EP3316047A1 - Montre mécanique avec résonateur rotatif isochrone, insensible aux positions - Google Patents

Montre mécanique avec résonateur rotatif isochrone, insensible aux positions Download PDF

Info

Publication number
EP3316047A1
EP3316047A1 EP17194636.1A EP17194636A EP3316047A1 EP 3316047 A1 EP3316047 A1 EP 3316047A1 EP 17194636 A EP17194636 A EP 17194636A EP 3316047 A1 EP3316047 A1 EP 3316047A1
Authority
EP
European Patent Office
Prior art keywords
rotation
axis
resonator mechanism
mass
inertial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17194636.1A
Other languages
German (de)
English (en)
Other versions
EP3316047B1 (fr
Inventor
Pascal Winkler
Jean-Luc Helfer
Gianni Di Domenico
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
ETA SA Manufacture Horlogere Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA SA Manufacture Horlogere Suisse filed Critical ETA SA Manufacture Horlogere Suisse
Publication of EP3316047A1 publication Critical patent/EP3316047A1/fr
Application granted granted Critical
Publication of EP3316047B1 publication Critical patent/EP3316047B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/02Escapements permanently in contact with the regulating mechanism
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/30Rotating governors, e.g. centrifugal governors, fan governors
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B21/00Indicating the time by acoustic means
    • G04B21/02Regular striking mechanisms giving the full hour, half hour or quarter hour
    • G04B21/06Details of striking mechanisms, e.g. hammer, fan governor
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B5/00Automatic winding up
    • G04B5/02Automatic winding up by self-winding caused by the movement of the watch
    • G04B5/04Automatic winding up by self-winding caused by the movement of the watch by oscillating weights the movement of which is limited

