EP3299718B1 - Détection de type de gaz - Google Patents

Détection de type de gaz Download PDF

Info

Publication number
EP3299718B1
EP3299718B1 EP16190012.1A EP16190012A EP3299718B1 EP 3299718 B1 EP3299718 B1 EP 3299718B1 EP 16190012 A EP16190012 A EP 16190012A EP 3299718 B1 EP3299718 B1 EP 3299718B1
Authority
EP
European Patent Office
Prior art keywords
fuel
characteristic curve
burner device
characteristic
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16190012.1A
Other languages
German (de)
English (en)
Other versions
EP3299718A1 (fr
Inventor
Thomas Born
Rainer Lochschmied
Bernd Schmiederer
Holger HOLFELDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL16190012T priority Critical patent/PL3299718T3/pl
Priority to HUE16190012A priority patent/HUE047264T2/hu
Priority to EP16190012.1A priority patent/EP3299718B1/fr
Priority to ES16190012T priority patent/ES2769234T3/es
Priority to DK16190012.1T priority patent/DK3299718T3/da
Publication of EP3299718A1 publication Critical patent/EP3299718A1/fr
Application granted granted Critical
Publication of EP3299718B1 publication Critical patent/EP3299718B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory

Definitions

  • the present disclosure is concerned with the detection of gas species in a combustor.
  • the present disclosure addresses the detection of gas types of combustible gases for emissions to avoid.
  • gas in incinerators are those from the E-Gas group (according to EN 437: 2009-09) and gases from the B / P gas group (according to EN 437: 2009-09).
  • gases from the e-gas group contain methane as the main constituent.
  • gases from the third gas family are based on propane gas. The mixtures based on methane gas or propane gas ultimately represent mixtures of different gas sources with which the combustion device can be supplied.
  • characteristic curves are usually provided which are selected on site during commissioning according to the existing gas group.
  • the setting takes place, for example, by selecting one or more curves stored in the memory of a control unit.
  • Those characteristics reflect the course of the amount of fuel supplied to the burner in relation to the amount of air supplied.
  • the target value of an ionization is plotted, with the help and with the measured ionization signal as the actual value, the amount of fuel is adjusted via the valve.
  • the amount of supplied air instead of the amount of fuel, the amount of supplied air, the rotational speed of a fan in the air supply of the Brenners be applied. Further comes as a measure of the air supply to the burner, the position or the control signal of a damper in question.
  • the characteristics of the performance of the gas actuators widen alternatively the air actuators to characteristic bands.
  • the possible characteristic bands of the actuator positions approach each other and the distance between them decreases. Further blurring of the characteristic bands results from tolerances of mechanical components such as valves in the fuel supply channel.
  • the aim of the present disclosure is the detection of gas species in a combustion device, in particular with regard to the avoidance of emissions and the optimized operation of the device.
  • the document AT413440 B discloses the preamble of independent claim 1.
  • the present disclosure teaches a method of detecting gas species in a combustor.
  • the method assumes that the ratio of air to fuel is controlled in the combustion device.
  • the ratio of air to fuel can be regulated by means of a so-called A-regulation.
  • at least one characteristic curve for at least one fuel is stored in the (non-volatile) memory of a regulating and / or control and / or monitoring device.
  • One of the two actuators for air or gas is defined as a measure of burner output.
  • a setpoint is defined as a function of the burner output.
  • the A-control regulates the other actuator, for gas or air, and determines the fuel quantity or an equivalent, such as the actuator position or control value.
  • the specified value is compared with the value stored for the actuator in the characteristic curve or the characteristic band. In particular, the position with respect to a limit characteristic is determined. If the controlled characteristic point is found on the wrong side of the limit characteristic, an error is concluded.
  • fuel changes can also be detected by the gas supplier, for example, using the method provided.
  • the method provided allows the (precautionary) shutdown of a plant to avoid unwanted emissions.
  • the method provided advantageously allows the issuing of a notification when an error occurs.
  • a combustion device such as an industrial furnace and / or a heating system and / or an internal combustion engine (automobile).
  • FIG. 1 shows a burner 1.
  • a flame of a heat generator In the combustion chamber 2 of the burner 1 burns in operation, a flame of a heat generator.
  • the heat generator exchanges the heat energy of the hot fuel gases in another fluid such as water. With the warm water, for example, operated a hot water heating system and / or heated drinking water.
