EP3304696A1 - Machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre - Google Patents

Machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre

Info

Publication number
EP3304696A1
EP3304696A1 EP16729318.2A EP16729318A EP3304696A1 EP 3304696 A1 EP3304696 A1 EP 3304696A1 EP 16729318 A EP16729318 A EP 16729318A EP 3304696 A1 EP3304696 A1 EP 3304696A1
Authority
EP
European Patent Office
Prior art keywords
cradle
stator
bearing
machine according
holding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16729318.2A
Other languages
German (de)
English (en)
Inventor
Patrice BALTHAZE
Henri DELIANNE
Pierre-Yves Bilteryst
David MARGUERITTE
Michel BOCQUEL
Eric JOZEFOWIEZ
Sylvain PERREAUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1554740A external-priority patent/FR3036886B1/fr
Priority claimed from FR1554736A external-priority patent/FR3036880B1/fr
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP3304696A1 publication Critical patent/EP3304696A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/06Cast metal casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium

Definitions

  • the present invention relates to a rotating electrical machine provided with a device for maintaining a system for guiding a tree in rotation.
  • the invention finds a particularly advantageous, but not exclusive, application in the field of alternators for a motor vehicle.
  • Such an alternator transforms mechanical energy into electrical energy and can be reversible.
  • Such a reversible alternator is called an alternator-starter and makes it possible to convert electrical energy into mechanical energy, in particular to start the engine of the vehicle.
  • the invention may also be implemented with an electric type motor.
  • an alternator as described in document EP0762617 comprises a housing and, inside thereof, a claw rotor, fixed in rotation directly or indirectly to a shaft, and a stator which surrounds the rotor with the presence of a gap.
  • a pulley is attached to the front end of the shaft.
  • the stator comprises a body in the form of a pack of sheets with notches equipped with notch insulation for mounting the stator winding.
  • the coil comprises a plurality of phase windings passing through the notches of the body and forming, with all the phase windings, a front bun and a rear bun on either side of the stator body.
  • the windings are obtained for example from a continuous wire covered with enamel or from bar-like conductor elements, such as U-shaped pins whose ends are interconnected for example by welding.
  • phase windings are, for example, three-phase windings connected in a star or in a triangle, the outputs of which are connected to at least one electronic rectification module comprising rectifying elements such as diodes or transistors of the MOSFET type, in particular when is an alternator-starter.
  • the rotor has two pole wheels.
  • Each wheel has a flange of transverse orientation provided at its outer periphery with teeth for example of trapezoidal shape and axial orientation.
  • the teeth of a wheel are directed axially towards the flange of the other wheel, the tooth of a polar wheel penetrating into the space between two teeth adjacent to the other polar wheel, so that the teeth of the pole wheels are interlocked, some by compared to others.
  • a cylindrical core is interposed axially between the flanges of the wheels. This core carries at its outer periphery an excitation coil wound in an insulator radially interposed between the core and this coil.
  • the housing has front and rear bearings assembled together.
  • the rear bearing carries the brush holder, the voltage regulator and at least one bridge rectifier.
  • the bearings are hollow in shape and each carries a ball bearing centrally for rotational mounting of the rotor shaft.
  • the gap is defined as the difference between the inner and outer radius of a hollow cylinder extending between the rotor and the stator of the electric machine.
  • One of the main goals of an electric machine manufacturer is to minimize the air gap, which results in less magnetic noise and increased performance.
  • manufacturing tolerances must be taken into account to ensure that the rotor does not interfere with the stator during its rotation, which could destroy the machine.
  • the current assembly is performed by assembling the two bearings around the package of sheets.
  • This assembly implies a respect of dimensional constraints and geometric constraints related in particular to the coaxiality of the different elements. Thus, from a dimensional point of view, it defines a gap large enough to absorb the rib variations of the machine.
  • the assembly is carried out not on the outer diameter of the stator plate package but on the two axial ends of the sheet package, so that it is necessary that it is the perpendiculars to the two parts of the bearing receiving the stator which must define a diameter with said single axis.
  • Mounting on the perpendicular face of the stator therefore generates an additional problem of coaxiality due to the lack of perpendicularity between the axial face of the stator and the outer diameter of the stator.
  • it also remains to maintain a coaxiality between the outer diameter of the rotor and the internal diameter of the stator.
  • the invention aims to improve the configuration of existing electrical machines by proposing a rotating electrical machine, comprising a stator and a rotor mounted on a shaft, characterized in that said rotating electrical machine further comprises a cradle having a bearing surface of the stator and at least one rotational guiding surface of said shaft, in that said shaft is mounted on the guide surface via a rotation guiding system, and in that said rotating electrical machine further comprises at least one holding device of said rotation guiding system, said holding device comprising a clam.
  • the invention thus makes it possible to improve the coaxiality between the shaft and the cradle, which makes it possible to reduce the air gap of the machine because of the reduction in mounting clearance.
  • the invention makes it possible to facilitate the adaptation of the machine to different types of shafts by using an additional part so that it is possible to adapt the configuration by modifying only the shape of the retaining device of the system. rotation guidance.
  • said cradle comprises two rotational guiding spans of said shaft of said rotor positioned axially respectively on either side of said stator bearing surface.
  • said cradle defines an open volume, such that the stator assembly, shaft and rotor can be respectively deposited in abutment on said bearing surface and said guide surfaces in a mounting direction perpendicular to an axis of the cradle.
  • said rotational guiding system comprises a bearing.
  • said holding device is configured to hold tight an outer cage of said bearing between said guide surface and said holding device.
  • an axial width of said holding device is substantially equal to an axial width of an outer race of the bearing.
  • said device for holding the rotational guidance system is attached relative to said cradle.
  • said holding device comprises a tag.
  • said slam comprises a bridge extending between two ends fixed on said cradle.
  • an axis of said stator coincides with an axis of the cradle, an axis of the rotor, and an axis of an inner periphery of said bridge.
  • said bridge is delimited at its inner periphery and its outer periphery by concentric circles.
  • a ratio between a thickness of said bridge with respect to an internal diameter of said bridge is between 0.05 and 0.3.
  • said rotation guiding system comprising a bearing having an inner ring, a thickness of said bridge is between 0.2 and 3 times the thickness of said inner ring of the bearing.
  • said device for maintaining the rotational guidance system has a lower height relative to a fan.
  • the retaining bar does not interfere with the air flow generated by the corresponding fan mounted on an end face of the rotor.
  • said rotating electrical machine comprises means for indexing said holding device relative to the cradle.
  • said rotating electrical machine comprises at least one stop system intended to ensure axial retention of the rotational guiding system.
  • said stop system comprises a stop ring formed in the holding device against which is supported said rotation guiding system.
  • said holding device comprises a heat sink comprising fins.
  • said heat sink is attached relative to said holding device of the rotation guide system.
  • said heat sink comes from material with said device for holding the rotating guide system.
  • the cradle includes a heat sink of the rotational guiding system.
  • the guide surfaces comprise a face receiving the rotation guide system and an opposite face having cooling fins.
  • Figure 1 shows an exploded perspective view of an alternator according to the present invention without the protective cover
  • Figure 2 shows an exploded perspective view of an alternator according to the present invention with the protective cover
  • Figure 3 shows a perspective view of an alternator according to the present illustrating the flow of air flow inside the electric machine
  • Figure 4a is a longitudinal sectional view of an alternator according to the present invention in which the stator has a configuration "buried" relative to the bottom of the cradle;
  • Figure 4b is a longitudinal sectional view of an alternator according to the present invention in which the stator has a configuration "raised” relative to the bottom of the cradle;
  • Figure 5 shows a front view of the stator of the alternator according to the present invention provided with an optimized depth of notch
  • Figure 6 is a perspective view of the cradle of the electric machine according to the present invention.
  • FIG 7 is a perspective view of the cradle of Figure 6 in which a stator has been inserted;
  • Figures 8a to 8d are perspective views illustrating different possible configurations of the stator bearing areas;
  • Figure 9a is a side view of the cradle of the alternator according to the present invention provided with cooling fins;
  • Fig. 9b is a side view of the alternator cradle according to the present invention showing the areas in which the cooling fins may be integrated;
  • Figures 10a and 10b are respectively bottom and side views of a cradle according to the present invention provided with reference pads for locating the part during a machining phase;
  • Figures 11a to 11d are perspective views of the bottom of the cradle illustrating different configurations of the damping elements of the stator;
  • Figures 12a to 12d are perspective views of the bottom of the cradle illustrating different configurations of recesses provided for the integration of damping elements of the stator;
  • Figure 13 is a top view of a cradle according to the present invention provided with stops for the ball bearings implanted in the bearing guideways in rotation of the shaft;
  • Fig. 14 is a front view of a stator of the alternator according to the present invention provided with an eccentricity with respect to its inside diameter to allow adjustment of the stator axis with respect to the axis of the rotor;
  • Figure 15 is a front view of a stator retaining tab of the alternator according to the present invention.
  • Figure 16 is a top view of a stator retaining clam belonging to the alternator according to the present invention.
  • Figures 17a and 17b are perspective views illustrating the implementation of indexing means of the stator holding tab relative to the cradle;
  • FIG. 18 is a bottom perspective view of the alternator stator holding tab according to the present invention provided with an indexing stud with respect to the cradle;
  • Fig. 19 is a perspective view of a stator holding bar according to the present invention provided with a groove for indexing the stator body in position;
  • Figure 20a is a side view of a stator holding clam according to the present invention provided with cooling fins at the outer periphery;
  • Figure 20b is a detailed perspective view of the shape of the vanes of the stator holding clamp of Figure 20a;
  • Figure 21 is a perspective view of a stator retaining clam according to the present invention incorporating a cooling circuit
  • Figure 22 is a top view of a stator holding member according to the present invention having two side-by-side keys;
  • Figure 23 is a side view of an alternator according to the present invention provided with a stator holding clam rotatably mounted relative to the cradle via a hinge;
  • FIGS. 24a and 24b show perspective views of a stator holding bar according to the present invention illustrating different damping element implantation configuration providing an anti-vibration function
  • FIGS. 25a to 25c are side views of various embodiments of a stator holding clam according to the present invention for performing a function of anti-vibration and axial retention of the stator;
  • Figures 26a and 26b illustrate a first mode of attachment to the cradle of a stator provided with excrescences according to the present invention
  • FIG. 27 illustrates a second mode of attachment to the cradle of a stator provided with protrusions according to the present invention
  • Figure 28 illustrates a third mode of attachment to the cradle of a stator provided with growths according to the present invention
  • FIG. 29 illustrates a fourth mode of attachment on the cradle of a stator provided with protrusions according to the present invention
  • Figure 30 is a perspective view of a stator body according to the present invention provided with a protrusion for indexing with respect to the cradle and / or the stator holding tab;
  • Figures 31a and 31b are respectively perspective and front views of a bearing holding device according to the present invention.
  • Figure 32 is a perspective view of the bearing holder mounted on the side wall of the cradle shown partially;
  • Figure 33 is a front view of the bearing holder incorporating indexing means relative to the cradle of the alternator according to the present invention
  • Figure 34 is a sectional view of the bearing holder according to the present invention incorporating a rolling stop system
  • Figure 35 is a partial sectional view of a bearing used with the holding device of Figure 34 in which is formed a groove;
  • Figures 36a and 36b are respectively perspective and side views of a bearing holding device provided with cooling fins at the outer periphery;
  • Figures 37a to 37c are side views of the bearing holder according to the present invention illustrating alternative embodiments of the cooling fins
  • Fig. 38 is a perspective view of the alternator protective cover according to the present invention.
  • Figure 39 is a perspective view of the alternator according to the present invention provided with an electronic rectification module remote radially on the stator holding tab;
  • FIGS. 40a and 40b are cross-sectional views illustrating the different possible positions of the phase outputs of the winding of a stator used in the alternator according to the present invention
  • Fig. 41 is a side view of an alternator according to the present invention showing the positioning of the brush holders
  • Figure 42 is a perspective view of an exemplary embodiment of a fan to be fixed against an end face of the rotor
  • Figures 43a and 43b are perspective views illustrating alternative embodiments of the alternator provided with a cover respectively comprising a single or two air inlets.
  • FIGS. 1, 2, 3, 4a and 4b show a compact and polyphase alternator 10 according to the present invention, in particular for a motor vehicle.
  • This alternator 10 transforms mechanical energy into electrical energy and can be reversible.
  • Such a reversible alternator 10 is called an alternator-starter and makes it possible to transform electrical energy into mechanical energy, in particular for starting the engine of the vehicle.
  • This alternator 10 includes a cradle January 1 and a rotor 12 with claws, integral in rotation directly or indirectly a shaft 13.
  • a stator 16 surrounds the rotor 12 with the presence of an air gap 17 visible in the figures 4a and 4b.
  • the axis X1 of the shaft 13 forms the axis of rotation of the rotor 12.
  • the shaft 13 carries at one of its ends a pulley 14 belonging to a device for transmitting motion to at least one belt between the alternator 10 and the engine of the motor vehicle.
  • the cradle 1 1 X2 axis has a bearing surface 20 of the stator 16 on which rests at least in part the stator 16 and at least two bearing surfaces 21 in rotation of the shaft 13 of the rotor 12 respectively positioned axially on each side of the bearing surface 20 of the stator 16.
  • the shaft 13 is mounted on each guide surface 21 via a bearing 22, so that the shaft 13 is rotatably mounted relative to the cradle 1 1.
  • Bearing retaining devices 23 are provided to hold the bearings 22 in position on the guide surfaces 21 in rotation with the shaft 21.
  • the bearings 22 may be replaced by plain bearings, so that each element 22 may be considered more generally as a system for guiding the shaft 13 in rotation.
  • a holding member 26 of the stator 16 is configured to keep a yoke 35 of the stator 16 clamped between the bearing surface 20 of the stator 16 and the holding member 26.
  • the cradle January 1 is closed by a protective cover 30 of complementary shape described in more detail below.
  • the stator 16 with axis X3 comprises a body 31 having an annular cylindrical shape of axis X3 and consists of an axial stack of plane sheets.
  • the body 31 has teeth 34 distributed angularly in a regular manner on an inner periphery of the yoke 35. These teeth 34 delimit two by two notches 36.
  • the yoke 35 corresponds to the full outer annular portion of the body 31 which extends between the bottom of the notches 36 and the outer periphery of the stator 16.
  • the notches 36 open axially into the lower and upper axial end faces of the body 31.
  • the notches 36 are also open radially in the internal cylindrical face of the body 31.
  • the stator 16 is preferably provided with a toothed base 37 on the side of the free ends of the teeth 34 to ensure at least a partial closure of the notches.
  • a winding 40 clearly visible in Figures 1, 4a and 4b comprises a plurality of phase windings through the notches 36 of the body 31 of the stator 16 and forming, with all phases, a front bun 41 a and a bun rear 41b on either side of the body 31 of the stator 16.
  • a "front” element is rotated on the side of the pulley 14 and a “rear” element is rotated on the opposite side.
  • a 16 "hexaphase stator has six phase windings.
  • the invention is however applicable to stators 16 comprising a different number of phase windings, and in particular to "three-phase" stators comprising three phase windings, or five-phase stators comprising five phase or heptaphased windings comprising seven phase windings.
  • the number of slots 36 of the stator 16 is preferably adapted as a function of the number of phase windings of the electric machine 10.
  • the windings are obtained for example from a continuous wire covered with enamel or from bar-like conductor elements, such as U-shaped pins whose ends are interconnected for example by welding. These windings are, for example, star-connected or delta-connected windings whose outputs are connected to an electronic rectification module 46 (see FIG. 39) described in more detail below.