Definitions

  • the invention relates to a resonator mechanism for a clockwork movement, comprising an input movable pivotally mounted about an axis of rotation and subjected to a driving torque, and comprising a central mobile, integral in rotation with said input mobile around said axis of rotation and arranged to rotate continuously, said resonator mechanism comprising a plurality of N inertial elements, each movable in at least one degree of freedom with respect to said central mobile, and biased towards said axis of rotation by biasing means elastic, which are arranged to cause a return force on the center of mass of said inertial element, said resonator mechanism having a symmetry of rotation of order N.
  • the invention also relates to a watch movement comprising at least one such resonator mechanism.
  • the invention also relates to a timepiece, including a watch, including such a watch movement.
  • the invention relates to the field of clock resonator mechanisms constituting time bases.
  • the sprung balance is the time base of the watch. It is also called resonator.
  • the exhaust must be robust, withstand shocks, and avoid trapping the movement (overturning).
  • the Swiss lever escapement mechanism has a low fuel efficiency (about 30%). This low efficiency comes from the fact that the movements of the exhaust are jerky, that there are falls or path lost to accommodate the machining errors, and also because several components are transmitted their movement via inclined planes that rub against each other.
  • an inertial element To constitute a mechanical resonator, an inertial element, a guide and an elastic return element are required.
  • a spiral spring acts as an elastic return element for the inertial element that constitutes a pendulum.
  • This rocker is guided in rotation by pivots which turn in smooth bearings in rubies. This gives rise to friction, and therefore to energy losses and disturbances, which depend on the positions, and which one seeks to suppress.
  • the losses are characterized by the quality factor Q. We seek to maximize this Q factor.
  • BREGUET Watches describes a mechanism for regulating the pivoting speed, around a first pivot axis, of a moving part, in particular a ringing device, comprising a pivoting flyweight around a second pivot axis parallel to the first axis.
  • the regulator comprises means for returning the weight to the first axis.
  • the weight engages in a second volume of revolution around the first axis, contiguous and external to the first volume of revolution, and a peripheral portion of the counterweight cooperates in this second revolution volume with control means arranged to cause the braking of the mobile and reduce its slew rate to the set speed, and to dissipate excess energy.
  • control means arranged to cause the braking of the mobile and reduce its slew rate to the set speed, and to dissipate excess energy.
  • the mobile is subjected to a braking torque by eddy currents.
  • Requirement EP14184155 in the name of ETA Manufacture Horlogère Suisse describes a watchmaking mechanism comprising, mounted mobile, at least pivotally relative to a plate, an escape wheel arranged to receive a motor torque via a train, and a first oscillator comprising a first rigid structure connected to the plate by first elastic return means.
  • This regulator mechanism comprises a second oscillator comprising a second rigid structure connected to the first rigid structure by second elastic return means, and which comprises guide means arranged to cooperate with complementary guide means that comprises the escape wheel, synchronizing the first oscillator and the second oscillator with the wheel.
  • This clock oscillator comprises coupling means for the interaction of the primary resonators, comprising motor means for driving a mobile in motion which comprises driving and guiding means arranged to drive and guide an articulated control means with means for transmission each articulated, remote control means, with a mass of a primary resonator, and the primary resonators and the mobile are arranged such that the axes of the joints of any two of the primary resonators and the axis of articulation of the control means are never coplanar.
  • the Swatch Group Research & Development Ltd describes a watch ensemble with a combined resonator with improved isochronism, at least two degrees of freedom, which comprises a first linear or rotary oscillator with reduced amplitude in a first direction, with respect to which oscillates a second linear oscillator or reduced amplitude oscillator in a second direction substantially orthogonal to the first direction, the second oscillator having a second mass carrying a slider.
  • This watch assembly comprises a mobile arranged for the application of a torque to the resonator, this mobile having a groove in which the slider slides with minimal clearance.
  • This slide is arranged for at least, or follow the curvature of the groove when it has one, or friction rub in the groove, or push the inner side surfaces that the groove comprises by magnetized or electrified surfaces that includes the slide.
  • the document FR630831A in the name of Schieferstein describes a method and a device for the transmission of power between mechanical systems or for the control of mechanical systems, where two oscillating motions of flexible mechanisms, forming a suitable angle between them, act on each other in such a way that oscillation takes place following a closed curve, and which, for the purpose of force transmission or control, is loosely coupled in accordance with a rotary motion.
  • the associated return means are attached to the plate.
  • the connecting elements between the masses are elastic, and therefore do not constitute kinematic linkage means.
  • the document EP3095011A2 and the document WO2015 / 104962 on behalf of EPFL on behalf of EPFL describe a mechanical isotropic harmonic oscillator, comprising at least one bond with two degrees of freedom, supporting a mass in orbit relative to a fixed base with springs having isotropic return properties and linear. More particularly, a plane spring stage forms a link with two degrees of freedom causing a purely translational movement of the mass in orbit, so that the mass moves along its orbit while maintaining a fixed orientation. In a variant, each spring stage comprises at least two parallel springs. Again, the springs or other associated return means are attached to the plate.
  • the invention proposes a rotary resonator mechanism according to claim 1.
  • a rotary resonator mechanism according to the invention is particularly designed to include guides, in which friction of guiding does not dissipate energy in steady state, thus improving the quality factor.
  • the invention also relates to a watch movement comprising at least one such resonator mechanism.
  • the invention also relates to a timepiece, including a watch, including such a watch movement.
  • the invention relates to a resonator mechanism 100, provided for a watch movement 200 intended primarily to be integrated in a watch 300.
  • the resonator mechanism 100 according to the invention is designed to be isochronous, insensitive to positions in the field gravity, and, otherwise insensitive to shocks and disturbances, at least arranged to resume very quickly its normal operation.
  • This resonator mechanism 100 is a rotary resonator. It has the particularity to be devoid of usual exhaust mechanism, and to operate continuously. The absence of saccades can significantly improve the energy efficiency, compared with a conventional resonator-type sprung balance coupled with an escapement anchor.
  • This resonator mechanism 100 comprises an input mobile 1, pivotally mounted about an axis of rotation D.
  • This input mobile 1 is subjected to a motor torque.
  • the figure 1 illustrates a conventional configuration of a watch movement 200 which comprises energy storage and storage means 210, here including in a non-limiting manner a cylinder 211, arranged to drive conventionally a gear train 220, in particular a gear train, finishing, the most downstream element drives the input mobile 1, thus subjected to the torque of the finishing train.
  • the resonator mechanism 100 comprises a common structure, which is deformable or articulated, and which is integral in rotation with the input mobile 1 about the axis of rotation D.
  • This common structure carries, or comprises, a plurality of inertial elements 2. And this common structure rotates continuously. There is no movement back and forth: once subjected to a motor torque, the common structure rotates in a single direction of rotation. This does not prevent the structure can be reversible, and able to turn in the other direction if it is subjected to a pair of opposite direction.
  • Each inertial element 2 is guided, according to at least one degree of freedom with respect to the common structure.
  • Each inertial element 2 is biased towards the axis of rotation D by elastic return means 4, which are arranged to cause a return force on the center of mass of this inertial element 2.
  • these elastic return means 4 are embedded in the rotary resonator mechanism 100.
  • This return force is directed towards the axis of rotation D, and has an intensity proportional to the distance R G between the axis of rotation D and the center of mass of the inertial element 2 considered.
  • the same elastic return means 4 are common to several inertial elements 2, and may in particular consist of a tension spring joining pins disposed on the inertial masses, or the like.
  • such elastic return means 4 are arranged between, on the one hand, the common structure, and on the other hand an inertial mass 2, or an arm 31, 32, carrying a inertial mass 2.
  • the common structure is elastically deformable, and constitutes such elastic return means 4.
  • the resonator mechanism 100 has a rotation symmetry of order N, N being the number of the inertial masses 2. This is not the case of the prior art mentioned above.
  • each inertial element 2 is guided, directly or indirectly, by means of arms or secondary articulated systems, with respect to the common structure by at least one guiding means 5.
  • the figure 1 illustrates an example where the common structure comprises a central mobile 30, which carries at its two ends, pivot pins 51, 52, about axes D31 and D32, and which respectively bear arms 31, 32, which are themselves carriers of inertial elements 2: 21 and 22, which, according to the alternative embodiment, can be, or else mounted idle on these arms 31, 32, at axes D1, D2, passing through their center mass, or mounted fixed relative to these arms.
  • a central mobile 30 which carries at its two ends, pivot pins 51, 52, about axes D31 and D32, and which respectively bear arms 31, 32, which are themselves carriers of inertial elements 2: 21 and 22, which, according to the alternative embodiment, can be, or else mounted idle on these arms 31, 32, at axes D1, D2, passing through their center mass, or mounted fixed relative to these arms.
  • the elastic return means 4 are in rotation, and separated: 41 and 42, arranged between, on the one hand, the central mobile 30 of the common structure 3 at the level of an inner fastener 410, 420, and on the other hand the arm 31, 32, at an outer attachment 411, 421.
  • each inertial element 2 may comprise a degree of freedom in rotation, as in most of the present figures, or else a degree of freedom in translation as in the figure 12 .
  • the resonator mechanism 100 must control, at all times, three angles: that which the common structure 3 with a turntable of the watch movement, or the like, and those, ⁇ 1 and ⁇ 2, what do the centers of mass of the inertial elements 21 and 22 with respect to the common structure 3, with reference to the axes D31 and D32 of the respective guides 51 and 52.
  • N inertial elements it is a matter of piloting N1 + angles.
  • each inertial element tends to deviate from the axis of rotation D, to a radial position where the friction of the air print a resistive torque which balances, in a tangential direction, the effect of the torque applied to the input mobile 1, relative to the center of mass of the inertial element.
  • the centrifugal force which balances the radial component of the return force printed by the elastic return means 4.
  • the angular rotation speed is equal to the square root of the quotient of the stiffness of the elastic return means by the mass of the inertial element, whereas the instantaneous radius of the center of mass with respect to the axis of rotation D is equal at the square root of the quotient between the engine torque and the product of the angular velocity and the coefficient of friction between the ambient medium and the inertial element.
  • the centers of mass of the inertial elements tend to reach the axis of rotation D, when the drive means are at a standstill, this position corresponding to the exercise of a zero tensile force on the part of the elastic return means 4 It may be easier to make a resonator mechanism 100 where the inertial masses 2 approach the axis of rotation, especially if these inertial masses 2 are in the same plane, and come for example in contact with each other. other in a rest position, the elastic return means 4 being then assembled with a prestressing.
  • the disturbance due to the field of gravity tends, in certain positions of the watch 300, to differentiate the behavior of the inertial elements.
  • the figure 1 has a reference Z, in the plane of the sheet and directed towards the bottom of the sheet, which indicates the vertical of the place and the field of gravity, the inertial element 22 tends to deviate from the common structure 3, while the inertial element 21 tends to approach it. If the inertial elements 2 are completely free radially, they may be located on different radii with respect to the axis of rotation D.