  • the heat generator is part of a plant with combined heat and power, for example, a motor of such a system.
  • the heat generator is a gas turbine.
  • the heat generator heats a fuel cell and / or battery and / or (lithium-metal) accumulator to the temperature required for their operation.
  • the exhaust gases 8 are removed from the combustion chamber 2, for example via a chimney.
  • the supply air 4 for the combustion process is supplied to the burner 1 via a (motorized) driven blower 3.
  • the control, control and / or monitoring unit 9 Via the signal line 10, the control, control and / or monitoring unit 9, the blower before the supply air amount that it should promote.
  • the fan speed 11 is a measure of the amount of air delivered.
  • the blower speed 11 of the control, control and / or monitoring unit 9 is reported back by the fan 3.
  • the air quantity 4 is set via an air flap and / or a valve
  • the flap and / or valve position and / or the measured value derived from the signal of a mass flow sensor and / or volumetric flow sensor can be used as a measure of the air volume.
  • the sensor is advantageously arranged in the channel for the air supply.
  • the sensor provides a signal which is converted into a flow measurement value by means of a suitable signal processing unit.
  • a signal processing device ideally comprises at least one analog-to-digital converter.
  • the signal processing device, in particular the analog-digital converter (s) is integrated into the control, control and / or monitoring unit 9.
  • the measured value of a pressure sensor and / or a mass flow sensor in a bypass channel can be used.
  • the sensor detects a signal which corresponds to the air flow dependent pressure value and / or the air flow (particle and / or mass flow) in the bypass channel.
  • the sensor provides a signal which, based on a suitable signal processing device is converted into a measured value.
  • the signals of a plurality of sensors are converted into a common measured value.
  • a suitable signal processing device ideally comprises at least one analog-to-digital converter.
  • the signal processing device, in particular the analog-digital converter (s) is integrated into the control, control and / or monitoring unit 9.
  • Mass flow sensors allow the measurement at high flow rates especially in connection with combustion equipment in operation. Typical values of such flow velocities are in the ranges between typically 0.1 m / s and 5 m / s, 10 m / s, 15 m / s, 20 m / s, or even 100 m / s. Mass flow sensors suitable for the present disclosure include OMRON® D6F-W or Type SENSOR TECHNICS® WBA sensors.
  • the usable range of these sensors typically begins at speeds between 0.01 m / s and 0.1 m / s and ends at a speed such as 5 m / s, 10 m / s, 15 m / s, 20 m / s, or even 100 m / s.
  • lower limits such as 0.1 m / s can be combined with upper limits such as 5 m / s, 10 m / s, 15 m / s, 20 m / s, or even 100 m / s.
  • the fuel throughput is adjusted and / or adjusted by the control, control and / or monitoring unit 9 with the aid of an actuator and / or a (motor) adjustable valve.
  • the fuel is a fuel gas.
  • a device type can then be connected to different fuel gas sources, for example, sources with high methane content and / or sources with high propane content.
  • the amount of fuel gas 6 is adjusted by a (motor) adjustable gas valve 5 of the control, control and / or monitoring unit 9.
  • the control value 12, for example in the case of a pulse-width-modulated signal, of the gas valve is a measure of the amount of fuel gas.
  • the control value 12 of the gas valve is a value for the fuel supply 6.
  • the gas valve 5 is adjusted by means of a stepper motor. In that case, the stepping position of the stepping motor is a measure of the amount of fuel gas.
  • a gas flap is used as the actuator, the position of a flap can be used as a measure of the amount of fuel gas.
  • the measurement derived from the signal of a mass flow sensor can be used as a measure of the amount of fuel gas.
  • That sensor is advantageously arranged in the fuel supply channel. That sensor generates a signal which is converted by means of a suitable signal processing device into a flow measurement value (measured value of the particle and / or mass flow).
  • a suitable signal processing device ideally comprises at least one analog-to-digital converter.
  • the signal processing device in particular the analog-to-digital converter (s), is integrated in the control, monitoring and monitoring unit 9.
  • the value of the fuel supply 6 with which the actuator 5 is driven can be used as the value of the burner output. Since the fuel supply and the air flow (air supply) are related to one another via the predetermined air ratio ⁇ , the air supply can equally be regarded as a measure of the current performance of the combustion device. Thus, the rotational speed 11 is a representative value for the performance of the combustion device.
