EP3308096A1 - Echangeur de chaleur pour vehicule automobile - Google Patents

Echangeur de chaleur pour vehicule automobile

Info

Publication number
EP3308096A1
EP3308096A1 EP16728027.0A EP16728027A EP3308096A1 EP 3308096 A1 EP3308096 A1 EP 3308096A1 EP 16728027 A EP16728027 A EP 16728027A EP 3308096 A1 EP3308096 A1 EP 3308096A1
Authority
EP
European Patent Office
Prior art keywords
circuit
heat exchanger
channel
channels
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16728027.0A
Other languages
German (de)
English (en)
Other versions
EP3308096B1 (fr
Inventor
Dawid Szostek
Grzegorz Romanski
Andrzej Fudala
Grzegorz ZELEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3308096A1 publication Critical patent/EP3308096A1/fr
Application granted granted Critical
Publication of EP3308096B1 publication Critical patent/EP3308096B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels

Definitions

  • the field of the present invention is that of heat exchangers for motor vehicles, and the present invention applies more particularly, but not exclusively, to the heat exchangers used in the air conditioning circuits of these vehicles.
  • the closest state of the art is formed by the two-circuit heat exchangers, in which a first circuit contains a heat transfer fluid of the brine type, and in which a second circuit contains a refrigerant, the calories being transferred from the coolant coolant fluid.
  • the refrigerant currently most used in this type of exchanger is a fluorinated compound known under the name R134a.
  • This refrigerant fluid is usually maintained in a sealed closed circuit of the vehicle. In certain situations, however, this fluid can escape into the atmosphere: this is the case, for example, when the vehicle is damaged, or when the vehicle is at the end of its life, or when the refrigerant circuit has leak.
  • this refrigerant fluid is known to contribute in a negative way to the greenhouse effect on the planet.
  • the object of the present invention is to propose a simple, effective solution and reliable for performing a high-performance heat exchange between a heat transfer fluid and a supercritical refrigerant such as carbon dioxide, which solution is furthermore easy to assemble before the welding / soldering operations of the heat exchanger.
  • the subject of the invention is a heat exchanger comprising a first circuit intended to be traversed by a liquid heat transfer fluid and a second circuit intended to be traversed by a supercritical refrigerant fluid, characterized in that the first circuit is formed by at least one channel delimited lo by at least two plates, and in that the second circuit is formed by at least one multichannel tube, and wherein said channel is in contact with the multichannel tube.
  • the first circuit 15 comprises several channels and the second circuit comprises several tubes, and the tubes and channels are stacked alternately on each other.
  • the multichannel tube is an extruded tube of low height, of the order of a few millimeters at most, especially between 1 and 3 millimeters.
  • the multichannel tube comprises a plurality of walls, and these walls define a set of channels that extend from one longitudinal end of said multichannel tube to the other.
  • the channels thus delimited are straight and aligned next to each other.
  • the two plates forming a channel of the first circuit of the heat exchanger are assembled to each other at least by their periphery, in particular by a peripheral edge of these plates.
  • the first circuit comprising a plurality of such channels, two plates forming a first channel of the first circuit and two plates forming a second channel of said first circuit communicate with each other by snaps fitted into one another and assembled in a sealed manner.
  • the internal volume of channels adjacent is thus put in fluidic relation.
  • each plate entering the formation of a channel of the first circuit has two orifices placed at each longitudinal end of the channel and each delimited by a collar which extends, once said plate is assembled with a similar plate to form said channel, towards outside said channel, that is to say towards the outside of the internal volume delimited by two plates forming a channel.
  • the plates which, by assembly, form the first circuit also comprise one or more reinforcements which delimit heat transfer fluid circulation passages, these reinforcements being located in the central portion of the plate called bowl.
  • the contact between the elements forming the first circuit and the elements forming the second circuit is formed between at least a flat portion of a plate forming a part of a channel of the first circuit and at least a portion of an outer face of a multichannel tube forming the second circuit.
  • a direction in which extends at least one channel forming the second circuit of said heat exchanger and a direction passing through orifices formed at each longitudinal end of a plate are substantially perpendicular to each other.
  • the assembly, or the series, of first orifices and the assembly, or the series, of second orifices respectively form, once all the channels assembled in a sealed manner by said collars, a first tubular passage and a second tubular passage. which connect together all the internal volumes of the channels.
  • each plate entering the formation of a channel of the first circuit comprises at least one rib which delimits at least one circulation passage of the coolant.
  • a rib also has a function of mechanical reinforcement of the channel.
  • each rib has substantially the shape of a "V", thus forming a chevron.
  • each end of the multichannel tubes protrudes from edges located at the periphery of the constituent plates of the channels.
  • the multichannel tubes can thus be connected to the collector boxes without interfering with the plates.
  • each plate entering the formation of a channel of the first circuit comprises at least a flat portion in contact with an outer face of a multichannel tube. This guarantees the transfer of heat from the liquid heat transfer fluid to the supercritical refrigerant fluid, or in the opposite direction.
  • the invention also relates to a heat transfer fluid circuit or a supercritical refrigerant circuit for a motor vehicle, characterized in that one and / or the other of these circuits comprises a heat exchanger as detailed above. .
  • FIG. 1 is an external perspective view of two plates entering the formation of a channel of the first circuit of a heat exchanger according to the invention
  • FIG. 2 is a close perspective view of a detail of the assembly of two channels of the first circuit of a heat exchanger according to the invention
  • FIG. 3 is a perspective view of the assembly of the channels forming the first circuit and of the tubes forming the second circuit of a heat exchanger according to the invention
