EP3293136A1 - Computer-aided construction of a gear wheel rail of a stair lift - Google Patents

Computer-aided construction of a gear wheel rail of a stair lift Download PDF

Info

Publication number
EP3293136A1
EP3293136A1 EP17197908.1A EP17197908A EP3293136A1 EP 3293136 A1 EP3293136 A1 EP 3293136A1 EP 17197908 A EP17197908 A EP 17197908A EP 3293136 A1 EP3293136 A1 EP 3293136A1
Authority
EP
European Patent Office
Prior art keywords
transport unit
spatial
rail
pinion
gear rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17197908.1A
Other languages
German (de)
French (fr)
Other versions
EP3293136B1 (en
Inventor
Michael HERBECK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hawle Treppenlifte GmbH
Original Assignee
Hawle Treppenlifte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawle Treppenlifte GmbH filed Critical Hawle Treppenlifte GmbH
Priority to HRP20211892TT priority Critical patent/HRP20211892T1/en
Priority to PL17197908T priority patent/PL3293136T3/en
Priority to RS20211480A priority patent/RS62638B1/en
Priority to SI201631376T priority patent/SI3293136T1/en
Publication of EP3293136A1 publication Critical patent/EP3293136A1/en
Application granted granted Critical
Publication of EP3293136B1 publication Critical patent/EP3293136B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/06Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces
    • B66B9/08Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces associated with stairways, e.g. for transporting disabled persons
    • B66B9/0807Driving mechanisms
    • B66B9/0815Rack and pinion, friction rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/06Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces
    • B66B9/08Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces associated with stairways, e.g. for transporting disabled persons

Definitions

  • the invention relates to a computer-aided method for the construction and manufacture of the structure of a staircase inclined elevator with a gear rail.
  • the invention also relates to a corresponding computer design program, a corresponding computer program storage medium and a corresponding computer with this storage medium.
  • the invention also relates to a constructed and manufactured by means of the method Treppenschrägaufzug- supporting structure.
  • the passenger seat comprehensive transport unit is guided along two superimposed and designed as tubes rails along.
  • the spatial course of these guide tubes relative to one another over the journey path is thus initially predetermined by the transport unit or its predefined geometric design.
  • the spatial course of the structure must also be adapted to the geometric specifications of the later site.
  • the drive of such inclined stair lifts by a arranged in the transport unit motor, which also drives a transport unit associated pinion drives, which engages in a corresponding and running along the support gear rail. It is therefore easy to imagine that the engagement of the drive pinion in the gear rail is not ideal over the entire course of the gear rail away.
  • the engagement pinion gear rail is improved also tragwerks wh.
  • the design and manufacture of the necessary for the drive gear rail brings a high manufacturing cost, since the example welded to one of the support rails rail gear rail is often curved together with the corresponding rail in three dimensions, but always an intervention of the Drive pinion must be ensured in the track.
  • first of all the spatial course of the first structural runner rail is determined, specifically in accordance with the geometrical specifications of the later installation or deployment location of the stairlift.
  • the spatial progression of the first rail is adapted by means of a design program to a virtual model of the later work site.
  • the spatial course of the first track was already determined by their production, whereupon this only has to be digitized for the further construction process.
  • the already manufactured track rail can be measured and the data obtained for the further computer-implemented design process to the corresponding computer for further processing.
  • a spatial axis that is to say an axis in three-dimensional space, is determined relative to the course of the first rail.
  • the transport unit of the stairlift is finally aligned.
  • the spatial axis defines the orientation of the transport unit relative to the first track.
  • the geometrical configuration of the transport unit must be known, which ultimately determines not only the relative position of both rails required for guiding the transport unit on and along both rails, but also the relative position of at least one of the two required for engagement of the pinion on the gear rail Runners and the gear rail pretends.
  • the spatial position profile of the transport unit guided on and along the first running rail and aligned on the spatial axis is simulated, namely by means of a three-dimensional model simulation.
  • a virtual model of the transport unit can be guided along a virtual model of the first track with an already defined spatial course, with the transport unit also being aligned with the already-defined spatial axis.
  • the transport unit is preferably aligned with the space axis, that the vertical axis of the transport unit, which may be perpendicular to the seat surface of the transport unit, parallel to the predefined spatial axis.
  • the simulation of the spatial position profile of the transport unit comprises the simulation of the spatial position of at least one, in particular of all, at least the first or a second track attacking roles of the transport unit.
  • the points at which the individual rollers of the transport unit lie against the rails can thus also be taken into account. Since the rollers are more or less strongly bound together by their coupling to the transport unit in their spatial position, the contact points of the individual rollers form further framework conditions for the course of the gear rail.
  • the direction of the spatial axis, on which the transport unit is to be aligned can fundamentally change over the course of the running gear and thus also of the gear rail.
  • the transport unit along the entire route has a certain inclination, inclined approximately transversely to the direction of travel forward or backward.
  • the spatial axis and thus the inclination of the transport unit differs in certain sections, such as curves of their other orientation in the rest of the route.
  • the direction of the spatial axis is constant over the entire route, ie the entire course of the rails, so that the transport unit during subsequent use over the entire route on a single direction is aligned.
  • the space axis can be aligned parallel to the direction of gravity in the final installation position of the stair lift. In this way, the transport unit will always be oriented in the same manner relative to the gravity vector in later use.
  • the spatial course is first determined, on the basis of which the spatial course of the lower supporting rail is then determined.
  • top and bottom refer to the installation position at the place of use.
  • a first, preferably upper track with a spatial course can be made, which is required for the later site of use of the stairlift.
  • the spatial profile of the gear rail of the supporting structure can be calculated after measuring this track rail.
  • the spatial course of the structure is determined purely virtual.
  • the spatial course of the first track can be determined with the aid of a model of the later site be, and immediately determined by means of the above-described construction or simulation of the spatial course of the gear rail.
  • the necessary spatial progression of at least the gear rail is already known precisely prior to its manufacture and thus does not have to be changed and adapted in a time-consuming manner during production.
  • a drive device for a staircase inclined elevator may comprise a motor, a rotatably coupled to the drive of the motor shaft, and a non-rotatably coupled via a coupling to the shaft pinion, wherein the coupling allows movement of the pinion longitudinal axis relative to the shaft rotation axis.
  • the motor located in the transport unit drives a shaft which is likewise assigned to the transport unit and which can have a rotation axis fixed relative to the transport unit.
  • a drive pinion is driven, which can be arranged for example on the output side end of this shaft.
  • the gear rail is curved in three dimensions, it inevitably leads to undesirable deviations in the meshing.
  • misalignments ie a possible non-parallelism between the corresponding tooth flanks can be compensated by a movement of the pinion relative to the shaft.
  • Both the tooth flanks of the pinion and the tooth flanks of the gear rail are thus loaded evenly and it is also possible to significantly reduce the previously necessary clearance in meshing. In the same way can also be compensated for misalignments that come about by tilting the gear rod about its longitudinal axis and relative to the shaft rotation axis.
  • the shaft may be mounted on the drive side and extends on the output side beyond the bearing in the direction of the pinion.
  • the pinion can be arranged in an end region of a shaft mounted on one side, which for example extends from a supporting component, for example from a gearbox housing and, so to speak, cantilevers.
  • the coupling connecting the shaft and the pinion allows two, in particular only two rotational degrees of freedom.
  • both a tilting of the gear rail about its longitudinal axis and a tilting of the gear rail perpendicular to the shaft rotation axis can be compensated.
  • the coupling allows only two rotational degrees of freedom
  • the pinion is fixed both in its three translational degrees of freedom and in rotation about the shaft rotation axis relative to the shaft.
  • the coupling could include an elastic element which deforms upon movement of the pinion longitudinal axis relative to the shaft rotation axis.
  • an intermediate element made of an elastic plastic could be introduced between the shaft and the pinion and act there in the manner of a silent bushing.
  • the coupling can also have a joint providing at least two rotatory degrees of freedom, for example having a joint bearing with two corresponding joint surfaces which slide on one another.
  • a joint bearing In order to be able to provide two rotatory degrees of freedom by means of a joint bearing, one articular surface must be convex two-dimensionally and the other articular surface two-dimensionally concave.
  • the shaft-side articular surface is convex and the pinion-side articular surface is concavely curved.
  • At least one joint surface may be formed as a spherical zone which rotates rotationally symmetrically about the shaft rotational axis or the pinion longitudinal axis.
  • a bolt may be provided which at least partially penetrates the shaft perpendicular to its axis of rotation and also the bushing. This bolt can also be used to simultaneously hold the pinion rotatably on the shaft so that this rotates while maintaining its two degrees of freedom with the shaft.
  • FIG. 1 a staircase inclined elevator / stairlift is shown, the transport unit 3 is guided on two superimposed tubular rails 1 and 2 such that it is always aligned in the process along the rails 1 and 2 to the gravity vector G.
  • the seat of the transport unit 3 thus assumes a "vertical" position at all times and consequently is rotated only around the vector G.
  • the upper rail 1 carries on its underside, as through the Figures 3 and 4 becomes clear, a gear rail 14th
  • FIG. 2 shows a corresponding transport unit 3, on the back of a plurality of at least partially relative to the transport unit 3 positionally variable rollers 4 and 5 are mounted, by means of which the transport unit 3 is coupled both to the course of the upper track rail 1 and to the course of the lower track rail 2.
  • the spatial course can be calculated to the upper track 1 also by means of the construction method of the invention as the course of the gear rail 14 relative to the upper track rail 1, so that the transport unit 3 along the Track always maintains their vertical orientation, and also from always the engagement of the pinion 8 is ensured in the gear rail 14.
  • FIG. 3 shows a cross section through a specific embodiment of the drive device.
  • a shaft 7 This is mounted inside the gear housing and rotates about the relative to the transport unit 3 fixed axis of rotation 7a.
  • the drive pinion 8 is arranged and rotatably coupled to the shaft 7 about the rotation axis 7 a.
  • the pinion 8 also has circumferentially a spur gear, for example, an involute toothing, which engages in a corresponding toothing of the gear rail 14, which in turn is welded to the underside of the upper track rail 1 at this.
  • attack site gives way to the gear rail 14 of their in the FIG. 3 shown and centrally keep the running track 1 located position, so that the tooth flanks are no longer parallel to the axis of rotation 7a of the shaft 7.
  • a coaxial with the shaft 7 rigidly connected pinion 8 could thus no longer engage in an ideal manner in the toothing of the gear rail 14, so that not only the teeth are subjected to increased stress and thus increased wear, but also for the drive and the Guide the transport unit 3 along the structure provided components.
  • the pinion 8 is coupled via a spherical bearing 9 to the shaft 7, that it can pivot relative to this in two dimensions.
  • the joint bearing 9 is formed by the pinion 8 and a pushed onto the shaft 7 and secured socket 12, so that the longitudinal axis 8a of the pinion 8 can pivot about 6 ° relative to the axis of rotation 7a of the shaft 7.
  • FIG. 5 shows in an exploded view the structure of the coupling between pinion and shaft:
  • the pinion 8 On the mounted in a housing of the transport unit 3 and of there projecting shaft 7, the pinion 8 is pushed and held there about the inserted into a bore pin 13 rotatably about the axis of rotation 7a.
  • the two-part pinion 8 On its inner surface on a concave joint surface 11, which slides on a corresponding, formed on the outer circumference of the bushing 12 convex articular surface 10.
  • the bushing 12 has a transverse bore into which the bolt 13 is inserted, thus holding the bushing 12 stationary on the shaft 7.
  • the two-part pinion 8 is held together by means of a screwed and not designated disc in the axial direction and thus secured to the bush 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