  • the material of the ionization electrode 7 is often KANTHAL®, e.g. APM® or A-1®. Nikrothal® electrodes are also contemplated by those skilled in the art.
  • the ionization signal 13 is generated.
  • the signal 13 is read in by the control, control and / or monitoring unit 9 and suitably evaluated.
  • a predetermined air ratio ⁇ can be compensated for each throughput of supplied air.
  • the measured throughput via the actuator in the fuel supply channel and / or via the actuator in the air supply channel is adjusted to a predetermined desired value.
  • FIG. 2 shows the setpoint values 14 of the ionization flow for two different gas groups / families above the fan speed 11.
  • the skilled artisan recognizes that instead of the fan speed 11, another equivalent size of the throughput of air can be applied.
  • the ionization measured value 13 is regulated via the control loop comprising control unit 9, actuating signal 12, the gas ratio actuator 5 adjusting the mixing ratio, flame in the combustion chamber 2 and current through ionization electrode 7 to the desired value 14 of the ionization current.
  • the air ratio ⁇ is set for each occurring value of the air throughput, that is to say for each fan speed 11.
  • the ionization current desired value 14 is determined by setting the desired air ratio ⁇ as a function of the fan speed 11 via the gas quantity actuator 5 as an example and determining the subsequently measured value of the ionization current as the characteristic point of the characteristic curve 15, 16.
  • further sensors are preferably used, with the aid of which the air ratio ⁇ can be measured.
  • the skilled person is in particular the measurement of O 2 value and / or the CO 2 value in the exhaust gas known. In this case, the air ratio ⁇ can be determined directly from the measurement result.
  • the characteristic curve 15, 16 determined in this way is representative of all combustion devices which have the same assignment of ionization flow 14 over the air throughput and at the same time of the air ratio ⁇ over the air flow.
  • the assignment of the detected of the ionization current measured value 13 to the ionization current desired value 14 and the compensation of the detected ionization current measured value 13 to the desired value 14 thus represents a processing to an air-number measured value which is equivalent to a direct measurement, for example of the O 2 value in FIG Exhaust gas and a direct calculation of the associated Lucasiere-measured value, which is then corrected to a predetermined Gutiere setpoint.
  • the characteristic curve 15 shows the course of the desired value, which can be used for a group of similar gas compositions.
  • One example is the E-gas group, whose main component is methane gas.
  • the characteristic curve 16 shows the course of the desired value, which can be used for a second group of similar gas compositions.
  • Exemplary here is the B / P gas group with mixtures of propane with propene or propane and butane.
  • Each gas group consists of gases, which in turn are mixed with the base gas and other gases. These are for example in the E-gas group mixtures of methane and propane, mixtures of methane and nitrogen or mixtures of methane and hydrogen. The mixtures represent real mixtures of gas sources for the incinerator.
  • a characteristic of the fuel flow 12 over the air flow 11 is defined, wherein the air flow rate is selected as the measure of the burner output.
  • the characteristic curve is represented by a position of a stepper motor over a fan speed. This results within the boundary mixtures characteristic bands of the fuel supply 12 on the air supply 11th That fact is in FIG. 3 illustrated.
  • the characteristic curve 15 As setpoint characteristic FIG. 2 choose. If the gas supply actually delivers a gas from the e-gas group, then the characteristic point of the gas currently regulated for a power lies in the characteristic curve 17.
  • the characteristic curve 16 should be selected (as setpoint characteristic). If the gas supply supplies a gas from the B / P gas group, the currently regulated characteristic point of the gas lies in the characteristic curve 18.
  • the two gas groups E-gas and B / P-gas have a sufficient distance of the minimum air requirements L min for their respective gases to each other. Therefore, the characteristic bands overlap FIG. 3 Not. Consequently, a limit characteristic 19 between both characteristic bands can be defined.
  • the limit characteristic curve 19 advantageously proceeds as an arithmetic mean between the upper and lower limits of the characteristic bands 18 and 17 FIG. 3 ,
  • the regulated characteristic point for gases of the E-gas group is above the limit characteristic curve 19.
  • the corrected characteristic point is below the limit characteristic curve 19 if the characteristic curve is selected correctly.