  • FIG. 4 is a schematic perspective view of a multichannel tube forming part of the second circuit of a heat exchanger according to the invention
  • FIG. 5 is a close-up view of a detail of the multi-channel tube represented in FIG. 4,
  • FIG. 6 is a perspective view of the assembly of two elements of the first circuit and of an element of the second circuit of a heat exchanger according to the invention
  • FIG. 7 is a schematic perspective view of the two circuits of an exchanger according to the invention, assembled
  • FIG. 8 is a schematic side view of a complete heat exchanger according to the invention.
  • the designation "inside” refers to the volumes in which circulate either the coolant or the coolant.
  • FIG. 1 shows an external perspective view of two plates 1 forming part of a channel A of the first circuit of a heat exchanger 100 according to the invention, capable of being traversed by a coolant such as a glycol fluid. , for example.
  • a channel A of this first circuit is formed by the assembly of these two plates 1 as represented by FIG. 1.
  • Each plate 1 is a thin plate, advantageously made by stamping a metallic material of to form a bowl 10 (visible in Figure 2) of shallow depth bounded by a bottom 12 and, in periphery by an edge 11.
  • each plate 1 is advantageously of the order of a few tenths of a millimeter, typically, but not limited to, 3/10 th to 7/10 th of a millimeter.
  • the depth of the bowl 10 is advantageously of the order of a few tenths of a millimeter to about 1 millimeter.
  • the edge 11, raised relative to the bottom 12 of the bowl 10 when viewing the inner part of the plate 1, forms a blank 110 of small width, substantially parallel to the bottom 12, and extending outwardly of the bowl 10.
  • each plate 1 has substantially the general shape of a hexagon of which two parallel sides 1a and 1b are longer than the other sides, the lengths of said other sides being substantially equal to each other.
  • Each plate 1 is also pierced with two orifices, hereinafter called first orifice 13a and second orifice 13b.
  • the orifices 13a and 13b have an oblong shape and are placed substantially at each end of the plate 1, substantially spaced from the length of the parallel sides 1a and 1b. They are also placed in such a way that the plate 1 has at least one plane of symmetry P.
  • the plane of symmetry P is substantially perpendicular to the parallel sides of greater length 1a and 1b, and go through the middle of these.
  • each plate 1 may also have a plurality of ribs 14 each of which, in the bowl 10, forms a projection whose height is slightly less than the depth of the bowl 10.
  • the ribs 14 are arranged symmetrically with respect to the plane of symmetry P previously mentioned, and they each have the shape of a "V". In other words, these ribs 14 each form a chevron. By their shape, these ribs 14 have a role of mechanical reinforcement and stiffening of each plate 1. They also have another role to be specified later. Between the ribs 14, the bottom 12 of each plate 5 1 is substantially planar.
  • a channel A of the first circuit of the heat exchanger according to the invention intended to be traversed by the liquid heat transfer fluid two plates 1 as described above are assembled by their edge 11. More specifically, lo the blanks 110 of the two plates 1 are contiguous and brazed together, so that the two cuvettes 10 of each plate 1 together form an internal volume V in which the liquid heat transfer fluid is called to circulate. Given the depth of each bowl 10, the height of a channel A is typically, but not limited to, of the order of 1 to 3 millimeters. he
  • the first circuit of the heat exchanger consists of a stack or succession of several channels as described above.
  • Figure 2 shows a detail of the assembly of two immediately adjacent plates constituting two channels forming the first circuit. It appears in FIG. 2 that, during the assembly of the two adjacent channels A, the orifices 13a formed on the plates 1 are facing one another, and that their collars 13c, which extend then one towards the other, cooperate to form a passage portion for communicating with each other internal volumes V formed within the adjacent channels. When assembling these channels together, the collars 13c, brazed together, thus form a sealed passage between the internal volumes V of said channels delimited each by a pair of plates 1.
  • first tubular passage 15a defined by the series of first orifices 13a visible in Figure 3 through which the heat transfer fluid can flow to enter or leave each channel forming the first circuit.
  • Each plate 1 having a first orifice 13a and a second orifice
  • a second tubular passage 15b is formed in the same manner as the first tubular passage 15a, as shown in Figure 3, that is to say by the series of second orifices 13b.
  • These tubular passages 15a and 15b form, with the succession of internal volumes V channels A assembled to form the first circuit of the heat exchanger 100 according to the invention, the first heat transfer fluid circuit.
  • Figure 3 also illustrates the presence of a plurality of multichannel tubes B interposed between each channel A of the first circuit.
  • the multi-channel tubes B are connected in leaktight manner to one or more inlet and outlet sleeves 7a and 7b connected to a single flange 50.
  • a collecting box 51 consisting of a stack of components.
  • One of these components is a first plate 5 on one side of which the sleeves input 7a and output 7b are directly secured.
  • Another component is formed by an intermediate plate 52 sandwiched between the first plate 5 and a header plate 6. The latter comprises folded longitudinal edges for gripping the first plate and thus maintain the stack of components.
  • FIGS 4 and 5 show schematic views of a multi-channel tube B entering the formation of the second circuit of the heat exchanger 00 according to the invention.
  • a multi-channel tube B which is advantageously an extruded tube, is in the form of a rigid plate 20 of generally rectangular shape of large side L , of small side I, and of thickness d.
  • this plate comprises, in its thickness, a set of walls 22, for example parallel, of width h1 which extend, in a direction D1 parallel to that of the long side L of the multi-channel tube B, of a longitudinal end to the other of the plate 20.
  • the walls 22 form bridges of material between two large outer faces 33 and 34 defined by the long side L and the short side I.
  • the walls 22 delimit between them, in the direction D1, a set of channels 21 aligned parallel to each other. extend, also in the direction D1, from one longitudinal end of the plate 20 to the other, so as to open at both ends thereof.
