EP1817535A1 - Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur - Google Patents

Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur

Info

Publication number
EP1817535A1
EP1817535A1 EP05807618A EP05807618A EP1817535A1 EP 1817535 A1 EP1817535 A1 EP 1817535A1 EP 05807618 A EP05807618 A EP 05807618A EP 05807618 A EP05807618 A EP 05807618A EP 1817535 A1 EP1817535 A1 EP 1817535A1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchange
bundle
spacer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05807618A
Other languages
German (de)
English (en)
Inventor
Paul Garret
Jens-Peter Arnesen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1817535A1 publication Critical patent/EP1817535A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Definitions

  • the invention relates to heat exchange devices, in particular for motor vehicles.
  • a heat exchange device comprising a bundle of first tubes spaced apart from a first interval and a bundle of second tubes spaced apart by a second interval, the second interval being smaller than the first interval, and a plurality corrugated heat exchanger interleaves in the form of folded sheet metal strips so as to form a succession of substantially planar portions each disposed between two first tubes and between two second tubes, and connected in pairs by a bent junction portion of dimension adapted to the first intervals, the angled junction portion having a cutout defining a first bent contact portion arranged to cooperate with one of the first tubes and a second bent portion.
  • a heat exchange device The purpose of a heat exchange device is to allow the exchange of heat between one or more circulating fluids inside tubes and an external fluid passing through the heat exchange device. It is common to provide in such a device, a bundle of first tubes and a bundle of second tubes, in which circulates one or more fluids. To increase the performance of the heat exchange between the circulating fluid (s) at
  • the heat exchange device with a plurality of corrugated general heat exchange pads formed by the succession of substantially planar portions connected two by two by an angled junction portion.
  • a corrugated spacer is disposed between two first tubes and two second tubes so that a portion of the bent portion is in contact with both a first tube and a second tube.
  • the interval between two first tubes or first interval differs from the interval between two second tubes, or second intervals. This is particularly the case when the first tubes and the second tubes are sections of different dimensions. In this case, it is no longer possible to arrange between the first two tubes and two second tubes the same corrugated insert.
  • the object of the invention is therefore to provide a new type of heat exchange device of the type mentioned in the introduction overcoming the aforementioned drawbacks.
  • the invention therefore provides a heat exchange device of the aforementioned type in which said second bent portion is folded to form a second contact portion of dimension adapted to the second gap and arranged to cooperate with one of the second tubes, which allows to adapt each interlayer at the first and second intervals.
  • said second bent portion is folded to form a second contact portion of dimension adapted to the second gap and arranged to cooperate with one of the second tubes, which allows to adapt each interlayer at the first and second intervals.
  • the second bent portion is folded by flattening so that the second contact portion has a partial planar appearance.
  • the second bent portion is folded by an inverse fold so that the second contact portion has a bend appearance.
  • the second bent portion is folded by several reverse bends so that the second contact portion has a wavy appearance. This makes it possible to adapt the number of inverse bends to the dimension of said second bent portion to be folded down.
  • the first tubes and the second tubes are flat tubes.
  • the first tubes are multichannel tubes, which are resistant to the pressure of the circulating fluid inside the channels.
  • the flat portions have flux deflectors in the form of metal strips projecting from the flat portion.
  • the flow deflectors by disturbing the flow of the external fluid passing through the device, improve the heat exchange performance.
  • the heat exchange device is composed of a heat exchanger. 02368
  • condenser-type heat comprising the bundle of first tubes and a radiator-type heat exchanger comprising the bundle of associated second tubes, which makes it possible to group in a single product several heat exchangers and to save production shared parts, such as dividers for example.
  • the bundle of first tubes and the bundle of second tubes are part of the same heat exchanger.
  • the spacers are made from a sheet of aluminum alloy sheet which is a material easy to bend and having good thermal characteristics.
  • FIG. 1 is a perspective view of a heat exchange device in a preferred embodiment of the invention
  • FIG. 2 is a sectional representation of a portion of the heat exchange device of FIG. 1 along the X-Y plane;
  • FIG. 3 is a sectional view along line III-III of part of FIG. 2,
  • FIG. 4 is a view of part of FIG. 3 in another embodiment of the invention
  • FIG. 5 is a view of a portion of a heat exchange pad of the device according to the invention in a manufacturing operation decomposed into steps
  • FIG. 6 is a view of a portion of a heat exchange pad of the device according to the invention in the embodiment of FIG. 4 in a last step
  • FIG. 7 is a sectional representation of a part of a heat exchange device according to the invention in a variant embodiment.
  • FIG. 8 is a sectional representation of a part of the heat exchange device of FIG. 1 along the X-Y plane in an embodiment different from that of FIG. 2;
  • FIG. 1 shows, in perspective, a heat exchange module 2 comprising at least two bundles of tubes.
  • the heat exchange module 2 comprises a first 4 and a second 6 generally cylindrical tubular manifold respectively receiving the one and the other of the ends of the first tubes 8 of fluid circulation.
  • the first tubes 8 are arranged aligned, regularly spaced apart from each other, and thus form a bundle of first tubes 8.
  • the first tubular collector 4 is partitioned so as to have a first chamber 10 and a second chamber 12. Thus, a part of the bundle of first tubes 8 is received in the first chamber 10, while the other part is received in the second room 12. The entire bundle of first tubes 8 is received in the second tubular collector 4.
  • the first chamber 10 of the first tubular manifold 4 is provided with a first fluid inlet tubing 14, while the second chamber 12 is provided with a first fluid outlet tubing 16.