  • the rectifier electronic module 46 comprises rectifying elements 47, such as diodes or transistors of the MOSFET type, in particular when it is an alternator-starter.
  • the use of the holding member 26 eliminates the mechanical function of the yoke 35 and therefore the associated constraints.
  • the cylinder head 35 can then be sized to optimize the electromagnetic performance of the machine.
  • the invention makes it possible to increase the depth Pe of the notches 36 in order to increase the filling rate of the notches 36 of the stator 16 in conductors and thus the current delivered by the machine.
  • the depth Pe of each notch 36 is defined between the inner periphery of the stator 16 on the rotor side 12 and the notch bottom.
  • the thickness Ec of the cylinder head 35 defined as the radial distance between the bottom of the notch and the outer periphery of the stator 16, may also be reduced if necessary to optimize the overall size of the assembly.
  • the alternator 10 is configured such that the magnetic flux raised by the teeth 34 of each phase can pass through the yoke 35 without magnetic saturation.
  • the teeth 34 each have a tooth width A
  • said thickness Ec of the yoke 35 is greater than or equal to K * A, with K corresponding to the number of phases of the electric machine.
  • the thickness Ec of the yoke 35 considered is measured at a tooth root 37, that is to say at the place where the tooth width A is the weakest.
  • the rotor 12 comprises two pole wheels 54.
  • Each wheel 54 has a transversely oriented flange 55 provided at its outer periphery with teeth 56, for example of trapezoidal shape, and axial orientation.
  • the teeth 56 of one wheel 54 are directed axially towards the flange 55 of the other wheel 54, the tooth 56 of a pole wheel 54 penetrating into the space between two teeth 56 adjacent to the other pole wheel 54, so that the teeth 56 of the pole wheels 54 are interleaved.
  • the outer periphery of the teeth 56 is axially oriented and defines with the inner periphery of the body 31 of the stator 16 the gap 17 between the stator 16 and the rotor 12.
  • the inner periphery of the teeth 56 is inclined. These teeth 56 are less thick at their free end.
  • the flanges 55 of the wheels 54 are annular.
  • a cylindrical core 57 is interposed axially between the flanges 55 of the wheels 54.
  • This core 57 carries at its outer periphery an excitation coil 58 wound in an insulator inserted radially between the core 57 and this coil 58.
  • this insulator is made of electrically insulating and moldable material, such as material plastic, while the pole wheels 54 and the core 57 are metallic here being made of ferromagnetic material, such as mild steel.
  • the shaft 13 is also made of metal made of ferromagnetic material, such as steel, which is harder than the pole wheels 54 and the core 57 of the claw rotor 12.
  • the winding mounted on the core 57 is powered via a voltage regulator 62 which can be mounted on the hood as shown in FIGS. 38 and 41.
  • brushes 60 belonging to one or more brush holders 61 are arranged so as to rub on slip rings 63.
  • the brush holder 61 is electrically connected to the voltage regulator 62.
  • the rotor 12 When the excitation coil 58 is electrically powered from the brushes 60, the rotor 12 is magnetized and becomes an inductor rotor 12 with formation of magnetic north-south poles at the claws and therefore the teeth 56 of the pole wheels 54.
  • rotor 12 inductor creates an alternating induced current in the stator 16 induced when the shaft 13 rotates.
  • the electronic rectification module 46 then makes it possible to transform the induced alternating current into a direct current, in particular to supply the loads and the consumers of the on-board network of the motor vehicle, as well as to charge the vehicle battery.
  • This rotor 12 may comprise permanent magnets interposed between two teeth 56 adjacent to the outer periphery of the rotor 12. These magnets may be made of rare earth or ferrite. Alternatively, the rotor 12 may be devoid of such magnets.
  • the cradle 1 1 delimits an open volume 64 such that the stator assembly 16, shaft 13 and rotor 12 can be respectively deposited in abutment on the bearing surface 20 and the guide bearings 21 in a mounting direction M1 perpendicular to the axis X2 of the cradle 1 1.
  • the assembly is such that, while the stator 16 rests on the bearing surface 20, the axis X3 of the stator 16 coincides with the axis X2 of the cradle January 1.
  • the axis X1 of the rotor 12 coincides with the axis X3 of the stator 16 and the axis X2 of the cradle January.
  • the cradle 1 1 has a central portion 65 defined at its axial ends by two side walls 68 in the form of disc portion each comprising a guide surface 21 of the
  • the central portion 65 in the form of a cylinder portion extends at an angle of revolution of the order of 180 degrees. More generally, the cradle 11 may extend at a first angle equal to or less than 180 degrees. In a particular example, to minimize the amount of material used to make the machine, the cradle 1 1 extends at an angle less than 170 degrees.
  • the central portion 65 of the cradle January 1 has a shape delimited by two concentric circles, which limits the amount of material used for the realization of the electric machine.
  • the outer periphery of the central portion 65 may have another shape such as a rectangular shape.
  • the diameter Dbi of the inner periphery of the cradle 1 1 and therefore of the inner periphery of the central portion 65 of the cradle 1 1 corresponds to the external diameter Dce of the yoke 35 of the stator 16.
  • an axial width Lsp of the surface of range 20 corresponds preferably to the axial width of the yoke 35 of the stator 16.
  • the guide surfaces 21 formed in the side walls 68 of the cradle January 1 delimit portions of the cylinder.
  • the roll portions extend about 180 degrees and in all cases at an angle greater than 170 degrees.
  • the diameters of the guide surfaces 21 may be equal or different to accommodate the differences in diameter of the shaft 13 and corresponding bearings 22.
  • the guide surfaces 21 comprise a face 21 1 receiving the bearing 22 having a width substantially corresponding to the width of the outer ring of the bearings 22.
  • An opposite face 212 of the guide lands 21 may comprise preferably cooling fins 70 extending inside openings 71 made in the side walls 68 to allow the passage of an air flow generated by fans 178 fixed on the axial ends of the rotor 12 like this is explained in more detail below. This increases the service life of the ball bearings 22.
  • the central portion 65 may also include through openings 72 made in its wall. Two series of openings 72 may for example be respectively performed on either side of the bearing surface 20, to allow the passage of the cooling air flow of the machine 10.
  • the cooling fins 73 may also be made to extend at least partially inside these openings 72.
  • the fins 70, 73 are made of material with the cradle 1 1 so that the fins 70, 73 may be machined at the same time as the cradle 1 1. Alternatively, the fins 70, 73 are reported relative to the cradle January 1.
  • the cradle 1 1 is preferably monobloc, that is to say that its different parts of the cradle 1 1 are made in one piece.
  • the cradle 1 1 may for this purpose be obtained by foundry.
  • the cradle 11 is preferably made of a heat-conducting metallic material, such as for example an aluminum-based material.
  • the yoke 35 of the stator 16 has an inner periphery 50 and an outer periphery 51. These inner and outer peripheries 50 and 51 are eccentric with respect to each other. Thus the axis X3 of the inner periphery 50 (which corresponds to the axis of the stator 16) is offset relative to the axis X4 of the outer periphery 51.
  • the outer periphery 51 of the yoke 35 is arranged in the cradle January 1, so that the axis X3 of the inner periphery 50 is coaxial with the axis X1 of the rotor 12.
  • the yoke 35 is oriented angularly around the X2 axis of the cradle 1 1, along the arrow F1, so that the axis X3 of the inner periphery 50 is coaxial with the axis X1 of the rotor 12 and with the axis X2 of the cradle.
  • the outer periphery 51 of the yoke 35 is machined to present said eccentricity.
  • the inner periphery of the cradle 1 1 is in contact at least locally, via the bearing surface 20, with the outer periphery of the yoke 35 of the stator 16.
  • the cradle 1 1 has one or more continuous bearing zones 75 of the stator 16 formed in the bearing surface 20 of the stator 16, as illustrated by Figures 8a to 8d.
  • a ratio between the surface of the support zones 75 and the bearing surface 20 is for example between 5% and 100%.
  • the heat generated by the stator 16 is discharged by conduction by the cradle January 1 due to the thermal contact between the two elements.
  • the cradle January 1 has several bearing zones 75, it is possible to provide an air flow passage zone between the stator 16 and the cradle January 1. This zone can be brewed by the air coming from the fans 178 or from an external ventilation source. In addition, it is possible to pass connectors or set up temperature probes, for example CTN type, in the spaces 76 between two support zones 75 consecutive to measure the temperature of the stator 16. This also reduces the machining costs due to the small surface to be machined.
  • the bearing zones 75 may for example have the form of two projecting annular bands extending along the two axial end edges of the bearing surface 20 of the cradle (see Figure 8a). In the embodiment of FIG.
  • the bearing zones 75 are formed by elongated ribs extending along the entire width of the bearing surface 20.
  • support 75 are formed by projecting helical portions.
  • the bearing zones 75 are formed by substantially square protuberances centered with respect to the bearing surface 20 and regularly spaced apart from one another.
  • the support zones 75 may have other configurations adapted to the architecture of the machine 10.
  • the cradle 1 1 incorporates an anti-vibration function to reduce acoustic noise such as that the magnetic noise related to the electrical excitation of the stator 16 and the aerodynamic noise generated mainly by the fans 178 of the rotor 12. This function can be achieved by the radial and / or axial positioning of one or more elements of damping 78 in the cradle January 1, as illustrated in Figures 1 1 to 1 1 d.
  • Each damping element 78 may for example take the form of a resin deposited in the cradle January 1 or antivibration pads placed in the cradle January 1.
  • the damping elements 78 may be of liquid or solid or viscoelastic nature, organic materials, polymers, elastomers or composites such as silicone, rubber, plastic, or any other suitable material for the application.
  • the material of the damping element 78 may if necessary include a thermal conduction function towards the cradle January 1.
  • the contact surface of the damping element 78 with the yoke 35 is between 2% of the surface of the stator 16 inserted in the cradle January 1 and 95% of the surface of the stator 16.
  • the elements 78 can be set place at an angle between 0 and 180 ° with respect to the axis X3 of the body 31 of the stator 16.
  • the antivibration elements 78 on the cradle 1 1 can be held by bonding, or simply by compression with the stator 16 during assembly.
  • the damping members 78 are formed by square shaped elastomeric pads spaced from each other in a regular manner.
  • the buffers 78 are interconnected by a strip of material.
  • the damping elements 78 are inserted inside recesses 79 of complementary shape formed in the bearing surface 20.
  • a seal is inserted inside a groove made in the bearing surface 20 of the cradle January 1.
  • Figures 12a to 12d show different configurations of recesses 79 can be made in the bearing surface 20 to incorporate damping elements 78 of corresponding shape.
  • the recess 79 is elongated and located in a central area of the bearing surface 20.
  • the recesses 79 have circular shapes regularly spaced from each other.
  • the recesses 79 consist of two grooves located on the side of the axial edges of the bearing surface 20.
  • the recesses 79 have helical shapes. Any other type of recess 79 is of course conceivable.
  • an inner face 81 of the cradle 1 1 extending partly around the stator 16 is raised relative to the bearing surface 20 of the stator 16 which then constitutes the bottom from the cradle 1 1.
  • the inner face 81 is elevated by a given thickness E1, so that the distance L1 between the outer circumference of the buns 41a, 41b of the stator 16 and the inner periphery of the cradle 1 1 is decreased by a value proportional to said E1 thickness.
  • the distance L1 between the outer circumference of the buns 41a, 41b of the stator 16 and the inner periphery of the cradle 1 1 extending around the stator 16 is preferably sufficient for an airflow blade to propagate around the buns 41a, 41b.
  • the bearing surface 20 of the stator 16 is raised relative to a bottom 82 of the cradle 1 1 extending in part around the stator 16.
  • the bearing surface 20 of the stator 16 is raised relative to the bottom 82 of a given thickness E2 so that a distance L2 between the outer circumference of the bunches 41a, 41b of the stator 16 and an inner periphery of the cradle January 1 is increased by one value proportional to said thickness E2.
  • the elevation of the stator 16 can be obtained for example by the realization of the bearing areas 75 projecting.
  • the invention thus makes it possible to guarantee a minimum distance between the cradle 1 1 and the winding 40 of the stator 16 without having to carry out a shaping operation of the buns 41a, 41b, which increases the exchange surface and thus improves the cooling of the machine.
  • the ratio K2 is in the interval following 1 .005 ⁇ K2 ⁇ 1 .15.
  • the K3 ratio is in the range 1 .005 ⁇ K3 ⁇ 1 .15.
  • the volume guaranteeing a sufficient air flow cooling the front bun 41 a corresponds to a distance L3 in millimeters between 0.2 * K2 and K2.
  • the volume guaranteeing a sufficient air flow cooling the rear bun 41 b corresponds to a distance L4 in millimeters between 0.2 * K3 and 2 * K3.
  • the cradle January 1 may if necessary be cooled by a coolant.
  • the cradle 11 may include in its internal structure channels 83 (see FIG. coolant taking for example the form of water containing antifreeze or an oil-based liquid.
  • the cradle 1 1 has in its lower part ears 84 provided with a hole allowing the passage of fixing means to allow the attachment of the alternator 10 on the vehicle chassis in a sub-hood environment.
  • the cradle January 1 has reference pads 85 visible in Figures 10a and 10b positioned at the ears and near the end edges of the central portion 65 which extend perpendicularly to the side walls 68. These pads 85 allow to locate the positioning of the cradle 1 1 during a machining phase.
  • the holding member 26 of the stator 16 has a tab 87 attached relative to the cradle 11.
  • the purpose of the tag 87 is to maintain the stator 16 on the cradle 1 1.
  • the trellis 87 of the stator 16 has in this case a cylinder portion shape extending at an angle greater than 170 degrees; for example of the order of 180 °. In some embodiments, the angular range over which the cylinder portion of the tag 87 extends is greater than 200 degrees. This optimizes the shape of the cradle January 1, which reduces the weight of aluminum necessary for the realization of the machine. In other words, the slam 87 has a shape complementary to the cradle.
  • the width I cl of the slab 87 is between 0.5xLc and 1.5xLc, Le being the axial width of the yoke 35 of the stator 16.
  • the slam 87 may be centered or not with respect to a median plane of symmetry perpendicular to the axis X3 of the stator 16.
  • the length L cl of the string 87 depends on the width I cl of the cradle 1 1 where the stator 16 is housed and the diameter of the screw.
  • the string 87 has a solid part having a thickness E_cl of between 0.2 mm and 2 times a thickness of the yoke 35 of the stator.
  • a ratio between an internal diameter D_cl of the label relative to the internal diameter Dbi of the cradle January 1 is between 0.9 and 1 .1.
  • the indexing means 88 comprises pins 89 positioned at the two ends of the slam 87 intended to cooperate with grooves 90 of corresponding shape made in the edges. from the cradle 1 1.
  • the positioning of the pins 89 and grooves 90 could of course be reversed, so that the pins 89 are formed in the cradle January 1 and the grooves formed in the end edges of the slam 87.
  • the band 87 may also be provided with a groove 91 in order to guarantee the positioning of the body 31 of the stator 16.
  • the string 87 is here provided with two extra thicknesses 94 at its ends in which are formed holes 95, as is clearly visible in Figures 15 and 17b in particular. These holes 95 allow the passage of fastening means, such as screws, inserted into corresponding holes 96 made in the cradle January 1.
  • the tag 87 is fixed on the cradle January 1 by means of Belleville washer to exert a constant effort and absorb the machining tolerances.
  • the clam 87 is fixed by any other means on the cradle January 1, such as by riveting, welding, or gluing.
  • the holding member 26 has a plurality of tabs 87.
  • two tabs 87 of identical width are mounted parallel to each other and slightly apart from each other. other.
  • the alarm 87 is configured to allow conductive cooling of the stator 16.
  • the inner periphery of the alarm 87 is in contact with the outer periphery of the the cylinder head 35 of the stator 16.
  • the plate 87 is made of preferably in a thermally conductive material for evacuating the calories when the slam 87 is in contact with the yoke 35 of the stator 16.
  • the slam 87 may thus be made of a material based on steel or aluminum, or in a composite material.
  • the holding member 26 includes a cooling device 100 for evacuating the stored calories.
  • the cooling device 100 comprises convection cooling means provided for example with fins 101 (see FIGS.
  • the fins 101 may have a height H_a between 0.1 and 30mm, and a width L_a between 0.1 and 20mm.
  • the angular spacing between two successive fins 101 may be between 2 and 180 degrees.
  • the spacing E_a between two shapes is between 0.5 and 47mm.
  • the number of fins 101 formed on the string 87 is between 1 and 80.
  • These fins 101 may be integrated or reported relative to the plate 87.
  • the dissipator function is preferably performed on the entire outer surface of the plate 87 off the bearing surface on the cradle January 1. It is nevertheless conceivable to make fins 101 in the inner surface of the slug 87 facing the yoke 35 of the stator 16.
  • a silicone-based thermal paste can be added to improve the thermal conductivity and consequently the cooling of the stator 16 by the tag 87.
  • the cooling device 100 comprises a cooling circuit integrated in the string 87.
  • conduits 102 are formed in the string 87 to allow the circulation of a cooling liquid, such as water containing antifreeze or an oil-based liquid.
  • the cooling circuit can be obtained either by overmolding the material of the clam on the conduits 102, or by adding on the plate 87 an additional circuit.
  • the calliper 87 is obtained by machining for the faces used for fixing on the cradle January 1.
  • the form raw material may have reference pads that will be used in machining for the clamping system (on one side).