Die Erfindung betrifft ein computerimplementiertes Verfahren zur Konstruktion des Tragwerks eines Treppenschrägaufzugs mit einer ersten und einer zweiten Laufschiene (1, 2) und einer an diesen geführten Transporteinheit (3), wobei der räumliche Verlauf einer an der ersten (1) oder an der zweiten (2) Laufschiene ausgebildeten Zahnradschiene (14) bestimmt wird, der zum Eingriff eines Ritzels (8) der zur Raumachse (G) ausgerichteten Transporteinheit (3) an der Zahnradschiene (14) notwendig ist.The invention relates to a computer-implemented method for constructing the structure of a staircase inclined elevator with a first and a second track rail (1, 2) and a transport unit (3) guided thereon, wherein the spatial progression of one at the first (1) or at the second ( 2) track rail formed gear rail (14) is determined, which is necessary for engagement of a pinion (8) of the space axis (G) aligned transport unit (3) on the gear rail (14).

Description

Die Erfindung betrifft ein computerunterstütztes Verfahren zur Konstruktion und Fertigung des Tragwerks eines Treppenschrägaufzugs mit einer Zahnradschiene. Die Erfindung betrifft auch ein entsprechendes Computer-Konstruktionsprogramm, ein entsprechendes Computerprogramm-Speichermedium und einen entsprechenden Computer mit diesem Speichermedium. Die Erfindung betrifft auch ein mittels des erfindungsgemäßen Verfahrens konstruiertes und gefertigtes Treppenschrägaufzug- Tragwerk.The invention relates to a computer-aided method for the construction and manufacture of the structure of a staircase inclined elevator with a gear rail. The invention also relates to a corresponding computer design program, a corresponding computer program storage medium and a corresponding computer with this storage medium. The invention also relates to a constructed and manufactured by means of the method Treppenschrägaufzug- supporting structure.