  • a first fluid coming from an upstream portion of a first fluid circuit, enters via the first fluid inlet manifold 14 into the first chamber 10 of the first tubular manifold 4, circulates in the first tubes 8 of the part of the beam received in the first chamber 10 and reaches the second tubular collector 6. From there, the first fluid flows through the first tubes 8 of the part of the beam received in the second chamber 12 of the first tubular collector 4 before exiting through the first fluid outlet tubing 16, which is connected to a downstream portion of the first fluid circuit.
  • the first tubes 8 thus belong to a first heat exchanger 18 furthermore composed of the first 4 and second 6 tubular collectors and the inlet and outlet pipes 14 and 16 of the first fluid.
  • the first heat exchanger 18 illustrated in FIG. 1 is, for example, of the condenser type.
  • the first fluid enters the gas phase and spring in phaseliquide.
  • the heat exchange module 2 is furthermore composed of two generally parallelepipedal collecting boxes 20 receiving respectively one end and the other end of second fluid circulation tubes 22, not visible in FIG. 1.
  • One of the manifolds 20 is further provided with a second fluid inlet pipe 24 while the other is provided with a non-reset ⁇ sented second fluid outlet pipe.
  • a second fluid coming for example from an upstream portion of a second fluid circuit, enters one of the manifolds 20 via the second fluid inlet manifold 24.
  • the second fluid circulates through the second tubes 22 to reach the other manifold 20. From there, the second fluid joins an upstream portion of the second fluid circuit via a not shown second fluid outlet tubing.
  • the bundle of second tubes 22 belongs to a second heat exchanger 26 further composed of two manifolds 20 and inlet pipes 24 and fluid outlet.
  • the second heat exchanger 26 illustrated in Figure 1 is for example radiator type.
  • a heat exchange module such as the heat exchange module 2 makes it possible to carry out a first heat exchange between an external fluid, for example air, passing through said module and the first fluid and then to implement a second heat exchange between the external fluid and the second fluid circulating inside the second tubes 22.
  • an external fluid for example air
  • the first fluid may be CO2 carbon dioxide
  • the second fluid may be a gaseous mixture coming from the engine of a vehicle in which the module is disposed.
  • the heat exchange module comprises two bundles of tubes. However, it is also conceivable that the heat exchange module has three or more bundles of tubes.
  • the largest dimension of the tubes i.e. their length, is arranged in the Z direction
  • the smallest dimension of the tubular collectors is arranged in the X direction
  • the direction Y is perpendicular to both the X and Z directions.
  • FIG. 2 is a partial sectional view of the heat exchange device of FIG. 1 along a plane perpendicular to the direction Z.
  • FIG. 2 specifies the shape of the first tubes 8 and second tubes 22 as well as their arrangement. in relation to each other.
  • the first tubes 8 are so-called "flat" tubes having two identical parallel first planar faces 28 arranged symmetrically to each other and interconnected by two first semi-cylindrical surfaces 30.
  • the distance separating the outside of two first planar faces 28 of the same first tube 8, generally called thickness, will be designated first thickness and denoted el.
  • the first tubes 8 are arranged in alignment. More specifically, the flat faces 28 of all the first tubes 8 are arranged parallel to each other and perpendicular to the Y direction.
  • Each first tube 8 has a plane of symmetry P1 parallel to a plane XZ and located equidistant from the first two planar faces 28 of the same first tube 8.
  • the first tubes being regularly spaced from each other, the bundle of first tubes 8 has a first constant pitch P1. 5
  • the first interval II is constant.
  • first fluid circulation tubes 8 are provided with partitions delimiting several interior channels 32. Such tubes are sometimes referred to as
  • first tubes 8 are known as “multichannel flat tubes”.
  • the first tubes 8 described here are only exemplary.
  • Other types of tubes, known to those skilled in the art, can be used here as first tubes 8, for example
  • the second tubes 22 are also of the flat tube type provided with second plane faces
  • the second tubes 22 are not partitioned and thus define a single second fluid circulation channel 38.
  • the second tubes described here are only one of them. They are parallel, symmetrical and connected by second half-cylindrical surfaces 36. for example.
  • second tubes 22 can be used here as second tubes 22, for example two-channel flat tubes (also referred to as “dual-channel tubes”) or multi-channel flat tubes .
  • each second tube 22 has a plane of symmetry S2 and a thickness e2.
  • the second fluid circulation tubes are arranged aligned, that is to say that their planar faces 34 are arranged parallel to each other and perpendicular to the Y direction.
  • the second pitch of the second tube bundle 22 is constant and noted P2, while the second interval of the bundle of second tubes 22 is constant and noted 12.
  • each first tube 8 is disposed aligned with a second tube 22, that is to say that the plane of symmetry Sl of a first tube 8 ' coincides with the plane of symmetry S2 of a second tube 22. Since each first tube 8 thus corresponds to a second tube 22, the first pitch P1 and the second pitch P2 are equal.
  • the thickness e2 of the second tubes 22 is greater than the thickness e1 of the first tubes 8. Consequently, the first interval II is greater than the second interval 12.
  • the difference between the thicknesses e1 and e2 is due to the fact that the shape of the first 8 and second 22 tubes is adapted to the different functions of the first heat exchanger 18 and the second heat exchanger 26.
  • each time between two first tubes 8 and between two second tubes 22, is disposed a heat exchange spacer 40 of corrugated appearance.
  • Each spacer 40 is made in the form of a folded sheet metal strip, for example aluminum alloy.
  • the arrangement of a spacer is such that: the length of the sheet metal strip at the origin of the spacer, ie the length of. the spacer is arranged in the Z direction; the width of the sheet metal strip at the origin of the insert, ie the width of the insert, is arranged in the direction X;
  • the size of the interlayer along the Y direction will be called height.
  • FIG. 3 shows, in profile, a portion of an insert 40.
  • This consists of a succession of generally planar faces 42 taking the entire width of the insert, as defined above.
  • the flat faces 42 are connected in pairs on a part of the width of the spacer by a first elbow contact portion 44.
  • the first contact portion 44 results from the folding of the sheet metal strip intended to form the corrugated insert 40 .
  • each corrugated insert 40 has a second portion contact 46.
  • Each contact portion 46 consists of a bent central portion 48 connected to the flat faces 42 by two side portions 50 bent, of curvature opposite the curvature of the central portion 46 bent.
