EP3310477A1 - Single or dual layer ammonia slip catalyst - Google Patents
Single or dual layer ammonia slip catalystInfo
- Publication number
- EP3310477A1 EP3310477A1 EP16733809.4A EP16733809A EP3310477A1 EP 3310477 A1 EP3310477 A1 EP 3310477A1 EP 16733809 A EP16733809 A EP 16733809A EP 3310477 A1 EP3310477 A1 EP 3310477A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- layer
- scr catalyst
- platinum
- molecular sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8472—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/723—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/743—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/783—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/83—Aluminophosphates [APO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features
- F01N13/16—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/108—Auxiliary reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/2073—Means for generating a reducing substance from the exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2825—Ceramics
- F01N3/2828—Ceramic multi-channel monoliths, e.g. honeycombs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9025—Three layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/904—Multiple catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/911—NH3-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J2029/062—Mixtures of different aluminosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/06—Ceramic, e.g. monoliths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/063—Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/18—Ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to ammonia slip catalysts (ASC), articles containing ammonia slip catalysts and methods of manufacturing and using such articles to reduce ammonia slip,
- ASC ammonia slip catalysts
- NOx nitrogen oxides
- N0 2 nitrogen dioxide
- Exhaust gas generated in lean-burn and diesel engines is generally oxidative.
- NOx needs to be reduced selectively with a catalyst and a reductant in a process known as selective catalytic reduction (SCR) that converts NOx into elemental nitrogen (N 2 ) and water.
- SCR selective catalytic reduction
- a gaseous reductant typically anhydrous ammonia, aqueous ammonia, or urea
- the reductant is absorbed onto the catalyst and the NO x is reduced as the gases pass through or over the catalyzed substrate.
- ammonia slip catalyst is installed downstream of the SCR catalyst to remove ammonia from the exhaust gas by converting it to nitrogen.
- ASC ammonia slip catalyst
- the invention in a first aspect, relates to a catalyst article comprising: (a) an extruded support having an inlet, an outlet and a plurality of channels through which exhaust gas flows during operation of an engine, and (b) a single layer coating or a bi-layer coating on the support, where the extruded support comprises a third SCR catalyst, the single layer coating comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the bi- layer coating comprises a bottom layer and a top layer, where the bottom layer is located between the top layer and the extruded support, the bottom layer comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the top layer comprises a second SCR catalyst.
- the invention in another aspect, relates to an exhaust system comprising a catalyst of the first aspect of the invention and a means for forming H 3 in the exhaust gas.
- the invention in yet another aspect, relates to a vehicle comprising an exhaust system comprising a catalyst of the first aspect of the invention and a means for forming Nl3 ⁇ 4 in the exhaust gas.
- the invention relates to a method of improving the N 2 yield from ammonia in an exhaust gas at a temperature from about 250 °C to about 350 °C by contacting an exhaust gas comprising ammonia with a catalyst article of the first aspect of the invention.
- the invention in another aspect, relates to a method of reducing N 2 Q formation from H 3 in an exhaust gas, the method comprising contacting an exhaust gas comprising ammonia with a catalyst article of the first aspect of the invention.
- Fig. 1 is a diagram of a configuration in which a single layer blend of an ammonia slip catalyst is located on each side of a substrate containing a third SCR catalyst.
- Fig. 2 is a diagram of a configuration in which a bi-layer coating having a bottom layer comprising a mixture of platinum on a low ammonia storage support and a first SCR catalyst with a top layer comprising a second SCR catalyst is located on each side of a substrate containing a third SCR catalyst.
- ammonia slip means the amount of unreacted ammonia that passes through the SCR catalyst
- support means the material to which a catalyst is fixed.
- a support with low ammonia storage means a support that stores less than 0.001 mmol M f ; per m J of support.
- the support with low ammonia storage is preferably a molecular sieve or zeolite having a framework type selected from the group consisting of AEI, ANA, ATS, BEA, CDO, CFI, CHA, CON, DDR, ERI, FAU, FER, GON, IFR, IFW, IFY, IFfW, IMF, IRN, FRY, IS V, ITE, ITG, ⁇ , ITR, ITW, IWR, IWS, IW V, IWW, JOZ, LTA, LTF, MEL, MEP, MFI, MRE, MSE, MTF, MTN, MTT, MTW, MVY, MWW, NON, NSI, RRO, RSN, RTE, RTH, RUT, RWR, SEW, SFE, SFF, SFG, SFH,
- the molecular sieve or zeolite has a framework type selected from the group consisting of BEA, CDO, CON, FAU, MEL, MFI and MWW, even more preferably the framework type is selected from the group consisting of BEA and MFI.
- the term "calcine”, or “calcination”, means heating the material in air or oxygen. This definition is consistent with the IUPAC definition of calcination. (TUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book”). Compiled by A. D. McNaught and A.
- Calcination is performed to decompose a metal salt and promote the exchange of metal ions within the catalyst and also to adhere the catalyst to a substrate.
