of the cylinder-piston arrangement 7 is brought into fluid communication with the pressure side 29 of the hydraulic pump 5 via the switching valve S4. On the other hand, the second working space 11 of the cylinder-piston arrangement 7 is brought into fluid communication with the tank side via the pressure-limiting valve 30, the switching valve S3, the flow path bT of the switching valve S5 and the oil filter 20.

Zum Kraftpressen (Phase IV) wird der Servomotor 27 mit seiner dem Pumpbetrieb der Hydraulikpumpe 5 entsprechenden Drehrichtung (Rechtslauf gemäß Betriebszustand R*) in Betrieb gesetzt. Dieser Betriebszustand der Schaltventile S1 bis S6 und des Servomotors 27 wird auch über die anschließende Haltephase (Phase V) aufrechterhalten.For force pressing (phase IV), the servomotor 27 is set in operation with its direction of rotation corresponding to the pumping operation of the hydraulic pump 5 (clockwise rotation according to the operating state R *). This operating state of the switching valves S1 to S6 and the servomotor 27 is also maintained over the subsequent holding phase (phase V).

Zum Dekomprimieren der in dem ersten Arbeitsraum 10 befindlichen Hydraulikflüssigkeit (Phase VI) wird der Servomotor 27 umgesteuert. Er dreht nun im Linkslauf, d. h. in seinem Bremsbetrieb L*, so dass Hydraulikflüssigkeit gesteuert aus dem ersten Arbeitsraum 10 über das Schaltventil S4 und die (als Düse ausgeführte) Drossel 31 in den Tank 2 gefördert wird.For decompressing the hydraulic fluid in the first working chamber 10 (phase VI), the servomotor 27 is reversed. It now rotates counterclockwise, ie in its braking mode L *, so that hydraulic fluid is conveyed from the first working chamber 10 via the switching valve S4 and the throttle 31 (designed as a nozzle) into the tank 2 in a controlled manner.

Am Ende der Dekompressionsphase werden die Schaltventile S4, S5 und S6 umgesteuert, d. h. die Schaltventile S4 und S6 werden deaktiviert (Schaltzustand "0") und das Schaltventil S5 wird aktiviert (Schaltzustand "I"). Infolge seiner Beaufschlagung mit Steuerdruck über das Schaltventil S6 (Pfad Pb) wird das Nachsaugventil 15 geöffnet (entsperrt). Und der zweite Arbeitsraum 11 der Zylinder-Kolben-Anordnung 7 ist über das Vordruckventil 32 und die beiden Schaltventile S3 und S2 (jeweils durch den mittels des Rückschlagventils abgesicherten Pfad) mit der Druckseite 29 der Hydraulikpumpe 5 verbunden. Durch Umsteuern des Servomotors 27 in Rechtslauf, d. h. Betrieb mit seiner dem Pumpbetrieb der Hydraulikpumpe entsprechenden Drehrichtung (Betriebszustand R*) wird der Kolben 9 im Eil-Hub angehoben (Phase VII). Bedarfsweise kann das Anheben des Kolbens 9 in zwei Teilphasen unterteilt werden, indem dem Eil-Heben zunächst ein langsames Heben vorgeschaltet ist. Während dieser ersten Teilphase kann, bei noch nicht entsperrtem Nachsaugventil 15, die aus dem ersten Arbeitsraum 10 verdrängte Hydraulikflüssigkeit über das Schaltventil S4 (Pfad aT) und den Ölfilter 20 in den Tank 2 abfließen.At the end of the decompression phase, the switching valves S4, S5 and S6 are reversed, d. H. the switching valves S4 and S6 are deactivated (switching state "0") and the switching valve S5 is activated (switching state "I"). As a result of its application of control pressure via the switching valve S6 (path Pb), the suction valve 15 is opened (unlocked). And the second working space 11 of the cylinder-piston arrangement 7 is connected to the pressure side 29 of the hydraulic pump 5 via the admission pressure valve 32 and the two switching valves S3 and S2 (in each case through the path protected by the check valve). By reversing the servomotor 27 in clockwise, d. H. Operation with its pumping operation of the hydraulic pump corresponding direction of rotation (operating state R *), the piston 9 is raised in the rapid-stroke (Phase VII). If necessary, the lifting of the piston 9 can be subdivided into two subphases, in which the rapid lifting is first preceded by a slow lifting. During this first partial phase, the hydraulic fluid displaced from the first working space 10 can flow into the tank 2 via the switching valve S4 (path aT) and the oil filter 20, with the suction valve 15 not yet unlocked.