  • the slam 87 is rotatably mounted relative to the cradle 1 1 via a hinge 105 allowing the rotation of the slam 87 relative to the cradle 1 1 about an axis parallel to the axis X2 from the cradle 1 1.
  • the displacement of the tag 87 can thus be carried out according to the arrow F2.
  • the slam 87 can thus pass from a position in which the slam 87 is moved away from the cradle 1 1 corresponding to an unlocked state to allow the insertion of the stator 16 into the recess delimited by the cradle January 1, at a position in which the 87 is fixed on the cradle 1 1 corresponding to a locked state in which the slug 87 keeps tight the yoke 35 of the stator 16 between the bearing surface 20 of the stator 16 and the slam 87.
  • the slam 87 has a protuberance 106 on the opposite side of the hinge 105.
  • the protrusion 106 is provided with an opening 107 for the passage of a screw 108 for securing the clamp 87 on the cradle January 1. This ensures a clamping radial and axial retention of the stator 16 of the machine.
  • the speaker 87 may, like the cradle 11, preferably provide an anti-vibration function to reduce acoustic noise, such as the magnetic noise related to the electrical excitation of the stator and the aerodynamic noise generated mainly by the fans 178 of rotor 12.
  • damping element 1 1 1 may consist of a resin deposited in the frame 87 or buffers positioned in the frame 87.
  • the damping elements 11 may be liquid or solid or viscoelastic nature, organic materials, polymers, elastomers or composites such as silicone, rubber, plastic.
  • the material of the antivibration element 1 1 1 may provide a thermal conduction function to the cradle January 1.
  • the contact surface of the damping element (s) 11 may be between 2% and 95% of the surface of the body 31 of the stator 16 inserted into the plate 87.
  • the elements 1 1 1 1 can be set up at an angle of between 0 and 180 degrees relative to the axis X3 of the stator 16.
  • the antivibration elements 1 1 1 hold on the plate 87 can be made by gluing, or simply by compressing the stator 16 during assembly.
  • FIG. 24a thus illustrates the introduction of a rubber seal along the length of the slug 87.
  • FIG. 24b illustrates the placement of a series of buffer 1 1 1.
  • Damping elements January 1 having a configuration similar to the damping elements 78 of the cradle January 1 may also be integrated into the frame 87.
  • the stator 16 is held axially by flanges 1 12 of the string 87 extending along the axial end edges of the string 87.
  • a damping element 1 1 1 O-ring type is further disposed in a corner January 13 of the slam 87 defined by the intersection between a flange 1 12 and the inner periphery of the slam 87, so that the seal 1 1 1 is crushed between the slam 87 and the stator 16.
  • the edge 1 14 of the corresponding yoke 35 of the stator 16 is beveled.
  • the edge 14 of the yoke 35 has shoulders against which the gasket 11 1 bears. The flanges 1 12 thus make it possible to improve the axial retention of the stator 16 on the cradle January 1.
  • the string 87 and the yoke 35 of the stator 16 respectively comprise a groove 1 15, 1 16. These grooves 1 15, 1 16 are positioned facing each other. the other. A snap ring 1 17 is inserted inside these grooves 1 17. This snap ring 1 17 bears against the faces of radial orientation delimiting these grooves 1 15, 1 16 thus makes it possible to maintain axial of the body 31 of the stator 16 on the cradle 1 1.
  • the architecture of the machine 10 is devoid of any label 87.
  • the holding member 26 then comprises excrescences 122 coming from the yoke 35 of the stator 16 to allow the stator 16 to be held on the cradle 1 1.
  • the body 31 of the stator 16 comprises two protrusions 122 which are substantially diametrically opposed and projecting from the outer periphery of the yoke 35.
  • the two protuberances 122 are substantially symmetrical one compared to each other.
  • one of the protuberances 122 is pierced by a hole 125 perpendicular to the surface of the laminations of the body 31 of the stator 16 to receive a rod 124 integral with the cradle 1 1 penetrating the hole 125, of such way that the body 31 of the stator 16 can pivot about an axis of the rod 124 parallel to the axis X3.
  • the blocking device 122 is intended to cooperate with a locking device 123 for clamping the stator 16 on the cradle January 1.
  • the blocking device
  • the two protuberances 122 each comprise a bore 127 parallel to the surface of the sheets of the body 31 to allow the passage of a fixing element 128, of the screw or rivet type, for example.
  • the fastening elements 128 can thus ensure a direct attachment of the stator 16 to the cradle January 1.
  • a protuberance 122 in the shape of a U is intended to cooperate with the rod 124 integral with the cradle January 1, so that the body 31 of the stator 16 can pivot about an axis of the stem
  • each bearing holding device 23 connected to the cradle 11 is constituted by a frame 131 each intended to cooperate with one of the corresponding guide lands 21.
  • These tabs 131 define cylinder portions complementary to the cylinder portions delimited by the guide lands 21 so as to grip each bearing 22 (see Figure 2).
  • Each clam 131 is thus configured to keep the outer race of the bearing 22 tight between the guide surface 21 and the clam 131.
  • each frame 131 comprises a bridge 132 extending between two ends 133 which are fixed on the cradle 1 1 on either side of the guide surface 21.
  • the fastening means 134 of the frame 131 on the cradle 1 1 may for example be constituted by screws or rivets for passing through openings 135 made in thicker ends 133 to cooperate with corresponding holes made in the cradle 136.
  • the bridge 132 is delimited at its inner periphery and its outer periphery by concentric circles.
  • a ratio between a thickness Ep of the bridge 132 with respect to an internal diameter Dpi of the bridge (cf Figure 31b) is between 0.05 and 0.3.
  • a thickness Ep of the bridge 132 is between 0.2 and 3 times the thickness of the inner ring of the bearing 32.
  • the clam 131 is sized to withstand the efforts of the application because the thickness of the inner ring is directly related to these efforts.
  • the axis X6 of the claws 131 coincides with the axis of the corresponding bearing 22.
  • the axial width Lp of the tongue 131 is substantially equal to the axial width of the outer race of the bearing 22.
  • each clam 131 has a height less than the circumference along which are located the inner ends of the blades of the fans 178.
  • an indexing means 138 of the holding device 23 is preferably provided with respect to the cradle 11.
  • this indexing means 138 is constituted by a tongue 139 intended to cooperate with a corresponding groove 140 formed in the cradle 11.
  • Clades 131 may be steel, aluminum, or composite materials, The clam 131 is obtained by machining for the faces used for attachment to the cradle January 1. In the case of a process for obtaining by casting, the raw form may have reference pads formed in the ends 133 which will be used during machining for the clamping system.
  • the bearing retainer 23 further preferably comprises a heat sink 143 as shown in Figs. 36a, 36b, 37a, 37b, and 37c. Such a dissipator 143 improves the life of the bearings 22 and also allows bearings 22 with reduced clearance, which has a vibratory influence on the operating noise that is minimized.
  • This heat sink 143 may be positioned on the entire outer surface of the clam 131 off the bearing surface on the cradle 131. In this case, the heat sink 143 is positioned on the outer periphery of the bridge 132.
  • This heat sink comprises a plurality of fins 144.
  • the fins 144 may have a height H_a 'between 0.1 and 30mm, and a width L_a' between 0.1 and 20mm.
  • the angular spacing between two successive fins 144 may be between 2 and 180 degrees.
  • the spacing E_a 'between two shapes is between 0.5 and 47mm.
  • the number of fins 101 formed on the clam 131 is between 1 and 90.
  • Figures 37a to 37c illustrate different types of configurations of fins 144.
  • the claws 131 may have a full central wing 144 'more thicker than the lateral wings 144, as illustrated in Figures 37a and 37b.
  • the heat sink 143 comprising the fins 144, 144 'may be attached to the frame 131 or come of material with the clam 131.
  • a thermal paste for example based on silicone, can be added to improve the thermal conductivity of the claws 131 and consequently the cooling of the bearings 22.
  • a thrust bearing system 148 makes it possible to hold each bearing 22 axially relative to the cradle January 1.
  • This abutment system 148 is integrated on the bearing retaining device 23 and / or on the guide surfaces 21 of the cradle 11.
  • the abutment system 148 comprises a retaining ring 149 cooperating on the one hand with a groove 150 formed in the corresponding tab 131 and on the other hand with a groove 151 in vis-à-vis performed in the bearing 22 corresponding.
  • the groove 151 is more precisely made in the outer ring 221 of the bearing 22, as is shown in the detailed view of FIG. 35.
  • the stop system 148 thus ensures an axial retention of the bearing 22 taking into account the bearing of the bearing. ring 149 against the faces of radial orientation delimiting the grooves 150, 151.
  • the stop system 148 may belong to the cradle January 1.
  • the abutment system 148 comprises annular shoulders 154 formed in at least one axial end of the guide lands 21 and against which bears a bearing 22 corresponding.
  • the shoulders 154 may be made on one axial side or on both axial sides of each guide surface 21.
  • the cover 30 has a central portion 157 having a cylinder portion shape and two side walls 158 situated at the two axial ends of the central portion 157.
  • the side walls 158 in the form of disk portions have notches 159 to allow an axial passage of the air inside the machine 10. through openings 160 better visible in Figure 2, are formed in the central portion 157 to allow a radial discharge of the air flow generated by the fans 178, as described below.
  • Feet 161 delimiting the corners of a rectangle are intended to bear against the corresponding edges of the cradle January 1.
  • the hood 30 essentially has a function of protecting the machine from its outside environment.
  • This cover 30 is assembled radially on the cradle 1 1 and / or the tab 87 of the stator 16 and not axially as is the case with the front and rear bearings of existing machines.
  • the cover 30 may be fixed on the cradle 1 1 and / or the tab 87 by riveting, thermo-bonding, screwing, or clipping, welding, bonding crimping, strapping, hooping, brazing, or stamping.
  • the fixing thereof may be carried out using a metal insert on which is molded the plastic mass forming the cover 30 and screwed on the cradle 1 1, by thermoforming the cover 30 on the cradle 1 1 and / or the tab 87 of the stator 16 or by heat-sealing the cover 30 on the cradle 1 1 and / or the slam 87, or by riveting the plastic cover 30 on the cradle 1 1 and / or the claim 87.
  • the cover 30 may be made of a metallic material, such as aluminum or steel.
  • the cover 30 may be provided with a sound-insulating device 162 made for example of a foam-based material, or a honeycomb-shaped material.
  • a brush holder 61 secured to the cover 30, in this case a side wall 158, comprises brushes 60 intended to rub against rings 63 carried by the shaft 13 and made for example in a copper-based material.
  • the cover 30 comprises at each of its ends a brush holder 61 each comprising a brush 60 cooperating with a ring 63 located at each axial end of the rotor 12. The positioning of the pulley 14 is then adapted accordingly.
  • each brush holder 61 is provided with a protector integrated in the cover 30. The protector makes it possible to retain the dust of the brushes 60.
  • Each brush holder 61 preferably comprises at least one duct guiding a passage of an air flow towards the brushes 60 and rings 63. This thus makes it possible to increase the service life of the brushes 60.
  • the regulator 62 of FIG. The voltage of the rotor 12 generating the voltage applied by the brushes 60 is advantageously mounted on the cover 30. It will be possible to take advantage of the cover 30 made of a plastic material to overmold the regulator 62 on the cover 30.
  • the hood 30 may, like the cradle 11, comprise cooling channels 301 in which a cooling liquid circulates so as to evacuate the heat produced by the rings 63 and the electronic control module 46.
  • the electronic rectification module 46 is offset radially relative to a yoke 35 of the stator 16.
  • the electronic rectification module 46 extends at least partially in a plane P1 parallel to a X3 axis of the cylinder head 35 and located at a radial distance from the stator 16 greater than that of the outer periphery of the cylinder head 35.
  • the electronic rectification module 46 may extend at least partially in a surface of a cylinder of revolution centered on the axis of the stator 16 parallel to the yoke 35 and located at a radial distance from the axis of the stator 16 greater than that of the outer periphery of the yoke 35.
  • the electronic rectification module 46 is preferably mounted on the frame 87 of the stator 16.
  • the rectifying elements 47 of the diode or transistor type are advantageously positioned axially on either side of the plate 87 in order to cooperate with the phase outputs 171. whose positioning is described in more detail below.
  • the positive rectifying elements 47a can thus be positioned on the same side of the plate 87; while the negative rectifier elements 47b can be positioned on the opposite side.
  • the electronic rectification module 46 may be fixed or overmoulded in the cover 30.
  • the cover 30 may then include traces 174 (see FIG. 38) overmolded to be electrically connected to the electronic rectification module 46. heat dissipation can also be overmolded on the hood 30 to ensure proper operation of the rectifier elements 47 of the diode type or MOSFET transistor.
  • the phase outputs 171 of the winding 40 are bent with respect to the axis X3 of the stator 16 by an angle A_ph of between 45 ° and 120 °.
  • the phase outputs 171 are curved with respect to the axis X3 of the stator 16 by an angle A_ph preferably of the order of 90 degrees. This avoids passing the phase outputs 171 along the circumference to put them next to an interconnector, which greatly facilitates the mounting of the alternator 10.
  • the Phase outputs 171 may be positioned indifferently on the front side or the rear side of the alternator 10.
  • the phase outputs 171 are distributed axially on either side of the stator 16.
  • phase outputs 171 are thus distributed. at both axial ends of the stator 16.
  • flexibility is obtained for the phase outputs, that is to say that it is possible to distribute the outputs of the two axial sides of the stator.
  • the stresses are thus minimized, because it is no longer necessary to turn around two notches to exit the phases on the same side.
  • the phase outputs 171 may thus be connected to the corresponding series of rectifying elements 47a, 47b.
  • the tag 87 is able to conditively cool the electronic rectification module 46.
  • the cooling device 100 is provided to remove the heat generated by the alternator 10 and the electronic module 46.
  • the cooling device 100 comprises means 177 generating a forced axial air flow capable of generating a flow of air evacuating radially after having convectively cooled the electronic rectification module 46.
  • the means 177 comprise two fans 178 each mounted on an axial end face of the rotor 12.
  • Each fan 178 clearly visible in Figure 42 is provided with a plurality of blades 180.
  • a central opening 181 allows the passage of the shaft 13.
  • Each fan 178 preferably made of plastic is fixed for example by gluing or riveting on the end faces of the rotor 12. As shown in FIG.
  • the fans 178 are able to generate a flow of air penetrating axially, according to the arrows F3, inside the machine via the open side walls of the cover 30 and the cradle January 1, and evacuating radially after having convectively cooled the electronic rectification module 46 outwards along the arrows F3 via the openings 72, 160 respectively formed in the cradle 11 and the cover 30.
  • the cover 30 comprises an air inlet duct 185, so that the air can enter radially into the machine 10 via this duct 185 and axially on the opposite side according to the arrows F3. to be discharged radially via the openings 72 and 160, according to the arrows F4.
  • the side face of the cover 30 located on the side of the conduit 185 may in this case be closed.
  • the cover 30 comprises two radial air inlet ducts.
  • the rotor 12 comprises a single fan 178 fixed on one of its axial ends.
  • annular radiator (see Figure 3) reported for cooling the air entering the machine 10 can be positioned on each side of the cradle January 1.
  • the radiator may be in relation to the passenger compartment of the vehicle to provide heat if necessary.
  • the corresponding coolant circulation ducts are referenced 189 in FIG.
  • At least one electric fan 187 may be radially offset, in order to cool the electronic rectification module 46.
  • the electric fan 187 is fixed for example on the cover 30 so as to direct its air flow towards the electronic module 46.
  • the electric fan 187 may for example be a fan supplied with low voltage of the order of 12V to 48V.
  • a machining step is carried out in the cradle 1 1 of the bearing surface 20 of the stator 16, as well as a machining step in the cradle 11 of the positioned guide lands 21 respectively axially respectively on either side of the bearing surface 20 of the stator 16.
  • the machining steps of the cradle January 1 are performed during a single machining operation.
  • the machining steps of the cradle January 1 are performed at the same time or at least without debridement of the workpiece during machining.
  • the cradle 1 1 thus has corresponding traces of machining.
  • the stator assembly 16, shaft 13 and rotor 12 is then respectively mounted in abutment on the bearing surface 20 and the guide surfaces 21 in the mounting direction M1 perpendicular to the axis X2 of the cradle January 1.
  • the invention thus makes it possible to group all the bearing surfaces, that is to say the guide bearing surfaces 21, and the stator bearing surface 20 on the same part 1 1 which is machined to make all these spans advantageously at one time. in any case on the same machining machine without debriding the part. From a dimensional point of view, the invention thus makes it possible to eliminate the following sets: the mounting set of the rear bearing, and the mounting set of the front bearing of the machines of the state of the art.
  • the clearances of the two guide lands 21 and the two lands of the stator 16 are also reduced because they are obtained by machining. It also removes the sum between the play on the guide surface 21 and the play on the scope of the stator 16, because the staves are machined on the same part with the same reference.
  • the invention makes it possible to reduce the alignment constraint on three diameters instead of four.
  • the air gap 17 must absorb only the above games, which greatly reduces the problems of coaxiality.
  • the gap 17 can therefore be substantially reduced without risk of destruction of the electric machine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