  • each of the channels 21 has a substantially oblong shape whose height H is greater than the width h and slightly less than thickness d of the rigid plate 20.
  • the channels 21 are spaced from each other by the width h1 of each wall 22, and each of these walls plays a role of mechanical reinforcement of the entire multi-channel tube B, the channels 21 being aligned side by side.
  • FIG. 6 more precisely illustrates the connection between two channels A of the first circuit of the heat exchanger 100 according to the invention and a tube multichannel B of the second circuit of this heat exchanger. It appears in this figure that the multi-channel tube B is interposed between the two channels A, and that the multichannel tube B protrudes, at each of its ends, the longitudinal edges 1a, 1b of greater length of each of the channels A. More specifically, and as mentioned above, the outer wall of the bowl 10 formed in each plate 1 entering the formation of a channel A is between the ribs 14 that this plate carries substantially planar. According to the invention, at least a portion 35 of these flat portions is in direct contact, in particular by soldering, with an outer face 33 or 34 of the immediately adjacent multichannel tube B.
  • the dimensions of the flanges 13c of adjacent channels A and the thickness d of each multichannel tube B are defined in such a way that the insertion of these tubes between two adjacent channels A is possible while leaving a space of small dimensions such that it is possible to achieve direct contact by simple welding or soldering between multichannel tube B of the second circuit and plates 1 of the channels of the first circuit.
  • the thickness d of each plate 20 is of the order of 1 to 3 millimeters, corresponding to the space between two immediately adjacent channels A of the first circuit.
  • the first and second circuits of a heat exchanger 100 are formed of a succession of channels A and multichannel tubes B interposed between two adjacent channels, the tubular passages 15a and 15b defining an inlet and an outlet of the coolant in the first circuit and thus a general direction of circulation of said fluid in said first circuit.
  • the supercritical refrigerant circulates in the channels 21 of the multichannel tubes B in the second circuit.
  • an inlet cheek 3 is combined with a first plate 1 so as to define an inlet zone of the coolant in the first circuit.
  • the input cheek 3 has a thickness greater than the thickness of a plate 1 and thus forms a reinforcement mechanical for the heat exchanger.
  • the inlet cheek 3 receives an inlet pipe 31 also delimiting one of the tubular passages 15a or 15b.
  • the heat exchanger 100 also comprises an outlet cheek 4 sealed to a plate 1.
  • This outlet cheek 4 supports an outlet pipe 41 delimiting the second tubular passage 15b.
  • the heat transfer fluid therefore enters the first circuit through the inlet pipe 31, circulates in the first tubular passage 15, then is distributed in each channel A, to be collected by the second tubular passage 15b, and finally out of the exchanger heat 100 through the outlet pipe 41.
  • the inlet and the outlet of the heat transfer fluid circuit are each located at one end of the heat exchanger 100 according to the invention, according to the stacking direction of the assembly. multichannel channel tubes.
  • the multichannel tubes B are connected, at each of their ends, to a manifold 51 as described in connection with Figure 3 above.
  • Only one of two header boxes is connected to a set of inlet and outlet sleeves 7a and 7b, which ensure the circulation of supercritical refrigerant fluid in the second circuit of the heat exchanger according to the invention.
  • the inlet and outlet sleeves 7a and 7b of the second circuit are situated on the same side of the heat exchanger, thus defining a "U" configuration of this second circuit.
  • the manifold without inlet and outlet sleeves 7a and 7b, said recovery collecting box 53 ensures the recovery of the supercritical refrigerant fluid arriving through a portion of the channels 21 of the multichannel tubes B.
  • This manifold then directs the fluid of so that it enters the other part of the channels 21 to go to the manifold 51, said header manifold.
  • a general direction D2 of circulation of the coolant in the channels A constituting the first circuit is defined by a straight line passing through the first orifice 13a and the second orifice 13b of the same plate 1.
  • This direction D2 is perpendicular, or substantially perpendicular, to the general direction D1 of circulation of the supercritical refrigerant fluid in the multichannel tubes B , defined by the orientation of the channels 21 of the multichannel tubes B.
  • at least one channel A of the first circuit and at least one multichannel tube B of the second circuit are arranged in the heat exchanger 100 so as to that their respective fluid path is perpendicular, or substantially perpendicular.
  • the process for producing a heat exchanger 100 according to the invention can be as follows: stacking of the channels A and multichannel tubes B so as to form a heat exchange body, forming respectively the first and the second fluid circuit, pre-assembly of the manifolds 51, pre-assembly of the inlet pipes 31 and outlet 41 on the stack of multichannel tubes B, pre-assembly of the inlet sleeves 7a and outlet 7 on the stack of the channels A, then brazing or welding the assembly in a suitable oven.
  • the invention therefore makes it possible to produce a single monobloc exchanger whose elements in which the supercritical refrigerant fluid circulates are designed to withstand the high pressures necessary for the implementation of the latter, while offering high heat exchange performance.
  • the manufacturing operations of the various elements of the circuits of the heat exchanger such as the stamping of the plates forming the channels of the heat transfer fluid circuit, the extrusion of the multichannel tubes, the soldering of the assembled elements, the pre-assembly steps and the final soldering step are, moreover, simple and cost-effective for mass production.
  • Such a heat exchanger 100 remains economically viable for mass production, as is particularly the case in the world of automotive production.
  • an inlet sleeve 7a is secured to a first manifold 51
  • an outlet sleeve 7b is secured to a second manifold 53.
  • Any other respective configuration of the inlet or outlet sleeves or pipes the first or second circuit can also be implemented, as it helps to optimize the circulation of heat transfer fluids and supercritical refrigerant and, thus, the efficiency of heat exchange.
  • any general shape other than hexagonal can be given to the plates 1 entering the formation of the channels A, insofar as the specificities of these plates described here with respect to the invention are respected.