Bei Erreichen des oberen Totpunktes (OT) geht der Servomotor 27 in Stillstand über; und die Schaltventile S1 und S5 werden umgesteuert, so dass nun wieder sämtliche Schaltventile deaktiviert sind (Haltephase VIII, analog der Haltephase I zu Beginn des Zyklus'; s. o.).Upon reaching the top dead center (TDC), the servomotor 27 goes to standstill; and the switching valves S1 and S5 are reversed, so that now again all switching valves are deactivated (holding phase VIII, analogous to the holding phase I at the beginning of the cycle ', see above).

In der Haltephase I, VIII kann die Hydraulikpumpe 5 bedarfsweise in Betrieb genommen werden, um Hydraulikflüssigkeit über das (geöffnete) Schaltventil S1 durch den Ölfilter 20 zu fördern. Optional kann sich an den Ölfilter 20, mit diesem in Reihe geschaltet, ein Ölkühler 33 anschließen.In the holding phase I, VIII, the hydraulic pump 5 can, if necessary, be put into operation to hydraulic fluid via the (open) switching valve S1 through the oil filter 20 to promote. Optionally, an oil cooler 33 can be connected to the oil filter 20, connected in series therewith.

Zu der in den Figuren 3 und 4 veranschaulichten Steuerung sind, um dies nur der Vollständigkeit halber zu erwähnen, im Rahmen der vorliegenden Erfindung ersichtlich diverse Variationen, Modifikationen und Abwandlungen möglich, ohne die durch die Ansprüche definierte Erfindung zu verlassen. Eine derartige Abwandlung besteht beispielsweise in dem Ersatz von normal-offenen (NO) Ventilen durch normal-geschlossene (NG) Ventile und/oder umgekehrt.To the in the Figures 3 and 4 For the sake of completeness, in the context of the present invention, various variations, modifications and variations are apparent, without departing from the invention as defined by the claims. One such modification is, for example, the replacement of normally-open (NO) valves with normally-closed (NG) valves and / or vice versa.

In Fig. 3 ist veranschaulicht, dass die Schaltventile S1, S2, S3, S4 und S6 mit einer Schaltstellungsüberwachung 34 ausgestattet sind. Diese kann - im Falle geringerer Sicherheitsanforderungen - ggf. entfallen, wobei in diesem Fall auch das Schaltventil S3 entfallen kann.In Fig. 3 is illustrated that the switching valves S1, S2, S3, S4 and S6 are equipped with a switch position monitoring 34. In the case of lower safety requirements, this can possibly be dispensed with, in which case the switching valve S3 can also be omitted.

Ist, wie oben erwähnt und in Fig. 3 veranschaulicht, ein optionaler Ölkühler 33 vorgesehen, so ist dieser bevorzugt direkt außen an einer der Seitenwände des Tanks 2 angeordnet. Die Ölzufuhr zum Ölkühler 33 erfolgt dabei über eine - innerhalb des Tanks 2 verlegte Leitung, welche mit einem an dem Flansch- und Anschlussblock 16 vorgesehenen Kühlstromanschluss verbunden ist, welcher seinerseits über einen - den Flansch- und Anschlussblock 16 durchsetzenden - Kanal und eine an der ersten Flanschfläche 19 vorgesehene Kühlstrom-Schnittstelle mit einem Kühlstrom-Anschluss des Ventilblocks 6 kommuniziert.Is, as mentioned above and in Fig. 3 illustrated, an optional oil cooler 33 is provided, this is preferably arranged directly outside on one of the side walls of the tank 2. The oil supply to the oil cooler 33 takes place via a - inside the tank 2 laid pipe, which is connected to a provided on the flange and terminal block 16 cooling power connection, which in turn via a - the flange and terminal block 16 passing through - channel and at the the first flange 19 provided cooling flow interface with a cooling flow connection of the valve block 6 communicates.