L'invention porte principalement sur une machine électrique tournante, comprenant un stator (16) et un rotor (12) monté sur un arbre (13), caractérisée en ce que ladite machine électrique tournante comprend en outre un berceau (11) comportant une surface de portée (20) du stator (16) et au moins une portée de guidage (21) en rotation dudit arbre (13), en ce que ledit arbre (13) est monté sur la portée de guidage (21) via un système de guidage en rotation (22), et en ce que ladite machine électrique tournante comprend en outre au moins un dispositif de maintien (23) dudit système de guidage en rotation (22), ledit dispositif de maintien (23) comportant une clame (131).

Description

MACHINE ELECTRIQUE TOURNANTE MUNIE D'UN DISPOSITIF DE MAINTIEN D'UN SYSTEME DE GUIDAGE EN ROTATION D'UN ARBRE
La présente invention porte sur une machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre. L'invention trouve une application particulièrement avantageuse, mais non exclusive, dans le domaine des alternateurs pour véhicule automobile. Un tel alternateur transforme de l'énergie mécanique en énergie électrique et peut être réversible. Un tel alternateur réversible est appelé alterno-démarreur et permet de transformer de l'énergie électrique en énergie mécanique notamment pour démarrer le moteur thermique du véhicule. L'invention pourra également être mise en œuvre avec un moteur de type électrique.
De façon connue en soi, un alternateur tel que décrit dans le document EP0762617 comporte un carter et, à l'intérieur de celui-ci, un rotor à griffes, solidaire en rotation de manière directe ou indirecte d'un arbre, et un stator qui entoure le rotor avec présence d'un entrefer. Une poulie est fixée sur l'extrémité avant de l'arbre.
Le stator comporte un corps en forme d'un paquet de tôles doté d'encoches équipées d'isolant d'encoches pour le montage du bobinage du stator. Le bobinage comporte une pluralité d'enroulements de phase traversant les encoches du corps et formant, avec tous les enroulements de phase, un chignon avant et un chignon arrière de part et d'autre du corps du stator. Les enroulements sont obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme de barre, tels que des épingles en forme de U dont les extrémités sont reliées entre elles par exemple par soudage.
Ces enroulements de phase sont par exemple des enroulements triphasés connectés en étoile ou en triangle, dont les sorties sont reliées à au moins un module électronique de redressement comportant des éléments redresseurs tels que des diodes ou des transistors du type MOSFET, notamment lorsqu'il s'agit d'un alterno-démarreur.
Par ailleurs, le rotor comporte deux roues polaires. Chaque roue présente un flasque d'orientation transversale pourvu à sa périphérie externe de dents par exemple de forme trapézoïdale et d'orientation axiale. Les dents d'une roue sont dirigées axialement vers le flasque de l'autre roue, la dent d'une roue polaire pénétrant dans l'espace existant entre deux dents voisines de l'autre roue polaire, de sorte que les dents des roues polaires soient imbriquées les unes par rapport aux autres. Un noyau cylindrique est intercalé axialement entre les flasques des roues. Ce noyau porte à sa périphérie externe un bobinage d'excitation bobiné dans un isolant intercalé radialement entre le noyau et ce bobinage.
En outre, le carter comporte des paliers avant et arrière assemblés ensemble. Le palier arrière porte le porte-balais, le régulateur de tension et au moins un pont redresseur. Les paliers sont de forme creuse et portent chacun centralement un roulement à billes pour le montage à rotation de l'arbre du rotor.
Plus précisément, l'entrefer est défini comme la différence entre le rayon interne et externe d'un cylindre creux s'étendant entre le rotor et le stator de la machine électrique. Un des objectifs principaux d'un constructeur industriel de machine électrique est de minimiser l'entrefer, ce qui permet d'obtenir un bruit magnétique moins important et des performances accrues. Toutefois, il est nécessaire de tenir compte des tolérances de fabrication afin de garantir que le rotor n'interfère pas avec le stator lors de sa rotation, ce qui pourrait causer la destruction de la machine.
Le montage actuel est effectué par assemblage des deux paliers autour du paquet de tôles. Ce montage implique un respect de contraintes dimensionnelles et de contraintes géométriques liées notamment à la coaxialité des différents éléments. Ainsi, d'un point de vue dimensionnel, on définit un entrefer suffisamment important pour absorber les variations de côtes de la machine.
Par ailleurs, d'un point de vue géométrique, il est nécessaire d'avoir quatre diamètres avec un seul axe afin de garantir la coaxialité de la machine électrique, à savoir la portée du roulement avant, la partie du palier avant recevant le stator, la portée du roulement arrière, et la partie du palier arrière recevant le stator.
En outre, le montage est réalisé non pas sur le diamètre extérieur du paquet de tôles du stator mais sur les deux extrémités axiales du paquet de tôle, de sorte qu'il faut que ce soit les perpendiculaires aux deux parties du palier recevant le stator qui doivent définir un diamètre avec ledit seul axe. Le montage sur la face perpendiculaire du stator engendre donc un problème supplémentaire de coaxialité dû au défaut de perpendicularité entre la face axiale du stator et le diamètre externe du stator. Enfin, il reste aussi à conserver une coaxialité entre le diamètre externe du rotor et le diamètre interne du stator.
L'invention vise à améliorer la configuration des machines électriques existantes en proposant une machine électrique tournante, comprenant un stator et un rotor monté sur un arbre, caractérisée en ce que ladite machine électrique tournante comprend en outre un berceau comportant une surface de portée du stator et au moins une portée de guidage en rotation dudit arbre, en ce que ledit arbre est monté sur la portée de guidage via un système de guidage en rotation, et en ce que ladite machine électrique tournante comprend en outre au moins un dispositif de maintien dudit système de guidage en rotation, ledit dispositif de maintien comportant une clame.
L'invention permet ainsi d'améliorer la coaxialité entre l'arbre et le berceau, ce qui autorise à diminuer l'entrefer de la machine du fait de la réduction des jeux de montage. En outre, l'invention permet de faciliter l'adaptation de la machine à différents types d'arbres en utilisant une pièce supplémentaire en sorte qu'il est possible d'adapter la configuration en modifiant uniquement la forme du dispositif de maintien du système de guidage en rotation.
Selon une réalisation, ledit berceau comporte deux portées de guidage en rotation dudit arbre dudit rotor positionnées axialement respectivement de part et d'autre de ladite surface de portée du stator.
Selon une réalisation, ledit berceau délimite un volume ouvert, tel que l'ensemble stator, arbre et rotor puisse être déposé respectivement en appui sur ladite surface de portée et lesdites portées de guidage suivant une direction de montage perpendiculaire à un axe du berceau.
Selon une réalisation, ledit système de guidage en rotation comporte un roulement. Selon une réalisation, ledit dispositif de maintien est configuré pour maintenir serrée une cage externe dudit roulement entre ladite portée de guidage et ledit dispositif de maintien.
Selon une réalisation, une largeur axiale dudit dispositif de maintien est sensiblement égale à une largeur axiale d'une cage extérieure du roulement.
Selon une réalisation, ledit dispositif de maintien du système de guidage en rotation est rapporté par rapport audit berceau.
Selon une réalisation, ledit dispositif de maintien comporte une clame.
Selon une réalisation, ladite clame comporte un pont s'étendant entre deux extrémités fixées sur ledit berceau.
Selon une réalisation, alors que le stator repose sur ladite surface de portée, un axe dudit stator est confondu avec un axe du berceau, un axe du rotor, et un axe d'une périphérie interne dudit pont.
Selon une réalisation, ledit pont est délimité à sa périphérie interne et sa périphérie externe par des cercles concentriques.
Selon une réalisation, un ratio entre une épaisseur dudit pont par rapport à un diamètre interne dudit pont est compris entre 0.05 et 0.3.
Selon une réalisation, ledit système de guidage en rotation comportant un roulement ayant une bague interne, une épaisseur dudit pont est comprise entre 0.2 et 3 fois l'épaisseur de ladite bague intérieure du roulement. Ainsi, la clame est dimensionnée pour supporter les efforts de l'application car l'épaisseur de la bague intérieure est directement liée à ces efforts.
Selon une réalisation, ledit dispositif de maintien du système de guidage en rotation présente une hauteur inférieure par rapport à un ventilateur. Ainsi, la clame de maintien n'interfère pas avec le flux d'air généré par le ventilateur correspondante monté sur une face d'extrémité du rotor.
Selon une réalisation, ladite machine électrique tournante comporte un moyen d'indexage dudit dispositif de maintien par rapport au berceau. Selon une réalisation, ladite machine électrique tournante comporte au moins un système de butée destiné à assurer un maintien axial du système de guidage en rotation.
Selon une réalisation, ledit système de butée comporte un jonc d'arrêt ménagé dans le dispositif de maintien contre lequel est en appui ledit système de guidage en rotation.
Selon une réalisation, ledit dispositif de maintien comporte un dissipateur thermique comportant des ailettes.
Selon une réalisation, ledit dissipateur thermique est rapporté par rapport audit dispositif de maintien du système de guidage en rotation.
Selon une réalisation, ledit dissipateur thermique vient de matière avec ledit dispositif de maintien du système de guidage en rotation.
Selon une réalisation, le berceau comprend un dissipateur de chaleur du système de guidage en rotation. Selon une réalisation, les portées de guidage comportent une face recevant le système de guidage en rotation et une face opposée comportant des ailettes de refroidissement.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
La figure 1 montre une vue en perspective éclatée d'un alternateur selon la présente invention sans le capot de protection;
La figure 2 montre une vue en perspective éclatée d'un alternateur selon la présente invention avec le capot de protection; La figure 3 montre une vue en perspective d'un alternateur selon la présente illustrant la circulation du flux d'air à l'intérieur de la machine électrique;
La figure 4a est une vue en coupe longitudinale d'un alternateur selon la présente invention dans lequel le stator présente une configuration "enterrée" par rapport au fond du berceau; La figure 4b est une vue en coupe longitudinale d'un alternateur selon la présente invention dans lequel le stator présente une configuration "surélevée" par rapport au fond du berceau;
La figure 5 montre une vue de face du stator de l'alternateur selon la présente invention muni d'une profondeur d'encoches optimisée;
La figure 6 est une vue en perspective du berceau de la machine électrique selon la présente invention;
La figure 7 est une vue en perspective du berceau de la figure 6 dans lequel a été inséré un stator; Les figures 8a à 8d sont des vues en perspective illustrant différentes configurations possibles des zones d'appui du stator;
La figure 9a est une vue de côté du berceau de l'alternateur selon la présente invention muni d'ailettes de refroidissement;
La figure 9b est une vue de côté du berceau de l'alternateur selon la présente invention montrant les zones dans lesquelles les ailettes de refroidissement peuvent être intégrées;
Les figures 10a et 10b sont respectivement des vues de dessous et de côté d'un berceau selon la présente invention muni de plots de référence permettant un repérage de la pièce lors d'une phase d'usinage; Les figures 1 1 a à 1 1d sont des vues en perspective du fond du berceau illustrant différentes configurations des éléments d'amortissement du stator;
Les figures 12a à 12d sont des vues en perspective du fond du berceau illustrant différentes configurations de creusures prévues pour l'intégration d'éléments d'amortissement du stator; La figure 13 est une vue de dessus d'un berceau selon la présente invention muni de butées d'arrêt pour les roulements à billes implantées dans les portées de guidage en rotation de l'arbre; La figure 14 est une vue de face d'un stator de l'alternateur selon la présente invention muni d'une excentricité par rapport à son diamètre intérieur pour permettre un ajustement de l'axe du stator par rapport à l'axe du rotor;
La figure 15 est une vue de face d'une clame de maintien du stator de l'alternateur selon la présente invention;
La figure 16 est une vue de dessus d'une clame de maintien du stator appartenant à l'alternateur selon la présente invention;
Les figures 17a et 17b sont des vues en perspective illustrant la mise en œuvre de moyens d'indexage de la clame de maintien du stator par rapport au berceau;
La figure 18 est une vue en perspective de dessous de la clame de maintien du stator de l'alternateur selon la présente invention munie de plot d'indexage par rapport au berceau;
La figure 19 est une vue en perspective d'une clame de maintien du stator selon la présente invention munie d'une rainure pour indexer en position le corps du stator;
La figure 20a est une vue de côté d'une clame de maintien du stator selon la présente invention munie d'ailettes de refroidissement en périphérie externe;
La figure 20b est une vue en perspective détaillée de la forme des ailettes de la clame de maintien du stator de la figure 20a;
La figure 21 est une vue en perspective d'une clame de maintien du stator selon la présente invention intégrant un circuit de refroidissement;
La figure 22 est une vue de dessus d'un organe de maintien du stator selon la présente invention comportant deux clames côte à côte; La figure 23 est une vue de côté d'un alternateur selon la présente invention muni d'une clame de maintien du stator monté rotative par rapport au berceau via une charnière;
Les figures 24a et 24b montrent des vues en perspective d'une clame de maintien du stator selon la présente invention illustrant différentes configuration d'implantation d'élément d'amortissement assurant une fonction d'anti-vibration;
Les figures 25a à 25c sont des vues de côtés de différents modes de réalisation d'une clame de maintien du stator selon la présente invention permettant de réaliser une fonction d'anti-vibration et de maintien axial du stator;
Les figures 26a et 26b illustrent une premier mode de fixation sur le berceau d'un stator muni d'excroissances selon la présente invention;
La figure 27 illustre un deuxième mode de fixation sur le berceau d'un stator muni d'excroissances selon la présente invention;
La figure 28 illustre un troisième mode de fixation sur le berceau d'un stator muni d'excroissances selon la présente invention;
La figure 29 illustre un quatrième mode de fixation sur le berceau d'un stator muni d'excroissances selon la présente invention; La figure 30 est une vue en perspective d'un corps de stator selon la présente invention muni d'une excroissance pour l'indexage par rapport au berceau et/ou à la clame de maintien du stator;
Les figures 31 a et 31 b sont respectivement des vues en perspective et de face d'un dispositif de maintien d'un roulement selon la présente invention; La figure 32 est une vue en perspective du dispositif de maintien de roulement montée sur la paroi latérale du berceau représenté partiellement;
La figure 33 est une vue de face du dispositif de maintien de roulement intégrant un moyen d'indexage par rapport au berceau de l'alternateur selon la présente invention; La figure 34 est une vue en coupe du dispositif de maintien de roulement selon la présente invention intégrant un système de butée de roulement;
La figure 35 est une vue en coupe partielle d'un roulement utilisé avec le dispositif de maintien de la figure 34 dans lequel est ménagée une rainure; Les figures 36a et 36b sont respectivement des vues en perspective et de côté d'un dispositif de maintien de roulement muni d'ailettes de refroidissement en périphérie externe;
Les figures 37a à 37c sont des vues de côté du dispositif de maintien de roulement selon la présente invention illustrant des variantes de réalisation des ailettes de refroidissement;
La figure 38 est une vue en perspective du capot de protection de l'alternateur selon la présente invention;
La figure 39 est une vue en perspective de l'alternateur selon la présente invention muni d'un module électronique de redressement déporté radialement sur la clame de maintien du stator;
Les figures 40a et 40b sont des vues en coupe illustrant les différents positionnements possibles des sorties de phase du bobinage d'un stator utilisé dans l'alternateur selon la présente invention; La figure 41 est une vue de côté d'un alternateur selon la présente invention montrant le positionnement des porte-balais;
La figure 42 est une vue en perspective d'un exemple de réalisation d'un ventilateur destiné à être fixé contre une face d'extrémité du rotor;
Les figures 43a et 43b sont des vues en perspective illustrant des variantes de réalisation de l'alternateur muni d'un capot comportant respectivement une seule ou deux entrées d'air.
Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre.
On a représenté sur les figures 1 , 2, 3, 4a, et 4b, un alternateur 10 compact et polyphasé selon la présente invention, notamment pour véhicule automobile. Cet alternateur 10 transforme de l'énergie mécanique en énergie électrique et peut être réversible. Un tel alternateur 10 réversible est appelé alterno-démarreur et permet de transformer de l'énergie électrique en énergie mécanique notamment pour démarrer le moteur thermique du véhicule. Cet alternateur 10 comporte un berceau 1 1 et un rotor 12 à griffes, solidaire en rotation de manière directe ou indirecte d'un arbre 13. En outre, un stator 16 entoure le rotor 12 avec présence d'un entrefer 17 visible sur les figures 4a et 4b. L'axe X1 de l'arbre 13 forme l'axe de rotation du rotor 12. L'arbre 13 porte à une de ses extrémités une poulie 14 appartenant à un dispositif de transmission de mouvements à au moins une courroie entre l'alternateur 10 et le moteur thermique du véhicule automobile.