Abstract

L'invention a pour objet un échangeur de chaleur comprenant un premier circuit destiné à être parcouru par un fluide caloporteur liquide et un deuxième circuit destiné à être parcouru par une fluide réfrigérant supercritique, dans lequel le premier circuit est formé par au moins un canal (A) délimité par au moins deux plaques (1, 1'), et dans lequel le deuxième circuit est formé par au moins un tube multicanaux (B), le canal (A) étant en contact avec le tube (B). Avantageusement, dans cet échangeur, le premier circuit comprend plusieurs canaux (A) et le deuxième circuit comprend plusieurs tubes (B), et les tubes (B) et canaux (A) étant empilés alternativement les uns sur les autres. Un tel échangeur de chaleur trouve une application privilégiée aux dispositifs de climatisation des véhicules automobiles.

Description

ECHANGEUR DE CHALEUR POUR VEHICULE AUTOMOBILE
Le domaine de la présente invention est celui des échangeurs de chaleur pour véhicules automobiles, et la présente invention s'applique plus particulièrement, mais de manière non exclusive, aux échangeurs de chaleur utilisés dans les circuits de climatisation de ces véhicules.
L'état de la technique le plus proche est formé par les échangeurs de chaleur à deux circuits, dans lesquels un premier circuit contient un fluide caloporteur du type eau glycolée, et dans lesquels un second circuit contient un fluide réfrigérant, les calories étant transférées du fluide caloporteur au fluide réfrigérant.
Le fluide réfrigérant actuellement le plus utilisé dans ce type d'échangeur est un composé fluoré connu sous la dénomination R134a. Ce fluide réfrigérant est habituellement maintenu dans un circuit fermé étanche du véhicule. Dans certaines situations, toutefois, ce fluide peut s'échapper dans l'atmosphère : c'est le cas, par exemple, lorsque le véhicule est accidenté, ou lorsque le véhicule est en fin de vie, ou encore lorsque le circuit réfrigérant présente une fuite. Or, ce fluide réfrigérant est connu pour contribuer de manière négative à l'effet de serre sur la planète.
Pour pallier cet inconvénient, il a été proposé de remplacer le composé fluoré R 34a par du dioxyde de carbone connu sous la dénomination R744 qui a un impact nettement moins négatif sur l'effet de serre de la planète que celui des composés fluorés évoqués plus haut. La mise en œuvre de ce fluide aux caractéristiques supercritique impose toutefois un certain nombre de contraintes techniques. En effet, le cycle thermodynamique du CO2 impose, pour l'obtention d'un effet réfrigérant correspondant aux exigences de l'application, la mise en œuvre de hautes pressions, typiquement de l'ordre de 160 bars. Les technologies d'échangeur à plaques utilisées pour des fluides réfrigérants fluorés ne résistent pas à ces pressions.
Le but de la présente invention est de proposer une solution simple, efficace et fiable pour réaliser un échange thermique performant entre un fluide caloporteur et un fluide réfrigérant supercritique tel qu'un dioxyde de carbone, solution qui soit en outre facile à assembler avant les opérations de soudage/brasage de l'échangeur de chaleur.
5
Dans ce but, l'invention a pour objet un échangeur de chaleur comprenant un premier circuit destiné à être parcouru par un fluide caloporteur liquide et un deuxième circuit destiné à être parcouru par une fluide réfrigérant supercritique, caractérisé en ce que le premier circuit est formé par au moins un canal délimité lo par au moins deux plaques, et en ce que le deuxième circuit est formé par au moins un tube multicanaux, et dans lequel ledit canal est en contact avec le tube multicanaux.
Selon un mode de réalisation privilégié de l'invention, le premier circuit 15 comprend plusieurs canaux et le deuxième circuit comprend plusieurs tubes, et les tubes et canaux sont empilés alternativement les uns sur les autres.
Avantageusement, le tube multicanaux est un tube extrudé de faible hauteur, de l'ordre de quelques millimètres au maximum, notamment compris entre 1 et 3 20 millimètres. Selon un mode de réalisation de l'invention, le tube multicanaux comprend une pluralité de parois, et ces parois délimitent un ensemble de canaux qui s'étendent d'une extrémité longitudinale dudit tube multicanaux à l'autre. Avantageusement, les canaux ainsi délimités sont droits et alignés les uns à côté des autres.
25
Selon une autre caractéristique de l'invention, les deux plaques formant un canal du premier circuit de l'échangeur de chaleur sont assemblées l'une à l'autre au moins par leur périphérie, notamment par un bord périphérique de ces plaques. Le premier circuit comprenant plusieurs canaux de ce type, deux plaques formant 30 un premier canal du premier circuit et deux plaques formant un deuxième canal dudit premier circuit communiquent entre eux par des collets emmanchés l'un dans l'autre et assemblés de manière étanche. Le volume interne de canaux adjacents est ainsi mis en relation fluidique.
Chaque plaque entrant dans la formation d'un canal du premier circuit comporte deux orifices placés à chacune des extrémités longitudinales du canal et délimité chacun par un collet qui s'étend, une fois ladite plaque assemblée avec une plaque similaire pour former ledit canal, vers l'extérieur dudit canal, c'est-à- dire vers l'extérieur du volume interne délimité par deux plaques formant un canal. Selon un mode de réalisation de l'invention, les plaques qui forment, par assemblage, le premier circuit, comprennent également un ou des renforts qui délimitent des passages de circulation du fluide caloporteur, ces renforts étant situés dans la portion centrale de la plaque appelée cuvette. Selon une autre caractéristique de l'invention, le contact entre les éléments formant le premier circuit et les éléments formant le deuxième circuit est réalisé entre au moins une portion plane d'une plaque formant une partie d'un canal du premier circuit et au moins une partie d'une face extérieure d'un tube multicanaux formant le deuxième circuit.
Selon un aspect de l'invention, une direction selon laquelle s'étend au moins un canal formant le deuxième circuit dudit échangeur de chaleur et une direction passant par orifices ménagés à chaque extrémité longitudinale d'une plaque sont sensiblement perpendiculaires entre elles.
L'ensemble, ou la série, de premiers orifices et l'ensemble, ou la série, de deuxièmes orifices forment respectivement, une fois l'ensemble des canaux assemblés de manière étanche par lesdits collets, un premier passage tubulaire et second un passage tubulaire qui relient entre eux l'ensemble des volumes interne des canaux.
Selon un mode de réalisation de l'invention, chaque plaque entrant dans la formation d'un canal du premier circuit comprend au moins une nervure qui délimite au moins un passage de circulation du fluide caloporteur. Une telle nervure présente également une fonction de renfort mécanique du canal. Selon un exemple, chaque nervure a sensiblement la forme d'un "V", formant ainsi un 5 chevron.