  • the regulated characteristic point is not always in the characteristic band of the group of gases on the other side of the limit characteristic curve 19. However, the regulated characteristic point lies on the other side of the limit characteristic curve 19. Thus lies the regulated characteristic point in the case of a gas of the E-gas group with the wrong characteristic curve below the limit characteristic curve 19. For a gas from the B / P gas group, the regulated characteristic point lies above the limit characteristic curve 19. The position of the regulated characteristic point in With reference to the limit characteristic curve 19, it is therefore possible to detect the faulty selection of a characteristic curve for a fuel.
  • the characteristic bands 17 and 18 overlap (partially). Such a situation is in FIG. 4 shown.
  • at least 2 percent of the areas of the characteristic bands 17 and 18 overlap, at least 5 percent overlapping of the areas of the characteristic bands 17 and 18 is possible, and there are cases with at least 20 percent or at least 50 percent overlap of the areas of the characteristic bands 17 and 18th
  • the characteristic bands 17 and 18 are close to each other. According to one embodiment, the overlaps occur in the lower 60% of the power range, according to a particular embodiment in the lower 40% or 10% of the power range.
  • the limit characteristic 19 can be clearly defined between the characteristic bands. Also in this case, for example, the limit characteristic 19 can be defined as an arithmetic mean between the upper and lower limits of the characteristic bands 18 and 17.
  • the limit characteristic 19 is then defined only by the maximum power (corresponding to the maximum air flow rate and / or the maximum fan speed) up to a defined limit 20.
  • the defined limit 20 is above the power range in which the characteristic bands 17 and 18 overlap.
  • the defined limit 20 is at least 5% of the maximum power, furthermore preferably at least 10% of the maximum power, also preferably at least 20% of the maximum power, above the first overlap (starting from the maximum power) between the characteristic belts 17 and 18.
  • the limit 20 can also be (starting from the maximum power) the last overlap-free tabular value of the characteristic curve.
  • the check as to whether the regulated characteristic point is on the right side of the limit characteristic 19 takes place only in the region between the limit 20 and the maximum power.
  • the detection of a wrong set characteristic is therefore limited to the first hours of operation and / or to the first days of operation.
  • the detection of an incorrectly set characteristic may be limited to the first 5 hours of operation and / or to the first 50 hours of operation and / or to the first 500 hours of operation.
  • the person skilled in the art recognizes that the time limit for the detection of a wrong set characteristic can depend on the network (gas supply network). The time limit of the detection of a wrong set characteristic is advantageous, because it prevents false detection because of extreme environmental influences. Such extreme environmental influences are, for example, a cover of the exhaust path during the life of the burner device.
  • the limit characteristic curve 19 can move into the bands 17 and / or 18. This case is in FIG. 5 shown. Due to the different Setpoint characteristic curves 15 and 16, one now obtains two limit characteristic curves 21 and 22. With correct operation with E-gas one finds oneself in the volume 17. Above the boundary characteristic 21 one surely has E gas as fuel gas 6. Below the limit characteristic 21 one has Fuel gas 6 either E-gas or B / P gas. In this case, it can not be detected below the limit characteristic 21 whether one has E gas or B / P gas as the fuel gas 6.
  • the person skilled in the art recognizes that at least one of the two limit characteristic curves 21, 22 can also lie between the belts 17, 18. If one selects a gas group and is only one of the limit characteristic curves for the wrong gas group 21 or 22 within the band 17 or 18 assigned to the gas group, an operation with the wrong gas group can not be revealed across all tolerances and influences. The person skilled in the art also recognizes such in the event that both limit characteristics 21, 22 lie within the band 17 or 18, which is assigned to the respective gas group. This case is in FIG. 5 outlined.
  • both limit characteristics 21, 22 are outside the respectively assigned band 17, 18, then a common limit characteristic can be obtained 19 are found, which completely fulfills the function of the two limit characteristics 21, 22.
  • FIG. 6 is shown with which measure the increase of the A-value is achieved. If the position of the fuel valve 5 is adjusted so that it is above the limit characteristic curve 21, then the setpoint value of the ionization current over the entire power range is preset via the predetermined nominal value characteristic curve 15. This is possible because it is ensured above the limit characteristic curve 21 that only E gas is present as fuel gas 6 in the supply line. If the limit characteristic curve 21 is undershot, B / P gas could also be present as fuel gas 6 in the supply line. In this case, a setpoint characteristic 23 is specified, which adjusts the device to a larger A value. This ensures that even in the case of B / P gas as fuel gas 6 in the supply line no critical emissions can occur.