En l'occurrence, le berceau 1 1 d'axe X2 comporte une surface de portée 20 du stator 16 sur laquelle repose au moins en partie le stator 16 et au moins deux portées de guidage 21 en rotation de l'arbre 13 du rotor 12 positionnées respectivement de part et d'autre axialement de la surface de portée 20 du stator 16. L'arbre 13 est monté sur chaque portée de guidage 21 via un roulement 22, en sorte que l'arbre 13 est monté rotatif par rapport au berceau 1 1 . Des dispositifs de maintien 23 de roulement sont prévus pour maintenir en position les roulements 22 sur les portées de guidage 21 en rotation de l'arbre 21 . En variante, les roulements 22 pourront être remplacés par des paliers lisses, en sorte que chaque élément 22 pourra être considéré plus généralement comme un système de guidage en rotation de l'arbre 13.
En outre, un organe de maintien 26 du stator 16 est configuré pour maintenir serrée une culasse 35 du stator 16 entre la surface de portée 20 du stator 16 et l'organe de maintien 26. Le berceau 1 1 est fermé par un capot de protection 30 de forme complémentaire décrit plus en détails ci-après.
Plus précisément, comme on peut le voir sur la figure 5, le stator 16 d'axe X3 comporte un corps 31 ayant une forme cylindrique annulaire d'axe X3 et consiste en un empilement axial de tôles planes. Le corps 31 comporte des dents 34 réparties angulairement de manière régulière sur une périphérie interne de la culasse 35. Ces dents 34 délimitent deux à deux des encoches 36. La culasse 35 correspond à la portion annulaire externe pleine du corps 31 qui s'étend entre le fond des encoches 36 et la périphérie externe du stator 16.
Les encoches 36 débouchent axialement dans les faces d'extrémité axiales inférieure et supérieure du corps 31 . Les encoches 36 sont également ouvertes radialement dans la face cylindrique interne du corps 31 . Le stator 16 est de préférence muni de pied de dents 37 du côté des extrémités libres des dents 34 afin d'assurer une fermeture au moins partielle des encoches.
En outre, un bobinage 40 bien visible sur les figures 1 , 4a et 4b comporte une pluralité d'enroulements de phase traversant les encoches 36 du corps 31 du stator 16 et formant, avec toutes les phases, un chignon avant 41 a et un chignon arrière 41 b de part et d'autre du corps 31 du stator 16. Dans la suite de la description, on considère qu'un élément "avant" est tourné du côté de la poulie 14 et qu'un élément "arrière" est tourné du côté opposé.
Par exemple, un stator 16 "hexaphasé" comporte six enroulements de phase. L'invention est cependant applicable à des stators 16 comportant un nombre différent d'enroulements de phase, et notamment à des stators "triphasés" comportant trois enroulements de phase, ou des stators pentaphasés comportant cinq enroulements de phase ou heptaphasés comportant sept enroulements de phase. Le nombre d'encoches 36 du stator 16 est de préférence adapté en fonction du nombre d'enroulements de phase de la machine électrique 10.
Les enroulements sont obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme de barre, tels que des épingles en forme de U dont les extrémités sont reliées entre elles par exemple par soudage. Ces enroulements sont par exemple des enroulements connectés en étoile ou en triangle, dont les sorties sont reliées à un module électronique de redressement 46 (cf. figure 39) décrit plus en détails ci-après. Le module électronique de redressement 46 comporte des éléments redresseurs 47, tels que des diodes ou des transistors du type MOSFET, notamment lorsqu'il s'agit d'un alterno-démarreur.
L'utilisation de l'organe de maintien 26 permet de supprimer la fonction mécanique de la culasse 35 et donc les contraintes associées. La culasse 35 peut alors être dimensionnée pour optimiser les performances électromagnétiques de la machine. En particulier, l'invention permet d'augmenter la profondeur Pe des encoches 36 afin d'augmenter le taux de remplissage des encoches 36 du stator 16 en conducteurs et donc le courant débité par la machine. On rappelle ici que la profondeur Pe de chaque encoche 36 est définie entre la périphérie interne du stator 16 côté rotor 12 et le fond d'encoche. L'épaisseur Ec de la culasse 35, définie comme la distance radiale entre le fond d'encoche et la périphérie externe du stator 16, pourra également être réduite si besoin afin d'optimiser l'encombrement de l'ensemble. Alternativement, à surface d'encoche constante, il sera possible d'augmenter la largeur orthoradiale des dents 34 de manière à permettre une remontée de débit plus importante.
En outre, l'alternateur 10 est configuré de telle façon que le flux magnétique remonté par les dents 34 de chaque phase peut traverser la culasse 35 sans saturation magnétique. A cet effet, les dents 34 présentent chacune une largeur de dent A, ladite épaisseur Ec de culasse 35 est supérieure ou égale à K*A, avec K correspondant au nombre de phases de la machine électrique. Dans le cas où les encoches 36 sont à bords parallèles, l'épaisseur Ec de la culasse 35 considérée est mesurée au niveau d'un pied de dent 37, c'est-à- dire à l'endroit où la largeur de dent A est la plus faible.
Par ailleurs, comme cela est visible sur les figures 4a et 4b, le rotor 12 comporte deux roues polaires 54. Chaque roue 54 présente un flasque 55 d'orientation transversale pourvu à sa périphérie externe de dents 56 par exemple de forme trapézoïdale et d'orientation axiale. Les dents 56 d'une roue 54 sont dirigées axialement vers le flasque 55 de l'autre roue 54, la dent 56 d'une roue polaire 54 pénétrant dans l'espace existant entre deux dents 56 voisines de l'autre roue polaire 54, de sorte que les dents 56 des roues polaires 54 soient imbriquées. La périphérie externe des dents 56 est d'orientation axiale et définit avec la périphérie interne du corps 31 du stator 16 l'entrefer 17 entre le stator 16 et le rotor 12. La périphérie interne des dents 56 est inclinée. Ces dents 56 sont moins épaisses à leur extrémité libre. Les flasques 55 des roues 54 sont de forme annulaire. Un noyau cylindrique 57 est intercalé axialement entre les flasques 55 des roues 54.
Ce noyau 57 porte à sa périphérie externe un bobinage d'excitation 58 bobiné dans un isolant intercalé radialement entre le noyau 57 et ce bobinage 58. Dans l'exemple décrit, cet isolant est en matière électriquement isolante et moulable, telle que de la matière plastique, tandis que les roues polaires 54 et le noyau 57 sont métalliques en étant ici en matière ferromagnétique, telle que de l'acier doux. L'arbre 13 est également métallique en étant en matériau ferromagnétique, tel que de l'acier, plus dur que les roues polaires 54 et le noyau 57 du rotor à griffes 12. Le bobinage monté sur le noyau 57 est alimenté via un régulateur 62 de tension qui pourra être monté sur le capot comme illustré en figures 38 et 41 .
Comme cela est visible sur la figure 41 , des balais 60 appartenant à un ou plusieurs porte-balais 61 sont disposés de façon à frotter sur des bagues collectrices 63. Le porte-balais 61 est relié électriquement au régulateur 62 de tension. Lorsque le bobinage d'excitation 58 est alimenté électriquement à partir des balais 60, le rotor 12 est magnétisé et devient un rotor 12 inducteur avec formation de pôles magnétiques Nord-Sud au niveau des griffes et donc des dents 56 des roues polaires 54. Ce rotor 12 inducteur crée un courant induit alternatif dans le stator 16 induit lorsque l'arbre 13 tourne. Le module électronique de redressement 46 permet alors de transformer le courant alternatif induit en un courant continu, notamment pour alimenter les charges et les consommateurs du réseau de bord du véhicule automobile, ainsi que pour recharger la batterie du véhicule. Ce rotor 12 pourra comporter des aimants permanents interposés entre deux dents 56 voisines à la périphérie externe du rotor 12. Ces aimants pourront être réalisés en terre rare ou en ferrite. En variante, le rotor 12 peut être dépourvu de tels aimants.
Par ailleurs, comme cela est bien visible sur la figure 1 , le berceau 1 1 délimite un volume ouvert 64 tel, que l'ensemble stator 16, arbre 13 et rotor 12 puisse être déposé respectivement en appui sur la surface de portée 20 et les portées de guidage 21 suivant une direction de montage M1 perpendiculaire à l'axe X2 du berceau 1 1 . Le montage est tel que, alors que le stator 16 repose sur la surface de portée 20, l'axe X3 du stator 16 est confondu avec l'axe X2 du berceau 1 1 . En outre, alors que l'arbre 13 de rotor 12 repose sur les portées de guidage 21 , l'axe X1 du rotor 12 est confondu avec l'axe X3 du stator 16 et l'axe X2 du berceau 1 1 .
A cet effet, comme on peut le voir sur les figures 6 et 7, le berceau 1 1 comporte une portion centrale 65 délimitée à ses extrémités axiales par deux parois latérales 68 en forme de portion de disque comprenant chacune une portée de guidage 21 de l'arbre 13. La portion centrale 65 en forme de portion de cylindre s'étend suivant un angle de révolution de l'ordre de 180 degrés. Plus généralement, le berceau 1 1 pourra s'étendre suivant un premier angle égal ou inférieur à 180 degrés. Dans un exemple particulier, afin de minimiser la quantité de matière utilisée pour réaliser la machine, le berceau 1 1 s'étend suivant un angle inférieur à 170 degrés. La portion centrale 65 du berceau 1 1 présente une forme délimitée par deux cercles concentriques, ce qui permet de limiter la quantité de matière utilisée pour la réalisation de la machine électrique. Seule la forme de la périphérie interne de la portion centrale du berceau est imposée pour recevoir le stator 16. En conséquence, en variante, la périphérie externe de la portion centrale 65 pourra présenter une autre forme telle qu'une forme rectangulaire. Le diamètre Dbi de la périphérie interne du berceau 1 1 et donc de la périphérie interne de la portion centrale 65 du berceau 1 1 correspond au diamètre Dce externe de la culasse 35 du stator 16. En outre, une largeur axiale Lsp de la surface de portée 20 correspond de préférence à la largeur axiale Le de la culasse 35 du stator 16.
Par ailleurs, les portées de guidage 21 ménagées dans les parois latérales 68 du berceau 1 1 délimitent des portions de cylindre. Les portions de cylindres s'étendent sur environ 180 degrés et dans tous les cas suivant un angle supérieur à 170 degrés. Les diamètres des portées de guidage 21 pourront être égaux ou différents pour s'adapter aux différences de diamètre de l'arbre 13 et des roulements 22 correspondants. Comme cela est illustré sur la figure 9a, les portées de guidage 21 comportent une face 21 1 recevant le roulement 22 ayant une largeur correspondant sensiblement à la largeur de la bague externe des roulements 22. Une face opposée 212 des portées de guidage 21 pourra comporter de préférence des ailettes 70 de refroidissement s'étendant à l'intérieur d'ouvertures 71 réalisées dans les parois latérales 68 pour autoriser le passage d'un flux d'air généré par des ventilateurs 178 fixés sur les extrémités axiales du rotor 12 comme cela est expliqué plus en détails ci-après. On augmente ainsi la durée de vie des roulements à billes 22.
Comme on peut le voir sur la figure 9b, la portion centrale 65 pourra également comporter des ouvertures 72 traversantes réalisées dans sa paroi. Deux séries d'ouvertures 72 pourront être par exemple respectivement réalisées de part et d'autre de la surface de portée 20, afin de permettre le passage du flux d'air de refroidissement de la machine 10. Des ailettes 73 de refroidissement pourront également être réalisées de manière à s'étendre au moins en partie l'intérieur de ces ouvertures 72. Les ailettes 70, 73 viennent de matière avec le berceau 1 1 en sorte que les ailettes 70, 73 peuvent être usinées en même temps que le berceau 1 1 . Alternativement, les ailettes 70, 73 sont rapportées par rapport au berceau 1 1 .
Le berceau 1 1 est de préférence monobloc, c'est-à-dire que ses différentes parties du berceau 1 1 sont réalisées d'un seul tenant. Le berceau 1 1 pourra à cet effet être obtenu par fonderie. Le berceau 1 1 est de préférence réalisé dans un matériau métallique conducteur de chaleur, comme par exemple à base d'aluminium.
Suivant le mode de réalisation montré sur la figure 14, la culasse 35 du stator 16 présente une périphérie interne 50 et une périphérie externe 51 . Ces périphéries interne 50 et externe 51 sont excentrées l'une par rapport à l'autre. Ainsi l'axe X3 de la périphérie interne 50 (qui correspond à l'axe du stator 16) est décalé par rapport à l'axe X4 de la périphérie externe 51 . La périphérie externe 51 de la culasse 35 est agencée dans le berceau 1 1 , de telle sorte que l'axe X3 de la périphérie interne 50 est coaxial avec l'axe X1 du rotor 12. La culasse 35 est orientée angulairement autour de l'axe X2 du berceau 1 1 , suivant la flèche F1 , de façon que l'axe X3 de la périphérie interne 50 soit coaxial avec l'axe X1 du rotor 12 et avec l'axe X2 du berceau. La périphérie externe 51 de la culasse 35 est usinée pour présenter ladite excentricité. Une telle configuration permet ainsi de garantir la co-axialité des différents éléments de la machine tout en minimisant l'entrefer 17.
La périphérie interne du berceau 1 1 est en contact au moins localement, via la surface de portée 20, avec la périphérie externe de la culasse 35 du stator 16. Le berceau 1 1 présente une seule ou plusieurs zones d'appui 75 continues du stator 16 ménagées dans la surface de portée 20 du stator 16, comme cela est illustré par les figures 8a à 8d. Un ratio entre la surface des zones d'appui 75 et la surface de portée 20 est par exemple compris entre 5% et 100%. La chaleur générée par le stator 16 est évacuée par conduction par le berceau 1 1 du fait du contact thermique entre les deux éléments.
Dans le cas où le berceau 1 1 présente plusieurs zones d'appui 75, il est possible de prévoir une zone de passage de flux d'air entre le stator 16 et le berceau 1 1 . Cette zone peut être brassée par l'air provenant des ventilateurs 178 ou d'une source de ventilation externe. En outre, il est possible de faire passer des connectiques ou mettre en place des sondes de température, par exemple de type CTN, dans les espaces 76 entre deux zones d'appui 75 consécutives afin de mesurer la température du stator 16. Cela permet également de diminuer les coûts d'usinage du fait de la faible surface à usiner. Les zones d'appui 75 pourront présenter par exemple la forme de deux bandes annulaire en saillie s'étendant suivant les deux bords d'extrémité axiaux de la surface de portée 20 du berceau (cf. figure 8a). Dans le mode de réalisation de la figure 8b, les zones d'appui 75 sont formées par des nervures allongées s'étendant suivant toute la largeur de la surface de portée 20. Dans le mode de réalisation de la figure 8c, les zones d'appui 75 sont formées par des portions d'hélice en saillie. Dans le mode de réalisation de la figure 8d, les zones d'appui 75 sont formées par des protubérances de forme sensiblement carrée centrées par rapport à la surface de portée 20 et espacées entre elles de manière régulière. Ces exemples ne sont bien entendu pas limitatifs et les zones d'appui 75 pourront présenter d'autres configurations adaptées à l'architecture de la machine 10. De préférence, le berceau 1 1 intègre une fonction anti-vibratoire pour réduire les bruits acoustiques tels que le bruit magnétique lié à l'excitation électrique du stator 16 et le bruit aérodynamique généré principalement par les ventilateurs 178 du rotor 12. Cette fonction peut être réalisée par la mise en place radiale et/ou axiale d'un ou plusieurs éléments d'amortissement 78 dans le berceau 1 1 , comme cela est illustré sur les figures 1 1 a à 1 1 d .
Chaque élément d'amortissement 78 pourra prendre par exemple la forme d'une résine déposée dans le berceau 1 1 ou de tampons antivibratoires mis en place dans le berceau 1 1 . Les éléments d'amortissement 78 peuvent être de nature liquide ou solide ou viscoélastique, de matières organiques, polymères, élastomères ou composites tels que silicone, caoutchouc, plastique, ou tout autre matériau adapté à l'application. La matière de l'élément d'amortissement 78 pourra si besoin inclure une fonction de conduction thermique vers le berceau 1 1 .
La surface de contact de l'élément d'amortissement 78 avec la culasse 35 est comprise entre 2 % de la surface du stator 16 inséré dans le berceau 1 1 et 95% de la surface du stator 16. Les éléments 78 peuvent être mis en place suivant un angle compris entre 0 à 180° par rapport à l'axe X3 du corps 31 du stator 16. La tenue des éléments antivibratoires 78 sur le berceau 1 1 peut être est réalisée par collage, ou simplement par compression avec le stator 16 lors de l'assemblage.
Dans le mode de réalisation de la figure 1 1 a, les éléments d'amortissement 78 sont formés par des tampons d'élastomère de forme carrée espacés entre eux de manière régulière. Dans le mode de réalisation de la figure 1 1 b, les tampons 78 sont reliés entre eux par une bande de matière. Dans le mode de réalisation de la figure 1 1 c, les éléments d'amortissement 78 sont insérés à l'intérieur de creusures 79 de forme complémentaires réalisées dans la surface de portée 20. Dans le mode de réalisation de la figure 1 1 d, un joint est inséré à l'intérieur d'une rainure réalisée dans la surface de portée 20 du berceau 1 1 .