- the temperatures used in calcination depend upon the components in the material to be calcined and generally are between about 400 °C to about 900 °C for
- calcination can be performed up to a temperature of about 1200 °C.
- calcinations are generally performed at temperatures from about 400 °C to about 700 °C for approximately 1 to 8 hours, preferably at temperatures from about 400 °C to about 650 °C for approximately 1 to 4 hours.
- a catalyst article comprises: (a) an extruded support having an inlet, an outlet and a plurality of channels through which exhaust gas flows during operation of an engine, and (b) a single layer coating or a bi-layer coating on the support, where the extruded support comprises a third SCR catalyst, the single layer coating comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the bi-layer coating comprises a bottom layer and a top layer, where the bottom layer is located between the top layer and the extruded support, the bottom layer comprises a blend of platinum on a support with low ammonia storage with a first SCR catalyst, and the top layer comprises a second SCR catalyst.
- the support with low ammonia storage can be a siliceous support, where the siliceous support can comprise a silica or a zeolite with silica-to-DOXPLQD UDWLR RI 100, preferably 200, more preferably 250, even more preferably 300,especially 400, more especially 500, even more especially 750, DQG most preferably 1000.
- the catalyst article can provide an improvement in N 2 yield from ammonia at a temperature from about 250 °C to about 300 °C compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first
- the catalyst article can protect the platinum from one or more substances present in the catalyst that can poison the platinum, such as vanadium.
- the catalytic article may protect platinum from other poisons such as potassium, sodium, iron and tungsten.
- the catalyst article can provide reduced deactivation compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising H 3 passes through the first layer before passing through the second layer.
- active component loading refers to the weight of the support of platinum + the weight of platinum + the weight of the first SCR catalyst in the blend. Platinum can be present in the catalyst in an active component loading from about 0.01 to about 0.3 wt. %, inclusive, preferably from about 0.03-0.2 wt. %, inclusive, more preferably, from about 0.05-0.17 wt. %, inclusive, most preferably, from about 0.07-0.15 wt. %, inclusive.
- Additional catalysts such as palladium (Pd), gold (Au) silver (Ag), ruthenium (Ru) or rhodium (Rh) can be present with Pi, preferably in the blend with Pt.
- the compositions can comprise one, two or three SCR catalysts.
- the first SCR catalyst which is always present in the compositions, can be present either (1) in a blend with Pt on a support with low ammonia storage or (2) in a top layer when the catalysts are present in a bilayer and Pt is present in a bottom layer.
- the first SCR catalyst is preferably a Cu- SCR catalyst, an Fe-SCR catalyst or a mixed oxide, more preferably a Cu-SCR catalyst or a mixed oxide, most preferably a Cu-SCR catalyst.
- the Cu-SCR catalyst comprises copper and a molecular sieve.
- the Fe-SCR catalyst comprises iron and a molecular sieve. Molecular sieves are further described below.
- the molecular sieve can be an aluminosilicate, an aluminosilicate, an aluminosilicate, an aluminosilicate, an aluminosilicate, an aluminosilicate, an a
- aluminophosphate AlPO
- SAPO silico-aluminophosphate
- the copper or iron can be located within the framework of the molecular sieve and/or in extra-framework (exchangeable) sites within the molecular sieve.
- the second and third SCR catalysts can be the same or different.
- the second and third SCR catalyst can be a base metal, an oxide of a base metal, a noble metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
- the base metal can be selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and mixtures thereof.
- SCR compositions consi sting of vanadium supported on a refractor ⁇ ' metal oxide such as alumina, silica, zirconia, titania, ceria and combinati ons thereof are well known and widely used commercially in mobile applications. Typical compositions are described in U.S. Pat. Nos.
- compositions used commercially, especially in mobile applications comprise TiQ 2 on to which W0 3 and V2O5 have been dispersed at concentrations ranging from 5 to 20 wt, % and 0.5 to 6 wt. %, respectively.
- the second SCR catalyst can comprise a promoted Ce-Zr or a promoted Mn0 2 .
- the promoter comprises Nb.
- the noble metal can be platinum ( Pi ), palladium (Pd), gold (Au) silver (Ag), ruthenium (Ru) or rhodium (Rh), or a mixture thereof. These catalysts may contain other inorganic materials such as Si0 2 and Zr0 2 acting as binders and promoters.
- the catalyst article can further comprise at least one base metal promoter.
- a “promoter” is understood to mean a substance that when added into a catalyst, increases the activity of the catalyst.
- the base metal promoter can be in the form of a metal, an oxide of the metal, or a mixture thereof.
- the at least one base metal catalyst promoter may be selected from neodymium (Nd), barium ( Ba), cerium (Ce), lanthanum (La), praseodymium (Pr), magnesium (Mg), calcium (Ca), manganese (Mn), zinc (Zn), niobium (Nb), zirconium (Zr), molybdenum (Mo), tin (Sn), tantalum (Ta), strontium (Sr) and oxides thereof.
- the at least one base metal catalyst promoter can preferably be Mn0 2 , Mn 2 0 3 , Fe 2 0 3 , Sn0 2 , CuO, CoO, CeCh and mixtures thereof.