  • the person skilled in the art recognizes that the lowering of the nominal value characteristic curve to the characteristic curve 23 is only carried out where critical emissions can also occur. This is determined by experiments with the wrong gas group for a selected characteristic 15. The A-lowering is then carried out from an air flow point 24 corresponding to the associated burner power point, from the B / P gas as the fuel gas 6 critical emissions occur.
  • the characteristic 23 may be defined as a straight line, which is defined by its end point and the point 24. Thus, the characteristic 23 can be deposited easily (and without much memory) in the control, control and monitoring unit 9.
  • the limit characteristic curve 19 and the limit characteristic curves 21, 22 are stored in the form of a table in the (non-volatile) memory of the regulating and / or control and / or monitoring device 9 according to one embodiment. Intermediate values between the points stored in the table are obtained, for example, by linear interpolation. Alternatively, intermediate values between the points defined by the table are interpolated by a polynomial over several adjacent values and / or over (cubic) splines. The person skilled in the art recognizes that other forms of interpolation can also be realized.
  • the limit characteristic curve 19 or the limit characteristic curves 21, 22 is also calculated from other characteristic values from the characteristic curves, for example limit characteristics and / or reference characteristics of representative actuators under defined environmental conditions.
  • the limit characteristic curve 19 can have a defined distance ratio to the two reference characteristics over the entire power range.
  • the deposition of the boundary characteristics 19, 21, 22 is based on (sectionally defined) functions such as lines and / or polynomials.
  • Parts of a control unit and / or a method according to the present disclosure may be realized as hardware, as a software module executed by a computing unit, or based on a cloud computer, or by a combination of the aforementioned possibilities.
  • the software may include firmware, a hardware driver running within an operating system, or an application program.
  • the present disclosure also relates to a computer program product that incorporates the features of this disclosure or performs the necessary steps.
  • the functions described When implemented as software, the functions described may be stored as one or more instructions on a computer-readable medium.
  • RAM random access memory
  • MRAM magnetic random access memory
  • ROM read only memory
  • EPROM electronically programmable ROM
  • EEPROM electronically programmable and erasable ROM
  • register Hard disk a removable storage device
  • optical storage any suitable medium that can be accessed by a computer or other IT devices and applications.
  • the supply source is a supply network, in particular a gas supply network.
  • the present disclosure also teaches one of the aforementioned methods, wherein the at least one sensor of the burner device is an ionization electrode 7.
  • the present disclosure also teaches one of the aforementioned methods, wherein the memory of the monitoring device 9 is non-volatile.
  • the present disclosure also teaches one of the aforementioned methods, wherein the signal processing unit 9 comprises at least one analog-to-digital converter.
  • the present disclosure also teaches one of the aforementioned methods, wherein the signal processing unit 9 is integrated in the monitoring unit 9.
  • the fuel supply passage 25 is preferably in fluid communication with the combustion chamber 2.
  • the present disclosure also teaches the aforementioned method, wherein the at least one actuator of the fuel supply passage 25 is a fuel valve 5, wherein the fuel valve 5 is designed to close upon receipt of the error signal and the fuel supply passage 25 is formed, due to the closure of the fuel valve 5 to interrupted become, wherein the step of transferring the at least one actuator 5 of the fuel supply channel 25 to the fault position comprises the step of closing the gas valve 5, so that the fuel supply channel 25 is interrupted.
  • the fuel valve 5 is a gas valve 5.
  • the further characteristic curve 23 of the abovementioned method is preferably a fallback characteristic curve 23, wherein the regulating device is designed to regulate the burner device on the basis of the fallback characteristic curve 23 and thereby independent of the given fuel group critical and / or (by standards and / or laws) to avoid prohibited emissions.
  • control unit 9 is integrated in the monitoring device 9.
  • the aforementioned fuel group preferably comprises at least one fuel.
  • a non-transitory computer-readable storage medium storing an instruction set for execution by at least one processor that, when executed by a processor, performs one of the foregoing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Claims (14)