Das durch die Figuren 5 bis 7 dokumentierte zweite bevorzugte Ausführungsbeispiel der Erfindung erklärt sich - aufgrund der bestehenden Parallelen bzw. Übereinstimmungen - im erheblichen Umfang durch die vorstehenden Erläuterungen zu dem von den Figuren 1 bis 4 betroffenen ersten Ausführungsbeispiel. Zur Vermeidung von Wiederholungen wird insoweit auf letztere verwiesen. Besonders hinzuweisen ist aber auf die maßgeblichen, nachstehend thematisierten Abweichungen wie folgt:
Der Flansch- und Anschlussblock 16' ist nicht in dem Tank angeordnet, sondern vielmehr (vollständig) außerhalb des Tanks 2'. Er befindet sich nämlich unterhalb des Tanks 2', d. h. unterhalb von dessen Boden 14. Anders als nach dem ersten Ausführungsbeispiel, bei dem ein selbständig funktionstüchtiges Nachsaugventil in eine Aussparung bzw. einen Durchbruch des Flansch- und Anschlussblock eingesetzt ist, ist bei dem zweiten Ausführungsbeispiel nach den Figuren 5-7 das Nachsaugventil 15' in dem Sinne in den Flansch- und Anschlussblock 16' integriert, als letzterer selbst das funktionsnotwendige Ventilgehäuse bildet. Dies ermöglicht eine besonders kompakte Bauweise. Ferner entfällt die nach dem ersten Ausführungsbeispiel erforderliche doppelte Flanschanbindung (einerseits des Flansch- und Anschlussblocks 16 und andererseits des Nachsaugventils 15) von Komponenten an die Zylinder-Kolben-Anordnung.
That by the FIGS. 5 to 7 documented second preferred embodiment of the invention is explained - due to the existing parallels - to a considerable extent by the above explanations to that of the FIGS. 1 to 4 affected first embodiment. To avoid repetition, reference is made to the latter. However, special attention should be drawn to the relevant deviations discussed below as follows:
The flange and port block 16 'is not located in the tank, but rather (completely) outside the tank 2'. It is located below the tank 2 ', ie below its bottom 14. Unlike in the first embodiment, in which a self-functional suction valve is inserted into a recess or an opening of the flange and connection block is in the second embodiment after the Figures 5-7 the Nachsaugventil 15 'in the sense in the flange and terminal block 16' integrated, as the latter itself forms the functionally necessary valve housing. This allows a particularly compact design. Furthermore, eliminates the required according to the first embodiment double flange connection (on the one hand of the flange and terminal block 16 and on the other hand of the Nachsaugventils 15) of components to the cylinder-piston assembly.

Weiterhin ist in Fig. 6 erkennbar, dass die bei dem ersten Ausführungsbeispiel in der Dekompressionsphase wirksame, mit der Hydraulikpumpe funktional in Reihe geschaltete Drossel entfallen ist. Hiermit im Zusammenhang steht die (beim zweiten Ausführungsbeispiel vorgesehene) druckabhängige Regelung der Dekompression durch entsprechende Ansteuerung der Hydraulikpumpe 5 im Bremsbetrieb durch die Steuerung, zu welchem Zweck das Signal eines den Hydraulikdruck im ersten hydraulischen Arbeitsraum erfassenden Drucksensors 34 auf die Steuerung geschaltet ist.Furthermore, in Fig. 6 recognizable that in the first embodiment in the decompression phase effective, with the hydraulic pump functionally connected in series throttle is omitted. This is related to the (in the second embodiment provided) pressure-dependent control of the decompression by appropriate control of the hydraulic pump 5 in braking operation by the controller, for which purpose the signal of a hydraulic pressure in the first hydraulic working chamber detecting pressure sensor 34 is connected to the controller.

Anders gestaltet ist bei dem zweiten Ausführungsbeispiel auch die Filterung der Hydraulikflüssigkeit. Hier ist eine Filtereinheit 35 dergestalt vorgesehen, dass im Pumpbetrieb der Hydraulikpumpe 5 die gesamte von letzterer geförderte Hydraulikflüssigkeit durch den Filter 20' gereinigt wird. Nur bei Verstopfung des Filters 20' strömt die von der Hydraulikpumpe 5' geförderte Hydraulikflüssigkeit über den "kleinen" Bypass 36, in dem das Rückschlagventil 37 wie ein Druckbegrenzungsventil wirkt und bei beladenem bzw. verstopften Filter 20' öffnet, um einem Filterbruch vorzubeugen. Im Bremsbetrieb der Hydraulikpumpe 5' strömt die Hydraulikflüssigkeit über den "großen" Bypass 38 an der Filtereinheit 35 vorbei.In the second embodiment, the filtering of the hydraulic fluid is designed differently. Here, a filter unit 35 is provided such that in the pumping operation of the hydraulic pump 5, the entire hydraulic fluid delivered by the latter is cleaned by the filter 20 '. Only when the filter 20 'is obstructed does the hydraulic fluid delivered by the hydraulic pump 5' flow via the "small" bypass 36, in which the check valve 37 acts as a pressure relief valve and opens when the filter 20 'is laden or clogged, in order to prevent filter breakage. During braking operation of the hydraulic pump 5 ', the hydraulic fluid flows past the filter unit 35 via the "large" bypass 38.