- the at least one base metal catalyst promoter may ⁇ be added to the cataiyst in the form of a salt in an aqueous solution, such as a nitrate or an acetate.
- the at least one base metal catalyst promoter and at least one base metal cataiyst, e.g., copper, may be impregnated from an aqueous solution onto the oxide support material(s), may be added into a washcoat comprising the oxide support material(s), or may be impregnated into a support previously coated with the washcoat.
- the SCR catalyst can comprise a molecular sieve or a metal exchanged molecular sieve.
- molecular sieve is understood to mean a metastable material containing tiny- pores of a precise and uniform size that may be used as an adsorbent for gases or liquids. The molecules which are small enough to pass through the pores are adsorbed while the larger molecules are not.
- the molecular sieve can be a zeolitic molecular sieve, a non ⁇ zeolitic molecular sieve, or a mixture thereof.
- a zeolitic molecular sieve is a microporous aluminosilicate having any one of the framework structures listed in the Database of Zeolite Structures published by the International Zeolite Association (LZA).
- the framework structures include, but are not limited to those of the CHA, FAU, BEA, MFi, MOR types.
- Non-limiting examples of zeolites having these staictures include chabazite, faujasite, zeolite Y, ultrastable zeolite Y, beta zeolite, mordenite, silicalite, zeolite X, and ZSM-5.
- Aluminosilicate zeolites can have a silica/alumina molar ratio (SAR) defined as Si0 2 /Al 2 0 3 ) from at least about 5, preferably at least about 20, with useful ranges of from about 10 to 200.
- SAR silica/alumina molar ratio
- any of the SCR catalysts can comprise a small pore, a medium pore or a large pore molecular sieve, or a mixture thereof.
- a "small pore molecular sieve” is a molecular sieve containing a maximum ring size of 8 tetrahedral atoms.
- a “medium pore molecular sieve” is a molecular sieve containing a maximum ring size of 10 tetrahedral atoms.
- a "large pore molecular sieve” is a molecular sieve having a maximum ring size of 12 tetrahedral atoms.
- the second and/or third SCR catalysts can comprise a small pore molecular sieve selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate (A1PO) molecular sieves, metal-substituted
- aluminophosphate (MeAlPO) molecular sieves aluminophosphate (MeAlPO) molecular sieves, silico-aluminophosphate (SAPO) molecular sieves, and metal substituted silico-aluminophosphate (MeAPSO) molecular sieves, and mixtures thereof.
- MeAlPO silico-aluminophosphate
- SAPO silico-aluminophosphate
- MeAPSO metal substituted silico-aluminophosphate
- any of the SCR catalysts can comprise a small pore molecular sieve selected from the group of Framework Types consisting of ACQ, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IFTW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAD, PHI, RHO, RTH, SAT, SAV, SIV " , THO, TSC, UEI, UFL VNI, YUG, and ZON, and mixtures and/or intergrowths thereof.
- the small pore molecular sieve is selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
- any of the SCR catalysts can comprise a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ⁇ , ITR, .FRY, JSR, J ST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PGR, PON, PUN, RRO, RSN, SFF, SFG, STF, STL STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and mixtures and/or intergrowths thereof.
- the medium pore molecular sieve selected from the group of Framework Types consisting of MFI, FER and STT.
- any of the SCR catalysts can comprise a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, APS, AFY, ASV, ATO, ATS, BEA, BEG, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, TWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEL MOR, MOZ, MS!
- Framework Types consisting of AFI, AFR, APS, AFY, ASV, ATO, ATS, BEA, BEG, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, TWS, IWV, IWW, JSR, LTF, LTL, MAZ,
- the large pore molecular sieve is selected from the group of Framework Types consisting of MOR, OFF and BE A.
- the molecular sieves in the Cu-SCR and Fe-SCR catalysts are preferably selected from the group consisting of AGO, AEI, AEN, APN, AFT, AFX, AN A, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ⁇ , ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, BEA, MFI and FER and mixtures and/or intergrowths thereof.
- the molecular sieves in the Cu-SCR and Fe-SCR are selected from the group consisting of AEI, AFX, BEA, CHA, DDR, ERI, FER, ITE, KFI, LEV, MFI and SFW, and mixtures and/or intergrowths thereof.
- a metal exchanged molecular sieve can have at least one metal from one of the groups VB, VIB, VIIB, VIIIB, IB, or ⁇ of the periodic table deposited onto extra-framework sites on the external surface or within the channels, cavities, or cages of the molecular sieves.
- Metals may be in one of several forms, including, but not limited to, zero vaient metal atoms or clusters, isolated cations, mononuclear or polynuclear oxycations, or as extended metal oxides.
- the metals can be iron, copper, and mixtures or combinations thereof.
- the metal can be combined with the zeolite using a mixture or a solution of the metal precursor in a suitable solvent.
- metal precursor means any compound or complex that can be dispersed on the zeolite to give a catalytically-active metal component.
- the solvent is water due to both economics and environmental aspects of using other solvents.