  • the second contact portion 46 is bent inverted with respect to the first contact portion 44.
  • FIG. 4 is a detail of FIG. 3 showing an alternative embodiment of the spacer 40.
  • the second junction portion 46 is in the form of a flat central portion 52 connected to one side and to the other. another two planar portions 42 by two flat lateral portions 54 arranged according to the height of the spacer.
  • the height of the plane portions 42 associated with the contact portions 46 is close to the second gap 12.
  • the central portion 52 can bear on a second tube 22.
  • the difference between the intervals II and 12 is obtained only by the only deformation of the contact portion 46 without deformation of the other parts of the spacer 40. It is therefore possible to accommodate a spacer 40 between two first tubes 8 and two second tubes 22, and this, despite different first and second intervals II and 12.
  • planar portions 42 are optionally provided with flow deflectors 56 in the form of sets of metal lamellae 58 cut in the flat portions and projecting from said flat portions 42 and intended to disturb the flow of a fluid passing through the heat exchange module 2.
  • FIG. 5 illustrates schematically the sim ⁇ plified embodiment of the insert 40 in the configuration of Figure 3.
  • a single corrugation of corrugated insert 40 is shown.
  • a conventional corrugated insert 40A is made according to a method known to those skilled in the art, for example by successive bends of a sheet metal strip sometimes called "strip".
  • the conventional corrugated spacer 4OA is made in such a way that the height separating the vertices of two successive oscillations is close to the first interval II.
  • the spacer 40A has a succession of flat faces 42 then connected by a joining portion 44A.
  • a cut 60 of the joining portion 44A. is then carried out according to the height of the spacer 40A so as to dissociate the first contact portion 44 and a second angled portion 46A forming a corrugated interbed intermediate 4OB. Note that the cutout 60 is made only on the joining portion 44A, that is to say at the level of the folding zone of the sheet metal strip forming the joining portion 44A.
  • FIG. 6 schematically and schematically illustrates the embodiment of the insert 40 illustrated in FIG. 4.
  • FIG. 6 shows how to obtain the insert 40 illustrated in FIG. 4 from the insert 40B of FIG. settlement of the edge defining the top of the corrugation and concerning the second bent portion 46A forms the flat central portion 52.
  • the settlement is such that R2005 / 002368
  • the height of the spacer at the second contact portion 46 is close to the second gap 12.
  • the radius of curvature of the first bent portion 44 remains unchanged despite the settlement of the edge.
  • FIGS. 5 and 6 result from an arbitrary decomposition of a manufacturing operation of the heat exchange pad intended solely to better understand the invention. In practice, these steps can be performed during the same manufacturing operation using a tool known to those skilled in the art under the term "wheel".
  • the invention is of particular interest in the case of heat exchanger modules such as the heat exchange module 2 because the thicknesses of the first 8 and second 22 respectively el and e2 tubes are adapted to the functions of the tubes.
  • the configuration of the corrugated insert 40 as described here still makes it possible to have this corrugated intercalate between first 8 and second 22 fluid circulation tubes.
  • the shape of the second contact portion 46 in the case of the spacer 40 of Figure 5 may differ depending on the height of the second portion of the junction 44A to be flattened.
  • the heat exchange device described above is a heat exchange module combining two heat exchangers, each of them respectively comprising a bundle of tubes.
  • the heat exchange pad 40 is then common to these two heat exchangers.
  • the heat exchange pad 40 may be employed in the case of a single heat exchanger comprising both the bundle of first tubes and the bundle of second tubes (22).
  • the heat exchange pad 40 then belongs to the same heat exchanger and a single fluid circulates inside the tubes of the heat exchanger.
  • each of the bundles of tubes allows a circulation of the fluid in different states, which the skilled person knows as the pass.
  • FIG. 7 schematically illustrates an alternative embodiment of a heat exchange device according to the invention.
  • the tubes have been represented in a simplified manner.
  • the heat exchange device comprises a bundle of third tubes 62 identical to the first tubes 8 and spaced apart from the same first interval II.
  • the strip of metal sheet at the origin of the heat exchange pad 40 has either a cutout 60, but two cutouts 60 delimiting the second bent portion 46A, which is folded to form said second portion of contact 46.
  • a third contact portion 64 of the insert 40 bearing on the side faces 28 of the third tubes 62, is identical to the first contact portion 44 at the level of the first tubes 8.
  • FIG. 7 can be implemented in the same heat exchanger comprising the bundles of first tubes 8, second tubes 22, and third tubes 62.
  • This configuration can also be used in the case of a first heat exchanger. comprising the bundles of first 8 and second tubes 22 associated with a second exchanger In the latter case, the heat exchange pad 40 is common to both heat exchangers.
  • FIG. 8 illustrates an alternative embodiment of the heat exchanger according to the invention, in which the first and second fluid circulation tubes respectively 8 and 22 are no longer aligned.
  • the second tubes 22 are, however, always spaced from the same gap 12.
  • one of the lateral faces 34 and one of the lateral faces 28 of respectively second 22 and first 8 tubes are aligned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Dispositif d'échange de chaleur, par exemple pour un véhicule automobile, comprenant un faisceau de premiers tubes espacés d'un premier intervalle et un faisceau de seconds tubes espacés d'un second intervalle, le second intervalle étant inférieur au premier intervalle, ainsi qu'une pluralité d'intercalaires (40) d'échange de chaleur ondulés sous la forme de bandes de tôle pliées de manière à former une succession de portions sensiblement planes (42) disposées chacune entre deux premiers tubes et entre deux seconds tubes, et reliées deux à deux par une portion de jonction coudée (44A) de dimension adaptée au premier intervalle, la portion de jonction coudée (44A) présentant une découpe (60) délimitant une première portion de contact coudée (44) agencée pour coopérer avec l'un des premiers tubes 8 et une seconde portion coudée (46A) . Ladite seconde portion coudée (46A) est rabattue pour former une seconde portion de contact (46) de dimension adaptée au second intervalle et agencée pour coopérer avec l'un des seconds tubes, ce qui permet d'adapter chaque intercalaire (40) au premier et au second intervalle.