Aus dem Stand der Technik, beispielsweise der EP 1 700 812 B1 sind Treppenschrägaufzüge bekannt, deren einen Personensitz umfassende Transporteinheit an zwei übereinanderliegenden und als Rohre ausgestalteten Laufschienen entlang geführt wird. Der räumliche Verlauf dieser Führungsrohre relativ zueinander über die Fahrtstrecke hinweg wird somit zunächst einmal durch die Transporteinheit beziehungsweise deren vordefinierte geometrische Ausgestaltung vorgegeben. Darüber hinaus muss der räumliche Verlauf des Tragwerks auch an die geometrischen Vorgaben des späteren Einsatzortes angepasst werden. Ferner erfolgt der Antrieb solcher Treppenschrägaufzüge durch einen in der Transporteinheit angeordneten Motor, der ein ebenfalls der Transporteinheit zugeordnetes Ritzel antreibt, welches in eine korrespondierende und entlang des Tragwerks verlaufende Zahnradschiene eingreift. Es ist daher leicht vorstellbar, dass der Eingriff des Antriebsritzels in der Zahnradschiene nicht über den gesamten Verlauf der Zahnradschiene hinweg ideal verläuft. So kann es an einzelnen Teilabschnitten des Zahnradschienenverlaufs zu geometrisch bedingten "Fehlstellungen" des Antriebsritzels relativ zur Zahnradschiene kommen, was nicht nur eine ungleichmäßige Belastung und somit Abnutzung sämtlicher Zahnflanken zur Folge hat, sondern auch eine ungewollt hohe Beanspruchung von tragenden Teilen des Treppenlifts. Bisher behalf man sich mit einem ungewöhnlich hohen Spiel im Eingriffs-Ritzel-Zahnradschiene, was die Belastungsproblematik allenfalls abmildert, den ungleichmäßigen Zahneingriff jedoch nicht vermeiden kann. Auch wird, um eine zufriedenstellende Funktion des Treppenlifts, insbesondere einen zufriedenstellenden Eingriff der Paarungs-Ritzel-Zahnradschiene zu gewährleisten, das Treppenlift-Tragwerk manuell auf einen Montagestand gefertigt. So wird der Verlauf der Zahnradschiene an einem der beiden Rohre des Tragwerks gemäß den späteren geometrischen Vorgaben in zahlreichen, teilweise iterativen Schritten manuell festgelegt. Dies erfordert nicht nur viel technischen Know-how und Erfahrung, sondern bringt zwangsläufig auch einen sehr hohen manuellen Fertigungsaufwand mit sich.From the prior art, for example the EP 1 700 812 B1 Stairs inclined elevators are known, the passenger seat comprehensive transport unit is guided along two superimposed and designed as tubes rails along. The spatial course of these guide tubes relative to one another over the journey path is thus initially predetermined by the transport unit or its predefined geometric design. In addition, the spatial course of the structure must also be adapted to the geometric specifications of the later site. Furthermore, the drive of such inclined stair lifts by a arranged in the transport unit motor, which also drives a transport unit associated pinion drives, which engages in a corresponding and running along the support gear rail. It is therefore easy to imagine that the engagement of the drive pinion in the gear rail is not ideal over the entire course of the gear rail away. So it can come to individual sections of the gear rail course to geometrically related "misalignments" of the drive pinion relative to the gear rail, which not only uneven loading and thus wear of all tooth flanks for Consequence, but also an unintentionally high stress on load-bearing parts of the stairlift. So far, one made use of an unusually high clearance in the mesh pinion gear rail, which at best mitigates the stress problem, but can not avoid the uneven tooth engagement. Also, in order to ensure a satisfactory function of the stairlift, in particular a satisfactory engagement of the mating pinion gear rail, the stairlift structure is manually made to an assembly stand. Thus, the course of the gear rail on one of the two tubes of the structure is manually set according to the later geometric specifications in numerous, partly iterative steps. This not only requires a lot of technical know-how and experience, but inevitably brings with it a very high manual production effort.

Es ist die Aufgabe der vorliegenden Erfindung, den für den Treppenlift-Antrieb notwendigen Eingriff des Antriebritzels in die korrespondierende Zahnradschiene dergestalt zu verbessern, dass die Bauteilbelastung, der damit einhergehende Verschleiß und der Fertigungsaufwand reduziert werden. Diese Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die Unteransprüche definieren dabei bevorzugte Ausführungsformen der vorliegenden Erfindung.It is the object of the present invention to improve the necessary for the stairlift drive engagement of the drive pinion in the corresponding gear rail in such a way that the component load, the associated wear and the manufacturing costs are reduced. This object is solved by the subject matter of claim 1. The dependent claims define preferred embodiments of the present invention.

Die vorliegende Erfindung stellt ein computerimplementiertes Verfahren zur Konstruktion des Tragwerks eines Treppenschrägaufzugs mit einer ersten und einer zweiten Laufschiene und einer an diesen geführten Transporteinheit bereit, wobei das Verfahren folgende Schritte umfasst:

  • Festlegen eines räumlichen Verlaufs der ersten Laufschiene entsprechend den von der Tragwerksinstallation vorgegebenen Rahmenbedingungen;
  • Festlegen einer Raumachse entsprechend den von der Tragwerksinstallation vorgegebenen Rahmenbedingungen;
  • Festlegen einer geometrischen Ausgestaltung der Transporteinheit;
  • Bestimmen eines räumlichen Verlaufs einer an der ersten oder an der zweiten Laufschiene ausgebildeten Längsverzahnung, der zum Eingriff eines Ritzels der zur Raumachse ausgerichteten Transporteinheit an der Längsverzahnung notwendig ist, wobei zur Bestimmung des räumlichen Verlaufs der Zahnradschiene der räumliche Positionsverlauf der entlang der ersten Laufschiene geführten und entlang der Raumachse ausgerichteten Transporteinheit, insbesondere mittels einer dreidimensionalen Modellsimulation simuliert wird.
The present invention provides a computer-implemented method for constructing the structure of a staircase inclined elevator with a first and a second track rail and a transport unit guided thereon, the method comprising the following steps:
  • Defining a spatial course of the first track according to the framework conditions prescribed by the structural installation;
  • Defining a spatial axis according to the framework conditions prescribed by the structural installation;
  • Determining a geometric configuration of the transport unit;
  • Determining a spatial course of a trained on the first or on the second track spline, which is for engagement of a pinion of the aligned to the space axis transport unit on the spline is necessary, wherein for determining the spatial course of the gear rail of the spatial position profile of the guided along the first track rail and aligned along the spatial axis transport unit, in particular by means of a three-dimensional model simulation is simulated.