- suitable complexes or compounds include, but are not limited to, anhydrous and hydrated copper sulfate, copper nitrate, copper acetate, copper acetyl acetonate, copper oxide, copper hydroxide, and salts of copper ammines (e.g.
- the molecular sieve can be added to the solution of the metal component to form a suspension, which is then allowed to react so that the metal component is distributed on the zeolite.
- the metal can be distributed in the pore channels as well as on the outer surface of the molecular sieve.
- the metal can be distributed in ionic form or as a metal oxide.
- copper may be distributed as copper (II) ions, copper (I) ions, or as copper oxide.
- the molecular sieve containing the metal can be separated from the liquid phase of the suspension, washed, and dried.
- the resulting metal-containing molecular sieve can then be calcined to fix the metal in the molecular sieve.
- the second and third catalysts comprise a Cu-SCR catalyst comprising copper and a molecular sieve, an Fe-SCR catalyst comprising iron and a molecular sieve, a vanadium based catalyst, a promoted Ce-Zr or a promoted Mn0 2 .
- a metal exchanged molecular sieve can contain in the range of about 0.10% and about
- the extra framework metal can be present in an amount of in the range of about 0.2% and about 5% by weight.
- the metal exchanged molecular sieve can be a copper (Cu) or iron (Fe) supported small pore molecular sieve having from about 0.1 to about 20.0 wt. % copper or iron of the total weight of the catalyst. More preferably copper or iron is present from about 0.5 wt. % to about 15 wt. % of the total weight of the catalyst. Most preferably copper or iron is present from about 1 wt. % to about 9 wt. % of the total weight of the catalyst.
- Cu copper
- Fe iron
- the first SCR catalyst can be a Cu-SCR catalyst comprising copper and a small pore molecular sieve or an Fe-SCR catalyst comprising iron and a small pore molecular sieve.
- the small pore molecular sieve can be an aluminosilicate, an aluminophosphate (A1PO), a silico- aluminophosphate (SAPO), or mixtures thereof.
- the small pore molecular sieve can be selected from the group of Framework Types consisting of ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPL ERI, GIS, GOO, IHW, ⁇ , ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, S AY, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and mixtures and/or intergrowths thereof.
- Framework Types consisting of ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPL ERI, GIS, GOO, IHW, ⁇ , ITW, LEV, K
- the small pore molecular sieve can be selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ⁇ .
- the ratio of the amount of the first SCR catalyst to the amount of platinum on the support with low ammonia storage can be in the range of at least one of: (a) 0: 1 to 300: 1, (b) 3 : 1 to 300: 1, (c) 7: 1 to 100: 1; and (d) 10: 1 to 50: 1, inclusive, based on the weight of these components.
- Platinum can be present from at least one of: (a) 0.01-0.3 wt. %, (b) 0.03-0,2 wt.
- the second SCR catalyst and the third SCR catalyst can, independent of each other, be a base metal, an oxide of a base metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
- the base metal can be selected from the group consisting of vanadium (V), molybdenum (Mo), tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and mixtures thereof.
- the catalyst article can further comprise at least one base metal promoter.
- the molecular sieve or the metal exchanged molecular sieve can be small pore, medium pore, large pore or a mixture thereof.
- the second and/or third SCR catalyst can comprise a small pore molecular sieve selected from the group consisting of aluminosilicate molecular sieves, metal -substituted aluminosilicate molecular sieves, aluminophosphate (Al PO) molecular sieves, metal-substituted aluminophosphate
- MeAlPO molecular sieves
- SAPO silico-aluminophosphate
- MeAPSO metal substituted silico-aluminophosphate
- the second and/or third SCR catalyst can comprise a small pore molecular sieve selected from the group of Framework Types consisting of AGO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, S AV, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and mixtures and/or inter growths thereof.
- the second and/or third SCR catalyst can preferably comprise a small pore molecular sieve selected from the group of
- the second and/or third SCR catalyst can comprise a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, PER, HEU, IMF, ITU, ITR, JRY, JSR, 1ST, LAU, LOV, MEL, M I L MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, -PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, -SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and mixtures and/or intergrowths thereof.
- the second and/or third SCR catalyst preferably comprise a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPIl BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, 1WS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MO/.. M SI ..
- Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPIl BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, 1WS, IWV, IWW, JSR, L
- the third SCR catalyst preferably comprises vanadium, an Fe zeolite, a Cu zeolite, or a Ce-Zr based catalyst doped with Fe, W or Nb.
- the catalysts described herein can be used in the SCR treatment of exhaust gases from various engines.
- the engines can be on a vehicle, a stationary engine, an engine in a power plant, or a gas turbine.
- One of the properties of a catalyst comprising a blend of platinum on a siliceous support with a first SCR catalyst, where the first SCR catalyst is a Cu-SCR or Fe-SCR catalyst, is that it can provide an improvement in N 2 yield from ammonia at a temperature from about 250 °C to about 350 °C compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and platinum is supported on a layer that stores ammonia is present in a second layer and gas comprising NH 3 passes through the first layer before passing through the second layer.