  • the rotary resonator mechanism 100 advantageously comprises a kinematic connection, and more particularly a rigid kinematic connection, between at least two inertial elements 2, and preferably between all the inertial elements 2.
  • This connection forces the inertial elements 2 to find at the same distance of the axis of rotation D, permanently. That is to say, the inertial elements 2 have only one degree of freedom with respect to the common structure 3.
  • This kinematic connection is useful for small frequencies, 2 to 5 Hz in particular.
  • the rotational speed of the common structure 3 is high, in particular corresponding to a period greater than or equal to 20 Hz, for example of the order of 50 Hz, the effect of the gravitational field is negligible compared to the effects of inertia, and such a kinematic connection is not essential.
  • Such a very simple embodiment may be suitable for single-use applications, such as fireworks or the like.
  • the kinematic connection becomes necessary, however, as soon as one seeks to achieve good chronometric performance, especially for use in a watch.
  • kinematic links are illustrated on the figures 2 , 3 , 4 , 8 , 9, 10 , 12, 13 , 14, 15 and 16 , and will be exposed later. Most of them are articulated rigid kinematic links, some of them illustrating flexible kinematic links.
  • the resonator mechanism 100 comprises a symmetrical pantograph articulated structure around the axis of rotation D, comprising at least all the inertial elements 2, articulated directly, or articulated indirectly via arms which are designated, according to the variants, by the marks 31, 32, 131, 132, 121, 122, 123, 124, around the central mobile 30 and a secondary central mobile 130 which is arranged to pivot about the axis of rotation (D and which constitutes a cross structure with the central mobile unit 30.
  • Arm here means a component comprising two articulations.
  • pantograph a double articulated structure, about a central axis, the double diamond shape is more particularly illustrated in the figures; the half-pantograph is the part of the structure on one side of the central axis.
  • the pantograph has two half pantographs, comprising common elements, forming a cross structure.
  • this crossed structure formed by the central mobile 30 and the secondary central mobile 130 has its center of mass on the axis of rotation D.
  • the kinematic connection and the guides are made by combining, on the basis of the example of the figure 1 , a central mobile 30, a secondary central mobile 130 pivoting about the axis of rotation D at an axial pivot, the two arms 31 and 32 pivoted on the central mobile 30, two other secondary arms 131 and 132 rotated crazy , both on the secondary central mobile 130 about axes D131 and D132, at the level of non-detailed pivots, and on the inertial elements 21 and 22 at the axes D1 and D2, and the seven joints necessary for its operation, to form a pantograph having a rotation symmetry of order 2.
  • the secondary central mobile 130 rotates crazy around the axis of rotation D.
  • the elastic return means 41 and 42 are the same as on the figure 1 , since the linkage formed by the two arms 131 and 132 around the secondary central mobile 130 is passive, its only function being to maintain the centers of mass of the inertial elements 21 and 22 in symmetry with respect to the axis of rotation D.
  • the arms may be inertial elements.
  • the variant of the figure 3 very close to that of the figure 2 , illustrated in a folded position, combines the inertial element 21 and the secondary arm 131 to form an inertial element 121, and combines the inertial element 22 and the secondary arm 132 to form an inertial element 123, the arm 31 constituting an element inertial 122, and the arm 32 constituting an inertial element 124.
  • the variant of the figure 4 very compact, comprises four inertial elements which also constitute arms 31, 32, 131, 132, articulated in pantograph around the central mobile 30 and the secondary central mobile 130.
  • FIGs 5 and 6 are diagrams of the semi-pantograph, with in figure 6 the polar coordinates of the center of mass of a segment j.
  • the term "segment” is here referred to as the geometric definition of one side of the semi-pantograph diamond, and "arm” is used to designate the physical component incorporated in the mechanism.
  • each arm (31; 32; 131; 132; 121; 122; 123; 124) which is between two joints is located on a line joining the two joints on either side of the considered arm.
  • each member of the semi-pantograph has four segments of equal length L, together constituting a regular diamond.
  • the center of mass of the central mobile 30 and that of the secondary central mobile 130 are on the axis of rotation D of the resonator mechanism 100, and the centers of mass of each of the inertial arms are on a line defined by the two joints of the corresponding arm.
  • Such a pantograph type structure combined with adequate elastic return means, thus constitutes a mechanism which, theoretically, makes it possible to guarantee the constancy of the rotation period of the input mobile 1, and to ensure the insensitivity to changes of position in the gravity field.
  • a particular embodiment of the invention relates to a mechanism whose at least one of the guide elements and at least one of the elastic return means 4 are made jointly by a flexible guide. That is, the separate guiding and elasticity functions are provided by a single flexible guide. More particularly, with the exception of the guides at the level of the axis of rotation, all of the rotating guides and elastic return means is made by flexible guides.
  • At least one such flexible guide comprises at least two blades included in planes, and which define one with the other the virtual axis of rotation of a flexible rotary guide.
  • the figure 8 illustrates a structure similar to those of Figures 3 and 4 , devoid of pivot articulation, except at the axis of rotation D, and whose arms 31, 131, 32, 132 constituting the segments of the pantograph form the inertial elements.
  • the flexible guides each comprise two blades, arranged in parallel and distinct levels, and which, in projection on a parallel plane, intersect at the axes of articulation D31, D1, D131, D132, D2 , and D32.
  • FIG. 8A, 8B and 8C A simple realization is illustrated in Figures 8A, 8B and 8C , and consists of the superposition of a monobloc upper structure 101, which includes all the upper blades 103, and a monobloc lower structure 102, which includes all the lower blades 102.
  • These upper structure 101 and lower structure 102 may be very easily assembled to one another, by gluing, riveting, or other, and the radial positions of the different joints, and the symmetry of the inertial elements, relative to the axis of rotation D, are fully guaranteed.
  • these flexible guides rotating between two components are of the type crossed blades in projection, as explained above, whose opening angle ⁇ , read on the plane of projection between the axis of crossing C and the points of embedding of the blades on one of the components, has a value of 40 ° +/- 4 °, and the blades crossing at a proportion of length of 0.15 +/- 0.015.
  • This crossing can be performed both near the most mobile component, that is to say the race is the most important, the least mobile component, and it is in determined by the dimensioning of the components to ensure the required distance between the points of embedding of the blades.
  • the flexible guides are made of oxidized silicon to compensate for the thermal effects.
  • FIGS 9 to 16 illustrate several variants to guarantee the radial symmetry of movement of the centers of mass of the inertial elements, as the case on the basis of articulated rigid kinematic links, or of flexible kinematic links.
  • Figures 9 and 10 comprises, to establish the rigid kinematic connection between the inertial elements 2 (21 and 22) is carried out by means of a toothed wheel 60 mounted concentrically crazy to the axis of rotation D, and which cooperates permanently with two toothed sectors 61 and 62 are integral with the inertial elements 21 and 22. These are represented here hinged on the common structure 3 by such flexible guide blades crossed projection 41 and 42.
  • the central mobile 30 is fixed to the mobile entrance 1 by an elastic connection 80, and the secondary central mobile 130 pivots around the axis of rotation D, but this pivoting is limited by an elastic connection 80 connecting it to the mobile input 1.
  • the central mobile 30 and the secondary central mobile 130 are each subjected to a driving torque equivalent to half the equivalent exhaust torque in a conventional exhaust mechanism.
  • this elastic connection 80 is a flexible rotary guide, in particular comprising two resilient blades.
  • the figure 12 illustrates another variant, in which the kinematic connection comprises radial linear guide means 90, with a radial guide bar 91 sliding in bores 911 and 912 of the inertial elements 21 and 22.
  • the elastic return means 4 are constituted here by each time by a mainspring 41, 42.
  • the figure 13 illustrates another variant, in which the kinematic connection comprises curvilinear guide means 95, combining a curved groove 35 of the central mobile 30, and a pin 25 carried by the inertial element 21, 22, concerned.
  • the elastic return means 4 comprise, for the suspension and the return of each inertial element 21, 22, two elastic blades 45 and 46 substantially parallel to each other, so as to limit the movement of each inertial element 21, 22, in a single degree of freedom.
  • the figure 14 represents a structure similar to that of the figure 9 , comprising a gear 60 mounted concentrically concentrically to the axis of rotation D, and which cooperates continuously with two intermediate wheels 610 and 620, which themselves meshing with wheels or toothed sectors 61 and 62 integral with the inertial elements 21 and 22 and arms 31 and 32. These are shown here articulated on the common structure 3 by conventional tensile springs.
  • the figure 15 illustrates a variant where the kinematic connection is not rigid, but flexible, the common structure 30 being a flexible blade which carries the inertial elements 21 and 22, each carrying a carrier arm of a rack member 161, 162, which It cooperates with an axial impeller 60.
  • the inertial elements 21 and 22 can, however, move in two degrees of freedom.
  • the complete resonator mechanism 100 (guiding, inertial element, elastic return means, arm, mobile) is in one piece. It is possible to realize the multi-level DRIE machined silicon rotary resonator, for example. When this execution is inconvenient, especially when using crossed blades in different levels, it is advantageous, as in the case of figure 8A superimposing a monoblock top structure 101 and a monobloc lower structure 102, each simple to manufacture, and which can be easily assembled to one another by gluing, riveting, screwing or otherwise. More particularly, the monobloc upper structure 101 and the one-piece lower structure 102 are irreversibly joined to one another to create an integral, unbreakable component.
  • the rotation frequency of the rotary resonator mechanism 100 is greater than 20 Hz, and especially greater than 50 Hz. This relatively high frequency makes it possible to limit the sensitivity to positions in the gravitational field, in the case where there is no kinematic connection.
  • the invention designed for the counting of time, is also usable for other mechanisms, such as a ring regulator, or other.
  • the elastic return means of the invention are embedded in the rotary resonator, which simplifies its construction.
  • the kinematic linkage means of the invention reduce the number of degrees of freedom of the system by completely linking the displacement of the masses, whereas in the prior art, the link is flexible and can not reduce the number of degrees of freedom.
  • the invention also relates to a watch movement 200 comprising a platen carrying energy storage and storage means 210, in particular at least one barrel 211, arranged to conventionally drive a gear train 220, in particular a work train , whose most downstream element is arranged to drive the mobile input 1 of such a rotary resonator mechanism 100, that includes this movement 200.
  • the invention also relates to a timepiece, in particular a watch 300, comprising at least one watch movement 200, and / or such a rotary resonator mechanism 100.
  • the invention allows a gain of a factor 10 on the performance of the movement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Transmission Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Electromechanical Clocks (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Mécanisme résonateur (100) d'horlogerie, comportant un mobile central (30), solidaire en rotation autour d'un axe (D) d'un mobile d'entrée (1 ) soumis à un couple moteur, agencé pour tourner en continu, et comportant, une pluralité de N éléments inertiels (2), chacun mobile selon un degré de liberté par rapport au mobile central (30) et rappelé vers l'axe (D) par des moyens de rappel élastique (4), ledit mécanisme (100) présentant une symétrie de rotation d'ordre N, où ce mécanisme (100) comporte des moyens de liaison cinématique entre tous les éléments inertiels (2), agencés pour maintenir, à tout instant, tous les centres de masse des éléments inertiels (2) à la même distance, R, de l'axe (D), et où les moyens de rappel élastique (4) provoquent un potentiel élastique tel que :Vtot = É o 2. £j (M j . R 2),- Vtot étant le potentiel élastique,- £j étant la somme sur les j de la quantité entre parenthèses,- É o étant la vitesse de rotation qu'on veut imposer, - R j = R étant la position du centre de masse G j de l'élément inertiel j de masse M j.