  1. Procédé pour la combustion d'un carburant (6) d'un groupe de carburants prédéterminé, depuis un raccordement d'un dispositif de brûleur au niveau d'une source d'alimentation, prenant en compte une valeur d'une puissance demandée (11) du dispositif de brûleur, le dispositif de brûleur comprenant au moins un capteur (7), une unité de traitement de signal (9) et une unité de surveillance (9) ayant une mémoire, dans laquelle au moins une plage d'erreurs de valeurs caractéristiques est stockée pour le groupe de carburants prédéterminé, dans lequel au moins une plage d'erreurs de valeurs caractéristiques comprend exclusivement de telles valeurs caractéristiques dont l'apparition doit être évitée lors d'une combustion du groupe de carburants prédéterminé par le dispositif de brûleur, le procédé comprenant les étapes :
    - détecter au moins un signal (13) d'au moins un capteur (7),
    - transmettre au moins un signal (13) à l'unité de traitement de signal (9),
    - traiter au moins un signal (13) pour former une valeur de mesure d'indice d'air,
    - transmettre la valeur de mesure d'indice d'air à l'unité de surveillance (9),
    - attribuer au moins une valeur de mesure d'indice d'air et la puissance demandée (11) du dispositif de brûleur à une paire de valeurs pour le carburant (6) comprenant une valeur (12) d'une amenée de carburant au dispositif de brûleur et la valeur de la puissance demandée du dispositif de brûleur (11),
    - créer un signal d'erreur si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé,
    caractérisé en ce que le procédé comprend :
    - la comparaison de la paire de valeurs associée à au moins une plage d'erreurs de valeurs caractéristiques stockée dans la mémoire de l'unité de surveillance (9), et,
    - la détection si la paire de valeurs associée se trouve à l'extérieur d'une plage pour une présence fiable du carburant (6) à partir du groupe de carburants prédéterminé, pour le cas où en tant que résultat de la comparaison, la position déterminée de la paire de valeurs associée est au moins dans une plage d'erreurs de valeurs caractéristiques stockée dans la mémoire de l'unité de surveillance (9),
    dans la mémoire du dispositif de surveillance (9), étant stockées, en plus, une première bande de courbes caractéristiques (17) avec au moins deux courbes limites pour un premier groupe de carburants et une deuxième bande de courbes caractéristiques (18) avec au moins deux courbes limites pour un deuxième groupe de carburants, le procédé comprenant en outre les étapes :
    - déterminer une courbe caractéristique limite (19, 21, 22) qui passe entre des courbes limites contiguës de la première et de la deuxième bande de courbes caractéristiques (17, 18),
    les courbes limites contiguës étant en deçà d'au moins deux courbes limites de la première bande de courbes caractéristiques (17) et en deçà d'au moins deux courbes limites de la deuxième bande de courbes caractéristiques (18) des courbes limites respectives qui possèdent mutuellement pour chaque puissance (11) donnée du dispositif de brûleur le plus petit espacement,
    et
    - stocker la courbe caractéristique limite déterminée (19, 21, 22) dans la mémoire du dispositif de surveillance (9) .
  2. Procédé selon la revendication 1, dans lequel le au moins un capteur du dispositif de brûleur est une électrode d'ionisation (7).
  3. Procédé selon l'une des revendications 1 à 2, dans lequel la mémoire du dispositif de surveillance (9) est non-volatile.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel l'unité de traitement de signal (9) comprend au moins un convertisseur analogique-numérique.
  5. Procédé selon l'une des revendications 1 à 4, dans lequel l'unité de traitement de signal (9) est intégrée dans l'unité de surveillance (9).
  6. Procédé selon la revendication 1, dans lequel, dans la mémoire de l'unité de surveillance (9), est associé, en plus, pour chacune des bandes de courbes caractéristiques (17, 18) stockées, un groupe de carburants et est stocké un index, le procédé comprenant en outre les étapes :
    - lire un index qui correspond à une des bandes de courbes caractéristiques (17, 18) stockées, de la mémoire du dispositif de surveillance (9),
    - sélectionner la bande de courbes caractéristiques (17, 18) à laquelle correspond l'index lu,
    - déterminer un côté de la courbe caractéristique limite (19, 21, 22), sur laquelle uniquement le carburant (6) du groupe de carburants associé à la bande de courbes caractéristiques (17, 18) sélectionnée peut être brûlé,
    - définir une plage de valeurs caractéristiques, la plage définie étant par rapport au côté déterminé de la courbe caractéristique limite (19, 21, 22), et,
    - stocker la plage définie des valeurs caractéristiques en tant qu'au moins une plage d'erreurs de valeurs caractéristiques pour le groupe de carburants prédéfini dans la mémoire du dispositif de surveillance (9).
  7. Procédé selon l'une des revendications 1 à 6, le dispositif de brûleur comprenant un canal d'amenée de carburant (25) avec au moins un actionneur (5), le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à au moins un actionneur (5) du canal d'amenée de carburant (25) du dispositif de brûleur, si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé, et,
    - passer au moins un des actionneurs (5) du canal d'amenée de carburant (25) en position de dysfonctionnement lors de l'entrée du signal d'erreur au niveau de l'actionneur (5) du canal d'amenée de carburant (25).
  8. Procédé selon la revendication 7, dans lequel l'au moins un actionneur du canal d'amenée de carburant (25) est une vanne de gaz (5), la vanne de gaz (5) étant réalisée pour se fermer lors de l'entrée du signal d'erreur, et le canal d'amenée de carburant (25) étant réalisé, pour être coupé suite à la fermeture de la vanne de gaz (5),