Infolge der vorstehend beschriebenen Ausführung der Filterung der Hydraulikflüssigkeit ist weiterhin teilweise die Funktion des bei dem ersten Ausführungsbeispiel vorgesehenen Schaltventils S1 entfallen; denn es gibt bei dem zweiten Ausführungsbeispiel keinen reinen Umwälz-Filterbetrieb mehr. Damit könnte das zweite Ausführungsbeispiel mit einem Schaltventil weniger auskommen als das erste Ausführungsbeispiel. Allerdings ist, wie Fig. 6 zeigt, aus Sicherheitsgründen ein Absperrventil S7 hinzugekommen. Dieses sperrt in seiner nicht-bestromten Stellung die Hydraulikpumpe 5 von der weiteren Ventilanordnung ab und verhindert auf diese Weise einen unbeabsichtigten Druckaufbau im System.As a result of the above-described embodiment of the filtering of the hydraulic fluid, the function of the switching valve S1 provided in the first exemplary embodiment is also partially eliminated; because there is no pure circulation filter operation in the second embodiment. Thus, the second embodiment with a switching valve could make do less than the first embodiment. However, that's how Fig. 6 shows, for safety reasons, a shut-off valve S7 added. This locks in his non-energized Position the hydraulic pump 5 from the other valve assembly and prevents in this way an unintentional pressure build-up in the system.

Hinzuweisen ist schließlich auf den Wegfall eines gesonderten Ölkühlers; denn ein solcher ist bei dem dargestellten zweiten Ausführungsbeispiel nicht erforderlich.Attention should finally be drawn to the omission of a separate oil cooler; because such is not required in the illustrated second embodiment.

Claims (16)