Les figures 12a à 12d montrent différentes configurations de creusures 79 pouvant être réalisées dans la surface de portée 20 afin d'intégrer des éléments d'amortissement 78 de forme correspondante. Dans le mode de réalisation de la figure 12a, la creusure 79 est allongée et située dans une zone centrale de la surface de portée 20. Dans le mode de réalisation de la figure 12b, les creusures 79 présentent des formes circulaires régulièrement espacées entre elles. Dans le mode de réalisation de la figure 12c, les creusures 79 consistent en deux rainures situées du côté des bords axiaux de la surface de portée 20. Dans le mode de réalisation de la figure 12d, les creusures 79 présentent des formes en hélicoïdes. Tout autre type de forme des creusures 79 est bien entendu envisageable.
Dans le mode de réalisation de la figure 4a dit "stator enterré", une face interne 81 du berceau 1 1 s'étendant en partie autour du stator 16 est surélevée par rapport à la surface de portée 20 du stator 16 qui constitue alors le fond du berceau 1 1 . La face interne 81 est surélevée d'une épaisseur E1 donnée, de sorte que la distance L1 entre la circonférence externe des chignons 41 a, 41 b du stator 16 et la périphérie interne du berceau 1 1 soit diminuée d'une valeur proportionnelle à ladite épaisseur E1 . L'invention permet ainsi d'obtenir un ensemble plus compact pour faciliter l'intégration de la machine dans l'espace sous-capot du véhicule. Dans tous les cas, la distance L1 entre la circonférence externe des chignons 41 a, 41 b du stator 16 et la périphérie interne du berceau 1 1 s'étendant autour du stator 16 est de préférence suffisant pour qu'une lame d'écoulement d'air puisse se propager autour des chignons 41 a, 41 b.
Dans le mode de réalisation de la figure 4b dit "stator surélevé", la surface de portée 20 du stator 16 est surélevée par rapport à un fond 82 du berceau 1 1 s'étendant en partie autour du stator 16. La surface de portée 20 du stator 16 est surélevée par rapport au fond 82 d'une épaisseur E2 donnée de sorte qu'une distance L2 entre la circonférence externe des chignons 41 a, 41 b du stator 16 et une périphérie interne du berceau 1 1 soit augmentée d'une valeur proportionnelle à ladite épaisseur E2. La surélévation du stator 16 pourra être obtenue par exemple par la réalisation des zones d'appui 75 en saillie. L'invention permet ainsi de garantir une distance minimale entre le berceau 1 1 et le bobinage 40 du stator 16 sans avoir à réaliser une opération de conformage des chignons 41 a, 41 b, ce qui augmente la surface d'échange et donc améliore le refroidissement de la machine. De préférence, le ratio d'encombrement minimal K2 entre l'enveloppe radiale extérieure du chignon avant 41 a et le berceau 1 1 est égal K2=(Dbi)/(Dch), Dch étant le diamètre extérieur du chignon avant 41 a et Dbi étant le diamètre intérieur du berceau 1 1 . Le ratio K2 est compris dans l'intervalle suivant 1 .005<K2<1 .15. Le ratio d'encombrement minimal K3 entre l'enveloppe radiale extérieure du chignon arrière 41 b et le berceau 1 1 est égal K3=(Dbi)/(Dch'), Dch' étant le diamètre extérieur du chignon arrière 41 b et Dbi étant le diamètre intérieur du berceau 1 1 . Le ratio K3 est compris dans l'intervalle suivant 1 .005<K3<1 .15.
Le volume garantissant une veine d'air suffisante au refroidissement du chignon avant 41 a correspond à une distance L3 en millimètre comprise entre 0.2*K2 et K2.
Le volume garantissant une veine d'air suffisante au refroidissement du chignon arrière 41 b correspond à une distance L4 en millimètre comprise entre 0.2*K3 et 2*K3. En outre, le berceau 1 1 pourra si besoin être refroidi par un liquide de refroidissement. A cet effet, le berceau 1 1 pourra comporter dans sa structure interne des canaux 83 (cf. figure 9b) autorisant le passage du liquide de refroidissement prenant par exemple la forme d'eau contenant de l'anti-gel ou d'un liquide à base d'huile.
Comme on peut le voir sur les figures 1 , 2, 6, 7, et 9a notamment, le berceau 1 1 comporte dans sa partie inférieure des oreilles 84 munie de trou autorisant le passage de moyen de fixation afin de permettre la fixation de l'alternateur 10 sur le châssis du véhicule dans un environnement sous- capot.
Avantageusement, le berceau 1 1 comporte des plots de référence 85 visibles en figures 10a et 10b positionnés au niveau des oreilles et à proximité des bords d'extrémité de la portion centrale 65 qui s'étendent perpendiculairement aux parois latérales 68. Ces plots 85 permettent de repérer le positionnement du berceau 1 1 lors d'une phase d'usinage.
Comme cela est illustré sur les figures 1 , 2, 15, et 16 notamment, l'organe de maintien 26 du stator 16 comporte une clame 87 rapportée par rapport au berceau 1 1 . La clame 87 a pour fonction de maintenir le stator 16 sur le berceau 1 1 .
La clame 87 du stator 16 présente en l'occurrence une forme de portion de cylindre s'étendant suivant un angle supérieur à 170 degrés; par exemple de l'ordre de 180°. Dans certains mode de réalisation, la plage angulaire sur laquelle s'étend la portion de cylindre de la clame 87 est supérieure à 200 degrés. On optimise ainsi la forme du berceau 1 1 , ce qui permet de réduire la masse d'aluminium nécessaire à la réalisation de la machine. Autrement dit, la clame 87 présente une forme complémentaire par rapport au berceau.
Par ailleurs, dans un exemple de réalisation, la largeur I cl de la clame 87 est comprise entre 0,5xLc et 1 ,5xLc, Le étant la largeur axiale de la culasse 35 du stator 16. En outre, la clame 87 pourra être centrée ou non par rapport à un plan de symétrie médian perpendiculaire à l'axe X3 du stator 16. La longueur L cl de la clame 87 dépend de la largeur I cl du berceau 1 1 où vient se loger le stator 16 ainsi que du diamètre des vis de fixation. La clame 87 présente une partie pleine ayant une épaisseur E_cl comprise entre 0.2mm et 2 fois une épaisseur de la culasse 35 du stator. L'utilisation d'une clame 87 d'épaisseur fine est permise en raison du fait que le stator 16 n'a pas de contrainte mécanique. Dans un exemple de réalisation, un ratio entre un diamètre interne D_cl de la clame par rapport au diamètre interne Dbi du berceau 1 1 est compris entre 0.9 et 1 .1 .
Afin d'assurer un positionnement sous contrôle de la clame 87, on utilise de préférence des moyens complémentaires d'indexage 88 de l'organe de maintien 26 par rapport au berceau 1 1 . A cet effet, comme cela est illustré sur les figures 17a et 17b, et 18, les moyens d'indexage 88 comporte des pions 89 positionnés aux deux extrémités de la clame 87 destinés à coopérer avec des rainures 90 de forme correspondante réalisées dans les bords du berceau 1 1 . En variante, le positionnement des pions 89 et des rainures 90 pourraient bien entendu être inversé, en sorte que les pions 89 sont ménagés dans le berceau 1 1 et les rainures réalisées dans les bords d'extrémité de la clame 87. Comme cela est illustré sur la figure 19, la clame 87 pourra également être munie d'une rainure 91 afin de garantir le positionnement du corps 31 du stator 16.
Afin de permettre la fixation de la clame 87 sur le berceau 1 1 , la clame 87 est ici munie de deux surépaisseurs 94 à ses extrémités dans lesquelles sont réalisées des trous 95, comme cela est bien visible sur les figures 15 et 17b notamment. Ces trous 95 permettent d'autoriser le passage de moyens de fixation, tels que des vis, insérées dans des trous 96 correspondants réalisés dans le berceau 1 1 . Avantageusement, la clame 87 est fixée sur le berceau 1 1 au moyen de rondelle de Belleville afin d'exercer un effort constant et d'absorber les tolérances d'usinage. En variante, la clame 87 est fixée par tout autre moyen sur le berceau 1 1 , tel que par rivetage, soudage, ou collage.
Alternativement, l'organe de maintien 26 comporte plusieurs clames 87. Dans l'exemple représenté à la figure 22, deux clames 87 de largeur identique sont montées parallèles l'une par rapport à l'autre et écartées légèrement l'une de l'autre. Toutefois, en variante, il sera possible d'utiliser plus de deux clames 87 pouvant si besoin avoir des largeurs différentes.
Dans le mode de réalisation des figures 1 , 15, 16 et 23, la clame 87 est configurée pour permettre le refroidissement par conduction du stator 16. A cet effet, la périphérie interne de la clame 87 est en contact avec la périphérie externe de la culasse 35 du stator 16. La clame 87 est réalisée de préférence dans un matériau thermiquement conducteur permettant d'évacuer les calories lorsque la clame 87 est en contact avec la culasse 35 du stator 16. La clame 87 pourra ainsi être réalisée dans un matériau à base d'acier, d'aluminium, ou dans un matériau composite. En outre, l'organe de maintien 26 comporte un dispositif de refroidissement 100 pour évacuer les calories emmagasinées. Le dispositif de refroidissement 100 comprend des moyens de refroidissement par convection muni par exemple d'ailettes 101 (cf. figures 20a et 20b) afin d'augmenter la surface d'échange avec l'air. Dans un exemple de réalisation, les ailettes 101 pourront présenter une hauteur H_a comprise entre 0.1 et 30mm, et une largeur L_a comprise entre 0.1 et 20mm. L'espacement angulaire entre deux ailettes 101 successives pourra être compris entre 2 et 180 degrés. En outre, l'espacement E_a entre deux formes est compris entre 0.5 et 47mm. Le nombre d'ailettes 101 ménagées sur la clame 87 est compris entre 1 et 80.
Ces ailettes 101 pourront être intégrées ou rapportées par rapport à la clame 87. La fonction de dissipateur est réalisée de préférence sur toute la surface extérieure à la clame 87 hors face d'appui sur le berceau 1 1 . Il est néanmoins envisageable de réaliser des ailettes 101 dans la surface intérieure de la clame 87 tournée vers la culasse 35 du stator 16.
Le cas échéant, une pâte thermique à base de silicone peut être ajoutée pour améliorer la conductivité thermique et par conséquent le refroidissement du stator 16 par la clame 87.
Dans le mode de réalisation de la figure 21 , le dispositif de refroidissement 100 comprend un circuit de refroidissement intégré dans la clame 87. A cet effet, des conduits 102 sont ménagés dans la clame 87 pour permettre la circulation d'un liquide de refroidissement, tel que de l'eau contenant de l'anti-gel ou un liquide à base d'huile. Le circuit de refroidissement peut être obtenu soit par surmoulage de la matière de la clame sur les conduits 102, ou par ajout sur la clame 87 d'un circuit additionnel.
La clame 87 est obtenue par usinage pour les faces utilisées à la fixation sur le berceau 1 1 . Dans le cas d'un procédé d'obtention par fonderie, la forme brute pourra posséder des plots de références qui seront utilisés à l'usinage pour le système de bridage (sur une des faces).
Dans le mode de réalisation de la figure 23, la clame 87 est montée rotative par rapport au berceau 1 1 via une charnière 105 permettant la rotation de la clame 87 par rapport au berceau 1 1 autour d'un axe parallèle à l'axe X2 du berceau 1 1 . Le déplacement de la clame 87 peut ainsi être effectué suivant la flèche F2. La clame 87 peut ainsi passer d'une position dans laquelle la clame 87 est écartée du berceau 1 1 correspondant à un état déverrouillé pour permettre l'insertion du stator 16 dans le creux délimité par le berceau 1 1 , à une position dans laquelle la clame 87 est fixée sur le berceau 1 1 correspondant à un état verrouillé dans lequel la clame 87 maintient serrée la culasse 35 du stator 16 entre la surface de portée 20 du stator 16 et la clame 87. A cet effet, la clame 87 comporte une protubérance 106 du côté opposé de la charnière 105. La protubérance 106 est munie d'une ouverture 107 pour le passage d'une vis 108 assurant la fixation de la clame 87 sur le berceau 1 1 . On assure ainsi du fait du serrage un maintien radial et axial du stator 16 de la machine.
En outre, la clame 87 pourra, tout comme le berceau 1 1 , assurer de préférence une fonction anti-vibratoire pour réduire les bruits acoustiques, tels que le bruit magnétique lié à l'excitation électrique du stator et le bruit aérodynamique généré principalement par les ventilateurs 178 du rotor 12.
Cette fonction peut être réalisée par la mise en place radiale et/ou axiale d'au moins un élément d'amortissement 1 1 1 dans la clame 87, comme cela est illustré sur les figures 24a et 24b. Ces éléments d'amortissement 1 1 1 pourront consister une résine déposée dans la clame 87 ou en des tampons positionnés dans la clame 87.
Les éléments d'amortissement 1 1 1 peuvent être de nature liquide ou solide ou viscoélastique, de matières organiques, polymères, élastomères ou composites tels que silicone, caoutchouc, plastique. La matière de l'élément antivibratoire 1 1 1 pourra assurer une fonction de conduction thermique vers le berceau 1 1 . La surface de contact du ou des éléments d'amortissement 1 1 1 pourra être comprise entre 2% et 95% de la surface du corps 31 du stator 16 inséré dans la clame 87.
Les éléments 1 1 1 peuvent être mis en place suivant un angle compris entre 0 et 180 degrés par rapport à l'axe X3 du stator 16. La tenue des éléments antivibratoires 1 1 1 sur la clame 87 peut être est réalisée par collage, ou simplement par compression du stator 16 lors de l'assemblage.
La figure 24a illustre ainsi la mise en place d'un joint en caoutchouc suivant la longueur de la clame 87. La figure 24b illustre la mise en place d'une série de tampon 1 1 1 . Des éléments d'amortissement 1 1 1 ayant une configuration analogue aux éléments d'amortissement 78 du berceau 1 1 pourront aussi être intégrés dans la clame 87.
Dans les variantes de réalisation des figures 25a et 25b, le stator 16 est maintenu axialement par des rebords 1 12 de la clame 87 s'étendant le long des bords d'extrémité axiaux de la clame 87. Un élément d'amortissement 1 1 1 de type joint torique est en outre disposé dans un coin 1 13 de le clame 87 défini par l'intersection entre un rebord 1 12 et la périphérie interne de la clame 87, en sorte que le joint 1 1 1 est écrasé entre la clame 87 et le stator 16. Dans la réalisation de la figure 25a, le bord 1 14 de la culasse 35 correspondant du stator 16 est biseauté. Dans le mode de réalisation de la figure 25b, le bord 1 14 de la culasse 35 présente des épaulements contre lesquels est en appui le joint 1 1 1 . Les rebords 1 12 permettent ainsi d'améliorer ainsi le maintien axial du stator 16 sur le berceau 1 1 .
Dans le mode de réalisation de la figure 25c, la clame 87 et la culasse 35 du stator 16 comportent chacun respectivement une rainure 1 15, 1 16. Ces rainures 1 15, 1 16 sont positionnées en vis-à-vis l'une de l'autre. Un jonc d'arrêt 1 17 est inséré à l'intérieur de ces rainures 1 17. Ce jonc d'arrêt 1 17 en appui contre les faces d'orientation radiale délimitant ces rainures 1 15, 1 16 permet ainsi d'assurer un maintien axial du corps 31 du stator 16 sur le berceau 1 1 .
En variante, comme cela est illustré dans les modes de réalisation des figures 26 à 30, l'architecture de la machine 10 est dépourvue de clame 87. L'organe de maintien 26 comporte alors des excroissances 122 issues de la culasse 35 du stator 16 pour permettre le maintien du stator 16 sur le berceau 1 1 .
Plus précisément, dans le mode réalisation de la figure 26b, le corps 31 du stator 16 comporte deux excroissances 122 sensiblement diamétralement opposée et s'étendant en saillie depuis la périphérie externe de la culasse 35. Les deux excroissances 122 sont sensiblement symétriques l'une par rapport à l'autre. Une fois que le stator 16 est déposé dans le berceau 1 1 , deux dispositifs de blocage 123 assurent un maintien des excroissances 122 contre le berceau 1 1 . Les dispositifs de blocage 123 peuvent être vissés, rivetés, ou soudés sur le berceau 1 1 . En variante, d'autres systèmes d'assemblage des dispositifs 123 sur le berceau 1 1 pourront être utilisés, cela dépend de l'application. Les dispositifs de blocage 123 peuvent être réalisés par exemple dans un matériau de type aluminium, acier, ou matériaux composites. Ces formes 122 pourront également être utilisées pour l'indexage stator 16 dans les procédés de bobinage, et dans les procédés d'assemblage du stator 16 dans le berceau 1 1 .
Dans le mode de réalisation de la figure 27, une des excroissances 122 est percée par un trou 125 perpendiculairement à la surface des tôles du corps 31 du stator 16 pour accueillir une tige 124 solidaire du berceau 1 1 pénétrant dans le trou 125, de telle façon que le corps 31 du stator 16 peut pivoter autour d'un axe de la tige 124 parallèle à l'axe X3. La deuxième excroissance
122 est destinée à coopérer avec un dispositif de blocage 123 pour brider le stator 16 sur le berceau 1 1 . Comme précédemment, le dispositif de blocage
123 pourra être vissé, riveté, ou soudé sur le berceau 1 1 . Dans le mode de réalisation de la figure 28, les deux excroissances 122 comportent chacune un perçage 127 parallèle à la surface des tôles du corps 31 pour permettre le passage d'un élément de fixation 128, de type vis ou rivet par exemple. Les éléments de fixation 128 pourront ainsi assurer une fixation directe du stator 16 sur le berceau 1 1 . Dans le mode de réalisation de la figure 29, une excroissance 122 en forme de U est destinée à coopérer avec la tige 124 solidaire du berceau 1 1 , de telle façon que le corps 31 du stator 16 peut pivoter autour d'un axe de la tige
124 parallèle à l'axe X3 lors de la mise en place du stator 16 dans le berceau 1 1 . La deuxième excroissance 122 est destinée à assurer une fixation du stator 16 sur le berceau 1 1 , soit par l'utilisation d'un dispositif de blocage 123 associé, soit, comme représenté, par l'utilisation d'un élément de fixation 128 traversant un perçage 127 réalisé dans l'excroissance 122 suivant une direction sensiblement parallèle aux feuilles de tôles du corps 31 . Comme cela est bien visible sur la figure 31 a, 31 b et 32, chaque dispositif de maintien 23 de roulement rapporté par rapport au berceau 1 1 est constitué par une clame 131 destiné chacune à coopérer avec une des portées de guidage 21 correspondantes. Ces clames 131 délimitent des portions de cylindre complémentaires aux portions de cylindre délimitée par les portées de guidage 21 de manière à enserrer chaque roulement 22 (cf. figure 2). Chaque clame 131 est ainsi configurée pour maintenir serrée la cage externe du roulement 22 entre la portée de guidage 21 et la clame 131 .