Description

    Domaine de l'invention
  • L'invention concerne un mécanisme résonateur pour mouvement d'horlogerie, comportant un mobile d'entrée monté pivotant autour d'un axe de rotation et soumis à un couple moteur, et comportant un mobile central, solidaire en rotation avec ledit mobile d'entrée autour dudit axe de rotation et agencé pour tourner en continu, ledit mécanisme résonateur comportant une pluralité de N éléments inertiels, chacun mobile selon au moins un degré de liberté par rapport audit mobile central, et rappelé vers ledit axe de rotation par des moyens de rappel élastique, qui sont agencés pour provoquer un effort de rappel sur le centre de masse dudit élément inertiel, ledit mécanisme résonateur présentant une symétrie de rotation d'ordre N.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel mécanisme résonateur.
  • L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel mouvement d'horlogerie.
  • L'invention concerne le domaine des mécanismes résonateurs d'horlogerie, constituant des bases de temps.
  • Arrière-plan de l'invention
  • La plupart des montres mécaniques actuelles sont munie d'un balancier-spiral et d'un mécanisme d'échappement à ancre suisse. Le balancier-spiral constitue la base de temps de la montre. On l'appelle aussi résonateur.
  • L'échappement, quant à lui, remplit deux fonctions principales:
    • entretenir les va-et-vient du résonateur ;
    • compter ces va-et-vient.
  • En plus de ces deux fonctions principales, l'échappement doit être robuste, résister aux chocs, et éviter de coincer le mouvement (renversement).
  • Le mécanisme d'échappement à ancre suisse a un rendement énergétique faible (environ 30%). Ce faible rendement provient du fait que les mouvements de l'échappement sont saccadés, qu'il y a des chutes ou chemin perdus pour s'accommoder des erreurs d'usinage, et, aussi du fait que plusieurs composants se transmettent leur mouvement via des plans inclinés qui frottent les uns par rapport aux autres.
  • Pour constituer un résonateur mécanique, il faut un élément inertiel, un guidage et un élément de rappel élastique. Traditionnellement, un ressort spiral joue le rôle d'élément de rappel élastique pour l'élément inertiel que constitue un balancier. Ce balancier est guidé en rotation par des pivots qui tournent dans des paliers lisses en rubis. Cela donne lieu à des frottements, et donc à des pertes d'énergie et des perturbations de marche, qui dépendent des positions, et que l'on cherche à supprimer. Les pertes sont caractérisées par le facteur de qualité Q. On cherche à maximiser ce facteur Q.
  • La demande EP2847547 au nom de Montres BREGUET décrit un mécanisme de régulation de la vitesse de pivotement, autour d'un premier axe de pivotement, d'un mobile, notamment de sonnerie, comportant une masselotte pivotante autour d'un deuxième axe de pivotement parallèle au premier. Le régulateur comporte des moyens de rappel de la masselotte vers le premier axe. Quand le mobile pivote à une vitesse inférieure à une vitesse de consigne, la masselotte reste confinée dans un premier volume de révolution autour du premier axe. Quand ce mobile pivote à une vitesse supérieure à la vitesse de consigne, la masselotte s'engage dans un second volume de révolution autour du premier axe, contigu et extérieur au premier volume de révolution, et une portion périphérique de la masselotte coopère dans ce second volume de révolution avec des moyens de régulation agencés pour provoquer le freinage du mobile et ramener sa vitesse de pivotement à la vitesse de consigne , et pour dissiper l'énergie excédentaire. En particulier le mobile est soumis à un couple de freinage par courants de Foucault.
  • La demande EP14184155 au nom de ETA Manufacture Horlogère Suisse décrit un mécanisme régulateur d'horlogerie comportant, montés mobiles, au moins en pivotement par rapport à une platine, une roue d'échappement agencée pour recevoir un couple moteur via un rouage, et un premier oscillateur comportant une première structure rigide reliée à la platine par des premiers moyens de rappel élastique. Ce mécanisme régulateur comporte un deuxième oscillateur comportant une deuxième structure rigide reliée à la première structure rigide par des deuxièmes moyens de rappel élastique, et qui comporte des moyens de guidage agencés pour coopérer avec des moyens de guidage complémentaire que comporte la roue d'échappement, synchronisant le premier oscillateur et le deuxième oscillateur avec le rouage.
  • La demande EP15153657 au nom de ETA Manufacture Horlogère Suisse décrit un oscillateur horloger comportant une structure et des résonateurs primaires distincts, déphasés temporellement et géométriquement, comportant chacun une masse rappelée vers la structure par un moyen de rappel élastique. Cet oscillateur horloger comporte des moyens de couplage pour l'interaction des résonateurs primaires, comportant des moyens moteurs pour entraîner en mouvement un mobile lequel comporte des moyens d'entraînement et de guidage agencés pour entraîner et guider un moyen de commande articulé avec des moyens de transmission chacun articulé, à distance du moyen de commande, avec une masse d'un résonateur primaire, et les résonateurs primaires et le mobile sont agencés de telle façon que les axes des articulations de deux quelconques des résonateurs primaires et l'axe d'articulation du moyen de commande ne sont jamais coplanaires.
  • La demande internationale PCT/EP2015/065434 au nom de The Swatch Group Research & Development Ltd décrit un ensemble horloger comportant un résonateur combiné à isochronisme amélioré, à au moins deux degrés de liberté, lequel comporte un premier oscillateur linéaire ou rotatif à amplitude réduite selon une première direction, par rapport auquel oscille un deuxième oscillateur linéaire ou rotatif à amplitude réduite selon une deuxième direction sensiblement orthogonale à la première direction, ce deuxième oscillateur comportant une deuxième masse porteuse d'un coulisseau. Cet ensemble horloger comporte un mobile agencé pour l'application d'un couple au résonateur, ce mobile comportant une rainure dans laquelle le coulisseau coulisse à jeu minimal. Ce coulisseau est agencé pour au moins, ou bien suivre la courbure de la rainure quand elle en comporte une, ou bien frotter à friction dans la rainure, ou bien repousser les surfaces latérales intérieures que comporte la rainure par des surfaces magnétisées ou électrisées que comporte le coulisseau.
  • Le document FR630831A au nom de Schieferstein décrit un procédé et un dispositif pour la transmission de puissance entre des systèmes mécaniques ou pour la commande de systèmes mécaniques, où deux mouvements oscillants de mécanismes souples, formant un angle convenable entre eux, agissent l'un sur l'autre de manière qu'il se produit une oscillation qui a lieu suivant une courbe fermée, et qui, dans le but de la transmission de force ou de la commande, est accouplée de manière lâche conforme avec un mouvement rotatif. Les moyens de rappel associés sont attachés à la platine. Les éléments de jonction entre les masses sont élastiques, et par conséquent, ne constituent pas des moyens de liaisons cinématiques.
  • Le document EP3095011A2 et le document WO2015/104962 au nom de l'EPFL au nom de l'EPFL décrivent un oscillateur harmonique isotrope mécanique, comprenant au moins une liaison à deux degrés de liberté, supportant une masse en orbite par rapport à une base fixe avec des ressorts ayant des propriétés de rappel isotropes et linéaires. Plus particulièrement un étage de ressort plan forme une liaison à deux degrés de liberté entraînant un mouvement purement translationnel de la masse en orbite, de sorte que la masse se déplace le long de son orbite tout en maintenant une orientation fixe. Dans une variante chaque étage de ressort comprend au moins deux ressorts parallèles Là encore, les ressorts ou autres moyens de rappel associés sont attachés à la platine.
  • Quand une masse, guidée en rotation autour d'un axe fixe, et reliée à cet axe par un ressort de rappel radial linéaire, est entraînée dans sa rotation par une roue à rainure, si on fixe sur la masse une goupille travaillant dans cette rainure, si cette masse est ponctuelle, ses trajectoires sont des ellipses ou des cercles, et sont toutes isochrones. Si la masse a une inertie de rotation, alors seules les trajectoires circulaires sont isochrones. Des conditions particulières, assez délicates à mettre au point, peuvent permettre de stabiliser les trajectoires sur des cercles, le résonateur restant alors isochrone en fonction du couple d'entraînement de la roue.
  • Résumé de l'invention
  • La présente invention se propose d'atteindre deux objectifs, à savoir :
    • supprimer les perturbations dues aux frottements des pivots du résonateur pour augmenter son facteur de qualité ;
    • supprimer les saccades de l'échappement afin d'augmenter le rendement du mécanisme, et notamment le rendement de la fonction d'entretien et de comptage, habituellement dévolue à un mécanisme d'échappement.
  • Pour atteindre ces objectifs, l'invention propose un mécanisme résonateur rotatif selon la revendication 1.
  • Historiquement, les horlogers n'ont pas considéré les résonateurs rotatifs comme base de temps pour les montres car ils ne sont généralement pas isochrones, et ils sont sensibles à la gravité.
  • Aussi un mécanisme résonateur rotatif selon l'invention est en particulier conçu de façon à comporter des guidages, dans lesquels des frottements de guidage ne dissipent pas d'énergie en régime stationnaire, améliorant ainsi le facteur de qualité.
  • Et, dans ce mécanisme résonateur rotatif particulier, l'entretien de la rotation est effectué par un couple appliqué directement sur un arbre du résonateur, évitant ainsi les pertes dynamiques d'un échappement à ancre classique.
  • Pour obtenir un mécanisme résonateur rotatif utilisable comme base de temps pour un instrument horaire, l'invention s'attache à respecter les conditions principales :
    • condition d'isochronisme : le mécanisme résonateur rotatif comporte une pluralité d'éléments inertiels mobiles, chacun rappelé vers un axe de rotation principal par des moyens de rappel élastique, dont l'effort élastique de rappel provoque sur le centre de masse de cet élément inertiel une force centrale d'intensité proportionnelle à la distance entre l'axe de rotation et ce centre de masse ;
    • condition d'insensibilité aux positions : l'utilisation d'une pluralité d'éléments inertiels mobiles, chacun guidé de façon à pouvoir s'éloigner de l'axe de rotation, en combinaison avec :
      • ∘ ou bien une fréquence élevée, c'est-à-dire supérieure à 20 Hz, dans le cas d'une application à une montre ;
      • ∘ ou bien un mécanisme de liaison agencé pour forcer le centre de masse global (de l'ensemble de ces éléments inertiels) à rester sur l'axe de rotation quelle que soit l'amplitude, c'est-à-dire un lien cinématique qui force les centres de masse des différents éléments inertiels à être sur un même rayon, par rapport à l'axe de rotation, à chaque instant ;
    • condition d'insensibilité aux chocs et perturbations : frottement radial permettant de ramener les centres de masse des éléments inertiels sur une trajectoire circulaire suite à une perturbation de trajectoire. Ce frottement radial peut être réalisé par frottement de l'air, frottement d'un pivot, d'une glissière, ou similaire.
  • L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel mécanisme résonateur.
  • L'invention concerne encore une pièce d'horlogerie, notamment une montre, comportant un tel mouvement d'horlogerie.
  • Description sommaire des dessins
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
    • la figure 1 représente, de façon schématisée et en vue en plan, un mouvement mécanique d'horlogerie, comportant un barillet entraînant un rouage de finissage, qui entraîne un mobile d'entrée d'un mécanisme régulateur rotatif continu selon l'invention, dans une variante articulée comportant deux éléments inertiels portés par des bras montés pivotants par rapport à une structure commune tournant autour de l'axe de rotation du mobile d'entrée, chaque bras étant rappelé vers cet axe par des moyens de rappel élastique particuliers;
    • la figure 2 représente, de façon similaire à la figure 1, un mécanisme dérivé de celui de la figure 1, comportant des moyens pour maintenir à tout instant les centres de masse des éléments inertiels à la même distance de l'axe de rotation de façon à rendre le mécanisme régulateur rotatif continu insensible aux effets du champ de gravité, ces moyens comportant ici un pantographe articulé ;
    • la figure 3 est une variante du mécanisme de la figure 2, où les éléments inertiels sont combinés avec des bras adjacents du pantographe ;
    • la figure 4 est une variante du mécanisme de la figure 3, où les bras sont tous remplacés par des éléments inertiels articulés sur un mobile central entraîné par le rouage, et un mobile central secondaire constituant ensemble une croix au coeur du pantographe ;
    • la figure 5 est un schéma d'un losange formant demi-pantographe à côtés de dimensions quelconques, et la figure 6 est un schéma du même demi-pantographe montrant les coordonnées polaires du centre de masse d'un segment j ;
    • la figure 7, similaire à la figure 6, concerne le cas particulier d'un demi-pantographe en losange isocèle régulier, où tous les bras entre articulations sont de longueur égale ;
    • la figure 8 représente, de façon schématisée et en perspective, une autre variante, avec une structure voisine de celles des figures 3 et 4, dépourvue d'articulation à pivot, sauf au niveau de l'axe de rotation, et dont les bras constituant les segments du pantographe forment les éléments inertiels, et où les liaisons entre ces bras comportent des guidages flexibles à lames croisées en projection ;
    • la figure 8A représente, de façon similaire à la figure 8, une variante avantageuse de réalisation comportant, en superposition, une structure supérieure monobloc, qui comporte toutes les lames supérieures, et une structure inférieure monobloc, qui comporte toutes les lames inférieures ; les figures 8B et 8C sont des vues de côté du mobile central et du mobile central secondaire de ce pantographe ;
    • les figures 9 et 10 représentent, de façon schématisée, respectivement en plan et en perspective, une variante de liaison cinématique rigide entre deux éléments inertiels, comportant une roue dentée axiale folle, qui coopère en permanence avec deux secteurs dentés solidaires des éléments inertiels, lesquels sont articulés sur la structure commune par des guidages flexibles à lames croisées en projection ;
    • la figure 11 représente, de façon schématisée et en vue en plan, une variante de pantographe, dont le mobile central est fixé au mobile d'entrée par une liaison élastique, et le mobile central secondaire est fixé au mobile d'entrée par une autre liaison élastique ;
    • la figure 12 représente, de façon schématisée et en vue en plan, une autre variante de liaison cinématique en guidage linéaire radial, avec une barre de guidage radiale coulissant dans des alésages des éléments inertiels, les moyens de rappel élastique des éléments inertiels étant constitués par des ressorts en vé ;