  1. Electrohydraulic drive unit, in particular for use on a machine press, comprising
    - a cylinder-piston arrangement (1) having a first hydraulic working chamber (10) assigned to a first direction of movement (Y1) of the piston (9) and a second hydraulic working chamber (11) assigned to an opposite second direction of movement (Y2) of the piston (9),
    - a tank storing hydraulic fluid (2; 2'),
    - a 2-quadrant hydraulic pump (5) which is driven by means of an electric motor (4) in pumping operation in exactly one predetermined direction of rotation in variable rotational speed and which has a tank connection opening directly into the tank (2; 2') and a pressure connection (29),
    - a valve arrangement which is connected between the pressure connection (29) of the hydraulic pump (5) and the cylinder-piston arrangement (1) and which comprises a plurality of electrically controllable switching valves (S1- S6; S2' -S6', S7),
    - and a machine controller (26) which acts on the switching valves (S1 - S6; S2' - S6' ,S7) and the electric motor (4) and by means of which the switching valves (S1 - S6; S2' - S6', S7) are switchable between a loading of the first hydraulic working chamber (10) and the second hydraulic working chamber (11) of the cylinder-piston arrangement (1) during the pumping operation of the hydraulic pump (5) from the pressure connection (29),
    wherein the hydraulic pump (5) is switchable by means of the machine controller (26) into a braking operation with the direction of rotation and flow reverse to the pump operation.
  2. Electrohydraulic drive unit according to claim 1, characterized in that the cylinder-piston arrangement (1) is oriented with an at least substantially perpendicular axis of movement (Y), the first direction of movement (Y1) corresponding to a downward movement and the second direction of movement (Y2) corresponding to an upward movement of the piston (9).
  3. Electrohydraulic drive unit according to claim 1 or claim 2, characterized in that the hydraulic pump (5) can be switched over into braking operation both in a first movement phase, while a flow connection of the second hydraulic working chamber (11) of the cylinder-piston arrangement (1) with the pressure connection (29) of the hydraulic pump (5) exists, and in a second movement phase, in which a flow connection of the first hydraulic working chamber (10) of the cylinder-piston arrangement (1) with the pressure connection (29) of the hydraulic pump (5) exists, into braking operation.
  4. Electrohydraulic drive unit according to claim 3, characterized in that a throttle (31) is provided which, in braking operation, is connected in series with the hydraulic pump (5) in the second movement phase.
  5. Electrohydraulic drive unit according to one of claims 1 to 4, characterized in that the hydraulic pump (5) is disposed on the inside in the tank (2; 2').
  6. Electrohydraulic drive unit according to one of claims 1 to 5, characterized in that a flange and connection block (16) is provided with a first flange surface (19) for connection to a valve block (6) accommodating the switching valves (S1 - S6; S2' - S6', S7) and a second flange surface (21) for connection to the cylinder (7) of the cylinder-piston arrangement (1).
  7. Electrohydraulic drive unit according to claim 6, characterized in that the flange and connection block (16) is arranged in the tank (2) to a predominant part of its volume.
  8. Electrohydraulic drive unit according to claim 6 or claim 7, characterized in that the valve block (6) is disposed in a lateral recess (13) of the tank (2; 2').
  9. Electrohydraulic drive unit according to one of claims 6 to 8, characterized in that a hydraulic interface is provided on the second flange face (21), which comprises two working connections (A, B) communicating with the two working chambers (10, 11) of the cylinder-piston arrangement (1).
  10. Electrohydraulic drive unit according to one of claims 6 to 9, characterized in that the hydraulic pump (5) is connected to the flange and connection block (16) via a pressure line (25) running inside the tank (2).
  11. Electrohydraulic drive unit according to one of claims 1 to 10, characterized in that a suction valve (15) with a hydraulically unlockable non-return valve is arranged in the tank (2).
  12. Electrohydraulic drive unit according to claim 11, characterized in that the suction valve (15) has a connecting flange for direct connection to the cylinder (7) of the cylinder-piston arrangement (1).
  13. Electrohydraulic drive unit according to claim 11 or claim 12, characterized in that the suction valve (15) is connected via a control line (23) to a control output provided on the flange and connection block (16).
  14. Electrohydraulic drive unit according to claim 6, characterized in that the flange and connection block (16') is arranged below the tank (2').
  15. Electrohydraulic drive unit according to claim 14, characterized in that a suction valve (15') with a hydraulically unlockable non-return valve (15') is disposed into the flange and connection block (16').
  16. Electrohydraulic drive unit according to one of claims 1 to 15, characterized in that it comprises a filter unit (35) with a filter (20') through which the entire hydraulic fluid conveyed by the hydraulic pump (5) flows during pumping operation of the hydraulic pump (5).
EP16795020.3A 2015-11-13 2016-11-10 Electro-hydraulic drive unit Active EP3317088B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202015106161.7U DE202015106161U1 (en) 2015-11-13 2015-11-13 Electrohydraulic drive unit
DE102016119823.4A DE102016119823A1 (en) 2015-11-13 2016-10-18 Electrohydraulic drive unit
PCT/EP2016/077348 WO2017081202A1 (en) 2015-11-13 2016-11-10 Electro-hydraulic drive unit

Publications (2)

Publication Number Publication Date
EP3317088A1 EP3317088A1 (en) 2018-05-09
EP3317088B1 true EP3317088B1 (en) 2019-08-14

Family

ID=54866550

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16795020.3A Active EP3317088B1 (en) 2015-11-13 2016-11-10 Electro-hydraulic drive unit

Country Status (5)