Dans l'empilement intercalé des canaux et tubes multicanaux, chaque extrémité des tubes multicanaux dépasse de bords situés à la périphérie des plaques constitutives des canaux. On peut ainsi raccorder les tubes multicanaux à lo des boîtes collectrices sans entrer en interférence avec les plaques.
Selon l'invention, chaque plaque entrant dans la formation d'un canal du premier circuit comprend au moins une partie plane en contact avec une face extérieure d'un tube multicanaux. On garantit ainsi le transfert des calories du 15 fluide caloporteur liquide vers le fluide réfrigérant supercritique, ou en sens contraire.
L'invention vise également un circuit de fluide caloporteur ou un circuit de fluide réfrigérant supercritique pour un véhicule automobile, caractérisée en ce 20 que l'un et/ou l'autre de ces circuits comprend un échangeur de chaleur tel que détaillé ci-dessus.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif, en relation 25 avec des dessins dans lesquels :
- la figure 1 est une vue en perspective extérieure de deux plaques entrant dans la formation d'un canal du premier circuit d'un échangeur de chaleur selon l'invention,
30 - la figure 2 est une vue en perspective rapprochée d'un détail de l'assemblage de deux canaux du premier circuit d'un échangeur de chaleur selon l'invention, - la figure 3 est une vue en perspective de l'assemblage des canaux formant le premier circuit et des tubes formant le deuxième circuit d'un échangeur de chaleur selon l'invention,
- la figure 4 est une vue schématique en perspective d'un tube multicanaux entrant dans la formation du deuxième circuit d'un échangeur de chaleur selon l'invention,
- la figure 5 est une vue rapprochée d'un détail du tube multicanaux représenté à la figure 4,
- la figure 6 est une vue en perspective de l'assemblage de deux éléments du premier circuit et d'un élément du deuxième circuit d'un échangeur de chaleur selon l'invention,
- la figure 7 est une vue schématique en perspective des deux circuits d'un échangeur selon l'invention, assemblés,
- et la figure 8 est une vue schématique de côté d'un échangeur de chaleur complet selon l'invention.
Il faut tout d'abord noter que les figures exposent l'invention de manière détaillée pour la mettre en œuvre, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant.
Dans la suite de la description, la dénomination "intérieur" se réfère aux volumes dans lesquels circulent soit le fluide caloporteur soit le fluide réfrigérant.
La figure 1 montre une vue en perspective extérieure deux plaques 1 entrant dans la formation d'un canal A du premier circuit d'un échangeur de chaleur 100 selon l'invention, apte à être parcouru par un fluide caloporteur tel qu'un liquide glycolé, par exemple. Il faut comprendre ici qu'un canal A de ce premier circuit est formé de l'assemblage de ces deux plaques 1 tel que représenté par la figure 1. Chaque plaque 1 est une plaque mince, avantageusement réalisée par emboutissage d'un matériau métallique de manière à former une cuvette 10 (visible sur la figure 2) de faible profondeur délimitée par un fond 12 et, en périphérie, par un bord 11. A titre indicatif, l'épaisseur de chaque plaque 1 est avantageusement de l'ordre de quelques dixièmes de millimètre, typiquement, mais de manière non limitative, 3/10e à 7/10e de millimètre. La profondeur de la cuvette 10 est avantageusement de l'ordre de quelques dixièmes de millimètre à environ 1 millimètre. Le bord 11 , surélevé par rapport au fond 12 de la cuvette 10 lorsque l'on regarde la partie intérieure de la plaque 1 , forme un flan 110 de faible largeur, sensiblement parallèle au fond 12, et s'étendant vers l'extérieur de la cuvette 10. Une fois les deux plaques 1 assemblées pour délimiter un canal A, l'épaisseur de celui-ci mesurée au droit des cuvettes 10 est comprise entre 1 et 3 millimètres.
Selon le mode de réalisation, non exclusif, présenté par les figures, chaque plaque 1 a sensiblement la forme générale d'un hexagone dont deux côtés parallèles 1 a et 1 b sont plus longs que les autres côtés, les longueurs desdits autres côtés étant sensiblement égales entre elles.
Chaque plaque 1 est également percée de deux orifices, ci-après nommé premier orifice 13a et deuxième orifice 13b. Dans l'exemple illustré par les figures, les orifices 13a et 13b ont une forme oblongue et sont placés sensiblement à chaque extrémité de la plaque 1 , sensiblement espacés de la longueur des côtés parallèles 1 a et 1 b. Ils sont également placés de telle manière que la plaque 1 présente au moins un plan de symétrie P. Dans l'exemple illustré par les figures, le plan de symétrie P est sensiblement perpendiculaire aux côtés parallèles de plus grande longueur 1a et 1 b, et passe par le milieu de ces derniers.
Chaque orifice 13a, 13b présente, à sa périphérie, un collet 13c qui s'étend vers l'extérieur de la plaque 1 , à l'opposé du sens dans lequel s'étend le bord 11 par rapport au fond 12 de la cuvette 10. Entre le premier orifice 13a et le deuxième orifice 13b, chaque plaque 1 peut présenter également une pluralité de nervures 14 dont chacune forme, au sein de la cuvette 10, une saillie dont la hauteur est légèrement inférieure à la profondeur de la cuvette 10. Selon le mode de réalisation de l'invention illustré par les figures, les nervures 14 sont agencées symétriquement par rapport au plan de symétrie P précédemment évoqué, et elles ont chacune la forme d'un "V". En d'autres termes, ces nervures 14 forment chacune un chevron. Par leur forme, ces nervures 14 ont un rôle de renfort mécanique et de rigidification de chaque plaque 1. Elles ont également un autre rôle qui sera précisé plus loin. Entre les nervures 14, le fond 12 de chaque plaque 5 1 est sensiblement plan.
Pour former un canal A du premier circuit de l'échangeur de chaleur selon l'invention destiné à être parcouru par le fluide caloporteur liquide, deux plaques 1 telles que décrites ci-dessus sont assemblées par leur bord 11. Plus précisément, l o les flans 110 des deux plaques 1 sont accolés et brasés entre eux, de manière à ce que les deux cuvettes 10 de chaque plaque 1 forment, ensemble, un volume interne V dans lequel le fluide caloporteur liquide est appelé à circuler. Etant donnée la profondeur de chaque cuvette 10, la hauteur d'un canal A est typiquement, mais de manière non limitative, de l'ordre de 1 à 3 millimètres. Il
15 ressort toutefois de la description des plaques 1 qui précède que le volume interne V délimité par l'assemblage de ces dernières communique avec l'extérieur par les orifices 13a, 13b portés par celles-ci.