Description

Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur
L'invention se rapporte aux dispositifs d'échange de chaleur notamment pour des véhicules automobiles.
Elle concerne plus particulièrement un dispositif d'échange de chaleur comprenant un faisceau de premiers tubes espacés d'un premier intervalle et un faisceau de seconds tubes espacés d'un second intervalle, le second intervalle étant inférieur au premier intervalle, ainsi qu'une pluralité d'intercalaires d'échange de chaleur ondulés sous la forme de bandes de tôles pliêes de manière à former une succession de portions sensiblement planes disposées chacune entre deux premiers tubes et entre deux seconds tubes, et reliées deux à deux par une portion de jonction coudée de dimension adaptée aux premiers intervalles, la portion de jonction coudée présentant une découpe délimitant une première portion de contact coudée agencée pour coopérer avec l'un des premiers tubes et une seconde portion coudée.
Un dispositif d'échange de chaleur a pour fonction de permettre 1 'échange de chaleur entre un ou plusieurs fluides en circulation à l'intérieur de tubes et un fluide extérieur traversant le dispositif d'échange de chaleur.. Il est courant de prévoir dans un tel dispositif, un faisceau de premiers tubes et un faisceau de seconds tubes, dans lesquels circule un ou plusieurs fluides. Pour augmenter les performances de l'échange de chaleur entre le ou les fluides en circulation à
1 ' intérieur des premiers et seconds tubes et le fluide extérieur, il est courant de pourvoir le dispositif d'échange dé chaleur de moyens permettant d'augmenter la surface d'échange entre le fluide extérieur et le ou les fluides en circulation à ' l'intérieur des tubes. FR2005/002368
Ainsi il est connu de pourvoir le dispositif d'échange de chaleur d'une pluralité d'intercalaires d'échange de chaleur d'allure générale ondulée formée par la succession de portions sensiblement planes reliées deux à deux par une portion de jonction coudée. En général, un intercalaire ondulé est disposé entre deux premiers tubes et deux seconds tubes en sorte qu'une partie de la portion coudée est en contact à la fois avec un premier tube et un second tube.
Cependant, il arrive que l'intervalle ménagé entre deux premiers tubes ou premier intervalle diffère de l'intervalle ménagé entre deux seconds tubes, ou second intervalles. C'est en particulier le cas lorsque les premiers tubes et les seconds tubes sont de sections de dimensions différentes. Dans ce cas, il n'est plus possible de disposer entre deux premiers tubes et deux seconds tubes un même intercalaire ondulé.
Il est connu par le document US 6 213 196 Bl de prévoir un premier intercalaire d'allure générale crénelée, présentant des créneaux de dimension adaptée pour se loger entre deux premiers tubes et de le relier à un second intercalaire crénelé présentant également des créneaux de dimension adapté pour se loger entre deux seconds tubes. Cependant, 1 ' intercalaire crénelé ainsi formé par la réunion du premier et du second intercalaire crénelé est particulièrement délicat à réaliser.
L'objet de l'invention est donc de proposer un nouveau type de dispositif d'échange de chaleur du type mentionné en introduction surmontant les inconvénients précités.
L'invention prévoit donc un dispositif d'échange de chaleur du type précité dans lequel ladite seconde portion coudée est rabattue pour former une seconde portion de contact de dimension adaptée au second intervalle et agencée pour coopérer avec l'un des seconds tubes, ce qui permet d'adapter chaque intercalaire au premier et au second intervalle. Ainsi, il est possible de réaliser un intercalaire à partir d'une même bande de tôle pliée et capable d'être disposé entre deux premiers tubes et deux seconds tubes et de coopérer avec ceux- ci
Dans un premier mode de réalisation de l'invention, la seconde portion coudée est rabattue par aplatissement en sorte que la seconde portion de contact présente une allure en partie plane.
Dans un second mode de réalisation de l'invention, la seconde portion coudée est rabattue par un pliage inverse en sorte que la seconde portion de contact présente une allure de coude.
Dans un autre mode de réalisation de l'invention encore, la seconde portion coudée est rabattue par plusieurs pliages inverses en sorte que la seconde portion de contact présente une allure ondulée. Ceci permet d'adapter le nombre de pliages inverses à la dimension de ladite seconde portion coudée devant être rabattue.
Dans un mode de réalisation préféré de l'invention, les premiers tubes et les seconds tubes sont des tubes plats.
Avantageusement, les premiers tubes sont des tubes à plusieurs canaux, lesquels résistent bien à la pression du fluide en circulation à l'intérieur des canaux.
De manière avantageuse, les portions planes présentent des déflecteurs de flux sous la forme de lamelles métalliques faisant saillie de la portion plane. Les déflecteurs de flux, en perturbant le flux du fluide extérieur traversant le dispositif, améliorent les performances d'échange de chaleur. Dans un mode de réalisation préféré de 1 ' invention, le dispositif d'échange de chaleur est composé d'un échangeur de 02368
chaleur de type condenseur comprenant le faisceau de premiers tubes et d'un échangeur de chaleur de type radiateur compre¬ nant le faisceau de seconds tubes, associés, ce qui permet de grouper dans un produit unique plusieurs échangeurs de chaleur et d'économiser la fabrication des pièces mises en commun, comme les intercalaires par exemple.
Dans un mode de réalisation de remplacement, le faisceau de premiers tubes et le faisceau de seconds tubes font partie d'un même échangeur de chaleur.
De préférence, les intercalaires sont réalisés à partir d'une bande de tôle en alliage d'aluminium qui est un matériau facile à plier et présentant de bonnes caractéristiques thermiques .
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
- la figure 1 est une vue en perspective d'un dispositif d'échange de chaleur dans un mode de réalisation préféré de 1 ' invention,
- la figure 2 est une représentation en coupe d'une partie du dispositif d'échange de chaleur de la figure 1 selon le plan X-Y,
- la figure 3 est une vue en coupe selon la ligne III-III d'une partie de la figure 2,
- la figure 4 est une vue d'une partie de la figure 3 dans un autre mode de réalisation de l'invention, - la figure 5 est une vue d'une partie d'un intercalaire d'échange de chaleur du dispositif selon l'invention dans une opération de fabrication décomposée en étapes,