    • la figure 13 représente, de façon schématisée et en vue en plan, une autre variante encore, dans laquelle la liaison cinématique comporte des moyens de guidage curviligne, combinant une rainure courbe du mobile central, et un pion porté par l'élément inertiel concerné, et où les moyens de rappel élastique comportent deux lames élastiques parallèles l'une à l'autre, pour limiter le mouvement de chaque élément inertiel selon un seul degré de liberté ;
    • la figure 14 représente, de façon schématisée et en vue en plan, une structure voisine de celle de la figure 9, comportant une roue dentée axial folle coopérant avec deux roues intermédiaires qui elles-mêmes engrènent avec des roues solidaires des éléments inertiels et des bras, lesquels sont articulés sur la structure commune par des ressorts de traction classiques ;
    • la figure 15 représente, de façon schématisée et en vue en plan, une variante où la liaison cinématique est flexible, la structure commune étant une lame flexible qui porte les éléments inertiels, qui portent chacun un bras porteur d'un élément de crémaillère coopérant avec une roue folle axiale ;
    • la figure 16 représente, de façon schématisée et en vue en plan, une variante de la figure 15, comportant des moyens de rappel élastique comportant, pour chaque élément inertiel, deux lames élastiques parallèles, pour limiter le mouvement de chaque élément inertiel selon un seul degré de liberté ;
    • la figure 17 est un schéma-blocs représentant une montre comportant un mouvement qui comporte lui-même un mécanisme régulateur rotatif continu selon l'invention.
    Description détaillée des modes de réalisation préférés
  • L'invention concerne un mécanisme résonateur 100, prévu pour un mouvement d'horlogerie 200 destiné principalement à être intégré dans une montre 300. En effet, le mécanisme résonateur 100 selon l'invention est étudié pour être isochrone, insensible aux positions dans le champ de gravité, et, sinon insensible aux chocs et perturbations, du moins agencé pour reprendre très vite sa marche normale.
  • Ce mécanisme résonateur 100 est un résonateur rotatif. Il présente la particularité d'être dépourvu de mécanisme d'échappement usuel, et de fonctionner en continu. L'absence de saccades permet d'améliorer considérablement le rendement énergétique, en comparaison avec un résonateur classique, de type balancier-spiral couplé avec un échappement à ancre.
  • Ce mécanisme résonateur 100 comporte un mobile d'entrée 1, monté pivotant autour d'un axe de rotation D. Ce mobile d'entrée 1 est soumis à un couple moteur. La figure 1 illustre une configuration classique d'un mouvement d'horlogerie 200 qui comporte des moyens d'accumulation et de stockage d'énergie 210, ici comportant de façon non limitative un barillet 211, agencés pour entraîner classiquement un rouage 220, en particulier un rouage de finissage, dont l'élément le plus en aval entraîne le mobile d'entrée 1, ainsi soumis au couple du rouage de finissage.
  • Selon l'invention, le mécanisme résonateur 100 comporte une structure commune, qui est déformable ou articulée, et qui est solidaire en rotation avec le mobile d'entrée 1 autour de l'axe de rotation D. Cette structure commune porte, ou comporte, une pluralité d'éléments inertiels 2. Et cette structure commune tourne en continu. Il n'y a pas de mouvement de va-et-vient : une fois soumis à un couple moteur, la structure commune tourne dans un sens unique de rotation. Ceci n'empêche pas que la structure puisse être réversible, et apte à tourner dans l'autre sens si elle est soumise à un couple de sens opposé.
  • Chaque élément inertiel 2 est guidé, selon au moins un degré de liberté par rapport à la structure commune.
  • Chaque élément inertiel 2 est rappelé vers l'axe de rotation D par des moyens de rappel élastique 4, qui sont agencés pour provoquer un effort de rappel sur le centre de masse de cet élément inertiel 2.
  • Selon l'invention, ces moyens de rappel élastique 4 sont embarqués dans le mécanisme résonateur rotatif 100.
  • Cet effort de rappel est dirigé vers l'axe de rotation D, et présente une intensité proportionnelle à la distance RG entre l'axe de rotation D et le centre de masse de l'élément inertiel 2 considéré.
  • Dans une variante particulière, des mêmes moyens de rappel élastique 4 sont communs à plusieurs éléments inertiels 2, et peuvent notamment consister en un ressort de traction joignant des tourillons disposés sur les masses inertielles, ou similaire.
  • Dans une autre variante, illustrée notamment par les figures 1, 2, 12, 13, 14, où le mécanisme résonateur 100 est articulé, de tels moyens de rappel élastiques 4 sont agencés entre, d'une part la structure commune, et d'autre part une masse inertielle 2, ou bien un bras 31, 32, porteur d'une masse inertielle 2.
  • Dans une autre variante encore, tel que visible à la figure 15, la structure commune est déformable élastiquement, et constitue de tels moyens de rappel élastiques 4.
  • Le mécanisme résonateur 100 présente une symétrie de rotation d'ordre N, N étant le nombre des masses inertielles 2. Ce qui n'est pas le cas de l'art antérieur cité plus haut.
  • Dans une variante où le mécanisme résonateur 100 est articulé, chaque élément inertiel 2 est guidé, directement ou indirectement par l'intermédiaire de bras ou de systèmes articulés secondaires, par rapport à la structure commune par au moins un moyen de guidage 5.
  • La figure 1 illustre ainsi un exemple où la structure commune comporte un mobile central 30, lequel porte à ses deux extrémités, des pivots d'articulation 51, 52, autour d'axes D31 et D32, et qui portent respectivement des bras 31, 32, lesquels sont eux-mêmes porteurs d'éléments inertiels 2 : 21 et 22, qui, selon la variante d'exécution, peuvent être, ou bien montés fous sur ces bras 31, 32, au niveau d'axes D1, D2, passant par leur centre de masse, ou bien montés fixes par rapport à ces bras.
  • Dans cette variante de la figure 1, les moyens de rappel élastiques 4 sont en rotation, et séparés: 41 et 42, agencés entre, d'une part le mobile central 30 de la structure commune 3 au niveau d'une attache intérieure 410, 420, et d'autre part le bras 31, 32, au niveau d'une attache extérieure 411, 421.
  • On comprend, que chaque élément inertiel 2 peut comporter un degré de liberté en rotation, comme sur la plupart des présentes figures, ou bien encore un degré de liberté en translation comme sur la figure 12.
  • Dans la variante où chaque élément inertiel 2 comporte un degré de liberté en rotation, plus particulièrement, les moyens de rappel élastique 4 provoquent un potentiel élastique, assimilable à une énergie potentielle élastique totale, caractérisé par la relation suivante : Vtot = ½ . ω 0 2 . j Mj . R 2 j βi ,
    Figure imgb0001
    où :
    • Vtot est le potentiel élastique, qui représente une énergie élastique,
    • ∑j est la somme sur les j de la quantité entre parenthèses,
    • ω0est la vitesse de rotation qu'on veut imposer,
    • Rj(βi) est la position du centre de masse de l'élément inertiel j, en fonction de la valeur du degré de liberté βi,
    • Mj est la masse de l'élément inertiel j.
  • On comprend que, dans l'exemple articulé de la figure 1, comportant deux éléments inertiels 21 et 22, le mécanisme résonateur 100 selon l'invention doit piloter, à tout instant, trois angles : celui que fait la structure commune 3 avec une platine du mouvement d'horlogerie, ou similaire, et ceux, β1 et β2, que font les centres de masse des éléments inertiels 21 et 22 par rapport à la structure commune 3, en référence aux axes D31 et D32 des guidages 51 et 52 respectifs. Bien sûr, en cas de N éléments inertiels, il s'agit de piloter N1+ angles.
  • Le système est auto-régulé : sous l'effet du couple imprimé par les moyens moteurs du mouvement, chaque élément inertiel tend à s'écarter de l'axe de rotation D, jusqu'à une position radiale où les frottements de l'air impriment un couple résistant qui équilibre, selon une direction tangentielle, l'effet du couple appliqué sur le mobile d'entrée 1, rapporté au centre de masse de l'élément inertiel. Selon la direction radiale, c'est la force centrifuge qui équilibre la composante radiale de l'effort de rappel imprimé par les moyens de rappel élastique 4. Ce double équilibre, tangentiel et radial, détermine la position radiale du centre de masse à tout instant, en fonction de la valeur instantanée du couple émis par les moyens moteurs. La vitesse angulaire de rotation est égale à la racine carrée du quotient de la raideur des moyens de rappel élastique par la masse de l'élément inertiel, tandis que le rayon instantané du centre de masse par rapport à l'axe de rotation D est égal à la racine carrée du quotient entre le couple moteur et le produit de la vitesse angulaire et du coefficient de frottement entre le milieu ambiant et l'élément inertiel.
  • Les centres de masse des éléments inertiels tendent à atteindre l'axe de rotation D, quand les moyens moteurs sont à l'arrêt, cette position correspondant à l'exercice d'un effort de traction nul de la part des moyens de rappel élastique 4. Il peut être plus facile de réaliser un mécanisme résonateur 100 où les masses inertielles 2 s'approchent de l'axe de rotation, surtout si ces masses inertielles 2 sont dans un même plan, et viennent par exemple en contact l'une avec l'autre dans une position de repos, les moyens de rappel élastique 4 étant alors assemblés avec une précontrainte.
  • La perturbation due au champ de gravité tend, dans certaines positions de la montre 300, à différencier le comportement des éléments inertiels. Par exemple, la figure 1 comporte une référence Z, dans le plan de la feuille et dirigée vers le bas de la feuille, qui indique la verticale du lieu et le champ de gravité, l'élément inertiel 22 tend à s'écarter de la structure commune 3, tandis que l'élément inertiel 21 tend à s'en approcher. Si les éléments inertiels 2 sont complètement libres radialement, il se peut ainsi qu'ils soient situés sur des rayons différents par rapport à l'axe de rotation D.
  • Il est donc avantageux, pour s'affranchir de cet effet du champ de gravité, d'effectuer un transfert de mouvement réduisant le nombre de degrés de liberté de chaque élément inertiel 2, et d'établir un couplage mécanique qui force la position radiale, par rapport à l'axe de rotation D, de chaque élément inertiel 2 par rapport aux autres. Ainsi le centre de masse global du mécanisme résonateur tout entier peut rester sur l'axe de rotation D. De préférence, on établit une symétrie par rapport à l'axe de rotation D.
  • A cet effet, le mécanisme résonateur rotatif 100 comporte avantageusement une liaison cinématique, et plus particulièrement une liaison cinématique rigide, entre au moins deux éléments inertiels 2, et de préférence entre tous les éléments inertiels 2. Cette liaison force les éléments inertiels 2 à se trouver à la même distance de l'axe de rotation D, en permanence. C'est-à-dire que les éléments inertiels 2 n'ont plus qu'un degré de liberté par rapport à la structure commune 3.
  • Cette liaison cinématique est utile aux petites fréquences, 2 à 5 Hz notamment. En revanche, si la vitesse de rotation de la structure commune 3est élevée, notamment correspondant à une période supérieure ou égale à 20 Hz, par exemple de l'ordre de 50 Hz, l'effet du champ de pesanteur est négligeable devant les effets de l'inertie, et une telle liaison cinématique n'est pas indispensable. Une telle réalisation très simple peut convenir à des applications à usage unique, comme des pièces d'artifice ou similaires. La liaison cinématique devient nécessaire, en revanche, dès que l'on cherche à atteindre de bonnes performances chronométriques, notamment pour l'emploi dans une montre.
  • Différents exemples de telles liaisons cinématiques sont illustrés sur les figures 2, 3, 4, 8, 9, 10, 12, 13, 14, 15 et 16, et seront exposés plus loin. La plupart sont des liaisons cinématiques rigides articulées, certaines illustrant des liaisons cinématiques flexibles.
  • La figure 2 illustre, dans une position déployée, une réalisation avantageuse de l'invention, où la liaison cinématique est réalisée grâce à une structure en pantographe : le mécanisme résonateur 100 comporte une structure articulée en pantographe en symétrie autour de l'axe de rotation D, comportant au moins tous les éléments inertiels 2, articulés directement, ou articulés indirectement par l'intermédiaire de bras qui sont désignés, selon les variantes, par les repères 31 , 32 , 131, 132, 121, 122, 123,124, autour du mobile central 30 et d'un mobile central secondaire 130 qui est agencé pour pivoter autour de l'axe de rotation (D et qui constitue avec le mobile central 30 une structure croisée. Par « bras » on entend ici un composant comportant deux articulations.
  • On appelle ici « pantographe » une structure articulée double, autour d'un axe central, la forme en double losange est plus particulièrement illustrée sur les figures ; on appelle « demi-pantographe » la partie de la structure située d'un seul côté de l'axe central. Le pantographe comporte deux demi-pantographes, comportant des éléments communs, formant une structure croisée.
  • Plus particulièrement, cette structure croisée constituée par le mobile central 30 et le mobile central secondaire 130 a son centre de masse sur l'axe de rotation D.
  • Ainsi, sur la figure 2, la liaison cinématique et les guidages sont réalisés en combinant, sur la base de l'exemple de la figure 1, un mobile central 30, un mobile central secondaire 130 pivotant autour de l'axe de rotation D au niveau d'un pivot axial, les deux bras 31 et 32 pivotés sur le mobile central 30, deux autres bras secondaires 131 et 132 pivotés fous, à la fois sur le mobile central secondaire 130 autour d'axes D131 et D132, au niveau de pivots non détaillés, et sur les éléments inertiels 21 et 22 au niveau des axes D1 et D2, et les sept articulations nécessaires à son fonctionnement, de manière à former un pantographe présentant une symétrie de rotation d'ordre 2.
  • Dans une variante particulière, le mobile central secondaire 130 pivote fou autour de l'axe de rotation D.
  • Les moyens de rappel élastiques 41 et 42 sont les mêmes que sur la figure 1, puisque l'embiellage formé par les deux bras 131 et 132 autour du mobile central secondaire 130 est passif, sa seule fonction étant de maintenir les centres de masse des éléments inertiels 21 et 22 en symétrie par rapport à l'axe de rotation D.
  • Naturellement, tel que visible sur les variantes illustrées aux figures 3 et 4, certains bras peuvent constituer des éléments inertiels. La variante de la figure 3, très proche de celle de la figure 2, illustrée dans une position repliée, combine l'élément inertiel 21 et le bras secondaire 131 pour constituer un élément inertiel 121, et combine l'élément inertiel 22 et le bras secondaire 132 pour constituer un élément inertiel 123, le bras 31 constituant un élément inertiel 122, et le bras 32 constituant un élément inertiel 124.