Erfindungsgemäß wird auch tragwerksseitig der Eingriff Ritzel-Zahnradschiene verbessert. Wie einleitend ebenfalls bereits angesprochen wurde, bringt die Konstruktion und Fertigung der für den Antrieb notwendigen Zahnradschiene einen hohen Fertigungsaufwand mit sich, da die beispielsweise an einer der Tragwerkslaufschienen angeschweißte Zahnradschiene zusammen mit der entsprechenden Laufschiene oftmals in drei Dimensionen gekrümmt ist, allerdings stets ein Eingriff des Antriebsritzels in der Laufschiene sichergestellt werden muss.According to the invention, the engagement pinion gear rail is improved also tragwerksseitig. As already mentioned in the introduction, the design and manufacture of the necessary for the drive gear rail brings a high manufacturing cost, since the example welded to one of the support rails rail gear rail is often curved together with the corresponding rail in three dimensions, but always an intervention of the Drive pinion must be ensured in the track.

Gemäß dem erfindungsgemäßen computerimplementierten Verfahren wird zunächst der räumliche Verlauf der ersten Tragwerks-Laufschiene festgelegt und zwar entsprechend den geometrischen Vorgaben des späteren Einbau- bzw. Einsatzortes des Treppenlifts. In diesem Zusammenhang ist es vorstellbar, dass der räumliche Verlauf der ersten Schiene mit Hilfe eines Konstruktionsprogramms an ein virtuelles Modell des späteren Einsatzortes angepasst wird. Es ist jedoch ebenso vorstellbar, dass der räumliche Verlauf der ersten Laufschiene bereits durch deren Fertigung festgelegt wurde, woraufhin dieser für das weitere Konstruktionsverfahren nur noch digitalisiert werden muss. So kann die bereits gefertigte Laufschiene vermessen und die gewonnen Daten für das weitere computerimplementierte Konstruktionsverfahren dem entsprechenden Computer zur Weiterverarbeitung zugeführt werden.According to the computer-implemented method according to the invention, first of all the spatial course of the first structural runner rail is determined, specifically in accordance with the geometrical specifications of the later installation or deployment location of the stairlift. In this context, it is conceivable that the spatial progression of the first rail is adapted by means of a design program to a virtual model of the later work site. However, it is also conceivable that the spatial course of the first track was already determined by their production, whereupon this only has to be digitized for the further construction process. Thus, the already manufactured track rail can be measured and the data obtained for the further computer-implemented design process to the corresponding computer for further processing.

Beim erfindungsgemäßen Verfahren wird ferner eine Raumachse, also eine Achse im dreidimensionalen Raum relativ zum Verlauf der ersten Schiene festgelegt. An dieser Achse wird die Transporteinheit des Treppenlifts letztendlich ausgerichtet. Anders ausgedrückt legt die Raumachse also die Ausrichtung der Transporteinheit relativ zur ersten Laufschiene fest.In the method according to the invention, furthermore, a spatial axis, that is to say an axis in three-dimensional space, is determined relative to the course of the first rail. At this axis, the transport unit of the stairlift is finally aligned. In other words, the spatial axis defines the orientation of the transport unit relative to the first track.

Zuletzt muss noch die geometrische Ausgestaltung der Transporteinheit bekannt sein, die ja letztendlich nicht nur die für die Führung der Transporteinheit am und entlang beider Laufschienen notwendige Relativposition beider Laufschienen vorgibt, sondern auch die für einen Eingriff des Ritzels an der Zahnradschiene notwendige Relativposition zumindest einer der beiden Laufschienen und der Zahnradschiene vorgibt.Finally, the geometrical configuration of the transport unit must be known, which ultimately determines not only the relative position of both rails required for guiding the transport unit on and along both rails, but also the relative position of at least one of the two required for engagement of the pinion on the gear rail Runners and the gear rail pretends.

Die obigen Daten definieren somit die Rahmenbedingungen für den räumlichen Verlauf der Zahnradschiene des Tragwerks, innerhalb welcher ein zufriedenstellender Eingriff des Ritzels an und entlang der Zahnradschiene stattfindet.The above data thus define the framework for the spatial course of the gear rail of the structure within which there is satisfactory engagement of the pinion on and along the gear rail.

Es wird zur Bestimmung des räumlichen Verlaufs der Zahnradschiene der räumliche Positionsverlauf der an und entlang der ersten Laufschiene geführten und an der Raumachse ausgerichteten Transporteinheit simuliert, und zwar mittels einer dreidimensionalen Modellsimulation. Anders ausgedrückt kann ein virtuelles Modell der Transporteinheit an einem virtuellen Modell der ersten Laufschiene mit einem bereits festgelegten räumlichen Verlauf entlang geführt werden, wobei die Transporteinheit darüber hinaus an der bereits ebenfalls festgelegten Raumachse ausgerichtet wird. Zur Ausrichtung der Transporteinheit an der Raumachse ist zu sagen, dass die Transporteinheit bevorzugterweise so an der Raumachse ausgerichtet ist, dass die Hochachse der Transporteinheit, die senkrecht auf die Sitzfläche der Transporteinheit stehen kann, parallel zur vordefinierten Raumachse verläuft. Mit der Simulation der an der Raumachse ausgerichteten und an der ersten Schiene entlang geführten Transporteinheit wird durch die Transporteinheit oder vielmehr das ihr zugeordnete Antriebsritzel selbst der räumliche Verlauf der Zahnradschiene festgelegt beziehungsweise kurvenscheibenartig im dreidimensionalen virtuellen Raum aufgezeichnet.To determine the spatial course of the gear rail, the spatial position profile of the transport unit guided on and along the first running rail and aligned on the spatial axis is simulated, namely by means of a three-dimensional model simulation. In other words, a virtual model of the transport unit can be guided along a virtual model of the first track with an already defined spatial course, with the transport unit also being aligned with the already-defined spatial axis. For alignment of the transport unit to the spatial axis is to say that the transport unit is preferably aligned with the space axis, that the vertical axis of the transport unit, which may be perpendicular to the seat surface of the transport unit, parallel to the predefined spatial axis. With the simulation of the aligned on the space axis and guided along the first rail transport unit is determined by the transport unit or rather its associated drive pinion even the spatial course of the gear rail or recorded like a curved disc in three-dimensional virtual space.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung umfasst die Simulation des räumlichen Positionsverlaufs der Transporteinheit die Simulation der räumlichen Position zumindest einer, insbesondere aller an zumindest der ersten oder einer zweiten Laufschiene angreifenden Rollen der Transporteinheit. So können mittels Simulation auch die Punkte berücksichtigt werden, an denen die einzelnen Laufrollen der Transporteinheit an den Laufschienen anliegen. Da die Laufrollen durch deren Koppelung an der Transporteinheit in ihrer räumlichen Lage mehr oder weniger stark aneinander gebunden sind, bilden die Kontaktpunkte der einzelnen Rollen weitere Rahmenbedingungen für den Verlauf der Zahnradschiene.According to a further embodiment of the present invention, the simulation of the spatial position profile of the transport unit comprises the simulation of the spatial position of at least one, in particular of all, at least the first or a second track attacking roles of the transport unit. By means of simulation, the points at which the individual rollers of the transport unit lie against the rails can thus also be taken into account. Since the rollers are more or less strongly bound together by their coupling to the transport unit in their spatial position, the contact points of the individual rollers form further framework conditions for the course of the gear rail.