    l'étape de passage de l'au moins un actionneur (5) du canal d'amenée de carburant (25) en position de dysfonctionnement comprenant l'étape de fermeture de la vanne de gaz (5), de sorte que le canal d'amenée de carburant (25) est coupé.
  9. Procédé selon l'une des revendications 1 à 8, le dispositif de brûleur comprenant en outre un affichage réalisé pour émettre une alerte et une unité de commande pour l'affichage, le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à l'unité de commande pour l'affichage, si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé, et,
    - émettre une alerte au niveau de l'affichage du dispositif de brûleur lors de l'entrée du signal d'erreur au niveau de l'unité de commande.
  10. Procédé selon l'une des revendications 1 à 9, le dispositif de brûleur comprenant en outre une unité de communication réalisée pour envoyer une alerte à un terminal mobile d'un utilisateur et/ou d'un expert, le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à l'unité de communication, si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé, et,
    - envoyer une alerte au niveau d'un terminal mobile d'un utilisateur et/ou d'un expert, lors de l'entrée du signal d'erreur au niveau de l'unité de communication du dispositif de brûleur.
  11. Procédé selon l'une des revendications 1 à 10, le dispositif de brûleur comprenant en outre une unité de régulation avec une mémoire (9), dans lequel, dans la mémoire de l'unité de régulation (9), sont stockées une première courbe caractéristique (15) et une deuxième courbe caractéristique (16) et l'unité de régulation (9) étant réalisée pour réguler le dispositif de brûleur au moyen soit de la première courbe caractéristique (15), soit de la deuxième courbe caractéristique (16), le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à l'unité de régulation (9), si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé, et,
    - lors de l'entrée du signal d'erreur au niveau de l'unité de régulation (9), définir la courbe caractéristique (15, 16) stockée au moyen de laquelle l'unité de régulation (9) régule le dispositif de brûleur, et,
    - réguler le dispositif de brûleur au moyen d'une autre courbe caractéristique (16, 15) en tant que courbe caractéristique (15, 16) définie.
  12. Procédé selon l'une des revendications 1 à 10, le dispositif de brûleur comprenant en outre une unité de régulation avec une mémoire (9), dans lequel dans la mémoire de l'unité de régulation (9), sont stockées au moins une première courbe caractéristique (15, 16) pour un groupe de carburants prédéterminé et une autre courbe caractéristique (23) différente de l'au moins une courbe caractéristique (15, 16) et l'unité de régulation (9) étant réalisée pour réguler le dispositif de brûleur au moyen soit de l'au moins une courbe caractéristique (15, 16), soit de l'autre courbe caractéristique (23), le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à l'unité de régulation (9), si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé,
    - lors de l'entrée du signal d'erreur au niveau de l'unité de régulation (9), définir la courbe caractéristique (15, 16) stockée, au moyen de laquelle l'unité de régulation (9) régule le dispositif de brûleur, et,
    - réguler le dispositif de brûleur au moyen de l'autre courbe caractéristique (23).
  13. Procédé selon l'une des revendications 1 à 10, le dispositif de brûleur comprenant en outre une unité de régulation avec une mémoire (9), dans lequel, dans la mémoire de l'unité de régulation (9), sont stockées au moins une courbe caractéristique (15, 16) pour un groupe de carburants prédéterminé et une autre courbe caractéristique (23) différente de l'au moins une courbe caractéristique (15, 16) et une puissance de brûleur (24) critique et l'unité de régulation (9) étant réalisée pour réguler le dispositif de brûleur au moyen, soit de l'au moins une courbe caractéristique (15, 16), soit de l'autre courbe caractéristique (23), le procédé comprenant en outre les étapes :
    - transmettre le signal d'erreur à l'unité de régulation (9), si la paire de valeurs associée se trouve à l'extérieur de la plage pour une présence fiable du carburant (6) du groupe de carburants prédéterminé,
    - lors de l'entrée du signal d'erreur au niveau de l'unité de régulation (9), définir la courbe caractéristique (15, 16) stockée au moyen de laquelle l'unité de régulation (9) régule le dispositif de brûleur, et,
    - réguler pour des puissances (11) demandées du dispositif de brûleur supérieures à la puissance de brûleur (24) critique stockée du dispositif de brûleur au moyen de l'autre courbe caractéristique (23).
  14. Support de mémoire lisible par un ordinateur non volatile, qui mémorise un jeu d'instructions pour exécution par au moins un processeur, qui, lorsqu'il est exécuté par un processeur, réalise un procédé avec les étapes selon l'une des revendications 1 à 13.
EP16190012.1A 2016-09-21 2016-09-21 Détection de type de gaz Active EP3299718B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16190012T PL3299718T3 (pl) 2016-09-21 2016-09-21 Rozpoznawanie rodzajów gazów
HUE16190012A HUE047264T2 (hu) 2016-09-21 2016-09-21 Gázfajta felismerés
EP16190012.1A EP3299718B1 (fr) 2016-09-21 2016-09-21 Détection de type de gaz
ES16190012T ES2769234T3 (es) 2016-09-21 2016-09-21 Detección del tipo de gas
DK16190012.1T DK3299718T3 (da) 2016-09-21 2016-09-21 Gasartidentificering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16190012.1A EP3299718B1 (fr) 2016-09-21 2016-09-21 Détection de type de gaz