  • Plus particulièrement, tous les éléments inertiels 2 sont articulés directement sur le mobile central 30 et le mobile central secondaire 130. Ainsi, la variante de la figure 4, très compacte, comporte quatre éléments inertiels qui constituent aussi des bras 31, 32, 131, 132, articulés en pantographe autour du mobile central 30 et du mobile central secondaire 130.
  • Les figures 5 et 6 sont des schémas du demi-pantographe, avec en figure 6 les coordonnées polaires du centre de masse d'un segment j. On appelle ici « segment » la définition géométrique d'un côté du losange du demi-pantographe, et on désigne par « bras » le composant physique incorporé au mécanisme.
  • La figure 7 illustre le cas particulier d'un demi-pantographe en losange isocèle et régulier, où : β 1 = β 2 = β 3 = β 4 ,
    Figure imgb0002
    avec les centres de masse G3 et G4 des segments 73 et 74 qui sont situés sur la droite qui lie les rotules de part et d'autre du segment concerné, respectivement A13 à A34, et A24 à A34.
  • Dans le cas d'un demi-pantographe quelconque, tel que visible sur les figures 5 et 6, chaque membre, en forme de quadrilatère, du pantographe comporte quatre segments 71, 72, 73, 74, articulés entre eux et par rapport à un axe de pivotement constitué par une rotule principale 70 ou l'axe de rotation D. Le mobile central 30 est constitué de deux premiers segments 71 dans le prolongement l'un de l'autre par rapport à la rotule principale 70, et le mobile central secondaire 130 est constitué de deux deuxièmes segments 72 dans le prolongement l'un de l'autre par rapport à la rotule principale 70. Et les moyens de rappel élastique 4 engendrent une énergie potentielle V qui est fonction de l'angle de déformation β1 du membre de pantographe, satisfaisant la relation : V β 1 / β 1 = ½ . 0 / dt 2 . j Mj . Rj β 1 . R j β 1 ,
    Figure imgb0003
    (cette condition permet de garantir l'isochronisme d'un pantographe quelconque), où :
    • V(β1) est le potentiel en fonction de l'angle β1,
    • β1 est l'angle d'ouverture du pantographe, c'est-à-dire l'angle entre d'une part la droite qui joint la pointe du pantographe opposée à l'axe de pivotement à l'axe de pivotement, et d'autre part le segment considéré, ω 0 = 0 / dt est la vitesse de rotation du mécanisme résonateur rotatif 100 ,
      Figure imgb0004
      est la vitesse de rotation du mécanisme résonateur rotatif 100,
    • ∑j est la somme sur les j de la quantité entre parenthèses,
      Mj est la masse de l'élément inertiel 2 de rang j
      Rj(β1) est la distance de l'axe de rotation au centre de masse Gj de l'élément inertiel 2 de rang j,
    • R'j(β1) est la dérivée de la distance entre l'axe de pivotement et le centre de masse de l'élément inertiel 2 de rang j par rapport à β1.
  • Plus particulièrement, le centre de masse de chaque bras (31 ; 32 ; 131 ; 132 ; 121 ; 122 ; 123 ; 124) qui est compris entre deux articulations, est situé sur une droite joignant les deux articulations de part et d'autre du bras considéré.
  • Plus particulièrement, et notamment dans la variante des figures 4 et 7, chaque membre du demi-pantographe comporte quatre segments de longueur égale L, constituant ensemble un losange régulier. Et le centre de masse du mobile central 30 et celui du mobile central secondaire 130 se trouvent sur l'axe de rotation D du mécanisme résonateur 100, et les centres de masse de chacun des bras inertiels se trouvent sur une ligne définie par les deux articulations du bras correspondant.
  • Plus particulièrement, en référence aux notations de la figure 7, l'énergie potentielle Vtot des moyens de rappel élastique est reliée à leur angle de déformation par la relation : V tot β 1 = L M 3 . R 3 + M 4 . R 4 . 0 / dt 2 . cos 2 β 1
    Figure imgb0005
    où :
    • β1 est l'angle d'ouverture du pantographe,
    • L est la longueur de chaque segment entre les articulations,
    • M3 est la masse d'un troisième segment 73 formant un des deux éléments inertiels opposés à l'axe de pivotement constitué par une rotule principale 70 ou par l'axe de rotation D, et compris entre une première rotule latérale A13 et une rotule de sommet A34 opposée à une rotule d'axe A12 constituant la rotule principale 70,
    • M4 est la masse d'un quatrième segment 74 formant l'autre des deux éléments inertiels opposés audit axe de pivotement, et compris entre une deuxième rotule latérale A24 et la rotule de sommet A34,
    • R3 est la distance de la première rotule latérale A13 au centre de masse G3 du troisième segment 73,
    • R4 est la distance de deuxième rotule latérale A24 au centre de masse G4 du quatrième segment 74,
    • 0/dt est la vitesse de rotation du résonateur rotatif.
  • Une telle structure de type pantographe, combinée avec des moyens de rappel élastique adéquats, constitue ainsi un mécanisme qui, sur le plan théorique, permet de garantir la constance de la période de rotation du mobile d'entrée 1, et d'assurer l'insensibilité aux changements de position dans le champ de gravité.
  • La réalisation pratique nécessite néanmoins des précautions d'exécution, en raison du grand nombre des guidages d'articulation, synonymes de frottements et de perte de rendement.
  • D'autres types de liaison cinématique seront présentés plus loin.
  • Pour s'affranchir du coût d'un système articulé, lié à la précision d'usinage et au parallélisme des axes, et de l'altération du rendement par les frottements aux pivots, un mode de réalisation particulier de l'invention concerne un mécanisme dont au moins un des éléments de guidage et au moins un des moyens de rappel élastique 4 sont réalisés de manière conjointe par un guidage flexible. C'est-à-dire que les fonctions distinctes de guidage et d'élasticité sont réalisées par un guidage flexible unique. Plus particulièrement, à l'exception des guidages au niveau de l'axe de rotation, la totalité des guidages en rotation et des moyens de rappel élastique est réalisée par des guidages flexibles.
  • Plus particulièrement, au moins un tel guidage flexible comporte au moins deux lames comprises dans des plans, et qui définissent l'une avec l'autre l'axe de rotation virtuel d'un guidage flexible rotatif.
  • Plus particulièrement, dans une structure de type pantographe telle que décrite ci-dessus, au moins quatre de ses articulations sont réalisées par des guidages flexibles rotatifs.
  • La figure 8 illustre ainsi une structure voisine de celles des figures 3 et 4, dépourvue d'articulation à pivot, sauf au niveau de l'axe de rotation D, et dont les bras 31, 131, 32, 132, constituant les segments du pantographe forment les éléments inertiels. Dans cette variante non limitative, les guidages flexibles comportent chacun deux lames, disposées selon des niveaux parallèles et distincts, et qui, en projection sur un plan parallèle, se croisent au niveau des axes d'articulation D31, D1, D131, D132, D2, et D32.
  • Une réalisation simple est illustrée aux figures 8A, 8B et 8C, et consiste en la superposition d'une structure supérieure 101 monobloc, qui comporte toutes les lames supérieures 103, et d'une structure inférieure 102 monobloc, qui comporte toutes les lames inférieures 102. Ces structure supérieure 101 et structure inférieure 102 peuvent être très facilement assemblées l'une à l'autre, par collage, rivetage, ou autre, et les positions radiales des différentes articulations, ainsi que la symétrie des éléments inertiels, par rapport à l'axe de rotation D, sont parfaitement garanties.
  • Plus particulièrement, ces guidages flexibles rotatifs entre deux composants sont du type à lames croisées en projection, tel qu'exposé ci-dessus, dont l'angle d'ouverture θ, lu sur le plan de projection entre l'axe de croisement C et les points d'encastrement des lames sur un des composants, a une valeur de 40° +/- 4°, et les lames se croisant à une proportion de longueur de 0.15 +/- 0.015. Ce croisement peut être effectué aussi bien à proximité du composant le plus mobile, c'est-à-dire dont la course est la plus importante, que du composant le moins mobile, et il est en général déterminé par le dimensionnement des composants pour assurer la distance requise entre les points d'encastrement des lames.
  • Plus particulièrement, les guidages flexibles sont en silicium oxydé pour compenser les effets thermiques.
  • Les figures 9 à 16 illustrent plusieurs variantes permettant de garantir la symétrie radiale de mouvement des centres de masse des éléments inertiels, selon le cas sur la base de liaisons cinématiques rigides articulées, ou bien de liaisons cinématiques flexibles.
  • La réalisation des figures 9 et 10 comporte, pour établir la liaison cinématique rigide entre les éléments inertiels 2 (21 et 22) est réalisée au moyen d'une roue dentée 60 montée folle concentriquement à l'axe de rotation D, et qui coopère en permanence avec deux secteurs dentés 61 et 62 solidaires des éléments inertiels 21 et 22. Ces derniers sont représentés ici articulés sur la structure commune 3 par de tels guidages flexibles à lames croisées en projection 41 et 42.
  • Dans une variante particulière de la structure de type pantographe, comportant un mobile central 30 et un mobile central secondaire 130, le mobile central 30 est fixé au mobile d'entrée 1 par une liaison élastique 80, et le mobile central secondaire 130 pivote autour de l'axe de rotation D, mais ce pivotement est limité par une liaison élastique 80 le reliant au mobile d'entrée 1. Dans cette variante particulière illustrée par la figure 11, le mobile central 30 et le mobile central secondaire 130 sont chacun soumis à un couple d'entrainement équivalent à la moitié du couple d'échappement équivalent dans un mécanisme d'échappement classique.
  • Plus particulièrement, cette liaison élastique 80 est un guidage flexible rotatif, notamment comportant deux lames élastiques.
  • La figure 12 illustre une autre variante, dans laquelle la liaison cinématique comporte des moyens de guidage linéaire radial 90, avec une barre de guidage radiale 91 coulissant dans des alésages 911 et 912 des éléments inertiels 21 et 22. Les moyens de rappel élastique 4 sont ici constitués à chaque fois par un ressort en vé 41, 42.
  • La figure 13 illustre une autre variante encore, dans laquelle la liaison cinématique comporte des moyens de guidage curviligne 95, combinant une rainure courbe 35 du mobile central 30, et un pion 25 porté par l'élément inertiel 21, 22, concerné. Dans cette variante, les moyens de rappel élastique 4 comportent, pour la suspension et le rappel de chaque élément inertiel 21, 22, deux lames élastiques 45 et 46 sensiblement parallèles l'une à l'autre, de façon à limiter le mouvement de chaque élément inertiel 21, 22, selon un seul degré de liberté.
  • La figure 14 représente une structure voisine de celle de la figure 9, comportant une roue dentée 60 montée folle concentriquement à l'axe de rotation D, et qui coopère en permanence avec deux roues intermédiaires 610 et 620, qui elles-mêmes engrènent avec des roues ou des secteurs dentés 61 et 62 solidaires des éléments inertiels 21 et 22 et des bras 31 et 32. Ces derniers sont représentés ici articulés sur la structure commune 3 par des ressorts de traction classiques.
  • La figure 15 illustre une variante où la liaison cinématique n'est pas rigide, mais flexible, la structure commune 30 étant une lame flexible qui porte les éléments inertiels 21 et 22, qui portent chacun un bras porteur d'un élément de crémaillère 161, 162, qui coopère avec une roue folle axiale 60. Dans ce mécanisme très simple, les éléments inertiels 21 et 22 peuvent toutefois se mouvoir selon deux degrés de liberté.
  • La réalisation de la figure 16 résout ce problème, grâce à l'emploi, comme dans la réalisation de la figure 13, de moyens de rappel élastique 4 qui comportent, pour la suspension et le rappel de chaque élément inertiel 21, 22, deux lames élastiques 45 et 46 sensiblement parallèles l'une à l'autre, de façon à limiter le mouvement de chaque élément inertiel 21, 22, selon un seul degré de liberté.
  • Dans une réalisation particulière, le mécanisme résonateur 100 complet (guidage, élément inertiel, moyens de rappel élastique, bras, mobile) est d'une seule pièce. On peut réaliser l'ensemble du résonateur rotatif en silicium usiné par DRIE multi-niveaux, par exemple. Quand cette exécution est malcommode, notamment lors de l'emploi de lames croisées dans des niveaux différents, on peut avantageusement, comme dans le cas de la figure 8A, superposer une structure supérieure 101 monobloc et une structure inférieure 102 monobloc, chacune simple à fabriquer, et qui peuvent être très facilement assemblées l'une à l'autre, par collage, rivetage, vissage ou autre. Plus particulièrement, la structure supérieure 101 monobloc et la structure inférieure 102 monobloc, sont assemblées l'une à l'autre de façon irréversible pour créer un composant monobloc indémontable.
  • Dans une variante particulière, la fréquence de rotation du mécanisme résonateur rotatif 100 est supérieure à 20 Hz, et notamment supérieure à 50 Hz. Cette fréquence, relativement élevée, permet de limiter la sensibilité aux positions dans le champ de gravité, dans le cas où il n'y a pas de liaison cinématique.
  • On comprend que l'invention, conçue pour le comptage du temps, est aussi utilisable pour d'autres mécanismes, tel qu'un régulateur de sonnerie, ou autre. Les moyens de rappel élastique de l'invention sont embarqués dans le résonateur rotatif, ce qui permet de simplifier sa construction.
  • De plus, les moyens de liaisons cinématiques de l'invention réduisent le nombre de degré de liberté du système en liant complètement le déplacement des masses, alors que dans l'art antérieur, le lien est flexible et ne peut réduire le nombre de degrés de liberté.
  • L'invention concerne encore un mouvement d'horlogerie 200, comportant une platine porteuse de moyens d'accumulation et de stockage d'énergie 210, notamment au moins un barillet 211, agencés pour entraîner classiquement un rouage 220, en particulier un rouage de finissage, dont l'élément le plus en aval est agencé pour entraîner le mobile d'entrée 1 d'un tel mécanisme résonateur rotatif 100, que comporte ce mouvement 200.
  • L'invention concerne encore une pièce d'horlogerie, notamment une montre 300, comportant au moins un mouvement d'horlogerie 200, et/ou un tel mécanisme résonateur rotatif 100.
  • Cette invention présente différents avantages, et notamment:
    • suppression du mécanisme d'échappement traditionnel, permettant une simplification du mécanisme;
    • suppression du travail du frottement des pivots d'un balancier-spiral, permettant d'augmenter le facteur de qualité du mécanisme résonateur ;
    • suppression des saccades de l'échappement, permettant d'augmenter le rendement ;
    • augmentation de la réserve de marche et/ou de la précision des montres mécaniques actuelles.
  • Pour une taille de mouvement donné, il est possible de quintupler l'autonomie de la montre, et de doubler le pouvoir réglant de la montre. Cela revient à dire que l'invention permet un gain d'un facteur 10 sur les performances du mouvement.

