EP3294588A1 - Drahtloses batterieladesystem mit variierender magnetfeldfrequenz zur aufrechterhaltung einer gewünschten spannung-stromphasen-beziehung - Google Patents

Drahtloses batterieladesystem mit variierender magnetfeldfrequenz zur aufrechterhaltung einer gewünschten spannung-stromphasen-beziehung

Info

Publication number
EP3294588A1
EP3294588A1 EP16793361.3A EP16793361A EP3294588A1 EP 3294588 A1 EP3294588 A1 EP 3294588A1 EP 16793361 A EP16793361 A EP 16793361A EP 3294588 A1 EP3294588 A1 EP 3294588A1
Authority
EP
European Patent Office
Prior art keywords
transducer
controller
electrical
power
electrical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP16793361.3A
Other languages
English (en)
French (fr)
Other versions
EP3294588A4 (de
Inventor
Richard J. BOYER
Brian D. PASHA
John Victor FUZO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aptiv Technologies Ltd
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/708,526 external-priority patent/US9725003B2/en
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Publication of EP3294588A1 publication Critical patent/EP3294588A1/de
Publication of EP3294588A4 publication Critical patent/EP3294588A4/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • H02J7/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This invention relates to a charging system used to wirelessly charge a battery of a vehicle, more particularly, to a wireless battery charging system configured to vary the magnetic field frequency to maintain a desired voltage-current phase relationship.
  • Wireless charging systems having an off-transducer and on-vehicle transducer that are magnetically coupled and transfer electrical energy wirelessly across a physical gap are well known. Due to the various loading, tolerances of components, temperature, the resonant frequency for optimal magnetic coupling between off-transducer and on- vehicle transducer the can vary. To maintain the highest level of efficiency there needs to be a way to operate the charging system to maintain optimal magnetic coupling of the system. In addition, interoperability of the wireless charging system with on-vehicle transducers built by different vendors that have different resonant frequencies need to be addressed to that each vendor's on-vehicle transducer does not need to be used only with that vendor's wireless charging system.
  • an electrical charging system configured to wirelessly charge an energy storage device.
  • the electrical charging system includes an electrical power transmitter including a variable frequency oscillator configured to source electrical power having an alternating current, an alternating voltage, and a frequency, a controller operable to adjust the variable frequency oscillator, thereby changing the frequency of the sourced electrical power, an off-transducer in electrical communication with the electrical power transmitter, configured to be electromagnetically coupled to an on-vehicle transducer that is in electrical communication with the energy storage device, thereby inducing the on- vehicle transducer to capture electrical power to charge the energy storage device, and a phase detection circuit in communication with the controller and the off-transducer and configured to determine a phase difference between the alternating voltage and the alternating current.
  • the controller is configured to adjust the variable frequency oscillator based on the phase difference such that the frequency of the sourced electrical power maintains the phase difference within a desired range.
  • the controller may be configured to adjust the variable frequency oscillator such that the frequency of the sourced electrical power sweeps within a frequency range of 10 kilohertz (kHz) to 450 kHz.
  • the electrical charging system may further include a wireless transmitter in electrical communication with the controller.
  • the on- vehicle transducer is in electrical communication with a power detection circuit configured to determine a value of the captured electrical power.
  • the power detection circuit is in electrical
  • the controller is configured to determine a power efficiency by comparing the value of the captured electrical power to the value of the sourced electrical power.
  • the controller is configured to adjust the variable frequency oscillator based on the power efficiency such that the frequency of the sourced electrical power maximizes the power efficiency.