- a catalyst comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst where the first SCR catalyst is a Cu-SCR catalyst or an Fe-SCR catalyst, is that it can provide reduced N 2 0 formation from NH 3 compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and platinum supported on a support that stores ammonia is present in a second layer and gas comprising NH 3 passes through the first layer before passing through the second layer.
- the substrate for the catalyst may be any material typically used for preparing automotive catalysts that comprises a flow-through or filter structure, such as a honeycomb structure, an extruded support, a metallic substrate, or a SCRF,
- the substrate has a plurality of fine, parallel gas flow passages extending from an inlet to an outlet face of the substrate, such that passages are open to fluid flow.
- Such monolithic carriers may contain up to about 700 or more flow passages (or "cells") per square inch of cross section, although far fewer may be used.
- the carrier may have from about 7 to 600, more usually from about 100 to 400, cells per square inch ("cpsi ").
- the passages which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by wails onto which the SCR catalyst is coated as a "washcoat" so that the gases flowing through the passages contact the catalytic material.
- the flow passages of the monolithic substrate are thin-walled channels which can be of any suitable cross-sectional shape such as trapezoidal, rectangular, square, triangular, sinusoidal, hexagonal, oval, circular, etc.
- the invention is not limited to a particular substrate type, material, or geometry.
- Ceramic substrates may be made of any suitable refractory material, such as cordierite, cordierite- 1 D0XPLQD, I -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica magnesia, zirconium silicate, siliimanite, magnesium silicates, zircon, petaiite, aluminosilicates and mixtures thereof.
- suitable refractory material such as cordierite, cordierite- 1 D0XPLQD, I -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica magnesia, zirconium silicate, siliimanite, magnesium silicates, zircon, petaiite, aluminosilicates and mixtures thereof.
- Wall flow substrates may also be formed of ceramic fiber composite materials, such as those formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
- the substrates can be a high porosity substrate.
- high porosity substrate refers to a substrate having a porosity of between about 40% and about 80%.
- the high porosity substrate can have a porosity preferably of at least about 45%, more preferably of at least about 50%.
- the high porosity substrate can have a porosity preferably of less than about 75%, more preferably of less than about 70%.
- porosity refers to the total porosity, preferably as measured with mercury porosimetry.
- the substrate can be cordierite, a high porosity cordierite, a metallic substrate, an extruded SCR, a filter or an SCRF.
- a washcoat comprising a blend of platinum on a siliceous support and a first SCR catalyst, where the first SCR catalyst is preferably a Cu-SCR catalyst or an Fe-SCR catalyst, can be applied to the inlet side of the substrate using a method known in the art. After application of the washcoat, the composition can be dried and calcined. When the composition comprises a second SCR, the second SCR can be applied in a separate washcoat to a calcined article having the bottom layer, as described above. After the second washcoat is applied, it can be dried and calcined as performed for the first layer.
- the substrate with the platinum containing layer can be dried and calcined at a temperature within the range of 300°C to 1200°C, preferably 400°C to 700 C, and more preferably 450°C to 650 C.
- the calcination is preferably done under dry conditions, but it can also be performed hydrothermally, i.e., in the presence of some moisture content. Calcination can be performed for a time of between about 30 minutes and about 4 hours, preferably between about 30 minutes and about 2 hours, more preferably between about 30 minutes and about 1 hour.
- An exhaust system can comprise a catalyst of the first aspect of the inventi on and a means for forming N3 ⁇ 4 in the exhaust gas.
- An exhaust system can further compri se a second catalyst selected from the group consisting of a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a selective catalytic reduction on filter (SCRF) or a catalyzed soot filter (CSF), where the second catalyst is located downstream of the catalyst of the first aspect of the invention.
- DOC diesel oxidation catalyst
- DEC diesel exotherm catalyst
- SCRF selective catalytic reduction on filter
- CSF catalyzed soot filter
- An exhaust system can further comprise a second catalyst selected from the group consisting of an SCR catalyst, a selective catalytic reduction on filter (SCRF), a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), a NOx adsorber catalyst (NAC) (such as a lean NOx trap (LNT), a NAC, a passive NOx adsorber (PNA), a catalyzed soot filter (CSF), or a Cold Start Concept (CSC) catalyst, where the second catalyst is located upstream of the catalyst of the first aspect of the invention.
- SCRF selective catalytic reduction on filter
- DOC diesel oxidation catalyst
- DEC diesel exotherm catalyst
- NAC NOx adsorber catalyst
- LNT lean NOx trap
- NAC passive NOx adsorber
- CSF catalyzed soot filter
- CSC Cold Start Concept
- An exhaust system can comprise a catalyst of the first aspect of the invention, an SCR catalyst and DOC catalyst, where the SCR catalyst is located between the catalyst of the first aspect of the invention and the DOC catalyst.
- the exhaust system can comprise a platinum group metal before an SCR catalyst where the amount of the platinum group metal is sufficient to generate an exotherm.
- the exhaust system can further comprise a promoted-Ce-Zr or a promoted-Mn0 2 located downstream of the catalyst of the first aspect of the invention.