Claims (24)

  1. Mécanisme résonateur (100) pour mouvement d'horlogerie, comportant un mobile d'entrée (1), monté pivotant autour d'un axe de rotation (D) et soumis à un couple moteur, et comportant un mobile central (30), solidaire en rotation avec ledit mobile d'entrée (1) autour dudit axe de rotation (D) et agencé pour tourner en continu, ledit mécanisme résonateur (100) comportant une pluralité de N éléments inertiels (2), chacun mobile par rapport audit mobile central (30), et rappelé vers ledit axe de rotation (D) par des moyens de rappel élastique (4) que comporte ledit mécanisme résonateur (100), qui sont agencés pour provoquer un effort de rappel sur le centre de masse dudit élément inertiel (2), ledit mécanisme résonateur (100) présentant une symétrie de rotation d'ordre N, caractérisé en ce que ledit mécanisme résonateur (100) comporte des moyens de liaison cinématique entre tous lesdits éléments inertiels (2) et qui sont agencés pour maintenir, à tout instant, tous les centres de masse desdits éléments inertiels (2) à la même distance dudit axe de rotation (D), et encore caractérisé en ce que lesdits moyens de rappel élastique (4), qui sont en rotation et embarqués par ledit mécanisme résonateur (100), provoquent un potentiel élastique caractérisé par la relation suivante : V = 1 / 2. 0 / dt 2 . ( Mj R 2
    Figure imgb0006
    où :
    - Vest le potentiel élastique,
    - ∑j est la somme de la quantité entre parenthèses,
    - (dα0/dt) est la vitesse de rotation qu'on veut imposer,
    - Rjest la la distance de l'axe de rotation au centre de masse G du dit élément inertiel (2) - M est la masse dudit élément inertiel.
  2. Mécanisme résonateur (100) selon la revendication 1, caractérisé en ce que ledit mécanisme résonateur (100) comporte une structure articulée en pantographe autour dudit axe de rotation (D), comportant au moins tous lesdits éléments inertiels (2), articulés directement, ou articulés indirectement par l'intermédiaire de bras (31 ; 32 ; 131 ; 132 ; 121 ; 122 ; 123 ;124), autour dudit mobile central (30) et d'un mobile central secondaire (130) agencé pour pivoter autour dudit axe de rotation (D) et qui constitue avec ledit mobile central (30) une structure croisée.
  3. Mécanisme résonateur (100) selon la revendication 2, caractérisé en ce que ladite structure croisée constituée par ledit mobile central (30) et ledit mobile central secondaire (130) a son centre de masse sur ledit axe de rotation (D).
  4. Mécanisme résonateur (100) selon la revendication 2 ou 3, caractérisé en ce que chaque membre dudit pantographe comporte quatre segments (71, 72, 73, 74), articulés entre eux et par rapport à un axe de pivotement constitué par une rotule principale (70) ou audit axe de rotation (D), ledit mobile central (30) étant constitué de deux premiers segments (71) dans le prolongement l'un de l'autre par rapport à ladite rotule principale (70), et ledit mobile central secondaire (130) étant constitué de deux deuxièmes segments (72) dans le prolongement l'un de l'autre par rapport à ladite rotule principale (70), et en ce que lesdits moyens de rappel élastique 4 engendrent une énergie potentielle V qui est fonction de l'angle de déformation β1 dudit membre de pantographe, satisfaisant la relation : V β 1 / β 1 = ½ . 0 / dt 2 . j Mj . Rj β 1 . R j β 1 ,
    Figure imgb0007
    où :
    - V(β1) est le potentiel en fonction de l'angle β1,
    - β1 est l'angle d'ouverture du pantographe, c'est-à-dire l'angle entre d'une part la droite qui joint la pointe du pantographe opposée à l'axe de pivotement à l'axe de pivotement, et d'autre part le segment considéré,
    - dα0/dt est la vitesse de rotation dudit mécanisme résonateur rotatif (100),
    - ∑j est la somme sur les j de la quantité entre parenthèses,
    - Mj est la masse de l'élément inertiel 2 de rang j,
    - Rj(β1) est la distance de l'axe de rotation au centre de masse Gj de l'élément inertiel 2,
    - R'j(β1) est la dérivée de la distance entre l'axe de pivotement et le centre de masse de l'élément inertiel 2 par rapport à β1.
  5. Mécanisme résonateur (100) selon l'une des revendications 2 à 4, caractérisé en ce que ladite structure articulée constitue un pantographe en symétrie autour dudit axe de rotation (D), ou en symétrie de rotation d'ordre 2 autour dudit axe de rotation (D).
  6. Mécanisme résonateur (100) selon l'une des revendications 2 à 5, caractérisé en ce que tous lesdits éléments inertiels (2) sont articulés directement sur ledit mobile central (30) et ledit mobile central secondaire (130).
  7. Mécanisme résonateur (100) selon l'une des revendications 2 à 6, caractérisé en ce que le centre de masse de chaque dit bras (31 ; 32 ; 131 ; 132 ; 121 ; 122 ; 123 ;124) qui est compris entre deux articulations, est situé sur une droite joignant les deux articulations de part et d'autre dudit bras considéré.
  8. Mécanisme résonateur (100) selon l'une des revendications 2 à 7, caractérisé en ce que chaque membre dudit pantographe comporte quatre segments de longueur égale constituant ensemble un losange régulier.
  9. Mécanisme résonateur (100) selon les revendications 7 et 8, caractérisé en ce que l'énergie potentielle Vtot desdits moyens de rappel élastique (4) est reliée à leur angle de déformation par la relation : Vtot(β1) = L (M3.R3 + M4.R4). (dα0/dt)2. cos 2β1, où :
    - β1 est l'angle d'ouverture du pantographe, qui est l'angle entre d'une part la droite qui joint la pointe du pantographe opposée à l'axe de pivotement à l'axe de pivotement, et d'autre part le segment considéré,
    - L est la longueur de chaque segment entre les articulations,
    - M3 est la masse d'un troisième segment (73) formant un des deux éléments inertiels opposés à l'axe de pivotement constitué par une rotule principale (70) ou par ledit axe de rotation (D), et compris entre une première rotule latérale (A13) et une rotule de sommet (A34) opposée à une rotule d'axe (A12) constituant ladite rotule principale (70),
    - M4 est la masse d'un quatrième segment (74) formant l'autre des deux éléments inertiels opposés audit axe de pivotement, et compris entre une deuxième rotule latérale (A24) et ladite rotule de sommet (A34),
    - R3 est la distance de la première rotule latérale (A13) au centre de masse G3 dudit troisième segment (73),
    - R4 est la distance de deuxième rotule latérale (A24) au centre de masse G4 dudit quatrième segment (74),
    - dα0/dt est la vitesse de rotation du résonateur rotatif.
  10. Mécanisme résonateur (100) selon l'une des revendications 2 à 9, caractérisé en ce que ledit mobile central (30) et ledit mobile central secondaire (130) sont chacun fixé audit mobile d'entrée (1) par une liaison élastique (80).
  11. Mécanisme résonateur (100) selon la revendication 10, caractérisé en ce que ladite liaison élastique (80) est un guidage flexible rotatif comportant deux lames élastiques.
  12. Mécanisme résonateur (100) selon la revendication 2 ou l'une des revendications qui en dépendent, caractérisé en ce que chaque dit élément inertiel (2) est guidé, directement ou indirectement par l'intermédiaire de bras ou de systèmes articulés secondaires, par rapport à la structure commune par au moins un moyen de guidage (5), et en ce qu'au moins un des éléments de guidage (5) et au moins un desdits moyens de rappel élastique (4) sont réalisés de manière conjointe par un guidage flexible.
  13. Mécanisme résonateur (100) selon la revendication 12, caractérisé en ce que, à l'exception des guidages au niveau dudit axe de rotation (D), la totalité des guidages en rotation et des moyens de rappel élastique (4) que comporte ledit mécanisme résonateur (100) est réalisée par des guidages flexibles.
  14. Mécanisme résonateur (100) selon la revendication 12 ou 13, caractérisé en ce que au moins un dit guidage flexible comporte au moins deux lames élastiques comprises dans des plans, et qui définissent l'une avec l'autre l'axe de rotation virtuel d'un guidage flexible rotatif.
  15. Mécanisme résonateur (100) selon l'une des revendications 2 à 11, caractérisé en ce que, dans ladite structure de type pantographe, au moins quatre de ses articulations sont réalisées par des guidages flexibles rotatifs selon la revendication 14.
  16. Mécanisme résonateur (100) selon la revendication 14 ou 15, caractérisé en ce que au moins un dit guidage flexible rotatif entre deux composants est un guidage à lames croisées en projection sur un plan de projection, dont l'angle d'ouverture θ, lu sur le plan de projection entre l'axe de croisement C des projections desdites lames sur ledit plan et les points d'encastrement des lames sur un des composants, a une valeur de 40° +/- 4°, et les lames se croisent à une proportion de longueur de 0.15 +/- 0.015.
  17. Mécanisme résonateur (100) selon l'une des revendications 12 à 15, caractérisé en ce que lesdits guidages flexibles sont en silicium oxydé pour compenser les effets thermiques.
  18. Mécanisme résonateur (100) selon l'une des revendications 1 à 17, caractérisé en ce que lesdits moyens de liaison cinématique entre tous lesdits éléments inertiels (2) comportent au moins une roue folle (60) montée folle concentriquement audit axe de rotation (D), et qui coopère en permanence avec un secteur denté ou une crémaillère (61, 62) que comporte chaque dit élément inertiel.
  19. Mécanisme résonateur (100) selon l'une des revendications 1 à 17, caractérisé en ce que lesdits moyens de liaison cinématique comportent des moyens de guidage linéaire radial (90), avec une barre de guidage radiale (91) coulissant dans des alésages (911, 912) que comportent lesdits éléments inertiels (2).
  20. Mécanisme résonateur (100) selon l'une des revendications 1 à 19, caractérisé en ce que ledit mécanisme résonateur (100) complet est d'une seule pièce.
  21. Mécanisme résonateur (100) selon l'une des revendications 1 à 19, caractérisé en ce que ledit mécanisme résonateur (100) comporte des guidages flexibles à lames croisées dans des niveaux différents, et comporte, superposées, et assemblées l'une à l'autre, une structure supérieure (101) monobloc qui comporte toutes les lames supérieures (103), et une structure inférieure (102) monobloc qui comporte toutes les lames inférieures (102).
  22. Mécanisme résonateur (100) selon l'une des revendications 1 à 21, caractérisé en ce que la fréquence de rotation dudit mécanisme résonateur rotatif (100) est supérieure à 20 Hz.
  23. Mouvement d'horlogerie (200) comportant un mécanisme résonateur rotatif (100) selon l'une des revendications 1 à 22, et comportant une platine porteuse de moyens d'accumulation et de stockage d'énergie (210) ou au moins un barillet (211), agencés pour entraîner un rouage (220) agencé pour entraîner le mobile d'entrée (1) dudit mécanisme résonateur rotatif (100).
  24. Montre (300) comportant au moins un mouvement d'horlogerie (200) selon la revendication 23.
EP17194636.1A 2016-10-25 2017-10-03 Montre mécanique avec résonateur rotatif isochrone, insensible aux positions Active EP3316047B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16195399 2016-10-25