Selon une caractéristique, le premier circuit de l'échangeur de chaleur selon 20 l'invention est constitué d'un empilement ou succession de plusieurs canaux tels que décrits ci-dessus. La figure 2 montre un détail de l'assemblage de deux plaques immédiatement adjacentes constitutives de deux canaux formant le premier circuit. Il apparaît sur la figure 2 que, lors de l'assemblage des deux canaux A adjacents, les orifices 13a ménagés sur les plaques 1 se trouvent en 25 regard l'un de l'autre, et que leurs collets 13c, qui s'étendent alors l'un vers l'autre, coopèrent pour former une portion de passage permettant de faire communiquer entre eux les volumes internes V formés au sein des canaux adjacents. Lors de l'assemblage de ces canaux entre eux, les collets 13c, brasés ensemble, forment donc un passage étanche entre les volumes internes V desdits canaux délimités 30 chacun par une paire de plaques 1. On notera que le collet 13c d'un premier canal A est emmanché dans le collet 13c d'un second canal A immédiatement adjacent. Ces passages étanches successifs forment, avec la succession des canaux assemblés pour former le premier circuit de l'échangeur de chaleur selon l'invention, un premier passage tubulaire 15a délimité par la série de premiers orifices 13a visible sur la figure 3 à travers lequel le fluide caloporteur peut circuler en vue d'entrer ou de sortir de chaque canal formant le premier circuit. Chaque plaque 1 présentant un premier orifice 13a et un deuxième orifice
13b à chacune de ses extrémités, un second passage tubulaire 15b est formé de la même manière que le premier passage tubulaire 15a, comme le montre la figure 3, c'est-à-dire par la série de deuxième orifices 13b. Ces passages tubulaires 15a et 15b forment, avec la succession des volumes internes V des canaux A assemblés pour former le premier circuit de l'échangeur de chaleur 100 selon l'invention, le premier circuit de fluide caloporteur. On notera ici l'intérêt qu'il y a à ménager les premier orifices 13a et les deuxième orifices 13b de telle manière qu'ils soient aussi éloignés que possible l'un de l'autre sur chaque plaque 1 , de manière à augmenter autant que possible la longueur parcourue par le fluide caloporteur et, ainsi, de manière à améliorer l'efficacité de l'échange thermique.
Un autre rôle des nervures 14 ménagées sur les plaques 1 apparaît également ici. La présence de ces nervures, en saillie au sein des différents volumes internes V des canaux A empilés, permet de perturber la circulation laminaire du fluide caloporteur en créant des turbulences de ce fluide au sein du volume interne V. Il s'ensuit une optimisation de la surface de contact entre le fluide caloporteur circulant et la surface interne des canaux A et, ainsi, une amélioration de l'efficacité de l'échange thermique par la génération de turbulences favorisant l'échange thermique entre le fluide liquide et les plaques 1 délimitant le canal A.
La figure 3 illustre également la présence d'une pluralité de tubes multicanaux B intercalés entre chaque canaux A du premier circuit. Les tubes multicanaux B sont raccordés de manière étanche à un ou des manchons d'entrée 7a et de sortie 7b tous deux raccordés à une unique bride 50. Entre ces manchons d'entrée 7a et de sortie 7b et les tubes multicanaux B se trouve une boîte collectrice 51 constituée d'un empilement de composants. L'un de ces composants est une première plaque 5 sur une face de laquelle les manchons d'entrée 7a et de sortie 7b sont directement solidarisés. Un autre composant est formé par une plaque intermédiaire 52 prise en sandwich entre la première plaque 5 et une plaque collectrice 6. Cette dernière comprend des bords longitudinaux repliés pour enserrer la première plaque et la maintenir ainsi l'empilement de composants.
Les figures 4 et 5 montrent des vues schématiques d'un tube muiticanaux B entrant dans la formation du deuxième circuit de l'échangeur de chaleur 00 selon l'invention. Selon le mode de réalisation de l'invention, non exclusif, illustré par les figures, un tube muiticanaux B, qui est avantageusement un tube extrudé, se présente sous la forme d'une plaque rigide 20 de forme générale sensiblement rectangulaire de grand côté L, de petit côté I, et d'épaisseur d. Selon l'invention, cette plaque comprend, en son épaisseur, un ensemble de parois 22, par exemple parallèle, de largeur h1 qui s'étendent, selon une direction D1 parallèle à celle du grand côté L du tube muiticanaux B, d'une extrémité longitudinale à l'autre de la plaque 20.
Les parois 22 forment des ponts de matière entre deux grandes faces extérieures 33 et 34 définies par le grand côté L et le petit côté I. Les parois 22 délimitent entre elles, selon la direction D1 , un ensemble de canaux 21 alignés parallèles entre eux qui s'étendent, également selon la direction D1 , d'une extrémité longitudinale de la plaque 20 à l'autre, de manière à déboucher aux deux extrémités de celle-ci. En section selon un plan perpendiculaire au grand côté L du tube muiticanaux B, et comme le montre plus précisément la figure 5, chacun des canaux 21 a une forme sensiblement oblongue dont la hauteur H est supérieure à la largeur h et légèrement inférieure à l'épaisseur d de la plaque rigide 20. Selon une direction D3 sensiblement parallèle à celle du petit côté I de la plaque rigide 20, les canaux 21 sont donc espacés entre eux de la largeur h1 de chaque paroi 22, et chacune de ces parois joue un rôle de renfort mécanique de l'ensemble du tube muiticanaux B, les canaux 21 étant alignés côte à côte.
La figure 6 illustre plus précisément l'assemblage entre deux canaux A du premier circuit de l'échangeur de chaleur 100 selon l'invention et un tube multicanaux B du deuxième circuit de cet échangeur de chaleur. Il apparaît sur cette figure que le tube multicanaux B est intercalé entre les deux canaux A, et que le tube multicanaux B dépasse, en chacune de ses extrémités, des bords longitudinaux 1 a, 1 b de plus grande longueur de chacun des canaux A. Plus précisément, et comme il a été évoqué plus haut, la paroi extérieure de la cuvette 10 ménagée dans chaque plaque 1 entrant dans la formation d'un canal A est, entre les nervures 14 que cette plaque porte, sensiblement plan. Selon l'invention, au moins une portion 35 de ces parties planes est en contact direct, notamment par brasage, avec une face extérieure 33 ou 34 du tube multicanaux B immédiatement adjacent.
Avantageusement, les dimensions des collets 13c des canaux A adjacents et l'épaisseur d de chaque tube multicanaux B sont définies de telle manière que l'insertion de ces tubes entre deux canaux A adjacents soit possible en laissant un espace de faible dimensions tel qu'il soit possible de réaliser alors un contact direct par simple soudage ou brasage entre tube multicanaux B du deuxième circuit et plaques 1 des canaux du premier circuit. Selon un mode de réalisation préféré de l'invention, non limitatif, l'épaisseur d de chaque plaque 20 est de l'ordre de 1 à 3 millimètres, correspondant ainsi à l'espace qui sépare deux canaux A immédiatement adjacent du premier circuit.