- la figure 6 est une vue d'une partie d'un intercalaire d'échange de chaleur du dispositif selon l'invention dans le mode de réalisation de la figure 4 dans une dernière étape,
- la figure 7 est une représentation en coupe d'une partie d'un dispositif d'échange de chaleur selon l'invention dans une variante de réalisation, et
- la figure 8 est une représentation en coupe d'une partie du dispositif d'échange de chaleur de la figure 1 selon le plan X-Y dans un mode de réalisation différent de celui de la figure 2,
Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant .
La figure 1 représente, vu en perspective, un module d'échange de chaleur 2 comprenant au moins deux faisceaux de tubes. Ici, le module d'échange de chaleur 2 comprend un premier 4 et un second 6 collecteur tubulaire d'allure générale cylindrique recevant respectivement l'une et l'autre des extrémités de premiers tubes 8 de circulation de fluide. Les premiers tubes 8 sont disposés alignés, régulièrement espacés les uns des autres, et forment ainsi un faisceau de premiers tubes 8.
Le premier collecteur tubulaire 4 est cloisonné de manière à présenter une première chambre 10 et une seconde chambre 12. Ainsi, une partie du faisceau de premiers tubes 8 est reçue dans la première chambre 10, tandis que l'autre partie est reçue dans la seconde chambre 12. L'ensemble du faisceau de premiers tubes 8 est reçu dans le second collecteur tubulaire 4.
La première chambre 10 du premier collecteur tubulaire 4 est munie d'une tubulure d'entrée de premier fluide 14, tandis que la seconde chambre 12 est munie d'une tubulure de sortie de premier fluide 16.
Ainsi, un premier fluide, provenant d'une partie amont d'un premier circuit de fluide, pénètre par l'intermédiaire de la tubulure d'entrée de premier fluide 14 dans la première chambre 10 du premier collecteur tubulaire 4, circule dans les premiers tubes 8 de la partie du faisceau reçue dans la première chambre 10 et atteint le second collecteur tubulaire 6. De là, le premier fluide circule à travers les premiers tubes 8 de la partie du faisceau reçue dans la seconde chambre 12 du premier collecteur tubulaire 4, avant de sortir par 1 ' intermédiaire de la tubulure de sortie de premier fluide 16, laquelle est reliée à une partie aval du premier circuit de fluide.
Les premiers tubes 8 appartiennent ainsi à un premier échangeur de chaleur 18 composé en outre par les premier 4 et second 6 collecteurs tubulaires et les tubulures d'entrée 14 et de sortie 16 de premier fluide. Le premier échangeur de chaleur 18 illustré par la figure 1 est par exemple de type condenseur. Ainsi, dans le premier échangeur 18 par exemple, le premier fluide pénètre en phase gazeuse et ressort en phaseliquide.
Le module d'échange de chaleur 2 est en outre composé de deux boîtes collectrices 20 généralement parallélipipédiques et recevant respectivement l'une et l'autre des extrémités de seconds tubes de circulation de fluide 22, non visibles sur la figure 1. Les seconds tubes de circulation de fluide 22 005/002368
sont disposés alignés, régulièrement espacés les uns des autres, et constituent ainsi un faisceau de seconds tubes 22.
L'une des boîtes collectrices 20 est en outre munie d'une tubulure d'entrée de second fluide 24 tandis que l'autre est munie d'une tubulure de sortie de second fluide non repré¬ sentée .
Ainsi, un second fluide, provenant par exemple d'une partie amont d'un second circuit de fluide, pénètre dans l'une des boîtes collectrices 20 par l'intermédiaire de la tubulure d'entrée de second fluide 24. Le second fluide circule à travers les seconds tubes 22 pour atteindre l'autre boîte collectrice 20. De là, le second fluide rejoint une partie amont du second circuit de fluide par l'intermédiaire d'une tubulure de sortie de second fluide non représentée.
Le faisceau de seconds tubes 22 appartient à un second échangeur de chaleur 26 composé en outre des deux boîtes collectrices 20 et des tubulures d'entrée 24 et de sortie de fluide. Le second échangeur de chaleur 26 illustré par la figure 1 est par exemple de type radiateur.
Un module d'échange de chaleur, tel que le module d'échange de chaleur 2 permet de réaliser un premier échange de chaleur entre un fluide extérieur, par exemple de l'air, traversant ledit module et le premier fluide puis de mettre en œuvre un second échange de chaleur entre le fluide extérieur et le second fluide circulant à l'intérieur des seconds tubes 22.
Dans l'exemple de la figure 1, le premier fluide peut être du dioxyde carbone CO2, tandis que le second fluide peut être un mélange gazeux provenant du moteur d'un véhicule dans lequel est disposé le module. Dans l'exemple illustré ici, le module d'échange de chaleur comporte deux faisceaux de tubes. Toutefois, il est aussi envisageable que le module d'échange de chaleur comporte trois faisceaux de tubes ou plus.
Comme le montre la figure 1, on définit trois direction X, Y et Z comme suit :
- la plus grande dimension des tubes, i.e leur longueur, est disposée selon la direction Z,
- la plus petite dimension des collecteurs tubulaires est disposée suivant la direction X, et
- la direction Y est perpendiculaire à la fois aux directions X et Z.
La figure 2 est une vue en coupe partielle du dispositif d'échange de chaleur de la figure 1 selon un plan perpendicu¬ laire à la direction Z. La figure 2 précise la forme des premiers tubes 8 et seconds tubes 22 ainsi que leur disposi- tion les uns par rapport aux autres.
Les premiers tubes 8 sont des tubes dits "plats" présentant deux premières faces planes parallèles 28 identiques, disposées symétriques entre elles, et reliées entre elles par deux premières surfaces demi-cylindriques 30. La distance séparant l'extérieur de deux premières faces planes 28 d'un même premier tube 8, généralement appelée épaisseur, sera désignée première épaisseur et notée el. Les premiers tubes 8 sont disposés alignés. Plus précisément, les faces planes 28 de tous les premiers tubes 8 sont disposés parallèles entre elles et perpendiculairement à la direction Y.
Chaque premier tube 8 présente un plan de symétrie Pl parallèle à un plan X-Z et situé à égale distance des deux premières faces planes 28 d'un même premier tube 8. La distance séparant deux plans de symétrie Sl de deux premiers tubes 8 adjacents, généralement désignée par le terme de pas, est désignée ici premier pas et notée Pl. Les premiers tubes étant régulièrement espacés les uns des autres, le faisceau de premiers tubes 8 présente un premier pas Pl constant. 5
La distance séparant une face plane 28 d'un premier tube 8 de la face plane 28 la plus proche appartenant à un premier tube 8 adjacent, généralement appelée intervalle, sera désignée premier intervalle et notée II. Pour le faisceau de premiers 10 tubes 8, le premier intervalle II est constant.