Im Rahmen der vorliegenden Erfindung ist es möglich, zur Bestimmung des räumlichen Verlaufs der Zahnradschiene für die einzelnen Punkte des Schienenverlaufs sämtliche Raumkoordinaten in einem Arbeitsschritt zu berechnen. Es ist jedoch ebenso vorstellbar, dass die Raumkoordinaten der einzelnen Punkte des Schienenverlaufs getrennt voneinander berechnet werden, wobei es insbesondere vorstellbar ist, dass der horizontale Verlauf getrennt vom vertikalen Verlauf der Zahnradschiene berechnet wird.In the context of the present invention, it is possible to calculate all space coordinates in one work step for determining the spatial course of the gear rail for the individual points of the rail course. However, it is also conceivable that the spatial coordinates of the individual points of the rail track are calculated separately from each other, wherein it is conceivable in particular that the horizontal course is calculated separately from the vertical course of the gear rail.

Ferner ist es möglich, zur Bestimmung des räumlichen Verlaufs der Zahnradschiene den Verlauf einer Achse der Schienenverzahnung zu bestimmen, die mit einer Achse der Ritzelverzahnung am Eingriffsort zusammenfällt. Insbesondere kann deren horizontaler Verlauf und deren vertikaler Verlauf getrennt voneinander bestimmt werden.Further, it is possible to determine the course of an axis of the rail toothing, which coincides with an axis of the pinion toothing at the engagement location for determining the spatial course of the gear rail. In particular, their horizontal course and their vertical course can be determined separately.

Die Richtung der Raumachse, an welcher die Transporteinheit ausgerichtet werden soll, kann sich grundsätzlich über den Verlauf der Lauf- und somit auch der Zahnradschiene verändern. Beispielsweise kann man sich vorstellen, dass die Transporteinheit entlang des gesamten Streckenverlaufs eine gewisse Neigung aufweist, etwa quer zur Fahrtrichtung nach vorne oder nach hinten geneigt. Es kann aber auch vorgesehen sein, dass die Raumachse und somit die Neigung der Transporteinheit sich in bestimmten Streckenabschnitten, etwa in Kurven von deren sonstiger Ausrichtung im übrigen Streckenverlauf unterscheidet. Vorzugsweise ist die Richtung der Raumachse allerdings über die gesamte Fahrtstrecke, also den gesamten Verlauf der Laufschienen konstant, so dass die Transporteinheit beim späteren Einsatz über den gesamten Streckenverlauf an einer einzigen Richtung ausgerichtet ist. So kann die Raumachse parallel zur Richtung der Schwerkraft in der letztendlichen Einbaulage des Treppenlifts ausgerichtet sein. Auf diese Weise wird die Transporteinheit im späteren Einsatz stets in gleicher Weise relativ zum Schwerkraftvektor ausgerichtet sein.The direction of the spatial axis, on which the transport unit is to be aligned, can fundamentally change over the course of the running gear and thus also of the gear rail. For example, one can imagine that the transport unit along the entire route has a certain inclination, inclined approximately transversely to the direction of travel forward or backward. But it can also be provided that the spatial axis and thus the inclination of the transport unit differs in certain sections, such as curves of their other orientation in the rest of the route. Preferably, however, the direction of the spatial axis is constant over the entire route, ie the entire course of the rails, so that the transport unit during subsequent use over the entire route on a single direction is aligned. Thus, the space axis can be aligned parallel to the direction of gravity in the final installation position of the stair lift. In this way, the transport unit will always be oriented in the same manner relative to the gravity vector in later use.

Vorzugsweise ist es die obere, beispielsweise rohrförmige Laufschiene des Tragwerks, deren räumlicher Verlauf zunächst festgelegt wird, auf dessen Basis dann der räumliche Verlauf der unteren Tragwerks-Laufschiene bestimmt wird. Die Begriffe "oben" und "unten" beziehen sich dabei auf die Einbauposition am Einsatzort. Auch ist es vorzugsweise die erste, obere Laufschiene, an deren Unterseite die Zahnradschiene verläuft und dort etwa mit der Laufschiene verschweißt sein kann.Preferably, it is the upper, for example, tubular running rail of the structure, the spatial course is first determined, on the basis of which the spatial course of the lower supporting rail is then determined. The terms "top" and "bottom" refer to the installation position at the place of use. Also, it is preferably the first, upper track, at the bottom of the gear rail runs and there may be welded to the track rail about.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Fertigung des Tragwerks eines Treppenschrägaufzuges mit einer ersten Laufschiene, einer Zahnradschiene und einer an diesen geführten Transporteinheit, mit folgenden Schritten:

  • Fertigung, insbesondere Installation der ersten Laufschiene mit einem festgelegten räumlichen Verlauf;
  • Durchführung eines wie oben beschriebenen computerimplementierten Konstruktionsverfahrens;
  • Fertigung, insbesondere Anbringung der Zahnradschiene mit dem mittels des Konstruktionsverfahrens bestimmten räumlichen Verlauf.
Another aspect of the present invention relates to a method for manufacturing the structure of a staircase inclined elevator with a first track rail, a gear rail and a transport unit guided thereon, with the following steps:
  • Production, in particular installation of the first track with a fixed spatial course;
  • Performing a computer-implemented design method as described above;
  • Production, in particular attachment of the gear rail with the determined by the construction method spatial course.

Wie bereits weiter oben angedeutet, kann zunächst eine erste, vorzugsweise obere Laufschiene mit einem räumlichen Verlauf gefertigt werden, der am für den späteren Einsatzort des Treppenlifts erforderlich ist. Mittels des wie oben beschriebenen Konstruktions- bzw. Simulationsverfahrens kann nach Vermessung dieser Laufschiene der räumliche Verlauf der Zahnradschiene des Tragwerks berechnet werden. Es ist jedoch ebenso vorstellbar, dass der räumliche Verlauf des Tragwerks rein virtuell bestimmt wird. So kann etwa der räumliche Verlauf der ersten Laufschiene unter Zuhilfenahme eines Modells des späteren Einsatzortes festgelegt werden, und sogleich auch mittels der oben beschriebenen Konstruktion bzw. Simulation der räumliche Verlauf der Zahnradschiene bestimmt werden.As already indicated above, first, a first, preferably upper track with a spatial course can be made, which is required for the later site of use of the stairlift. By means of the construction or simulation method as described above, the spatial profile of the gear rail of the supporting structure can be calculated after measuring this track rail. However, it is also conceivable that the spatial course of the structure is determined purely virtual. For example, the spatial course of the first track can be determined with the aid of a model of the later site be, and immediately determined by means of the above-described construction or simulation of the spatial course of the gear rail.