  • the on-vehicle transducer and the energy storage device may be disposed within a vehicle.
  • the off-transducer and the electrical power transmitter may be disposed external to the vehicle.
  • the off-transducer and the electrical power transmitter may be disposed within the vehicle.
  • an electrical charging system configured to wirelessly charge an energy storage device.
  • the electrical charging system includes an electrical power transmitter including a variable frequency oscillator configured to source electrical power having an alternating current, an alternating voltage, and a frequency, a controller operable to adjust the variable frequency oscillator, thereby changing the frequency of the sourced electrical power, an off-transducer in electrical communication with the electrical power transmitter, configured to be electromagnetically coupled to an on-vehicle transducer that is in electrical communication with said energy storage device, thereby inducing the on- vehicle transducer to capture electrical power to charge the energy storage device, and a wireless transmitter in electrical communication with the controller.
  • the on-vehicle transducer is in electrical communication with a power detection circuit configured to determine a value of the captured electrical power.
  • the power detection circuit is in electrical communication with a wireless receiver configured to wirelessly transmit the value of the captured electrical power to the controller via the wireless transmitter.
  • the controller is configured to determine a power efficiency by comparing the value of the captured electrical power to the value of the sourced electrical power.
  • the controller is configured to adjust the variable frequency oscillator based on the power efficiency such that the frequency of the sourced electrical power maximizes the power efficiency.
  • Fig. 1 is a pictorial side view of an electrical charging system that includes a variable frequency oscillator (VFO) circuit in accordance with the invention
  • Fig. 2 is a schematic diagram of the charging system of Fig. 1 disposed intermediate the battery and the on- vehicle transducer;
  • VFO variable frequency oscillator
  • FIG. 3 shows a schematic diagram of the VFO circuit of Fig. 1;
  • Fig. 4 shows an angular phase difference relationship between voltage and electrical current that is monitored by the VFO circuit of Fig. 3;
  • FIG. 5 shows a schematic diagram of a VFO circuit of a charging system according to an alternative embodiment of the invention.
  • a resonant frequency of a wireless electrical charging system may vary due to variation in loading, variation electrical component performance due to tolerance stack- ups, variation in temperature, variation in component placement and orientation.
  • a mismatch in resonant frequency may also result if an off-transducer is frequency-tuned for one particular on-vehicle transducer and then used with a different on- vehicle transducer that is not tuned to the same frequency or range of frequencies.
  • These kinds of variation may undesirably reduce power transfer efficiency of the wireless charging system. It has been discovered that the power transfer efficiency may be effectively managed and controlled in relation to the aforementioned variations by adjusting the output frequency of the off-transducer.
  • the output frequency of the power transmitter that supplies electrical power to the off-transducer is determined by a variable frequency oscillator (VFO) circuit disposed in the power transmitter.
  • VFO variable frequency oscillator
  • the VFO circuit in the charging system advantageously provides for the adjustment of the frequency of the magnetic energy produced by the off- transducer to more closely match the resonant frequency of the on-vehicle transducer.
  • the VFO circuit advantageously allows the resonant frequency of the off-and on-vehicle transducers to be adjusted to accommodate manufacturing tolerances, environmental conditions, and misalignment of the off-and on-vehicle transducers.
  • the VFO circuit also accommodates differences in the resonant frequency between off-and on-vehicle transducers built by different manufactures to different specifications.
  • FIG. 1 A non-limiting example of a wireless charging system 12 embodying the features of this invention is shown in Figs. 1 and 2.
  • the wireless charging system 12 is presented here is configured to electrically charge a battery 14 that is disposed within a vehicle 40.