On note que les premiers tubes de circulation de fluide 8 sont munis de cloisons délimitant plusieurs canaux intérieurs 32. De tels tubes sont parfois désignés par le terme de
15 "tubes multicanaux". Ainsi, les premiers tubes 8 sont connus sous le terme de "tubes plats multicanaux" . Les premiers tubes 8 décrits ici, ne le sont qu'à titre d'exemple. D'autres types de tubes, connus de l'homme du métier, peuvent être employés ici en tant que premiers tubes 8, par exemple
20 des tubes plats à un seul canal ou des tubes de section circulaire.
Comme le montre la figure 2, les seconds tubes 22 sont également du type tubes plats munis de secondes faces planes
25 34 parallèles, symétriques entre elles et reliées par des secondes surfaces demi-cylindriques 36. Les seconds tubes 22 ne sont pas cloisonnés et définissent ainsi un unique canal de circulation de second fluide 38. Les seconds tubes décrits ici, ne le sont qu'à titre d'exemple. D'autres types de
30 tubes, connus de l'homme du métier peuvent être employés ici en tant que seconds tubes 22, par exemple des tubes plats à deux canaux (aussi désignés par le terme de "tubes bi- canaux") ou des tubes plats multi-canaux.
35 De manière analogue à ce qui a été décrit plus haut dans le cas des premiers tubes 8, chaque second tube 22 présente un plan de symétrie S2 et une épaisseur e2. Les seconds tubes de circulation de fluide sont disposés alignés, c'est-à-dire que leurs faces planes 34 sont disposées parallèles entre elles et perpendiculairement à la direction Y. Le second pas du faisceau de seconds tubes 22 est constant et noté P2, tandis que le second intervalle du faisceau de seconds tubes 22 est constant et noté 12.
Comme le montre la figure 2, chaque premier tube 8 est disposé aligné avec un second tube 22, c'est-à-dire que le plan de symétrie Sl d'un premier tube 8' est confondu avec le plan de symétrie S2 d'un second tube 22. Puisqu'à chaque premier tube 8 correspond ainsi un second tube 22, le premier pas Pl et le second pas P2 sont égaux.
Par contre, l'épaisseur e2 des seconds tubes 22 est supé¬ rieure à l'épaisseur el des premiers tubes 8. Par conséquent, le premier intervalle II est supérieur au second intervalle 12.
La différence entre les épaisseurs el et e2 tient au fait que la forme des premiers 8 et seconds 22 tubes est adaptée aux fonctions différentes du premier échangeur de chaleur 18 et du second échangeur de chaleur 26.
Comme le montre la figure 1, à chaque fois, entre deux premiers tubes 8 et entre deux seconds tubes 22, est disposé un intercalaire d'échange de chaleur 40 d'allure ondulée. Chaque intercalaire 40 est réalisé sous la forme d'une bande de tôle métallique pliêe, par exemple en alliage d'aluminium.
Dans la configuration du module représentée sur la figure 1, la disposition d'un intercalaire est telle que : la longueur de la bande de tôle à l'origine de l'intercalaire, i.e la longueur de . l'intercalaire, est disposée -selon la direction Z ; la largeur de la bande de tôle à l'origine de l'intercalaire, i.e la largeur de l'intercalaire, est disposée selon la direction X ;
- l'encombrement de l'intercalaire suivant la direction Y sera appelé hauteur.
La figure 3 représente, vue de profil, une portion d'un intercalaire 40. Celui-ci se compose d'une succession de faces généralement planes 42 prenant toute la largeur de l'intercalaire, telle que définie plus haut. Les faces planes 42 sont reliées deux à deux sur une partie de la largeur de l'intercalaire par une première portion de contact coudée 44. La première portion de contact 44 résulte du pliage de la bande de tôle destinée à former l'intercalaire ondulé 40.
Comme le montrent maintenant les figures 1 et 2, cette première portion de contact 44 vient en appui sur une première face plane 28 d'un premier tube de circulation de fluide 8 au niveau de son sommet. La première portion de contact 44 s'étend sur toute la largeur, i.e leur dimension dans la direction X, des premiers tubes 8. Au niveau des faces planes 34 des seconds tubes de circulation de fluide 22, chaque intercalaire ondulé 40 présente une seconde portion de contact 46. Chaque portion de contact 46 est constituée d'une portion centrale coudée 48 reliée aux faces planes 42 par deux portions latérales 50 coudées, de courbure opposée à la courbure de la portion centrale 46 coudée. La seconde portion de contact 46 est coudée inversée par rapport à la première portion de contact 44.
Comme le montre maintenant la figure 2 et comme indiqué sur la figure 3, la hauteur des faces planes 42 est sensiblement égale au second intervalle 12. La hauteur d'une portion plane 42 prolongée de part et d'autre par des portions de contact coudées 44 est voisine du premier intervalle II. La figure 4 est un détail de la figure 3 présentant une variante de réalisation de l'intercalaire 40. Sur la figure 4, la seconde portion de jonction 46 se présente sous la forme d'une portion centrale 52 plane reliée de part et d'autre à deux portions planes 42 par deux portions latérales planes 54 disposées selon la hauteur de l'intercalaire. Bien que cela ne soit pas représenté sur la figure 4, la hauteur des portions planes 42 associée aux portions de contact 46 est voisine du second intervalle 12. Ainsi, la portion centrale 52 peut venir en appui sur un second tube 22.
Comme représenté aux figures 3 et 4, les faces planes 42 des parties de l'intercalaire 40 en contact avec les faces planes
28 des premiers tubes de circulation de fluide 8 et les faces planes 42 des parties de l'intercalaire 40 en contact avec les faces planes 34 des seconds tubes de circulation de fluide 22 ont un angle d'inclinaison identiques.
Ainsi, la différence entre les intervalles II et 12 n'est obtenue que par la seule déformation de la portion de contact 46 sans déformation des autres parties de l'intercalaire 40. Il est donc possible de loger un intercalaire 40 entre deux premiers tubes 8 et deux seconds tubes 22, et ce, malgré des premier et second intervalles II et 12 différents.
Comme le montre la figure 2, les portions planes 42 sont en option munies de déflecteurs de flux 56 sous la forme d'ensembles de lamelles métalliques 58 découpées dans les portions planes et faisant saillie desdites portions planes 42 et destinées à perturber le flux d'un fluide traversant le module d'échange de chaleur 2.