Mithilfe der vorliegenden Erfindung ist der notwendige räumliche Verlauf zumindest der Zahnradschiene bereits vor deren Fertigung genau bekannt und muss somit während der Fertigung nicht mehr zeitaufwändig verändert und angepasst werden.With the aid of the present invention, the necessary spatial progression of at least the gear rail is already known precisely prior to its manufacture and thus does not have to be changed and adapted in a time-consuming manner during production.

Weitere Aspekte der vorliegenden Erfindung betreffen folglich ein entsprechend dem erfindungsgemäßen Fertigungsverfahren hergestelltes Tragwerk für einen Treppenschrägaufzug, welches eine Laufschiene und eine Zahnradschiene umfasst und ein Computerprogramm-Speichermedium bzw. einen Datenträger mit einem darauf gespeicherten Programm, das einen Computer zur Durchführung eines oben beschriebenen Konstruktionsverfahrens veranlasst. Ein zusätzlicher Aspekt der vorliegenden Erfindung betrifft einen Computer, der ein entsprechendes Speichermedium bzw. einen entsprechenden Datenträger aufweist und/oder auf welchem ein wie oben beschriebenes Computerprogramm geladen ist.Further aspects of the present invention therefore relate to a staircase lift structure constructed in accordance with the manufacturing method of the invention comprising a track rail and a gear rail and a computer program storage medium having a program stored thereon for causing a computer to perform a construction method as described above , An additional aspect of the present invention relates to a computer having a corresponding storage medium or a corresponding data carrier and / or on which a computer program as described above is loaded.

Eine Antriebseinrichtung für einen Treppenschrägaufzug kann einen Motor umfassen, eine drehfest an den Antrieb des Motors gekoppelte Welle, und ein über eine Koppelung drehfest an die Welle gekoppeltes Ritzel, wobei die Koppelung eine Bewegung der Ritzellängsachse relativ zur Wellendrehachse zulässt.A drive device for a staircase inclined elevator may comprise a motor, a rotatably coupled to the drive of the motor shaft, and a non-rotatably coupled via a coupling to the shaft pinion, wherein the coupling allows movement of the pinion longitudinal axis relative to the shaft rotation axis.

Mit anderen Worten treibt der in der Transporteinheit befindliche Motor eine ebenfalls der Transporteinheit zugeordnete Welle an, die eine relativ zur Transporteinheit feststehende Drehachse aufweisen kann. Über diese Welle wird letztendlich ein Antriebsritzel angetrieben, welches beispielsweise am abtriebsseitigen Ende dieser Welle angeordnet sein kann. Sofern der Verlauf der Zahnradschiene am Eingriffspunkt des Ritzels stets senkrecht zur Wellendrehachse in einem konstanten Abstand verläuft, die Zahnflanken der Zahnradschiene also stets parallel zu den Zahnflanken des Antriebsritzels stehen und die Höhendifferenz zwischen der Wellendrehachse und der Zahnradschiene konstant bleibt, bringt ein fest auf der Welle angeordnetes Ritzel keine Probleme mit sich. Sobald jedoch, wie es bei Treppenliften oftmals der Fall ist, die Zahnradschiene in drei Dimensionen gekrümmt ist, kommt es zwangsläufig zu unerwünschten Abweichungen im Zahneingriff. Dem begegnet die vorliegende Erfindung damit, dass das Ritzel zwar drehfest mit der Welle verbunden ist, seine Längsachse allerdings relativ zur Wellendrehachse verschwenkbar ist. So können Fehlstellungen, also eine mögliche Nichtparallelität zwischen den korrespondierenden Zahnflanken durch eine Bewegung des Ritzels relativ zur Welle kompensiert werden. Sowohl die Zahnflanken des Ritzels als auch die Zahnflanken der Zahnradschiene werden somit gleichmäßiger belastet und es ist auch möglich, das bisher notwendige Spiel im Zahneingriff erheblich zu verringern. In gleicher Weise können so auch Fehlstellungen kompensiert werden, die durch eine Verkippung der Zahnradstange um deren Längsachse und relativ zur Wellendrehachse zustande kommen.In other words, the motor located in the transport unit drives a shaft which is likewise assigned to the transport unit and which can have a rotation axis fixed relative to the transport unit. About this shaft ultimately a drive pinion is driven, which can be arranged for example on the output side end of this shaft. If the course of the gear rail at the point of engagement of the pinion is always perpendicular to the shaft axis of rotation at a constant distance, the tooth flanks of the gear rail so always parallel to the tooth flanks of the drive pinion and the height difference between the shaft rotation axis and the gear rail remains constant, brings a firm on the shaft arranged pinion no problems with it. Once, however, as with Stair lifts is often the case, the gear rail is curved in three dimensions, it inevitably leads to undesirable deviations in the meshing. The counteracts the present invention so that the pinion is rotatably connected to the shaft, however, its longitudinal axis is pivotable relative to the shaft rotation axis. Thus, misalignments, ie a possible non-parallelism between the corresponding tooth flanks can be compensated by a movement of the pinion relative to the shaft. Both the tooth flanks of the pinion and the tooth flanks of the gear rail are thus loaded evenly and it is also possible to significantly reduce the previously necessary clearance in meshing. In the same way can also be compensated for misalignments that come about by tilting the gear rod about its longitudinal axis and relative to the shaft rotation axis.

Die Welle kann antriebsseitig gelagert sein und erstreckt sich abtriebsseitig über die Lagerung hinaus in Richtung des Ritzels. So kann das Ritzel in einem Endbereich einer einseitig gelagerten Welle angeordnet sein, die sich beispielsweise von einem tragendem Bauteil, etwa von einem Getriebegehäuse aus fort erstreckt und sozusagen auskragt.The shaft may be mounted on the drive side and extends on the output side beyond the bearing in the direction of the pinion. Thus, the pinion can be arranged in an end region of a shaft mounted on one side, which for example extends from a supporting component, for example from a gearbox housing and, so to speak, cantilevers.