  • the vehicle 40 may be a hybrid vehicle or a hybrid electric vehicle and the battery 14 may be configured to drive the vehicle's propulsion system (not shown).
  • the wireless charging system 12 includes an alternating power transmitter 16, an off- transducer 18, and an on-vehicle transducer 20.
  • the power transmitter 16 further includes a variable frequency oscillator (VFO) circuit 24.
  • the power transmitter 16 is disposed external to vehicle 40.
  • the off-transducer 18 is in electrical communication with VFO circuit 24.
  • VFO variable frequency oscillator
  • the off-transducer 18 is configured to be secured to a ground surface 22, such as a garage floor or parking lot surface.
  • the on-vehicle transducer 20 is attached to vehicle 40.
  • the on-vehicle transducer 20 may be located on the undercarriage 26 of the vehicle 40.
  • the off-transducer 18 contains a source coil (not shown) that, when excited with electrical energy having an alternating voltage and alternating current supplied by power transmitter 16, generates a magnetic field that wirelessly transmits magnetic energy 44 to the on- vehicle transducer 20.
  • the on- vehicle transducer 20 is spaced apart from off-transducer 18, thus separating the off- transducer 18 by a distance from the on-vehicle transducer 20.
  • the alternating magnetic field generated by the off-transducer 18 induces an alternating electrical current having an alternating voltage in a capture coil (not shown). This captured electrical energy is used to charge the battery 14 of the vehicle 40.
  • the efficiency of energy transmission of energy between off-transducer 18 and on-vehicle transducer 20 depends on the alignment of these transducers 18, 20 so that energy may be wirelessly transferred therebetween. Such an alignment of the transducers 18, 20 may be realized when at least a portion of on-vehicle transducer 20 overlies off- transducer 18. Referring to FIG. 2, at least a portion of on-vehicle transducer 20 overlies off-transducer 18. Alternatively, the on-vehicle transducer 20 may not overlie the off- transducer 18, yet still be proximate the on-vehicle transducer 20 so that wireless energy transmission occurs.
  • the power transmitter 16 is in electrical communication with power source 48.
  • the power source 48 may supply voltage of 120 VAC or 240 VAC that is generally associated with a utility main.
  • the voltage of the power source 48 may typically have an alternating frequency of 60 Hertz (Hz) or 50 Hz, depending the utility standard for the particular geographic location.
  • the power source 48 may have an operating voltage that differs from 120 VAC or 240 VAC or an operating frequency that differs from 50 Hz or 60 Hz.
  • the wireless charging system 12 further includes a controller/convertor 53 disposed within the vehicle 40 and cooperate with the power transmitter 16, off- transducer 18, and on-vehicle transducer 20 to provide electrical current that is useful to electrically charge battery 14.
  • the convertor portion of the controller/convertor 53 comprises electrical components that form a rectifier circuit (not shown).
  • the rectifier circuit is in electrical communication with on-vehicle transducer 20 to convert the HV HF AC signal output by the on-vehicle transducer 20 to a HV DC signal that is more effective to electrically charge the battery 14.
  • the HV HF AC signal is a high voltage, high frequency alternating current (AC) electrical signal generated by the VFO circuit 24 and input to the off-transducer 18 and output from the on-vehicle transducer 20 due to the magnetic coupling between the off-and on-vehicle transducers 18, 20.
  • AC alternating current
  • the voltage of the HV HF AC signal is greater than 120 VAC and the frequency of the HV HF AC signal is greater than 60 Hertz (Hz).
  • the frequency may be in a range of 10 kHz to 450 kHz.
  • this range may cover frequencies typically used for closely coupled resonators that generally is in a range from 10-70 kHz and frequencies typically used for loosely coupled resonators that generally is in a range from 50-450 kHz.
  • the HV DC signal is a high voltage, direct current (DC) electrical signal wherein the voltage and current are not time varying.
  • the controller portion of the controller/convertor 53 includes a central processing unit (not shown) that may be a microprocessor, application specific integrated circuit (ASIC), or built from discrete logic and timing circuits (not shown).