Publications (2)

Publication Number Publication Date
EP3299718A1 EP3299718A1 (fr) 2018-03-28
EP3299718B1 true EP3299718B1 (fr) 2019-10-30

Family

ID=56985502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190012.1A Active EP3299718B1 (fr) 2016-09-21 2016-09-21 Détection de type de gaz

Country Status (5)

Country Link
EP (1) EP3299718B1 (fr)
DK (1) DK3299718T3 (fr)
ES (1) ES2769234T3 (fr)
HU (1) HUE047264T2 (fr)
PL (1) PL3299718T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050258A1 (fr) 2021-02-26 2022-08-31 Siemens Aktiengesellschaft Détermination des performances d'une unité de brûleur à gaz à l'aide d'un paramètre de combustible

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122820A1 (de) * 2022-09-08 2024-03-14 Vaillant Gmbh Verfahren zur Bewertung einer Installation eines Gas-Luft-Verbundes eines Heizgerätes, Gas-Luftverbund und Computerprogramm

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831648B4 (de) * 1998-07-15 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasheizgerät
AT413440B (de) * 2003-10-08 2006-02-15 Vaillant Gmbh Verfahren zur anpassung des brenngas-luft- verhältnisses an die gasart bei einem gasbrenner
DE102010056275A1 (de) * 2010-12-24 2012-06-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Gasbrenners für ein Heizgerät
EP2682679B1 (fr) * 2012-07-04 2017-08-30 Vaillant GmbH Procédé de surveillance d'un brûleur à gaz combustible
DE102012108268A1 (de) * 2012-09-05 2014-03-06 Ebm-Papst Landshut Gmbh Verfahren zur Erkennung der Gasfamilie sowie Gasbrennvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050258A1 (fr) 2021-02-26 2022-08-31 Siemens Aktiengesellschaft Détermination des performances d'une unité de brûleur à gaz à l'aide d'un paramètre de combustible

Also Published As

Publication number Publication date
EP3299718A1 (fr) 2018-03-28
HUE047264T2 (hu) 2020-04-28
DK3299718T3 (da) 2020-02-10
ES2769234T3 (es) 2020-06-25
PL3299718T3 (pl) 2020-04-30

Similar Documents

Publication Publication Date Title
EP2594848B1 (fr) Procédé de commande d'un appareil à combustion et appareil à combustion
DE112007001467B4 (de) Gleichzeitige AGR-Korrektur und Verbrennungsphasenausgleich bei einzelnen Zylindern
EP2005066B1 (fr) Procédé pour mettre en marche un système de chauffage dans des conditions générales inconnues
DE112007001468B4 (de) Steuerung der Abgasrückführung eines Verbrennungsmotors
DE3888327T2 (de) Brennstoffbrennereinrichtung und ein Kontrollverfahren.
DE102010055567B4 (de) Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners
EP3301362A1 (fr) Régulation d'écoulements turbulents
DE102020103441B4 (de) Vorrichtung, System und Verfahren zum Überwachen eines Katalysator-Aufwärmprozesses für einen Verbrennungsmotor, Datenanalysevorrichtung, Steuervorrichtung für einen Verbrennungsmotor und Empfänger
DE112014001000T5 (de) Gasturbinensystem, Steuer- bzw. Regelungseinrichtung und Gasturbinenbetriebsverfahren
EP3299718B1 (fr) Détection de type de gaz
DE112018005654T5 (de) Steuervorrichtung, gasturbine, steuerverfahren und programm
EP4141340B1 (fr) Dispositif de chauffage
EP1918637A1 (fr) Contrôle d'un four à biomasse
CH698404A2 (de) Lean-Blowout-Auslöschschutz durch Regelung der Düsen-Äquivalenzverhältnisse.
DE69504541T2 (de) Fehlererkennung eines Fühlers
EP1330953B1 (fr) Système de brûleurs avec plusieurs systèmes de transfert de chaleur et appareil de cuisson pourvu d'un tel système de brûleurs
EP0615095B1 (fr) Commande de brûleur
DE102005011287A1 (de) Verfahren sowie eine Vorrichtung zum Betreiben wenigstens eines Brenners zur Befeuerung der Brennkammer einer Wärmekraftmaschine
DE4312801A1 (de) Verfahren zur Steuerung eines Gas-Gebläsebrenners
DE2513753A1 (de) Regeleinrichtung
EP4194749A1 (fr) Commande et/ou régulation d'un dispositif de combustion
DE102016218794A1 (de) Stationärer Erdgasmotor mit wenigstens einem Stickoxidsensor
EP4119847B1 (fr) Dispositif de combustion comprenant un dispositif de régulation
EP4060232B1 (fr) Détection de la capacité et régulation du facteur d'air au moyen des capteurs dans le foyer
EP3290800B1 (fr) Procédé d'actualisation d'une caractéristique dans un système de chauffage ainsi que unité de commande et système de chauffage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180905

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007291

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200207

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E047264

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2769234

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007291

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1196557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230918

Year of fee payment: 8

Ref country code: NL

Payment date: 20230904

Year of fee payment: 8

Ref country code: IT

Payment date: 20230920

Year of fee payment: 8

Ref country code: FI

Payment date: 20230920

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230911

Year of fee payment: 8

Ref country code: PL

Payment date: 20230908

Year of fee payment: 8

Ref country code: FR

Payment date: 20230918

Year of fee payment: 8

Ref country code: DK

Payment date: 20230925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231009

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20231122

Year of fee payment: 8

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8

Ref country code: CH

Payment date: 20231206

Year of fee payment: 8