- An engine can comprise an exhaust system as described above.
- the engine can be an engine on a vehicle, a stationary engine, an engine in a power plant, or a gas turbine.
- a vehicle can comprise an exhaust system compri sing a catalyst of the first aspect of the invention and a means for forming NH 3 in the exhaust gas.
- the vehicle can be a car, a light truck, a heavy duty truck or a boat.
- a method of improving the N 2 yield from ammonia in an exhaust gas at a temperature from about 250 °C to about 300 °C comprises contacting an exhaust gas comprising ammonia with a catalyst of the fi rst aspect of the invention.
- the improvement in yield can be about 10% to about 20% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising H 3 passes through the first layer before passing through the second layer.
- a method of reducing ' N 2 0 formation from NH 3 in an exhaust gas comprises contacting an exhaust gas comprising ammonia with a catalyst of the first aspect of the invention.
- the reduction in N 2 0 formation can be about 20%o to about 40% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the platinum on a siliceous support is present in a second layer and gas comprising NH 3 passes through the first layer before passing through the second layer.
- Example 1 A Selective ASC on an Extruded SCR catalyst
- An extruded SCR catalyst containing vanadium is coated from the outlet side with a washcoat comprising a blend of platinum on a support with low ammonia storage with Cu-CHA.
- Example 2 A Selective ASC on an Extruded SCR catalyst
- An extruded SCR catalyst containing an Fe-zeolite is coated from the outlet side with a washcoat comprising a blend of platinum on a support with low ammonia storage with Cu-CHA.
- the A SC described herein provides reduced selectivity of both N 2 0 and NOx. This results in increased selectivity towards N 2 over the full temperature range.
- Example 3 A Selective ASC on an Extruded SCR catalyst
- An extruded SCR catalyst containing vanadium is coated from the outlet side with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer.
- a second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
- Example 4 A Selective ASC on an Extruded SCR catalyst
- An extruded SCR catalyst containing an Fe-zeolite is coated from the outlet side with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer.
- a second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
- the ASC described herein provides reduced selectivity of both N 2 0 and NOx. This results in increased selectivity towards N 2 over the full temperature range. In addition, the back pressure will be reduced because of an overall thinner coating layer.
- platinum is on a support with low ammonia storage. The use of the support with low ammonia storage helps protect the platinum from exposure to materials, such as vanadium, that can poison, or negatively affect the platinum.
- An SCRF filter is coated on the outlet face of the filter with a washcoat comprising platinum on a support with low ammonia storage to form a bottom layer.
- a second washcoat comprising Cu-CHA is placed over the bottom layer to form a top layer.
- An SCRF filter is coated on the outlet face of the filter with a washcoat comprising a blend of platinum on a support with low ammonia storage and Cu-CHA.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ceramic Engineering (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562181303P | 2015-06-18 | 2015-06-18 | |
| PCT/US2016/037861 WO2016205506A1 (en) | 2015-06-18 | 2016-06-16 | Single or dual layer ammonia slip catalyst |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3310477A1 true EP3310477A1 (en) | 2018-04-25 |
Family
ID=56292930
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP16733809.4A Pending EP3310477A1 (en) | 2015-06-18 | 2016-06-16 | Single or dual layer ammonia slip catalyst |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US9789441B2 (enExample) |
| EP (1) | EP3310477A1 (enExample) |
| JP (1) | JP6787935B2 (enExample) |
| KR (1) | KR20180020215A (enExample) |
| CN (2) | CN117065794A (enExample) |
| BR (1) | BR112017027160B1 (enExample) |
| DE (1) | DE102016111151A1 (enExample) |
| GB (1) | GB2542231B (enExample) |
| RU (1) | RU2743125C2 (enExample) |
| WO (1) | WO2016205506A1 (enExample) |