La figure 5. illustre schématiquement la réalisation sim¬ plifiée de l'intercalaire 40 dans la configuration de la figure 3. Sur la figure 5, une seule ondulation de l'intercalaire ondulé 40 est représentée. Un intercalaire ondulé classique 40A est réalisé selon un procédé connu de l'homme du métier, par exemple par des pliages successifs d'une bande de tôle métallique appelée parfois "feuillard" . En particulier, l'intercalaire ondulé classique 4OA est réalisé de telle manière que la hauteur séparant les sommets de deux oscillations successives soit voisine du premier intervalle II. L'intercalaire 40A présente une succession de faces planes 42 reliée alors par une portion de jonction 44A.
Une découpe 60 de la portion de jonction 44A. est alors réalisée selon la hauteur de l'intercalaire 40A de manière à dissocier la première portion de contact 44 et une seconde portion coudée 46A formant un intercalaire ondulé intermé¬ diaire 4OB. On note que la découpe 60 n'est réalisée que sur la portion de jonction 44A, c'est-à-dire qu'au niveau de la zone de pliage de la bande de tôle réalisant la portion de jonction 44A.
Un pliage inverse est ensuite réalisé selon l'arête définis¬ sant le sommet de l'ondulation et concernant la seconde portion coudée 46A de manière à former la seconde portion de contact 46. La profondeur du pliage inverse est telle que la hauteur de l'intercalaire au niveau la seconde portion de contact 46 est voisine du second intervalle 12. On remarquera que le rayon de courbure de la première portion coudée 44 reste inchangé.
La figure 6 illustre de manière schématique et simplifiée la réalisation de l'intercalaire 40 illustré par la figure 4. La figure 6 montre comment obtenir l'intercalaire 40 illustré par la figure 4 à partir de l'intercalaire 40B de la figure 5. Un tassement de l'arête définissant le sommet de l'ondulation et concernant la seconde portion coudée 46A forme la portion centrale plane 52. Le tassement est tel que R2005/002368
14 la hauteur de l'intercalaire au niveau la seconde portion de contact 46 est voisine du second intervalle 12. Ici aussi, le rayon de courbure de la première portion coudée 44 reste inchangé et ce malgré le tassement de l'arête.
On note que les étapes illustrées par les figures 5 et 6 résultent d'une décomposition arbitraire d'une opération de fabrication de l'intercalaire d'échange de chaleur destinée uniquement à mieux faire comprendre l'invention. En pratique, ces étapes peuvent être réalisées au cours d'une même opération de fabrication à l'aide d'un outil connu par l'homme du métier sous le terme de "molette".
L'invention trouve un intérêt particulier dans le cas de modules d'échangeur de chaleur tels que le module d'échange de chaleur 2 car les épaisseurs des premiers 8 et seconds 22 tubes respectivement el et e2 sont adaptées aux fonctions des tubes. Or, la configuration de l'intercalaire ondulé 40 tel que décrit ici permet malgré tout de disposer cet interca- laire ondulé entre des premiers 8 et des seconds 22 tubes de circulation de fluide.
On note qu' il est possible de réaliser un intercalaire du type illustré par la figure 3 par exemple au moyen de plusieurs pliages inverses dans le cas où la seconde portion de jonction coudée 46A est de taille plus importante.
L'allure de la seconde portion de contact 46 dans le cas de l'intercalaire 40 de la figure 5 peut différer en fonction de la hauteur de la seconde portion de jonction 44A à aplatir.
Le dispositif d'échange de chaleur décrit ci-dessus est un module d'échange de chaleur associant deux échangeurs de chaleur, chacun d'eux comprenant respectivement un faisceau de tubes. L'intercalaire d'échange de chaleur 40 est alors commun à ces deux échangeurs de chaleur. De manière analogue, l'intercalaire d'échange de chaleur 40 peut être employé dans le cas d'un unique ëchangeur de chaleur comprenant à la fois le faisceau de premiers tubes et le faisceau de seconds tubes (22) . L'intercalaire d'échange de chaleur 40 appartient alors à un même ëchangeur de chaleur et un unique fluide circule à l'intérieur des tubes de l'échangeur de chaleur. Dans ce cas, avantageusement, chacun des faisceaux de tubes permet une circulation du fluide dans des états différents, que l'homme du métier connaît sous le terme de passe.
La figure 7 illustre de manière schématique une variante de réalisation d'un dispositif d'échange de chaleur selon l'invention. Sur cette figure 7, les tubes ont été représen¬ tés de manière simplifiée. Dans le cas illustré par la figure 7, le dispositif d'échange de chaleur comprend un faisceau de troisièmes tubes 62 identiques aux premiers tubes 8 et espacés du même premier intervalle II.
Dans ce cas, la bande de tôle métallique à l'origine de l'intercalaire d'échange de chaleur 40 présente non plus une découpe 60, mais deux découpes 60 délimitant la seconde portion coudée 46A, laquelle est rabattue pour former ladite seconde portion de contact 46. Une troisième portion de contact 64 de l'intercalaire 40 venant en appui sur les faces latérales 28 des troisièmes tubes 62, est identique à la première portion de contact 44 au niveau des premiers tubes 8.
La configuration de la figure 7 peut être mise en œuvre dans un même ëchangeur de chaleur comprenant les faisceaux de premiers tubes 8, seconds tubes 22, et troisièmes tubes 62. Cette configuration peut être également employée dans le cas d'un premier échangeur de chaleur comprenant les faisceaux de premiers 8 et seconds tubes 22 associé à un second échangeur de chaleur comprenant le faisceau de troisièmes tubes 62. Dans ce dernier cas, l'intercalaire d'échange de chaleur 40 est commun aux deux échangeurs de chaleur.
La figure 8 illustre une variante de réalisation de 1 ' échangeur de chaleur selon 1 ' invention, dans lequel les premiers et seconds tubes de circulation de fluide respecti¬ vement 8 et 22 ne sont plus alignés. Les plans de symétrie Sl des premiers tubes 8 et les plans de symétrie S2 des seconds tubes 22 ne coïncident plus.
Les seconds tubes 22 sont cependant toujours espacés du même intervalle 12. Dans ce cas, l'une des faces latérales 34 et l'une des faces latérales 28 des respectivement seconds 22 et premiers 8 tubes, sont alignées. Comme le montre la figure 8, dans ce cas, on prévoit une seconde portion coudée 46A rabattue pour former une seconde portion de contact 46 uniquement une oscillation sur deux de l'intercalaire ondulé 40. Une fois sur deux, la première portion de contact coudée 44 vient en appui sur les faces latérales 28 et 34 des premiers et seconds tubes lorsque celles-ci sont alignées.
L'invention ne se limite pas aux modes de réalisation décrits ci-dessus seulement à titre d'exemples, mais englobe toutes les variantes que pourra envisager l'homme de l'art dans le cadre des revendications suivantes.