A cet effet, chaque clame 131 comporte un pont 132 s'étendant entre deux extrémités 133 qui sont fixées sur le berceau 1 1 de part et d'autre de la portée de guidage 21 . Les moyens de fixation 134 de la clame 131 sur le berceau 1 1 pourront par exemple être constitués par des vis ou des rivets destinés à traverser des ouvertures 135 réalisées dans des surépaisseurs des extrémités 133 pour coopérer avec des trous correspondants réalisés dans le berceau 136. Le pont 132 est délimité à sa périphérie interne et sa périphérie externe par des cercles concentriques. Un ratio entre une épaisseur Ep du pont 132 par rapport à un diamètre interne Dpi du pont (cf. figure 31 b) est compris entre 0.05 et 0.3. Avantageusement, une épaisseur Ep du pont 132 est compris entre 0.2 et 3 fois l'épaisseur de la bague intérieure du roulement 32. Ainsi, la clame 131 est dimensionnée pour supporter les efforts de l'application car l'épaisseur de la bague intérieure est directement liée à ces efforts.
Il est à noter que l'axe X6 des clames 131 , correspondant à l'axe de la périphérie interne 132 du pont 132, est confondu avec l'axe du roulement 22 correspondant. De préférence, la largeur axiale Lp de la clame 131 (cf. figure 31 a) est sensiblement égale à la largeur axiale de la cage extérieure du roulement 22.
Par ailleurs, afin que les clames 131 n'interfèrent pas avec le flux d'air généré par les ventilateurs 178 montés chacun sur une face d'extrémité du rotor 12, chaque clame 131 présente une hauteur inférieure à la circonférence suivant laquelle sont situées les extrémités internes des pales des ventilateurs 178.
Pour faciliter le montage, on prévoit de préférence un moyen d'indexage 138 du dispositif de maintien 23 par rapport au berceau 1 1 . Comme on peut le voir sur la figure 33, ce moyen d'indexage 138 est constitué par une languette 139 destinée à coopérer avec une rainure 140 correspondante ménagée dans le berceau 1 1 .
Les clames 131 pourront être en acier, aluminium, ou matériaux composites, La clame 131 est obtenue par usinage pour les faces utilisées pour la fixation sur le berceau 1 1 . Dans le cas d'un procédé d'obtention par fonderie, la forme brute pourra posséder des plots de références ménagés dans les extrémités 133 qui seront utilisés lors de l'usinage pour le système de bridage. Le dispositif de maintien 23 de roulement comporte en outre de préférence un dissipateur thermique 143 comme cela est illustré sur les figures 36a, 36b, 37a, 37b, et 37c. Un tel dissipateur 143 permet d'améliorer la durée de vie des roulements 22 et permet également d'avoir des roulements 22 avec jeu réduits, ce qui a une influence vibratoire sur le bruit de fonctionnement qui est minimisé.
Ce dissipateur thermique 143 pourra être positionné sur toute la surface extérieure à la clame 131 hors face d'appui sur le berceau 131 . En l'occurrence, le dissipateur thermique 143 est positionné sur la périphérie externe du pont 132. Ce dissipateur thermique comporte une pluralité d'ailettes 144. Dans un exemple de réalisation (cf. figure 36b), les ailettes 144 pourront présenter une hauteur H_a' comprise entre 0.1 et 30mm, et une largeur L_a' comprise entre 0.1 et 20mm. L'espacement angulaire entre deux ailettes 144 successives pourra être compris entre 2 et 180 degrés. En outre, l'espacement E_a' entre deux formes est compris entre 0.5 et 47mm. Le nombre d'ailettes 101 ménagées sur la clame 131 est compris entre 1 et 90. Les figures 37a à 37c illustrent différents types de configurations d'ailettes 144. Les clames 131 pourront présenter une ailette centrale pleine 144' plus épaisses que les ailettes latérales 144, comme cela est illustré sur les figures 37a et 37b.
Le dissipateur thermique 143 comportant les ailettes 144, 144' pourra être rapporté par rapport à la clame 131 ou venir de de matière avec la clame 131 . Une pâte thermique, par exemple à base de silicone, peut être ajoutée pour améliorer la conductivité thermique des clames 131 et par conséquent le refroidissement des roulements 22.
De préférence, un système de butée 148 de roulement permet de maintenir axialement chaque roulement 22 par rapport au berceau 1 1 . Ce système de butée 148 est intégré sur le dispositif de maintien 23 de roulement et/ou sur les portées de guidage 21 du berceau 1 1 . Ainsi, dans le mode de réalisation des figures 34 et 35, le système de butée 148 comporte un jonc d'arrêt 149 coopérant d'une part avec une rainure 150 ménagée dans la clame 131 correspondante et d'autre part avec une rainure 151 en vis-à-vis réalisée dans le roulement 22 correspondant. La rainure 151 est plus précisément réalisée dans la bague externe 221 du roulement 22, comme cela est montré sur la vue détaillée de la figure 35. Le système de butée 148 assure ainsi un maintien axial du roulement 22 compte tenu de la mise en appui du jonc 149 contre les faces d'orientation radiale délimitant les rainures 150, 151 . Alternativement, comme cela est illustré sur la figure 13, le système de butée 148 pourra appartenir au berceau 1 1 . Dans ce cas, le système de butée 148 comprend des épaulements 154 annulaires ménagés dans au moins une extrémité axiale des portées de guidage 21 et contre lesquels vient en appui un roulement 22 correspondant. Ainsi, les épaulements 154 pourront être réalisés d'un seul côté axial ou des deux côtés axiaux de chaque portée de guidage 21 .
Comme cela est visible sur la figure 38, le capot 30 comporte une portion centrale 157 ayant une forme de portion de cylindre et deux parois latérales 158 situées aux deux extrémités axiales de la portion centrale 157. Les parois latérales 158 en forme de portions de disque présentent des échancrures 159 pour autoriser un passage axial de l'air à l'intérieur de la machine 10. Des ouvertures traversantes 160 mieux visibles en figure 2, sont réalisées dans la portion centrale 157 pour autoriser un refoulement radial du flux d'air généré par les ventilateurs 178, comme cela est décrit ci-après. Des pieds 161 délimitant les coins d'un rectangle sont destinés à venir en appui contre les bords correspondants du berceau 1 1 . Le capot 30 a essentiellement une fonction de protection de la machine de son environnement extérieur. Ce capot 30 est assemblé de façon radiale sur le berceau 1 1 et/ou la clame 87 du stator 16 et non de façon axiale comme cela est le cas avec les paliers avant et arrière des machines existantes. Le capot 30 pourra être fixé sur le berceau 1 1 et/ou la clame 87 par rivetage, thermo-collage, vissage, ou clipsage, soudage, collage sertissage, cerclage, frettage, brasage, ou estampage.
Plus précisément, dans le cas d'un capot 30 réalisé dans un matériau plastique, la fixation de celui-ci peut être réalisée à l'aide d'insert métallique sur lequel est surmoulé la masse plastique formant le capot 30 puis vissé sur le berceau 1 1 , par thermoformage du capot 30 sur le berceau 1 1 et/ou la clame 87 du stator 16 ou par thermocollage du capot 30 sur le berceau 1 1 et/ou la clame 87, ou par rivetage du capot 30 plastique sur le berceau 1 1 et/ou la clame 87.
Alternativement, le capot 30 pourra être réalisé dans un matériau métallique, tel que de l'aluminium ou de l'acier. Le capot 30 pourra être muni d'un dispositif d'isolation phonique 162 réalisé par exemple dans un matériau à base de mousse, ou d'un matériau de forme alvéolé.
Comme cela est illustré sur la figure 41 , un porte-balais 61 solidaire du capot 30, en l'occurrence d'une paroi latérale 158, comporte des balais 60 destinés à venir frotter sur des bagues 63 portées par l'arbre 13 et réalisées par exemple dans un matériau à base de cuivre. Dans une variante de réalisation avantageuse représentée en pointillés, le capot 30 comporte à chacune de ses extrémités un porte-balais 61 comprenant chacun un balai 60 coopérant avec une bague 63 située à chaque extrémité axiale du rotor 12. Le positionnement de la poulie 14 est alors adapté en conséquence. De préférence, chaque porte-balais 61 est muni d'un protecteur intégré dans le capot 30. Le protecteur permet d'assurer une rétention de la poussière des balais 60. Chaque porte-balais 61 comporte de préférence au moins un canal guidant un passage d'un flux d'air en direction des balais 60 et des bagues 63. Cela permet ainsi d'augmenter la durée de vie des balais 60. Le régulateur 62 de tension du rotor 12 générant la tension appliquée par les balais 60 est avantageusement monté sur le capot 30. On pourra tirer profit du capot 30 réalisé dans un matériau plastique pour surmouler le régulateur 62 sur le capot 30.
Le capot 30 pourra comme le berceau 1 1 comporter des canaux refroidissement 301 dans lesquels circule un liquide de refroidissement de manière à évacuer la chaleur produite par les bagues 63 et le module électronique de commande 46.
De préférence, comme cela est illustré sur la figure 39, le module électronique de redressement 46 est déporté radialement par rapport à une culasse 35 du stator 16. Le module électronique de redressement 46 s'étend au moins partiellement dans un plan P1 parallèle à un axe X3 de la culasse 35 et situé à une distance radiale du stator 16 supérieure à celle de la périphérie externe de la culasse 35. Le module électronique de redressement 46 pourra s'étendre au moins en partie dans une surface d'un cylindre de révolution centré sur l'axe du stator 16 parallèle à la culasse 35 et situé à une distance radiale de l'axe du stator 16 supérieure à celle de la périphérie externe de la culasse 35.
Le module électronique de redressement 46 est de préférence monté sur la clame 87 du stator 16. Les éléments redresseurs 47 de type diodes ou transistors sont avantageusement positionnés axialement de part et d'autre de la clame 87 afin de coopérer avec les sorties de phase 171 dont le positionnement est décrit plus en détails ci-après. Les éléments redresseurs 47a positifs pourront ainsi être positionnés d'un même côté de la clame 87; tandis que les éléments redresseurs négatifs 47b pourront être positionnés du côté opposé. En variante, le module électronique de redressement 46 pourra être fixé ou surmoulé dans le capot 30. Le capot 30 pourra alors comporter des traces 174 (cf. figure 38) surmoulées destinées à être reliées électriquement au module électronique de redressement 46. Des éléments de dissipation thermique pourront également être surmoulés sur le capot 30 afin de garantir un bon fonctionnement des éléments redresseur 47 de type diode ou transistor MOSFET.
Avantageusement, comme cela est illustré par la figure 40a, les sorties de phase 171 du bobinage 40 sont courbées par rapport à l'axe X3 du stator 16 d'un angle A_ph compris entre 45° et 120°. Les sorties de phase 171 sont courbées par rapport à l'axe X3 du stator 16 d'un angle A_ph valant de préférence de l'ordre de 90 degrés. On évite ainsi de faire passer les sorties de phase 171 suivant la circonférence afin de les mettre en regard d'un interconnecteur, ce qui facilite grandement le montage de l'alternateur 10. En outre, comme cela est illustré par la figure 40b, les sorties de phase 171 pourront être positionnées indifféremment du côté avant ou du côté arrière de l'alternateur 10. De préférence, les sorties de phase 171 sont réparties axialement de part et d'autre du stator 16. Les sorties de phase 171 sont ainsi réparties aux deux extrémités axiales du stator 16. On obtient ainsi de la flexibilité pour les sorties de phases, c'est-à-dire qu'il est possible de répartir les sorties des deux côtés axiaux du stator. Dans le cas particulier d'un bobinage ondulé réparti, on minimise ainsi les contraintes, car il n'est plus nécessaire de tourner autour de deux encoches pour sortir les phases d'un même côté. En outre, les sorties de phase 171 pourront ainsi être reliées à la série d'éléments redresseurs 47a, 47b correspondants.
Lorsque le module électronique de redressement 46 est monté sur la clame 87 du stator 16, la clame 87 est apte à refroidir par conduction le module électronique de redressement 46. En outre, le dispositif de refroidissement 100 est prévu pour évacuer la chaleur produite par l'alternateur 10 et le module électronique 46. Le dispositif de refroidissement 100 comprend des moyens 177 générateur d'un flux d'air axial forcé aptes à générer un flux d'air s'évacuant radialement après avoir refroidi par convection le module électronique de redressement 46.
A cet effet, les moyens 177 comportent deux ventilateurs 178 montés chacun sur une face d'extrémité axiale du rotor 12. Chaque ventilateur 178 bien visible sur la figure 42 est pourvu d'une pluralité de pales 180. Une ouverture centrale 181 permet le passage de l'arbre 13. Chaque ventilateur 178 réalisé de préférence en plastique est fixé par exemple par collage ou rivetage sur les faces d'extrémité du rotor 12. Comme cela est illustré sur la figure 3, les ventilateurs 178 sont aptes à générer un flux d'air pénétrant axialement, suivant les flèches F3, à l'intérieur de la machine via les parois latérales ouvertes du capot 30 et du berceau 1 1 , et s'évacuant radialement après avoir refroidi par convection le module électronique de redressement 46 vers l'extérieur suivant les flèches F3, via les ouvertures 72, 160 réalisées respectivement dans le berceau 1 1 et le capot 30.
Dans le mode de réalisation de la figure 43a, le capot 30 comporte un conduit d'entrée d'air 185, en sorte que l'air peut entrer radialement dans la machine 10 par ce conduit 185 et axialement du côté opposé suivant les flèches F3, pour être refoulé radialement, via les ouvertures 72 et 160, suivant les flèches F4. La face latérale du capot 30 située du côté du conduit 185 pourra dans ce cas être fermée.
Dans le mode de réalisation de la figure 43b, le capot 30 comporte deux conduits d'entrée d'air radiaux.
En variante, le rotor 12 comporte un seul ventilateur 178 fixé sur une de ses extrémités axiales.
En outre, un radiateur annulaire (cf. figure 3) rapporté pour refroidir l'air pénétrant dans la machine 10 pourra être positionné de chaque côté du berceau 1 1 . Le radiateur pourra être en relation avec l'habitacle du véhicule pour fournir de la chaleur si besoin. Les conduits de circulation du fluide caloporteur correspondants sont référencés 189 sur la figure 3.
Si besoin, au moins un ventilateur électrique 187 pourra être déporté radialement, afin de refroidir le module électronique de redressement 46. Le ventilateur électrique 187 est fixé par exemple sur le capot 30 de manière à orienter son flux d'air en direction du module électronique 46. Le ventilateur électrique 187 pourra par exemple être un ventilateur alimenté en basse tension de l'ordre de 12V à 48V.
Bien que l'invention a été décrite en référence avec un alternateur, il est clair que l'invention peut être mise en œuvre avec tout autre type de machine électrique, telle qu'un moteur électrique. Afin de réaliser la machine électrique tournante 10, on réalise une étape d'usinage dans le berceau 1 1 de la surface de portée 20 du stator 16, ainsi qu'une étape d'usinage dans le berceau 1 1 des portées de guidage 21 positionnées axialement respectivement de part et d'autre de la surface de portée 20 du stator 16. Les étapes d'usinage du berceau 1 1 sont réalisées au cours d'une même opération d'usinage. Ainsi, les étapes d'usinage du berceau 1 1 sont réalisées en même temps ou à tout le moins sans débridage de la pièce au cours de l'usinage. Le berceau 1 1 présente donc des traces correspondantes d'usinage. L'ensemble stator 16, arbre 13 et rotor 12 est ensuite monté respectivement en appui sur la surface de portée 20 et les portées de guidage 21 suivant la direction de montage M1 perpendiculaire à l'axe X2 du berceau 1 1 .
L'invention permet ainsi de regrouper toutes les portées, c'est-à-dire les portées de guidage 21 , et la portée de stator 20 sur une même pièce 1 1 qui est usinée pour réaliser toutes ces portées avantageusement en une seule fois, en tout cas sur la même machine d'usinage sans débrider la pièce. D'un point de vue dimensionnel, l'invention permet ainsi de supprimer les jeux suivants: le jeu de montage du palier arrière, et le jeu de montage du palier avant des machines de l'état de l'art. On réduit également, les jeux des deux portées de guidage 21 , et des deux portées du stator 16 car elles sont obtenues par usinage. On supprime également la somme entre le jeu sur la portée de guidage 21 et le jeu sur la portée du stator 16, car les portées sont usinées sur la même pièce avec le même référentiel.
Dans la mesure où les jeux suivants sont corrélés, à savoir le jeu de la portée 21 recevant le roulement 22, le jeu sur la portée du palier avant recevant le stator 16, et le jeu de la portée 21 recevant le roulement 22, on obtient ainsi un entrefer 17 qui doit être supérieur aux valeurs ci-dessous:
- une première valeur obtenue par la somme des jeux suivants: le jeu de la portée 21 recevant le roulement 22, le jeu du roulement 22 avant, le jeu sur le diamètre externe du stator 16, le jeu sur le diamètre interne du stator 16, le jeu sur le diamètre externe du rotor 12,
- une deuxième valeur obtenue par la somme des jeux suivants: le jeu sur la portée du palier avant recevant le stator 16, le jeu sur le diamètre externe du stator 16, le jeu sur le diamètre interne du stator 16, le jeu sur le diamètre externe du rotor 12, et - une troisième valeur obtenue par la somme des jeux suivants: le jeu de la portée 21 recevant le roulement 22, le jeu du roulement 22 arrière, le jeu sur le diamètre externe du stator 16, le jeu sur le diamètre interne du stator 16, et le jeu sur le diamètre externe du rotor 12. Du point de vue géométrique, l'invention permet de réduire la contrainte d'alignement sur trois diamètres au lieu de quatre. On obtient donc une réduction voire une suppression des problèmes de coaxialité des portées (des portées de guidage 21 , et de la portée 20 du stator 16) entre elles. En conséquence, dans l'invention, l'entrefer 17 doit absorber uniquement les jeux ci-dessus, ce qui réduit fortement les problèmes de coaxialité. L'entrefer 17 peut donc être sensiblement réduit sans risque de destruction de la machine électrique 10.