  • Software instructions that program the controller portion may be stored in a non-volatile (NV) memory device (not shown).
  • the NV memory device may be contained within the microprocessor or ASIC or it may be a separate device.
  • Non-limiting examples of the types of NV memory that may be used include electrically erasable programmable read only memory (EEPROM), masked read only memory (ROM), and flash memory.
  • the controller portion also includes a wired transceiver (not shown), such as a controller area network (CAN) transceiver, to allow the controller portion to establish electrical communication with other devices within the vehicle 40.
  • CAN controller area network
  • the charging system 12 further includes a transmitter (not shown) disposed in the controller/convertor 53 and a receiver (now shown) disposed within the power transmitter 16 that establish a wireless link 65 from the
  • the transmitter and receiver may be configured as transceivers in order to establish a return wireless link 66 from the power transmitter 16 to the controller/convertor 53.
  • the controller portion measures voltage, current, and power.
  • the controller portion of controller/convertor 53 transmits the measured voltage, current, and power data via the wireless link 65 to the power transmitter 16 such that power transmitter 16 may further regulate the amount of power supplied to off-transducer 18 to ensure optimum charging system power efficiency. Preferably, optimum charging system power efficiency is greater than 85%.
  • the power transmitter 16 may further wirelessly transmit supplied power data to the controller portion of the controller/convertor 53 via the return wireless link 66.
  • the VFO circuit 24 includes a voltage controlled oscillator (VCO) 71, an amplifier 70, a voltage monitor circuit 73, a current monitor circuit 74, and a phase detection circuit 72.
  • the VCO 71 is in electrical communication with the input of amplifier 70.
  • a feedback loop is provided intermediate off-transducer 18 and the VCO 71.
  • the feedback loop includes the voltage monitor circuit 73 and the current monitor circuit 74 in electrical communication with the phase detection circuit 72.
  • the voltage monitor circuit 73 measures the voltage input to off-transducer 18 and the current monitor circuit 74 measures the electrical current flow input to off-transducer 18.
  • the phase detection circuit 72 is configured to measure the phase difference between the voltage and the current at the input to off-transducer 18.
  • the phase detection circuit 72 is electrically coupled with the VCO 71 which controls the frequency of the current supplied to output 67a.
  • the phase detection circuit 72 is configured to determine if the voltage and current are within a predetermined phase difference range. If the phase difference is not within the desired range, the voltage output of the phase detection circuit 72 varies, thus increasing or decreasing the frequency of the VCO 71 and thus the frequency of the VFO circuit 24 until the phase difference falls within the desired range. Monitoring of output voltage and current is done continuously during the operation of the charging system 12 and frequency adjustment is applied as needed based on the phase difference. The power transmitter 16 then adjusts the frequency of the power supplied to the off-transducer 18 to ensure the charging system power efficiency is maintained at a desired level. In one embodiment, the preferred charging system power efficiency is at least 85%. Preferably, the operational frequency range of the VFO circuit 24 is from about 15 kHz to 200 kHz.
  • a graph 69 illustrates an example of an AC current flow measurement 77 and an AC voltage measurement 78 as a function of time in output 67a, 67b of VFO circuit 24 of power transmitter 16.
  • AC current flow measurement 77 and AC voltage measurement 78 are sine waves that are out of phase by an amount represented by an angular phase difference or phase differential ⁇ designated here by reference number 79.
  • the phase differential is preferably in a range from about 10 degrees to about 15 degrees and for inductive, i.e.
  • phase differential is about 0 to 2 degrees to ensure optimum charging system power efficiency performance of the charging system 12.