Claims

R2005/00236817Revendications
1. Intercalaire d'échange de chaleur ondulés sous la forme de bandes de tôle pliées de manière à former une succession de portions sensiblement planes (42) aptes à être disposées chacune entre deux premiers tubes (8) espacés d'un premier intervalle (II) , et entre deux seconds tubes (22) espacés d'un second intervalle (12) , le second intervalle étant inférieur au premier intervalle, et reliées deux à deux par une portion de jonction coudée (44A) de dimension adaptée au premier intervalle (II) , la portion de jonction coudée (44A) présentant une découpe (60) délimitant une première portion de contact coudée (44) agencée pour coopérer avec l'un des premiers tubes 8 et une seconde portion coudée (46A) , caractérisé en ce que ladite seconde portion coudée (46A) est rabattue pour former une seconde portion de contact (46) de dimension adaptée au second intervalle (12) entre les tubes et agencée pour coopérer avec l'un des seconds tubes (22), lesdites portions sensiblement planes (42) et ladite première portion coudée (44) restant inchangée.
2. Intercalaire selon la revendication 2, tel que lesdites portions planes (42) des parties de l'intercalaire (40) en contact avec les faces planes 28 des premiers tubes de circulation de fluide (8) et les faces planes 42 des parties de l'intercalaire (40) en contact avec les faces planes (34) des seconds tubes de circulation de fluide (22) ont un angle d'inclinaison identiques.
3. Intercalaire selon la revendication 1 ou 2, tel que le rayon de courbure de la première portion coudée (44) reste inchangé._
4. Intercalaire d'échange de chaleur selon la revendication précédente, tel que la seconde portion coudée (46A) est rabattue par aplatissement en sorte que la seconde portion de contact (46) présente une allure en partie plane.
5. Intercalaire d'échange de chaleur selon la revendication 3, tel que la seconde portion coudée (46A) est rabattue par un pliage inverse en sorte que la seconde portion de contact (46) présente une allure de coude.
6. Intercalaire d'échange de chaleur selon la revendication 1 ou 2, tel la seconde portion coudée (46A) est rabattue par plusieurs pliages inverses en sorte que la seconde portion (46) de contact présente une allure ondulée.
7. Intercalaire d'échange de chaleur selon l'une des revendication précédentes, tel que lesdites portions planes
(42) présentent des déflecteurs de flux (56) sous la forme de lamelles métalliques (58) faisant saillie de ladites portion plane (42) .
8. Intercalaire d'échange de chaleur selon l'une des revendications précédentes, tel que les intercalaires (40) sont réalisés à partir d'une bande de tôle en alliage d'aluminium.
9. Dispositif d'échange de chaleur comportant au moins un faisceau de premiers tubes (8) espacés d'un premier intervalle (II) et un faisceau de seconds tubes (22) espacés d'un second intervalle (12), tel qu'il comporte un intercalaire d'échange de chaleur tel que revendiqué aux revendications 1 à 8.
10. Dispositif d'échange de chaleur selon la revendication précédente, tel que les premiers tubes (8) et les seconds tubes (22) sont des tubes plats.
11. Dispositif d'échange de chaleur selon l'une des revendications précédentes, tel que les premiers tubes (8) sont des tubes à plusieurs canaux (32) .
12. Dispositif d'échange de chaleur selon l'une des revendications précédentes, tel qu'il est composé d'un échangeur (18) de chaleur de type condenseur comprenant le faisceau de premiers tubes (8) et d'un échangeur de chaleur (26) de type radiateur comprenant le faisceau de seconds tubes (8) , associés.
13. Dispositif d'échange de chaleur selon l'une des revendications 9 à 11, caractérisé en ce que le faisceau de premiers tubes (8) et le faisceau de seconds tubes (22) font partie d'un même échangeur de chaleur.
EP05807618A 2004-09-29 2005-09-23 Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur Withdrawn EP1817535A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410308A FR2875896B1 (fr) 2004-09-29 2004-09-29 Intercalaire d'echange de chaleur pour un dispositif d'echange de chaleur
PCT/FR2005/002368 WO2006035149A1 (fr) 2004-09-29 2005-09-23 Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur

Publications (1)

Publication Number Publication Date
EP1817535A1 true EP1817535A1 (fr) 2007-08-15

Family

ID=34953052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05807618A Withdrawn EP1817535A1 (fr) 2004-09-29 2005-09-23 Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur

Country Status (3)

Country Link
EP (1) EP1817535A1 (fr)
FR (1) FR2875896B1 (fr)
WO (1) WO2006035149A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116351A1 (fr) 2013-01-28 2014-07-31 Carrier Corporation Unité d'échange thermique à plusieurs faisceaux de tubes dotée d'un ensemble de collecteur
ES2877092T3 (es) 2013-11-25 2021-11-16 Carrier Corp Intercambiador de calor de microcanal de doble trabajo
EP3133365B1 (fr) * 2014-04-16 2020-02-26 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Ltd Ailettes et échangeur de chaleur plié les comportant
US20190337072A1 (en) * 2018-05-04 2019-11-07 Hamilton Sundstrand Corporation Method of fabricating heat exchanger with micro tubes and fins

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2180050A1 (fr) * 1996-04-04 1997-10-05 Matthew K. Harris Ailettes encochees pour echangeur de chaleur d'automobile
JP4207331B2 (ja) * 1999-09-29 2009-01-14 株式会社デンソー 複式熱交換器
JP2001255091A (ja) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp 熱交換器
JP2002168581A (ja) * 2000-12-05 2002-06-14 Denso Corp 複式熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006035149A1 *

Also Published As

Publication number Publication date
WO2006035149A1 (fr) 2006-04-06
FR2875896A1 (fr) 2006-03-31
FR2875896B1 (fr) 2017-11-24

Similar Documents

Publication Publication Date Title
EP2513585A1 (fr) Echangeur de chaleur
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2007048888A1 (fr) Echangeur de chaleur à tubes plats déformés par torsion
WO2003056268A1 (fr) Elément de circuit pour échangeur de chaleur, notamment de véhicule automobile et échangeur de chaleur ainsi obtenu
EP1817535A1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur
FR2916835A1 (fr) Module d'echange de chaleur pour un circuit de climatisation
FR2852383A1 (fr) Boite collectrice pour echangeur de chaleur a haute pression et echangeur de chaleur comportant cette boite collectrice
EP3019808A1 (fr) Echangeur de chaleur
EP3099994A1 (fr) Echangeur de chaleur pour véhicule automobile
WO2018060626A1 (fr) Faisceau d'échange thermique pour échangeur thermique, échangeur thermique et procédé d'assemblage associés
EP3234488B1 (fr) Plaque d'echange thermique a microcanaux et echangeur thermique comportant au moins une telle plaque
WO2018002544A2 (fr) Échangeur de chaleur mécanique et procédé de fabrication associe
FR2866698A1 (fr) Echangeur de chaleur a ailettes avec pattes d'espacement
WO2019025719A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
FR2832788A1 (fr) Profils de tubes pour echangeur thermique
WO2021190879A1 (fr) Échangeur de chaleur à plaques
EP3308096B1 (fr) Echangeur de chaleur pour vehicule automobile
WO2015007551A1 (fr) Plaque collectrice de collecteur d'un echangeur de chaleur
EP4094933B1 (fr) Procédé de fabrication d'une structure alvéolaire obtenue à partir de bandes de matière pliées et structure alvéolaire ainsi obtenue
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
EP1649231A2 (fr) Embout de tube pour element de circuit hydraulique, en particulier pour echangeur de chaleur
WO2023041568A1 (fr) Echangeur de chaleur pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
FR2997486A1 (fr) Tube d'echangeur de chaleur a moyen de perturbation plat
EP1548385A2 (fr) Tube d'échangeur de chaleur à deux courants de circulation et échangeur de chaleur comportant de tels tubes
FR2986314A1 (fr) Tube d'echangeur thermique, echangeur thermique et procede d'obtention correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070925

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARRET, PAUL

Inventor name: ARNESEN, JENS-PETER

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080206