Families Citing this family (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6219872B2 (ja) * | 2015-03-27 | 2017-10-25 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
| JP6130423B2 (ja) * | 2015-03-27 | 2017-05-17 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
| JP6243371B2 (ja) * | 2015-03-27 | 2017-12-06 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
| JP6219871B2 (ja) | 2015-03-27 | 2017-10-25 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
| JP6130424B2 (ja) | 2015-03-27 | 2017-05-17 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
| RU2704422C2 (ru) * | 2015-03-30 | 2019-10-28 | Басф Корпорейшн | Многофункциональные фильтры для регулирования выбросов дизельного двигателя |
| DK3356659T3 (da) * | 2015-09-29 | 2020-08-17 | Johnson Matthey Plc | Zoneopdelt ammonia-slip-katalysator til anvendelse i forbrændingsturbiner |
| CN108883406A (zh) * | 2016-02-03 | 2018-11-23 | 巴斯夫公司 | 用于内燃机的多层催化剂组合物 |
| GB2557673A (en) * | 2016-12-15 | 2018-06-27 | Johnson Matthey Plc | NOx adsorber catalyst |
| JP6693406B2 (ja) * | 2016-12-20 | 2020-05-13 | 三菱自動車工業株式会社 | 排気ガス浄化装置 |
| RU2770069C2 (ru) * | 2017-03-29 | 2022-04-14 | Джонсон Мэтти Паблик Лимитед Компани | Катализатор предотвращения проскока аммиака (asc) с металлом платиновой группы в множестве слоев |
| GB201705158D0 (en) * | 2017-03-30 | 2017-05-17 | Johnson Matthey Plc | Catalyst article for use in a emission treatment system |
| US10926221B2 (en) * | 2017-03-30 | 2021-02-23 | Johnson Matthey Public Limited Company | Single brick SCR/ASC/PNA/DOC close-coupled catalyst |
| BR112020017976A2 (pt) * | 2018-03-14 | 2020-12-22 | Johnson Matthey Public Limited Company | Artigo catalítico, sistema de exaustão, método para melhorar a conversão de nh3 de um gás de exaustão, e, método para tratamento de gás de exaustão |
| GB2572396A (en) * | 2018-03-28 | 2019-10-02 | Johnson Matthey Plc | Passive NOx adsorber |
| GB201805312D0 (en) * | 2018-03-29 | 2018-05-16 | Johnson Matthey Plc | Catalyst article for use in emission treatment system |
| CN112969535A (zh) * | 2018-10-31 | 2021-06-15 | 巴斯夫公司 | 用于消除NOx的添加了氧化铝的催化洗涂层 |
| CN109306886A (zh) * | 2018-11-22 | 2019-02-05 | 江苏海事职业技术学院 | 一种海洋船舶内燃机循环燃烧系统 |
| GB2596494B (en) | 2019-03-27 | 2022-08-17 | Johnson Matthey Plc | Catalysed filter system for treating particulate-containing exhaust gas from stationary emission sources |
| EP3782726A1 (en) * | 2019-08-20 | 2021-02-24 | Umicore Ag & Co. Kg | Catalyst for the abatement of ammonia and nitrogen oxide emissions from the exhaust gases of combustion engines |
| EP3782727A1 (de) | 2019-08-20 | 2021-02-24 | Umicore Ag & Co. Kg | Katalysator zur reduzierung von ammoniak-emissionen |
| CN111082094B (zh) * | 2019-12-31 | 2021-10-29 | 潍柴动力股份有限公司 | 冷启动装置、燃料电池发动机及冷启动方法 |
| EP3915679A1 (de) | 2020-05-26 | 2021-12-01 | UMICORE AG & Co. KG | Katalysator, katalysatorsystem und abgasreinigungssystem zur reduzierung von ammoniak-emissionen |
| EP3957386A1 (de) | 2020-08-18 | 2022-02-23 | UMICORE AG & Co. KG | Katalysator zur reduzierung von ammoniak-emmisionen |
| KR102364271B1 (ko) | 2020-09-22 | 2022-02-18 | 한국전력공사 | 복합 촉매 필터를 포함한 배기가스 정화장치 및 이의 제어방법 |
| EP3974059A1 (de) | 2020-09-24 | 2022-03-30 | UMICORE AG & Co. KG | Verfahren zur herstellung eines katalysators zur oxidation von ammoniak |
| KR20220131688A (ko) | 2021-03-22 | 2022-09-29 | 한국전력공사 | 바이패스 일체형 배기가스 정화장치 반응기의 작동방법 |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5523086B2 (enExample) | 1973-03-26 | 1980-06-20 | ||
| US4085193A (en) | 1973-12-12 | 1978-04-18 | Mitsubishi Petrochemical Co. Ltd. | Catalytic process for reducing nitrogen oxides to nitrogen |
| US4104154A (en) * | 1977-04-18 | 1978-08-01 | Uop Inc. | Reforming of a naphtha fraction in contact with an alumina-supported catalyst |
| US6133185A (en) | 1995-11-09 | 2000-10-17 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
| JPH09253453A (ja) | 1996-03-19 | 1997-09-30 | Nissan Motor Co Ltd | 排ガス浄化方法 |
| DE10226461A1 (de) * | 2002-06-13 | 2004-01-22 | Uhde Gmbh | Verfahren und Vorrichtung zur Verringerung des Gehaltes an NOx und N2O in Gasen |
| JP5156173B2 (ja) * | 2004-05-11 | 2013-03-06 | バブコック日立株式会社 | 窒素酸化物除去用触媒の製造法 |
| US20060029534A1 (en) * | 2004-08-04 | 2006-02-09 | General Electric Company | Process for treating ammonia-containing exhaust gases |