Publications (2)

Publication Number Publication Date
EP3316047A1 true EP3316047A1 (fr) 2018-05-02
EP3316047B1 EP3316047B1 (fr) 2020-05-27

Family

ID=57189956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17194636.1A Active EP3316047B1 (fr) 2016-10-25 2017-10-03 Montre mécanique avec résonateur rotatif isochrone, insensible aux positions

Country Status (7)

Country Link
US (1) US10126711B2 (fr)
EP (1) EP3316047B1 (fr)
JP (1) JP6476255B2 (fr)
CN (1) CN107976890B (fr)
CH (1) CH713069A2 (fr)
HK (1) HK1253931A1 (fr)
RU (1) RU2743150C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812843A1 (fr) * 2019-10-25 2021-04-28 ETA SA Manufacture Horlogère Suisse Guidage flexible et ensemble de guidages flexibles superposés pour mécanisme résonateur rotatif, notamment d'un mouvement d'horlogerie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410231B1 (fr) * 2017-05-29 2021-06-30 Montres Breguet S.A. Mécanisme d'horlogerie
EP3435173B1 (fr) * 2017-07-26 2020-04-29 ETA SA Manufacture Horlogère Suisse Mouvement mécanique avec résonateur rotatif, isochrone, insensible aux positions
EP3926412A1 (fr) 2020-06-16 2021-12-22 Montres Breguet S.A. Mécanisme régulateur d'horlogerie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR630831A (fr) * 1924-04-28 1927-12-09 Procédé et disposition pour la transmission de puissance entre des systèmes mécaniques et pour la commande de systèmes mécaniques
WO2015104693A2 (fr) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Oscillateur harmonique isotrope en général à deux degrés de liberté et base de temps associée sans échappement ou avec un échappement simplifié
WO2015104692A2 (fr) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Oscillateur harmonique isotrope a direction x et y et base de temps associe sans echappement ou a echappement simplifie

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2770942A (en) * 1953-03-03 1956-11-20 Elgin Nat Watch Co Horological balance with adjustable moment of inertia
US2880570A (en) * 1956-11-26 1959-04-07 Elgin Nat Watch Co Balance with adjustable moment of inertia
CH421827A (de) * 1964-07-31 1967-04-15 Centre Electron Horloger Mechanischer Resonator für Normalfrequenzoszillatoren in Zeitmessgeräten
JP4830667B2 (ja) * 2005-10-06 2011-12-07 セイコーエプソン株式会社 調速装置及びそれを用いた発電装置、機器
JP2015143673A (ja) * 2013-12-27 2015-08-06 セイコーインスツル株式会社 てんぷ、ムーブメント、および時計
EP2908185B1 (fr) * 2014-02-17 2017-09-13 The Swatch Group Research and Development Ltd. Dispositif d'entretien et de régulation d'un résonateur d'horlogerie
CH710537A2 (fr) * 2014-12-18 2016-06-30 Swatch Group Res & Dev Ltd Oscillateur d'horlogerie à diapason.
EP3254158B1 (fr) * 2015-02-03 2023-07-05 ETA SA Manufacture Horlogère Suisse Resonateur isochrone d'horlogerie
CH710692B1 (fr) * 2015-02-03 2021-09-15 Eta Sa Mft Horlogere Suisse Mécanisme oscillateur d'horlogerie.
CH710759A2 (fr) * 2015-02-20 2016-08-31 Nivarox Far Sa Oscillateur pour une pièce d'horlogerie.
EP3217229B1 (fr) * 2016-03-07 2020-01-01 Montres Breguet S.A. Système de compensation thermique auxiliaire réglable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR630831A (fr) * 1924-04-28 1927-12-09 Procédé et disposition pour la transmission de puissance entre des systèmes mécaniques et pour la commande de systèmes mécaniques
WO2015104693A2 (fr) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Oscillateur harmonique isotrope en général à deux degrés de liberté et base de temps associée sans échappement ou avec un échappement simplifié
WO2015104692A2 (fr) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Oscillateur harmonique isotrope a direction x et y et base de temps associe sans echappement ou a echappement simplifie

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812843A1 (fr) * 2019-10-25 2021-04-28 ETA SA Manufacture Horlogère Suisse Guidage flexible et ensemble de guidages flexibles superposés pour mécanisme résonateur rotatif, notamment d'un mouvement d'horlogerie
RU2756786C1 (ru) * 2019-10-25 2021-10-05 Эта Са Мануфактюр Орложэр Сюис Гибкая направляющая и комплект наложенных друг на друга гибких направляющих для поворотного резонаторного механизма, в частности часового механизма
US11693366B2 (en) 2019-10-25 2023-07-04 Eta Sa Manufacture Horlogère Suisse Flexible guide and set of superimposed flexible guides for rotary resonator mechanism, in particular of a horological movement

Also Published As

Publication number Publication date
JP2018072329A (ja) 2018-05-10
CH713069A2 (fr) 2018-04-30
JP6476255B2 (ja) 2019-02-27
RU2017135092A3 (fr) 2021-01-19
CN107976890A (zh) 2018-05-01
EP3316047B1 (fr) 2020-05-27
US20180113420A1 (en) 2018-04-26
RU2743150C2 (ru) 2021-02-15
HK1253931A1 (zh) 2019-07-05
US10126711B2 (en) 2018-11-13
RU2017135092A (ru) 2019-04-05
CN107976890B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
EP3316047B1 (fr) Montre mécanique avec résonateur rotatif isochrone, insensible aux positions
EP3130966B1 (fr) Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP1736838B1 (fr) Pièce d'horlogerie
EP3293584A1 (fr) Mecanisme oscillateur d'horlogerie
EP3312682B1 (fr) Resonateur a haut facteur de qualite pour montre mecanique
WO2006032974A2 (fr) Mouvement de montre muni de plusieurs balanciers
EP2466397B1 (fr) Mobile d'horlogerie à guidage périphérique
EP2407832B1 (fr) Mouvement de pièce d'horologerie
EP3435173B1 (fr) Mouvement mécanique avec résonateur rotatif, isochrone, insensible aux positions
EP3561603B1 (fr) Mecanisme regulateur d'horlogerie a resonateurs articules
EP3663868B1 (fr) Mouvement d'horlogerie comportant un tourbillon avec une roue magnetique fixe
EP4163735A1 (fr) Procédés de réalisation et de réglage d'un oscillateur a guidage flexible et mouvement horloger comprenant un tel oscillateur
CH717573B1 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle à guidage flexible et un mécanisme d'échappement associé
CH717575B1 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle à guidage flexible et un mécanisme d'échappement associé
CH713829B1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.
CH717581B1 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle et un mécanisme d'échappement.
CH717572B1 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle à guidage flexible et un mécanisme d'échappement.
CH717576B1 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle à guidage flexible et un mécanisme d'échappement.
CH717578A2 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle et un mécanisme d'échappement.
CH717580A2 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle et un mécanisme d'échappement.
CH717577A2 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle et un mécanisme d'échappement.
CH717579A2 (fr) Mouvement d'horlogerie comportant un résonateur à masse inertielle et un mécanisme d'échappement.
CH715618A2 (fr) Mouvement d'horlogerie comportant un tourbillon avec une roue magnétique fixe.
CH711408A2 (fr) Mouvement d'horlogerie mécanique muni d'un système de rétroaction du mouvement.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/28 20060101ALI20191105BHEP

Ipc: G04B 17/30 20060101AFI20191105BHEP

Ipc: G04B 21/06 20060101ALI20191105BHEP

Ipc: G04B 15/02 20060101ALI20191105BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1275186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017017215

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200927

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200828

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1275186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017017215

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230922

Year of fee payment: 7

Ref country code: GB

Payment date: 20230920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 7

Ref country code: CH

Payment date: 20231101

Year of fee payment: 7