Claims

REVENDICATIONS
1 . Machine électrique tournante, comprenant un stator (16) et un rotor (12) monté sur un arbre (13), caractérisée en ce que ladite machine électrique tournante comprend en outre un berceau (1 1 ) comportant une surface de portée (20) du stator (16) et au moins une portée de guidage (21 ) en rotation dudit arbre (13), en ce que ledit arbre (13) est monté sur la portée de guidage (21 ) via un système de guidage en rotation (22), et en ce que ladite machine électrique tournante comprend en outre au moins un dispositif de maintien (23) dudit système de guidage en rotation (22), ledit dispositif de maintien (23) comportant une clame (131 ).
2. Machine électrique selon la revendication 1 , caractérisée en ce que ledit système de guidage en rotation (22) comporte un roulement et en ce que ledit dispositif de maintien (23) est configuré pour maintenir serrée une cage externe dudit roulement (22) entre ladite portée de guidage (21 ) et ledit dispositif de maintien (23).
3. Machine électrique tournante selon la revendication 1 ou 2, caractérisée en ce que ledit système de guidage en rotation (22) comporte un roulement et en ce qu'une largeur axiale dudit dispositif de maintien (23) est sensiblement égale à une largeur axiale d'une cage extérieure du roulement (22).
4. Machine électrique tournante selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit dispositif de maintien (23) du système de guidage en rotation (22) est rapporté par rapport audit berceau (1 1 ).
5. Machine électrique tournante selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite clame (131 ) comporte un pont (132) s'étendant entre deux extrémités (133) fixées sur ledit berceau (1 1 ).
6. Machine électrique tournante selon la revendication 5, caractérisée en ce qu'un ratio entre une épaisseur (Ep) dudit pont (132) par rapport à un diamètre interne dudit pont (Dpi) est compris entre 0.05 et 0.3.
7. Machine électrique tournante selon la revendication 5 ou 6, caractérisée en ce que ledit système de guidage en rotation (22) comportant un roulement ayant une bague interne, une épaisseur (Ep) dudit pont (132) est compris entre 0.2 et 3 fois l'épaisseur de ladite bague intérieure du roulement.
8. Machine électrique tournante selon l'une quelconque des revendications 1 à 7, caractérisée en ce que ledit dispositif de maintien (23) du système de guidage en rotation (22) présente une hauteur inférieure par rapport à un ventilateur (178).
9. Machine électrique tournante selon l'une quelconque des revendications 1 à 8, caractérisée en ce que ladite machine électrique tournante comporte un moyen d'indexage (88) dudit dispositif de maintien (23) par rapport au berceau (1 1 ).
10. Machine électrique tournante selon l'une quelconque des revendications 1 à 9, caractérisée en ce que ladite machine électrique tournante comporte au moins un système de butée (148) destiné à assurer un maintien axial du système de guidage en rotation (22), ledit système de butée (148) comportant un jonc d'arrêt (149) ménagé dans le dispositif de maintien (23) contre lequel est en appui le système de guidage en rotation.
1 1 . Machine électrique selon l'une quelconque des revendications 1 à 10, caractérisée en ce que ledit dispositif de maintien (23) comporte un dissipateur thermique (143) comportant des ailettes (144).
12. Machine électrique selon la revendication 1 1 , caractérisée en ce que ledit dissipateur thermique (143) est rapporté par rapport audit dispositif de maintien (23) du système de guidage en rotation.
13. Machine électrique tournante selon la revendication 1 1 , caractérisée en ce que ledit dissipateur thermique (143) vient de matière avec ledit dispositif de maintien (23) du système de guidage en rotation.
14. Machine électrique tournante selon l'une quelconque des revendications 1 à 13, caractérisée en ce que le berceau (1 1 ) comprend un dissipateur de chaleur (70) du système de guidage en rotation (22).
15. Machine électrique tournante selon la revendication 14, caractérisée en ce que les portées de guidage (21 ) comportent une face
(21 1 ) recevant le système de guidage en rotation (22) et une face opposée
(212) comportant des ailettes (70) de refroidissement.
EP16729318.2A 2015-05-27 2016-05-25 Machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre Withdrawn EP3304696A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1554740A FR3036886B1 (fr) 2015-05-27 2015-05-27 Machine electrique tournante munie d'un dispositif de maintien d'un systeme de guidage en rotation d'un arbre
FR1554736A FR3036880B1 (fr) 2015-05-27 2015-05-27 Machine electrique tournante munie d'un berceau en contact thermique avec un stator
PCT/FR2016/051227 WO2016189246A1 (fr) 2015-05-27 2016-05-25 Machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre

Publications (1)

Publication Number Publication Date
EP3304696A1 true EP3304696A1 (fr) 2018-04-11

Family

ID=56131560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16729318.2A Withdrawn EP3304696A1 (fr) 2015-05-27 2016-05-25 Machine électrique tournante munie d'un dispositif de maintien d'un système de guidage en rotation d'un arbre

Country Status (2)

Country Link
EP (1) EP3304696A1 (fr)
WO (1) WO2016189246A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630461A (en) * 1992-02-11 1997-05-20 General Electric Company Method for making stator frame for dynamoelectric machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US416240A (en) * 1889-12-03 Electric machine
US3023332A (en) * 1959-07-20 1962-02-27 Oster Mfg Co John Electric motor construction
US3443132A (en) * 1966-04-19 1969-05-06 Robert E Walker Dynamoelectric machine with longitudinally split housing
US5056213A (en) * 1985-10-11 1991-10-15 Reliance Electric Industrial Company Method of assembling a gearmotor and housing
DE4324912C2 (de) * 1993-07-24 1995-11-16 Buehler Gmbh Nachf Geb Stellantrieb, insbesondere für Heizungs-, Lüftungs- oder Klimaklappen in Kraftfahrzeugen
JP3709582B2 (ja) 1995-08-11 2005-10-26 株式会社デンソー 車両用交流発電機
JPH09140082A (ja) * 1995-11-16 1997-05-27 Hitachi Ltd 回転電機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630461A (en) * 1992-02-11 1997-05-20 General Electric Company Method for making stator frame for dynamoelectric machine

Also Published As

Publication number Publication date
WO2016189246A1 (fr) 2016-12-01

Similar Documents

Publication Publication Date Title
EP1362407B1 (fr) Machine tournante perfectionnee pour vehicule automobile
EP2656487B1 (fr) Dispositif regulateur de tension pour une machine electrique tournante, palier d&#39;une telle machine equipe d&#39;un tel dispositif et une telle machine comportant un tel palier
EP2656486B1 (fr) Dispositif régulateur de tension pour une machine électrique tournante, palier d&#39;une telle machine équipe d&#39;un tel dispositif et une telle machine comportant un tel palier
EP1388197A1 (fr) Machine electrique tournante, notamment alternateur pour vehicule automobile
FR2856532A1 (fr) Machine electrique tournante perfectionnee, notamment pour vehicules automobiles
FR3036875A1 (fr) Machine electrique tournante munie d&#39;un stator a culasse d&#39;epaisseur optimisee
EP3304697B1 (fr) Machine electrique tournante munie d&#39;un module electronique de redressement deporte
WO2016189244A1 (fr) Machine electrique tournante munie d&#39;un berceau
WO2016189245A1 (fr) Machine électrique tournante munie d&#39;un organe de maintien de stator
FR3069980B1 (fr) Machine electrique tournante munie d&#39;un deflecteur de liquide
FR3036893A1 (fr) Machine electrique tournante munie d&#39;un module electronique de redressement deporte
FR3036894A1 (fr) Machine electrique tournante munie de moyens de refroidissement par convection d&#39;un module electronique de redressement
FR3036880A1 (fr) Machine electrique tournante munie d&#39;un berceau en contact thermique avec un stator
FR3036874A1 (fr) Machine electrique tournante munie d&#39;un organe de maintien de stator
EP3223400A1 (fr) Machine electrique tournante a trois paliers
WO2003100945A1 (fr) Alternateur muni d&#39;un stator a entrees vrillees
EP3304696A1 (fr) Machine électrique tournante munie d&#39;un dispositif de maintien d&#39;un système de guidage en rotation d&#39;un arbre
FR2969413A1 (fr) Dispositif regulateur de tension pour une machine electrique tournante, palier d&#39;une telle machine equipe d&#39;un tel dispositif et une telle machine comportant un tel palier
FR3036885A1 (fr) Machine electrique tournante munie d&#39;un berceau et d&#39;un stator coaxiaux
FR3036876A1 (fr) Machine electrique tournante munie d&#39;un capot de protection
FR3036886A1 (fr) Machine electrique tournante munie d&#39;un dispositif de maintien d&#39;un systeme de guidage en rotation d&#39;un arbre
FR3036884A1 (fr) Machine electrique tournante munie d&#39;un berceau
FR3036879A1 (fr) Machine electrique tournante munie d&#39;un systeme de butee de roulement
FR3036881A1 (fr) Machine electrique tournante munie d&#39;un stator refroidi par un organe de maintien
FR3036878A1 (fr) Machine electrique tournante munie d&#39;un stator enterre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200702