Comme le montrent les figures 3, 7 et 8, les premier et deuxième circuits d'un échangeur de chaleur 100 selon l'invention sont formés d'une succession de canaux A et de tubes multicanaux B intercalés entre deux canaux adjacents, les passages tubulaires 15a et 15b définissant une entrée et une sortie du fluide caloporteur dans le premier circuit et, ainsi une direction générale de circulation dudit fluide dans ledit premier circuit.
Le fluide réfrigérant supercritique circule dans les canaux 21 des tubes multicanaux B dans le deuxième circuit. En référence aux figures 7 et 8, une joue d'entrée 3 est combinée à une première plaque 1 de manière à définir une zone d'entrée du fluide caloporteur dans le premier circuit. La joue d'entrée 3 présente une épaisseur supérieure à l'épaisseur d'une plaque 1 et forme ainsi un renfort mécanique pour l'échangeur de chaleur. La joue d'entrée 3 reçoit une tubulure d'entrée 31 délimitant également l'un des passages tubulaires 15a ou 15b.
L'échangeur de chaleur 100 selon l'invention comprend encore une joue de sortie 4 assemblée de manière étanche à une plaque 1. Cette joue de sortie 4 supporte une tubulure de sortie 41 délimitant le second passage tubulaire 15b. Le fluide caloporteur entre donc dans le premier circuit par la tubulure d'entrée 31 , circule dans le premier passage tubulaire 15, puis se réparti dans chaque canaux A, pour être collecté par le second passage tubulaire 15b, et finalement sortir de l'échangeur de chaleur 100 par la tubulure de sortie 41.
Selon le mode de réalisation avantageux illustré par les figures, l'entrée et la sortie du circuit du fluide caloporteur sont situées chacune à une extrémité de l'échangeur de chaleur 100 selon l'invention, selon la direction d'empilement de l'ensemble canaux-tubes multicanaux.
De même, les tubes multicanaux B sont raccordés, en chacune de leurs extrémités, à une boîte collectrice 51 telle que décrite en rapport avec la figure 3 ci-dessus. Une seule de deux boîtes collectrice est relié à un ensemble de manchons d'entrée et de sortie 7a et 7b, qui assurent la circulation du fluide réfrigérant supercritique au sein du deuxième circuit de l'échangeur de chaleur selon l'invention. On comprend ainsi que les manchons d'entrée et de sortie 7a et 7b du deuxième circuit sont situés d'un même côté de l'échangeur de chaleur, définissant ainsi une configuration "en U" de ce deuxième circuit. La boîte collectrice dépourvue de manchons d'entrée et de sortie 7a et 7b, dite boîte collectrice de récupération 53, assure la récupération du fluide réfrigérant supercritique arrivant par une partie des canaux 21 du tubes multicanaux B. Cette boîte collectrice dirige alors ce fluide de manière à ce qui pénètre dans l'autre partie des canaux 21 pour se diriger vers la boîte collectrice 51 , dite boîte collectrice d'entrée.
Selon l'invention, et comme le montre la figures 6, une direction générale D2 de circulation du fluide caloporteur dans les canaux A constitutifs du premier circuit est définie par une droite passant par le premier orifice 13a et le deuxième orifice 13b d'une même plaque 1. Cette direction D2 est perpendiculaire, ou sensiblement perpendiculaire, à la direction générale D1 de circulation du fluide réfrigérant supercritique dans les tubes multicanaux B, définie par l'orientation des canaux 21 des tubes multicanaux B. En d'autres termes, au moins un canal A du premier circuit et au moins un tube multicanaux B du deuxième circuit sont agencés dans l'échangeur de chaleur 100 de manière à ce que leur parcours de fluide respectif soit perpendiculaire, ou sensiblement perpendiculaire. Le processus de réalisation d'un échangeur de chaleur 100 selon l'invention peut être le suivant : empilement des canaux A et tubes multicanaux B de manière à former un corps d'échange thermique, formant respectivement le premier et le deuxième circuit de fluides, pré-assemblage des boîtes collectrices 51 , préassemblage des tubulures d'entrée 31 et de sortie 41 sur l'empilement de tubes multicanaux B, pré-assemblage des manchons d'entrée 7a et de sortie 7 sur l'empilement des canaux A, puis brasage ou soudage de l'ensemble dans un four approprié.
L'invention permet donc de réaliser un échangeur monobloc simple et dont les éléments dans lesquels circule le fluide réfrigérant supercritique sont conçus pour supporter les hautes pressions nécessaires à la mise en œuvre de ce dernier, tout en offrant des performances élevés d'échange thermique. Selon le mode de réalisation décrit, les opérations de fabrication des différents éléments des circuits de l'échangeur de chaleur comme l'emboutissage des plaques formant les canaux du circuit du fluide caloporteur, l'extrusion des tubes multicanaux, le brasage des éléments assemblés, les étapes de pré-assemblage et l'étape finale de brasage sont, en outre, simples, et d'un coût maîtrisé pour une réalisation en grande série. Un tel échangeur de chaleur 100 reste donc économiquement viable pour une production en grande série, comme c'est notamment le cas dans le monde de l'automobile de série. De plus, un tel échangeur est d'un encombrement restreint, ce qui facilite son intégration dans un véhicule, et permet son installation sur une large variété de véhicules. Il est bien sûr à noter que l'invention ne saurait se réduire aux moyens et configurations décrits et illustrés, mais qu'elle s'applique également à tous moyens ou configurations équivalents et à toute combinaison de tels moyens. En particulier, si, dans l'exemple décrit par le présent document, les manchons d'entrée et de sortie 7a et 7b du deuxième circuit de l'échangeur de chaleur 100 selon l'invention sont situés du même côté de cet échangeur, définissant une circulation du fluide réfrigérant en "U", une telle configuration n'est pas exclusive, et les manchons d'entrée et de sortie du deuxième circuit peuvent être agencés pour définir une configuration en "I" sans que cela nuise à l'invention. Dans ce cas de figure, un manchon d'entrée 7a est solidarisé à une première boîte collectrice 51 , et un manchon de sortie 7b est solidarisé à une seconde boîte collectrice 53. Toute autre configuration respective des manchons ou tubulures d'entrée et de sortie du premier ou du deuxième circuit peut également être mise en œuvre, tant qu'elle contribue à optimiser la circulation des fluides caloporteur et réfrigérant supercritique et, ainsi, l'efficacité de l'échange thermique. De même, toute forme générale autre qu'hexagonal peut être donnée aux plaques 1 entrant dans la formation des canaux A, dans la mesure où les spécificités de ces plaques décrites ici au regard de l'invention sont respectées.