| WO2008106523A2 (en) * | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Bifunctional catalysts for selective ammonia oxidation |
| US7998423B2 (en) | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
| GB2457651A (en) * | 2008-01-23 | 2009-08-26 | Johnson Matthey Plc | Catalysed wall-flow filter |
| US8524185B2 (en) * | 2008-11-03 | 2013-09-03 | Basf Corporation | Integrated SCR and AMOx catalyst systems |
| US7998443B2 (en) * | 2009-04-17 | 2011-08-16 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| GB2479807B (en) * | 2010-02-01 | 2012-12-05 | Johnson Matthey Plc | Three way catalyst comprising extruded solid body |
| GB201002378D0 (en) * | 2010-02-12 | 2010-03-31 | Johnson Matthey Plc | Catalyst structures |
| US8293182B2 (en) | 2010-05-05 | 2012-10-23 | Basf Corporation | Integrated SCR and AMOx catalyst systems |
| US20110286900A1 (en) * | 2010-05-21 | 2011-11-24 | Basf Corporation | PGM-Zoned Catalyst for Selective Oxidation of Ammonia in Diesel Systems |
| US8722000B2 (en) | 2011-03-29 | 2014-05-13 | Basf Corporation | Multi-component filters for emissions control |
| EP2692437B1 (en) * | 2011-03-31 | 2023-09-20 | N.E. Chemcat Corporation | Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method |
| GB2504024B (en) * | 2011-08-03 | 2014-03-12 | Johnson Matthey Plc | Extruded honeycomb catalyst |
| KR101336597B1 (ko) * | 2012-06-12 | 2013-12-16 | 희성촉매 주식회사 | 담체 공극 매몰형 scr 촉매 구조체 |
| GB201221025D0 (en) | 2012-11-22 | 2013-01-09 | Johnson Matthey Plc | Zoned catalysed substrate monolith |
| CN104968431A (zh) * | 2012-11-29 | 2015-10-07 | 巴斯夫欧洲公司 | 包含钯、金和氧化铈的柴油机氧化催化剂 |
| EP2950925A1 (en) | 2013-01-29 | 2015-12-09 | Johnson Matthey Public Limited Company | Ammonia oxidation catalyst |
| GB2556231B (en) * | 2013-07-30 | 2019-04-03 | Johnson Matthey Plc | Ammonia slip catalyst |
| WO2015126025A1 (ko) * | 2014-02-18 | 2015-08-27 | 한국생산기술연구원 | 바나듐 및 텅스텐 담지 탄소재료가 포함된 scr 촉매 및 그 제조방법 |
| CN107847924B (zh) * | 2015-06-18 | 2021-04-06 | 庄信万丰股份有限公司 | 具有低n2o形成的氨泄漏催化剂 |
-
2016
- 2016-06-16 KR KR1020187001238A patent/KR20180020215A/ko not_active Withdrawn
- 2016-06-16 WO PCT/US2016/037861 patent/WO2016205506A1/en not_active Ceased
- 2016-06-16 US US15/184,267 patent/US9789441B2/en active Active
- 2016-06-16 EP EP16733809.4A patent/EP3310477A1/en active Pending
- 2016-06-16 CN CN202311029938.1A patent/CN117065794A/zh active Pending
- 2016-06-16 CN CN201680043641.2A patent/CN107847918A/zh active Pending
- 2016-06-16 JP JP2017565207A patent/JP6787935B2/ja active Active
- 2016-06-16 BR BR112017027160-5A patent/BR112017027160B1/pt active IP Right Grant
- 2016-06-16 RU RU2018101715A patent/RU2743125C2/ru active
- 2016-06-17 DE DE102016111151.1A patent/DE102016111151A1/de not_active Ceased
- 2016-06-17 GB GB1610559.5A patent/GB2542231B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016205506A1 (en) | 2016-12-22 |
| BR112017027160A2 (pt) | 2018-08-21 |
| GB2542231B (en) | 2019-08-14 |
| US20160367938A1 (en) | 2016-12-22 |
| BR112017027160B1 (pt) | 2021-09-28 |
| KR20180020215A (ko) | 2018-02-27 |
| DE102016111151A1 (de) | 2016-12-22 |
| US9789441B2 (en) | 2017-10-17 |
| GB2542231A (en) | 2017-03-15 |
| CN117065794A (zh) | 2023-11-17 |
| RU2018101715A3 (enExample) | 2019-10-09 |
| RU2743125C2 (ru) | 2021-02-15 |
| GB201610559D0 (en) | 2016-08-03 |
| CN107847918A (zh) | 2018-03-27 |
| RU2018101715A (ru) | 2019-07-18 |
| JP6787935B2 (ja) | 2020-11-18 |
| JP2018526193A (ja) | 2018-09-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9789441B2 (en) | Single or dual layer ammonia slip catalyst | |
| US10807081B2 (en) | Ammonia slip catalyst designed to be first in an SCR system | |
| US10589261B2 (en) | Exhaust system without a DOC having an ASC acting as a DOC in a system with an SCR catalyst before the ASC | |
| US10322372B2 (en) | NH3 overdosing-tolerant SCR catalyst | |
| US9993772B2 (en) | Zoned exhaust system | |
| JP7462563B2 (ja) | in-situでのPt固定によるアンモニアスリップ触媒 | |
| US20160367975A1 (en) | Ammonia slip catalyst with low n2o formation | |
| US20230035318A1 (en) | Zoned ammonia slip catalyst for improved selectivity, activity and poison tolerance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20180110 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20200129 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
| RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: JOHNSON MATTHEY PUBLIC LIMITED COMPANY |