Auch ist es vorstellbar, dass die die Welle und das Ritzel verbindende Koppelung zwei, insbesondere ausschließlich zwei rotatorische Freiheitsgrade zulässt. Wie bereits weiter oben angedeutet wurde, kann mit zwei rotatorischen Freiheitsgraden des Ritzels relativ zur Welle sowohl eine Verkippung der Zahnradschiene um deren Längsachse als auch eine Verkippung der Zahnradschiene senkrecht zur Wellendrehachse kompensiert werden. Sofern die Koppelung ausschließlich zwei rotatorische Freiheitsgrade ermöglicht, ist das Ritzel sowohl in seinen drei translatorischen Freiheitsgraden als auch rotatorisch um die Wellendrehachse relativ zur Welle festgelegt. Es wäre jedoch durchaus vorstellbar, dem Ritzel einen translatorischen Freiheitsgrad entlang der Wellendrehachse zu geben, um etwa mögliche Verschiebungen der Zahnradschienenposition entlang der Wellendrehachse zu kompensieren, sobald die Transporteinheit entlang des Tragwerks bewegt wird.It is also conceivable that the coupling connecting the shaft and the pinion allows two, in particular only two rotational degrees of freedom. As already indicated above, with two rotational degrees of freedom of the pinion relative to the shaft, both a tilting of the gear rail about its longitudinal axis and a tilting of the gear rail perpendicular to the shaft rotation axis can be compensated. If the coupling allows only two rotational degrees of freedom, the pinion is fixed both in its three translational degrees of freedom and in rotation about the shaft rotation axis relative to the shaft. However, it would be quite conceivable to give the pinion a translational degree of freedom along the shaft rotation axis in order to compensate for possible displacements of the gear rail position along the shaft rotation axis as soon as the transport unit is moved along the structure.

Um die Bewegung des Ritzels relativ zur Welle zu ermöglichen, könnte die Koppelung ein elastischen Element umfassen, welche sich bei einer Bewegung der Ritzellängsachse relativ zur Wellendrehachse verformt. Beispielsweise könnte ein aus einem elastischem Kunststoff gefertigtes Zwischenelement zwischen die Welle und das Ritzel eingebracht werden und dort in der Art einer Silentbuchse wirken.To facilitate movement of the pinion relative to the shaft, the coupling could include an elastic element which deforms upon movement of the pinion longitudinal axis relative to the shaft rotation axis. For example, an intermediate element made of an elastic plastic could be introduced between the shaft and the pinion and act there in the manner of a silent bushing.

Alternativ zu einem elastischen Element kann die Koppelung auch ein zumindest zwei rotatorische Freiheitsgrade bereitstellendes Gelenk aufweisen, etwa ein Gelenklager mit zwei korrespondierenden und aufeinander abgleitenden Gelenkflächen aufweisen. Um zwei rotatorische Freiheitsgrade durch ein Gelenklager bereitstellen zu können, muss eine Gelenkfläche zweidimensional konvex und die andere Gelenkfläche zweidimensional konkav gegründet sein. Bevorzugterweise ist dabei die wellenseitige Gelenkfläche konvex und die ritzelseitige Gelenkfläche konkav gekrümmt.As an alternative to an elastic element, the coupling can also have a joint providing at least two rotatory degrees of freedom, for example having a joint bearing with two corresponding joint surfaces which slide on one another. In order to be able to provide two rotatory degrees of freedom by means of a joint bearing, one articular surface must be convex two-dimensionally and the other articular surface two-dimensionally concave. Preferably, the shaft-side articular surface is convex and the pinion-side articular surface is concavely curved.

Auch kann zumindest eine Gelenkfläche als Kugelzone ausgebildet sein, welche die Wellendrehachse beziehungsweise die Ritzellängsachse rotationssymmetrisch umläuft.Also, at least one joint surface may be formed as a spherical zone which rotates rotationally symmetrically about the shaft rotational axis or the pinion longitudinal axis.

Dabei wäre es grundsätzlich möglich, die wellenseitige Gelenkfläche des Gelenks direkt auf der Oberfläche der Welle auszubilden, also etwa aufzudrehen. Andererseits ist es ebenso vorstellbar, die wellenseitige Gelenkfläche mittels einer Buchse bereitzustellen, welche die Welle radial umläuft und beispielsweise auf diese aufgeschoben oder gar aufgepresst werden kann.It would be basically possible to form the shaft-side articular surface of the joint directly on the surface of the shaft, so to turn it about. On the other hand, it is also conceivable to provide the shaft-side joint surface by means of a bush, which rotates the shaft radially and can be pushed or even pressed onto it, for example.

Um eine solche aufgeschobene Buchse auf der Welle zu sichern, kann ein Bolzen vorgesehen sein, der die Welle senkrecht zu deren Drehachse und auch die Buchse zumindest teilweise durchdringt. Dieser Bolzen kann auch dazu genutzt werden, gleichzeitig auch das Ritzel drehfest auf der Welle zu halten, so dass dieses unter Beibehaltung seiner zwei Freiheitsgrade mit der Welle mitdreht.In order to secure such a deferred socket on the shaft, a bolt may be provided which at least partially penetrates the shaft perpendicular to its axis of rotation and also the bushing. This bolt can also be used to simultaneously hold the pinion rotatably on the shaft so that this rotates while maintaining its two degrees of freedom with the shaft.

Die Erfindung wird nachfolgend anhand der Zeichnungen an Ausführungsbeispielen näher erläutert. Die hierin beschriebenen Merkmale können einzeln sowie in jedweder sinnvollen Kombination von der vorliegenden Erfindung umfasst werden. Es zeigen:

Figur 1
einen Treppenschrägaufzug mit einem zwei Laufschienen umfassenden Tragwerk,
Figur 2
eine zur Führung an und entlang zwei Laufschienen ausgestalteten Transporteinheit mit einem rückwärtig auskragenden Antriebsritzel;
Figur 3
Schnittansicht durch die Antriebseinrichtung;
Figur 4
vergrößerte Schnittansicht durch die Antriebseinrichtung;
Figur 5
Explosionsansicht der Koppelung zwischen Ritzel und Welle.
The invention will be explained in more detail with reference to the drawings of exemplary embodiments. The features described herein may be included individually as well as in any meaningful combination of the present invention. Show it:
FIG. 1
an inclined staircase lift with a structure comprising two rails,
FIG. 2
a transport unit designed for guiding along and along two rails with a rearwardly projecting drive pinion;
FIG. 3
Section view through the drive device;
FIG. 4
enlarged sectional view through the drive device;
FIG. 5
Exploded view of the coupling between pinion and shaft.