Country Link
EP (1) EP3317088B1 (en)
CN (1) CN108136707B (en)
DE (2) DE202015106161U1 (en)
ES (1) ES2755813T3 (en)
WO (1) WO2017081202A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114635B4 (en) 2016-08-08 2018-09-20 Hoerbiger Automatisierungstechnik Holding Gmbh processing machine
DE102016118853B3 (en) 2016-10-05 2017-10-26 Hoerbiger Automatisierungstechnik Holding Gmbh Electrohydraulic drive unit
DE102016118854A1 (en) 2016-10-05 2018-04-05 Hoerbiger Automatisierungstechnik Holding Gmbh Electrohydraulic drive unit
CN108435854A (en) * 2018-03-27 2018-08-24 芜湖卓越空调零部件有限公司 A kind of air conditioning liquid reservoir compressor connecting bracket molding curved surface hydraulic device
DE102018126114A1 (en) * 2018-10-19 2020-04-23 Robert Bosch Gmbh Hydraulic unit
DE102018218113A1 (en) 2018-10-23 2020-04-23 Robert Bosch Gmbh Hydraulic control arrangement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0103727A1 (en) 1982-09-02 1984-03-28 Inventio Ag Synchronization control apparatus for the electro-hydraulic drive of a press brake
DE3734329A1 (en) * 1987-10-10 1989-04-20 Bosch Gmbh Robert HYDRAULIC CONTROL DEVICE FOR A PRESS
JP3782710B2 (en) * 2001-11-02 2006-06-07 日邦興産株式会社 Hydraulic press device
AT8633U1 (en) 2005-09-19 2006-10-15 Hoerbiger Automatisierungstech HYDRAULIC DRIVE UNIT
AT505724B1 (en) 2007-09-12 2010-06-15 Trumpf Maschinen Austria Gmbh DRIVE DEVICE FOR A BEND PRESS
DE102009058408A1 (en) 2009-07-09 2011-01-13 Robert Bosch Gmbh Electrohydraulic control
TR200906352A2 (en) 2009-08-18 2010-12-21 Demi̇rer Teknoloji̇k Si̇stemler Sanayi̇ Ti̇caret Li̇mi̇ted Şi̇rketi̇ Energy saving structure in hydraulic press brakes.
DE102012015118B3 (en) * 2012-04-17 2013-10-10 Hoerbiger Automatisierungstechnik Holding Gmbh machine press
DE102012013098B4 (en) 2012-06-30 2014-08-07 Hoerbiger Automatisierungstechnik Holding Gmbh machine press
DE102013000725B4 (en) 2013-01-17 2024-02-08 Robert Bosch Gmbh Electro-hydraulic control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3317088A1 (en) 2018-05-09
DE102016119823A1 (en) 2017-05-18
WO2017081202A1 (en) 2017-05-18
DE202015106161U1 (en) 2015-11-27
CN108136707A (en) 2018-06-08
ES2755813T3 (en) 2020-04-23
CN108136707B (en) 2020-05-29

Similar Documents

Publication Publication Date Title
EP3317088B1 (en) Electro-hydraulic drive unit
EP2039582B1 (en) Active hydraulic damper and hydraulic actuator
EP3233544B1 (en) Motor vehicle chassis
EP2838719B1 (en) Machine press
EP2498982B1 (en) Machine press
EP2676036B1 (en) Pressure-accumulator-free hydraulic drive arrangement for and comprising a consumer, in particular for presses, and method for operating a pressure-accumulator-free hydraulic drive arrangement of said type
AT516316B1 (en) Method for controlling a hydraulically driven machine
EP3077674B1 (en) Hydraulic arrangement
WO2001057405A1 (en) Method and device for controlling a lift cylinder, especially of working machines
EP2846942B1 (en) Hydraulic extrusion press and method for operating a hydraulic extrusion press
EP3356683B1 (en) Electrohydraulic actuator unit
EP3781819B1 (en) Control device
DE3539220A1 (en) CONTROL DEVICE FOR A HYDROSTATIC GEARBOX
EP0284831B1 (en) Hydraulic control device for groups of consumers
WO2009015502A1 (en) Control device for at least two hydraulic drives
WO2018108615A1 (en) Hydraulic drive with fast stroke and load stroke
EP3837446B1 (en) Electrohydrostatic actuator system with an expansion reservoir
WO2017186712A1 (en) Hydraulic spindle for a press
EP2333351B1 (en) Electro-hydraulic lifting module
DE102017107994B4 (en) Motor vehicle chassis
EP3523120B1 (en) Electro-hydraulic drive unit
WO2008083772A1 (en) Controlling device for hydraulic consumers
EP0559651B1 (en) Hydraulically driven machine with two drive cylinders
DE102021006222B3 (en) Press device and 2/2-way proportional poppet valve
EP3762616B1 (en) Valve

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 11/02 20060101ALI20190220BHEP

Ipc: F15B 15/18 20060101ALI20190220BHEP

Ipc: F15B 1/26 20060101ALI20190220BHEP

Ipc: B30B 15/20 20060101ALI20190220BHEP

Ipc: B30B 15/16 20060101AFI20190220BHEP

INTG Intention to grant announced

Effective date: 20190305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAWE ALTENSTADT HOLDING GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1166531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006134

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2755813

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006134

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1166531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211110

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231030

Year of fee payment: 8

Ref country code: IT

Payment date: 20231130

Year of fee payment: 8

Ref country code: DE

Payment date: 20231128

Year of fee payment: 8