  • the phase difference takes into account the effects of part tolerances, temperature, and the alignment of the off-transducer 18 and the on-vehicle transducer 20.
  • the design of the charging system 12 including the VFO circuit 24 determines if the voltage and the current waveforms are within a predetermined phase difference range that ensures the charging system power efficiency delivered to the battery 14 is at an optimum level.
  • the phase difference is analyzed by the charging system 12, more specifically by the controller in the VFO circuit 24 so that an optimum level of the charging system power efficiency is maintained.
  • the controller After analysis of the voltage and current waveforms input to the off-transducer 18, the controller outputs a voltage that is operable to adjust the frequency in the VCO 71 so the output signal of the power transmitter 16 to the off-transducer 18 maintains the desired charging system power efficiency.
  • the charging system 12 uses the angular phase difference value to determine if the transducers 18, 20 are loosely or tightly coupled.
  • the charging system 12 may further use voltage and current data from the controller/convertor 53 via the wireless link 65 to compare the power input to the off- transducer 18 to the power output by the on-vehicle transducer 20.
  • the frequency of the VFO circuit 24 may be further adjusted to maximize the system power efficiency in addition or instead of adjusting the frequency to maintain a desired phase angle difference.
  • the angular phase difference values are predetermined to be in a predetermined range of values that correspond to a range of predetermined frequencies associated with the wireless transmission mechanisms (i.e. closely coupled or loosely coupled) as previously described herein.
  • the charging system 12 may be configured to determine whether the transducers 18, 20 are closely or loosely coupled by sweeping the output frequency of the VFO circuit 24 through a wide range of frequencies e.g. from about 15 kHz to 200 kHz and then measuring the system power efficiency and phase difference as the output frequency is swept through the range. Based on system efficiency and phase difference measurements, the charging system 12 may be able to determine whether the transducers 18, 20 are closely or loosely coupled and set the operating frequency range and desired phase difference range accordingly.
  • Fig. 5 an alternative VFO circuit 225 is illustrated.
  • the VCO circuit 225 employs a voltage controlled oscillator (VCO) 271, an amplifier 270, a voltage monitor circuit 273, a current monitor circuit 274, and a phase detection circuit 272.
  • the phase detection circuit 272 includes a flip-flop circuit 287 and a controller 288.
  • the flip- flop circuit 287 provides a number of counts to the controller 288 that allows the controller 288 to determine the voltage provided on output 299 to control the frequency of VCO 271.
  • Resistors 281-284, 289 allow the electrical signals to be biased at the correct voltage level.
  • the current monitor circuit 274 is electrically connected to a sense coil 285 that provides a current measurement from an output of the amplifier 270.
  • the VCO 271 is in electrical communication with inputs of amplifier 270. Voltage signals are carried on signal paths 292, 293 and received by the voltage monitor circuit 273. Current signals are carried on signal paths 290, 291 and received by the current monitor circuit 274.
  • the flip-flop circuit 287 receives an output 296 from the voltage monitor circuit 273 and an output 297 from the current monitor circuit 274. An output 298 of the flip-flop circuit 287 is received by the controller 288.
  • the VCO 271 receives an output 299 from controller 288.
  • the phase detection circuit 72 of the VFO circuit 24 may comprise an embedded controller. Such a circuit implementation, for example, may eliminate other electrical blocks/electrical components in the VFO circuit 24 simplifying the circuit design providing a lower cost. Referring again to Fig.
  • an enhanced charging system 12a that further includes an integrated charger 60 and transfer switch 57 is shown.
  • the integrated charger 60 and the transfer switch 57 are disposed within the vehicle 40 and cooperate with the power transmitter 16, off-transducer 18, and on-vehicle transducer 20 to provide electrical current to electrically charge battery 14.