Claims

REVENDICATIONS
1. Echangeur de chaleur (100) comprenant un premier circuit destiné à être parcouru par un fluide caloporteur liquide et un deuxième circuit destiné à être parcouru par une fluide réfrigérant supercritique, caractérisé en ce que le premier circuit est formé par au moins un canal (A) délimité par au moins deux plaques (1 ), et en ce que le deuxième circuit est formé par au moins un tube muiticanaux (B), ledit au moins un canal (A) étant en contact avec ledit au moins un tube muiticanaux (B).
2. Echangeur de chaleur selon la revendication 1 , caractérisé en ce que le premier circuit comprend plusieurs canaux (A), en ce que le deuxième circuit comprend plusieurs tubes muiticanaux (B), et en ce que les tubes muiticanaux (B) et canaux (A) sont empilés alternativement les uns sur les autres.
3. Echangeur de chaleur selon l'une ou l'autre des revendications 1 ou 2, caractérisé en ce que chaque tube muiticanaux (B) est un tube extrudé dont l'épaisseur (d) est comprise entre 1 et 3 millimètres.
4. Echangeur de chaleur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chaque tube muiticanaux (B) comprend une pluralité de parois (22) qui délimitent entre elles un ensemble de canaux (21 ) qui s'étendent d'une extrémité dudit tube muiticanaux (B) à l'autre.
5. Echangeur de chaleur selon la revendication 4, caractérisé en ce que les parois (22) et canaux (21 ) de chaque tube muiticanaux (B) s'étendent, selon une direction générale (D1 ), droits et alignés parallèlement les uns à côté des autres.
6. Echangeur de chaleur selon la revendication 5, caractérisé en ce que la direction (D1 ) selon laquelle s'étendent au moins un canal (21 ) formant le deuxième circuit dudit échangeur et une direction (D2) passant par orifices (13a, 13b) ménagés à chaque extrémité longitudinale d'une plaque (1 ) sont sensiblement perpendiculaires entre elles.
7. Echangeur de chaleur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que deux plaques (1 ) formant un canal (A) du premier circuit sont assemblées l'une avec l'autre de manière étanche au moins par leur bord (11 ).
8. Echangeur de chaleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chaque plaque (1 ) entrant dans la formation d'un canal (A) du premier circuit comporte deux orifices (13a, 13b) placés à chacune de ses extrémités longitudinales et délimité chacun par un collet (13c) qui s'étend, une fois ladite plaque assemblée avec une plaque similaire pour former ledit canal (A), vers l'extérieur dudit canal (A).
9. Echangeur de chaleur selon la revendication 8, caractérisé en ce que les canaux (A) du premier circuit communiquent entre eux par les collets (13c) assemblés entre eux par emmanchement.
10. Echangeur de chaleur selon l'une quelconque des revendications 8 à
9, caractérisé en ce qu'une pluralité de premiers orifices (13a) et une pluralité de second orifices (13b) forment respectivement, une fois l'ensemble des canaux (A) assemblés de manière étanche par lesdits collets (13c), un premier passage tubuiaire (15a) et second un passage tubuiaire (15b) qui relient entre eux l'ensemble des volumes internes (V) des canaux (A).
11. Echangeur de chaleur selon l'une quelconque des revendications 1 à
10, caractérisé en ce que chaque plaque (1 ) entrant dans la formation d'un canal (A) du premier circuit comprend au moins une nervure (14) qui délimite au moins un passage de circulation du fluide caloporteur.
12. Echangeur de chaleur selon la revendication 11 , caractérisé en ce que chaque nervure (14) a sensiblement la forme d'un "V".
13. Echangeur de chaleur selon l'une quelconque des revendications 1 à 15, caractérisé en ce que, dans l'empilement intercalé des canaux (A) et tubes multicanaux (B), chaque extrémité des tubes multicanaux (B) dépasse de bords (11 ) situés à la périphérie des plaques (1 ) constitutives des canaux (A).
14. Echangeur de chaleur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que chaque plaque (1 ) entrant dans la formation d'un canal
(A) du premier circuit dudit échangeur comprend au moins une partie plane (35) en contact avec une face extérieure (33) d'un tube multicanaux (B).
15. Circuit de fluide caloporteur pour un véhicule automobile, caractérisé en ce qu'il comprend un échangeur de chaleur (100) selon l'une quelconque des revendications 1 à 14.
16. Circuit de fluide réfrigérant supercritique pour un véhicule automobile, caractérisé en ce qu'il comprend un échangeur de chaleur (100) selon l'une quelconque des revendications 1 à 14.
EP16728027.0A 2015-06-12 2016-06-09 Echangeur de chaleur pour vehicule automobile Active EP3308096B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555347A FR3037387B1 (fr) 2015-06-12 2015-06-12 Echangeur de chaleur pour vehicule automobile
PCT/EP2016/063188 WO2016198536A1 (fr) 2015-06-12 2016-06-09 Echangeur de chaleur pour vehicule automobile

Publications (2)

Publication Number Publication Date
EP3308096A1 true EP3308096A1 (fr) 2018-04-18
EP3308096B1 EP3308096B1 (fr) 2020-12-16

Family

ID=54291418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16728027.0A Active EP3308096B1 (fr) 2015-06-12 2016-06-09 Echangeur de chaleur pour vehicule automobile

Country Status (3)

Country Link
EP (1) EP3308096B1 (fr)
FR (1) FR3037387B1 (fr)
WO (1) WO2016198536A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084698B1 (fr) * 2018-07-31 2020-07-24 Safran Aircraft Engines Echangeur thermique pour turbomachine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017133A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換器
ES2349909B1 (es) * 2008-10-21 2011-09-28 Valeo Termico, S.A. Intercambiador de calor de placas apiladas.
JP5206830B2 (ja) * 2011-03-25 2013-06-12 ダイキン工業株式会社 熱交換器
DE102012224353A1 (de) * 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Wärmeübertrager

Also Published As

Publication number Publication date
WO2016198536A1 (fr) 2016-12-15
EP3308096B1 (fr) 2020-12-16
FR3037387A1 (fr) 2016-12-16
FR3037387B1 (fr) 2019-07-19

Similar Documents

Publication Publication Date Title
EP2715268B1 (fr) Boite collectrice, echangeur de chaleur comprenant ladite boite collectrice et procede de sertissage d'une telle boite
EP2208955A1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur.
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP2105693B1 (fr) Echangeur de chaleur à puissance frigorifique élevée
WO2005061980A2 (fr) Element de circuit pour echangeur de chaleur
FR3037387B1 (fr) Echangeur de chaleur pour vehicule automobile
EP0686823A1 (fr) Echangeur de chaleur utile notamment pour le refroidissement d'un flux d'air à haute température
EP3645184A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
EP1817535A1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur
EP3384224A1 (fr) Échangeur de chaleur pour véhicule automobile comprenant une boîte collectrice
FR3066015A1 (fr) Tube pour echangeur thermique et echangeur thermique correspondant
FR3073612B1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
WO2015007551A1 (fr) Plaque collectrice de collecteur d'un echangeur de chaleur
FR3001795A1 (fr) Agencement d’echangeurs thermiques a plaques
FR2986313A1 (fr) Tube d'echangeur thermique, echangeur thermique et procede d'obtention correspondant
EP3394546B1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3060724A1 (fr) Echangeur thermique, notamment evaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur.
FR3069312B1 (fr) Echangeur de chaleur pour refroidisseur d'air de suralimentation
WO2020053522A1 (fr) Échangeur thermique et installation de chauffage et/ou ventilation et/ou climatisation correspondante
FR3086042A1 (fr) Echangeur thermique et installation de chauffage et/ou ventilation et/ou climatisation correspondante
EP1623177A2 (fr) Echangeur de chaleur, notamment, pour automobile
FR3088710A1 (fr) Echangeur de chaleur pour vehicule automobile
EP3394545A1 (fr) Échangeur thermique, notamment pour vehicule automobile
FR3045807A1 (fr) Echangeur thermique, notamment pour vehicule automobile
FR3049049A1 (fr) Echangeur de chaleur, en particulier pour vehicule, plus particulierement pour des vehicules automobiles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016049844

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1345980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201216

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016049844

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210609

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 8

Ref country code: DE

Payment date: 20230613

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216