  • the controller/convertor 53, integrated charger 60, and transfer switch 57 comprise electrical components that form an electrical signal shaping device 45.
  • a secondary charging system 62 may also electrically communicate with an integrated charger 60 disposed within the vehicle 40 to provide an electrical current to charge battery 14 when access to the wireless charging system 12 is not available.
  • the secondary charging system 62 advantageously provides an alternative mode of charging the battery 14 for enhanced convenience.
  • the transfer switch 57 is operatively controlled by a controller portion of controller/convertor 53 via signal line 55 to switch between the secondary charging system 62 and the wireless charging system 12.
  • An output 52 carries an electrical signal produced by on-vehicle transducer 20 that is received by a converter portion of controller/convertor 53.
  • An output 56 carries an electrical signal from the converter portion of controller/convertor 53 that is received by transfer switch 57.
  • An output 58 carries an electrical signal from transfer switch 57 to battery 14.
  • a communication data bus 54 such as a controller area network (CAN) bus, communicates with the controller portion of controller/convertor 53 to receive/transmit either vehicle data information to enhanced charging system 12a or charging system data to other electric devices disposed within vehicle 40.
  • CAN controller area network
  • the wheels 51a, 51b, 51c, 5 Id of the vehicle 40 are used to assist alignment of the on-vehicle transducer 20 with off-transducer 18.
  • An alignment means 99 such as a wheel chock 63 may further assist in this alignment of the off-transducer 18 and the on- vehicle transducer 20.
  • an alignment device 64 may also assist to position vehicle 40 so the off-transducer 18 and the on-vehicle transducer 20 are properly aligned.
  • Alignment of the off-and on-vehicle transducers 18, 20 is needed to optimize energy transmission from the off-transducer 18 to the on-vehicle transducer 20.
  • alignment of the off-transducer 18 and the on-vehicle transducer 20 may occur when at least a portion of on-vehicle transducer 20 overlies off-transducer 18, as best illustrated in Fig. 2.
  • alignment of the off-transducer 18 and the on-vehicle transducer 20 may occur when the off-transducer 18 and the on-vehicle transducer 20 are sufficiently spaced apart, but allow for wireless transmission of energy to occur therebetween such that the battery 14 of the vehicle 40 is electrically charged.
  • the secondary charging system 62 produces an output 61 that carries an electrical signal received by integrated charger 60 and this integrated charger 60 produces an output 59 that carries an electrical signal that is received by transfer switch 57.
  • the charging system 12 may be configured to wirelessly transmit magnetic energy across a distance between a closely coupled or loosely coupled off- transducer 18 and on- vehicle transducer 20 pair.
  • a VFO circuit 24 is used effectively manage the frequency of the electrical signal so that a phase difference between the voltage and current supplied to the off-transducer 18 is maintained in order to provide optimal charging system power efficiency.
  • the charging system is constructed of electrical components such as resistors, capacitors, relays, and the like, that are commonly commercially available in the electrical arts.
  • the VCO 71 may be purchased as commonly available part at the frequencies of interest.
  • the phase detection circuit 272 may be easily constructed with a flip-flop circuit 287 and a controller 288.
  • the charging system 12 may further determine the system power efficiency between the off-transducer 18 and the on-vehicle transducer 20 and make further adjustments to the operating frequency to provide optimal charging system power efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
EP16793361.3A 2015-05-11 2016-05-10 Drahtloses batterieladesystem mit variierender magnetfeldfrequenz zur aufrechterhaltung einer gewünschten spannung-stromphasen-beziehung Ceased EP3294588A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/708,526 US9725003B2 (en) 2011-08-06 2015-05-11 Wireless battery charging system varying magnetic field frequency to maintain a desired voltage-current phase relationship
PCT/US2016/031601 WO2016183058A1 (en) 2015-05-11 2016-05-10 Wireless battery charging system varying magnetic field frequency to maintain a desire voltage-current phase relationship

Publications (2)

Publication Number Publication Date
EP3294588A1 true EP3294588A1 (de) 2018-03-21
EP3294588A4 EP3294588A4 (de) 2018-11-14

Family

ID=57248427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16793361.3A Ceased EP3294588A4 (de) 2015-05-11 2016-05-10 Drahtloses batterieladesystem mit variierender magnetfeldfrequenz zur aufrechterhaltung einer gewünschten spannung-stromphasen-beziehung

Country Status (5)

Country Link
EP (1) EP3294588A4 (de)
JP (1) JP2018522513A (de)
KR (1) KR20170135950A (de)
CN (1) CN107683555A (de)
WO (1) WO2016183058A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016101247A1 (de) 2015-11-02 2017-05-04 Epcos Ag Sensorelement und Verfahren zur Herstellung eines Sensorelements
CN112260719B (zh) * 2020-05-28 2022-06-24 蜂巢能源科技有限公司 无线电池管理的跳频通信方法及应用其的系统
CN114475292B (zh) * 2021-12-30 2024-03-08 福州大学 电动汽车无线充电系统和车载充电系统的集成结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189403A (ja) * 1992-12-15 1994-07-08 Daifuku Co Ltd 移動体の無接触給電設備
WO2009063975A1 (ja) * 2007-11-15 2009-05-22 Meleagros Corporation 電力伝送装置の空芯コイル、電力伝送装置のコイル、電力伝送装置、電力伝送装置の送電装置および電力伝送装置に使用される半導体集積回路
CN101965671B (zh) * 2008-01-07 2014-12-03 捷通国际有限公司 具有占空比控制的感应电源
JP5347708B2 (ja) * 2009-05-18 2013-11-20 トヨタ自動車株式会社 コイルユニット、非接触電力伝送装置、非接触給電システムおよび車両
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP5672843B2 (ja) * 2009-11-30 2015-02-18 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
US8829729B2 (en) * 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2677627B1 (de) * 2011-02-15 2018-04-25 Toyota Jidosha Kabushiki Kaisha Kontaktlose energieempfangsvorrichtung, fahrzeug mit einer solchen energieempfangsvorrichtung und kontaktlose energieversorgungsvorrichtung
US9325205B2 (en) * 2011-03-04 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Method for driving power supply system
US9306399B2 (en) * 2011-05-12 2016-04-05 Samsung Electronics Co., Ltd. Wireless power transmission and charging system, and resonance frequency control method of wireless power transmission and charging system
US9379571B2 (en) * 2011-07-11 2016-06-28 Delphi Technologies, Inc. Electrical charging system having energy coupling arrangement for wireless energy transmission therebetween
US20130035814A1 (en) * 2011-08-06 2013-02-07 Delphi Technologies, Inc. Electrical charging system that includes voltage-controlled oscillator which operatively controls wireless electromagnetic or wireless inductive charging of a battery
JP5988191B2 (ja) * 2011-09-27 2016-09-07 株式会社エクォス・リサーチ 電力伝送システム
US20140333150A1 (en) * 2012-01-26 2014-11-13 Pioneer Corporation Power transmitting apparatus and power transmitting method

Also Published As

Publication number Publication date
EP3294588A4 (de) 2018-11-14
JP2018522513A (ja) 2018-08-09
CN107683555A (zh) 2018-02-09
WO2016183058A1 (en) 2016-11-17
KR20170135950A (ko) 2017-12-08

Similar Documents

Publication Publication Date Title
US20130035814A1 (en) Electrical charging system that includes voltage-controlled oscillator which operatively controls wireless electromagnetic or wireless inductive charging of a battery
US9725003B2 (en) Wireless battery charging system varying magnetic field frequency to maintain a desired voltage-current phase relationship
US10493856B2 (en) System, apparatus and method for optimizing wireless charging alignment
KR101318848B1 (ko) 비접촉 급전 설비, 차량 및 비접촉 급전 시스템의 제어 방법
CN103097179B (zh) 电力供给装置、电力接收装置和包括电力接收装置的车辆以及用于电力供给系统的控制方法
US7208912B2 (en) Inductive battery recharging system with peak voltage detection
EP2873132B1 (de) Abstimmschaltung und -verfahren für drahtlose stromübertragungssysteme
US9531442B2 (en) Contactless power transmitting device, contactless power receiving device, vehicle, contactless power transmitting and receiving system, method of controlling contactless power transmitting device, method of controlling contactless power receiving device, and method of controlling contactless power transmitting and receiving system
CN103068618B (zh) 谐振型非接触电力供应系统
US20130063085A1 (en) Resonance-type non-contact power supply system
EP2717428A1 (de) Kontaktlose stromversorgungsvorrichtung, fahrzeug und kontaktloses stromversorgungssystem
KR20140025527A (ko) 비접촉 급전 장치
WO2012086051A1 (ja) 非接触給電システム、車両、給電設備および非接触給電システムの制御方法
KR20130070451A (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
EP3294588A1 (de) Drahtloses batterieladesystem mit variierender magnetfeldfrequenz zur aufrechterhaltung einer gewünschten spannung-stromphasen-beziehung
US20200198481A1 (en) Wireless power tuning network
JP6819951B2 (ja) 無線電力伝送システム
KR20130117405A (ko) 무선 전력 전송 장치 및 방법, 무선 전력 수신 장치
KR20130117039A (ko) 무선 전력 전송 장치 및 방법, 무선 전력 수신 장치
US20180337548A1 (en) Multi-supply synchronization for wireless charging
US20190363580A1 (en) Downhole charging system and method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20171211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20181012

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 50/80 20160101ALN20181008BHEP

Ipc: H02J 50/12 20160101AFI20181008BHEP

Ipc: B60L 11/18 20060101ALI20181008BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APTIV TECHNOLOGIES LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20191214