In der Figur 1 ist ein Treppenschrägaufzug/Treppenlift gezeigt, dessen Transporteinheit 3 an zwei übereinanderliegenden rohrförmigen Laufschienen 1 und 2 derart geführt wird, dass diese beim Verfahren entlang der Schienen 1 und 2 stets zum des Schwerkraftvektor G ausgerichtet ist. Der Sitz der Transporteinheit 3 nimmt somit zu jeder Zeit eine "lotrechte" Lage ein und wird folglich nur um den Vektor G herum verdreht. Die obere Laufschiene 1 trägt an ihrer Unterseite, wie durch die Figuren 3 und 4 deutlich wird, eine Zahnradschiene 14.In the FIG. 1 a staircase inclined elevator / stairlift is shown, the transport unit 3 is guided on two superimposed tubular rails 1 and 2 such that it is always aligned in the process along the rails 1 and 2 to the gravity vector G. The seat of the transport unit 3 thus assumes a "vertical" position at all times and consequently is rotated only around the vector G. The upper rail 1 carries on its underside, as through the Figures 3 and 4 becomes clear, a gear rail 14th

Die Figur 2 zeigt eine entsprechende Transporteinheit 3, auf deren Rückseite mehrere zumindest teilweise relativ zur Transporteinheit 3 positionsvariable Laufrollen 4 und 5 gelagert sind, mittels derer die Transporteinheit 3 sowohl an den Verlauf der oberen Laufschiene 1 als auch an den Verlauf der unteren Laufschiene 2 gekoppelt ist. Ferner ist in der Figur 2 die zentrale Faser bzw. Mittelachse 6 der zweiten, unteren Laufschiene 2 zu sehen, deren räumlicher Verlauf zur oberen Laufschiene 1 ebenso mittels des erfindungsgemäßen Konstruktionsverfahrens berechnet werden kann wie der Verlauf der Zahnradschiene 14 relativ zur oberen Laufschiene 1, so dass die Transporteinheit 3 entlang des Schienenverlaufs stets ihre lotrechte Ausrichtung beibehält, und zudem aus stets der Eingriff des Ritzels 8 in die Zahnradschiene 14 gewährleistet ist.The FIG. 2 shows a corresponding transport unit 3, on the back of a plurality of at least partially relative to the transport unit 3 positionally variable rollers 4 and 5 are mounted, by means of which the transport unit 3 is coupled both to the course of the upper track rail 1 and to the course of the lower track rail 2. Furthermore, in the FIG. 2 to see the central fiber or central axis 6 of the second, lower track 2, the spatial course can be calculated to the upper track 1 also by means of the construction method of the invention as the course of the gear rail 14 relative to the upper track rail 1, so that the transport unit 3 along the Track always maintains their vertical orientation, and also from always the engagement of the pinion 8 is ensured in the gear rail 14.

Die Figur 3 zeigt einen Querschnitt durch eine spezifische Ausführungsform der Antriebseinrichtung. Bei dieser erstreckt sich aus einem der Transporteinheit 3 zugeordneten Getriebegehäuse (nicht bezeichnet) eine Welle 7. Diese ist innerhalb des Getriebegehäuses gelagert und dreht sich um die relativ zur Transporteinheit 3 festgelegte Drehachse 7a. Am auskragenden Ende der Welle 7 ist das Antriebsritzel 8 angeordnet und um die Rotationsachse 7a drehfest an die Welle 7 gekoppelt. Das Ritzel 8 weist ferner umfänglich eine Stirnradverzahnung, beispielsweise eine Evolventenverzahnung auf, die in eine korrespondierende Verzahnung der Zahnradschiene 14 eingreift, die wiederrum an der Unterseite der oberen Laufschiene 1 an dieser angeschweißt ist.The FIG. 3 shows a cross section through a specific embodiment of the drive device. In this extends from one of the transport unit 3 associated gear housing (not labeled), a shaft 7. This is mounted inside the gear housing and rotates about the relative to the transport unit 3 fixed axis of rotation 7a. At the projecting end of the shaft 7, the drive pinion 8 is arranged and rotatably coupled to the shaft 7 about the rotation axis 7 a. The pinion 8 also has circumferentially a spur gear, for example, an involute toothing, which engages in a corresponding toothing of the gear rail 14, which in turn is welded to the underside of the upper track rail 1 at this.

Aus der Figur 4, einer gegenüber der Figur 3 vergrößerten Schnittansicht, wird die Funktionsweise der Antriebseinrichtung deutlich: An dem in der Figur 4 gezeigten Angriffsort weicht die Zahnradschiene 14 von ihrer in der Figur 3 gezeigten und mittig unterhalt der Laufschiene 1 gelegenen Position ab, so dass deren Zahnflanken nicht mehr parallel zur Drehachse 7a der Welle 7 verlaufen. Ein koaxial mit der Welle 7 starr verbundenes Ritzel 8 könnte somit nicht mehr in idealer Weise in die Verzahnung der Zahnradschiene 14 eingreifen, so dass nicht nur die Verzahnungen einer erhöhten Belastung und somit einem erhöhten Verschleiß unterworfen sind, sondern auch die für den Antrieb und die Führung der Transporteinheit 3 entlang des Tragwerks vorgesehenen Bauteile.From the FIG. 4 one opposite the FIG. 3 enlarged sectional view, the operation of the drive device is clear: At the in the FIG. 4 shown attack site gives way to the gear rail 14 of their in the FIG. 3 shown and centrally keep the running track 1 located position, so that the tooth flanks are no longer parallel to the axis of rotation 7a of the shaft 7. A coaxial with the shaft 7 rigidly connected pinion 8 could thus no longer engage in an ideal manner in the toothing of the gear rail 14, so that not only the teeth are subjected to increased stress and thus increased wear, but also for the drive and the Guide the transport unit 3 along the structure provided components.

Bei der Antriebseinrichtung hingegen ist das Ritzel 8 über ein Gelenklager 9 so an die Welle 7 gekoppelt, dass es relativ zu dieser in zwei Dimensionen verschwenken kann. Das Gelenklager 9 wird durch das Ritzel 8 und eine auf die Welle 7 aufgeschobene und gesicherte Buchse 12 gebildet, so dass die Längsachse 8a des Ritzels 8 um etwa maximal 6° relativ zur Drehachse 7a der Welle 7 verschwenken kann.In the drive device, however, the pinion 8 is coupled via a spherical bearing 9 to the shaft 7, that it can pivot relative to this in two dimensions. The joint bearing 9 is formed by the pinion 8 and a pushed onto the shaft 7 and secured socket 12, so that the longitudinal axis 8a of the pinion 8 can pivot about 6 ° relative to the axis of rotation 7a of the shaft 7.

Die Figur 5 zeigt in einer Explosionsansicht den Aufbau der Koppelung zwischen Ritzel und Welle: Auf die in einem Gehäuse der Transporteinheit 3 gelagerte und von dort aus auskragende Welle 7 wird das Ritzel 8 aufgeschoben und dort über den in eine Bohrung eingeschobenen Bolzen 13 drehfest um die Drehachse 7a gehalten. Um ein zweidimensionales Verschwenken des Ritzels 8 relativ zur Welle 7 zu ermöglichen, weist das zweiteilige Ritzel 8 an seiner Innenfläche eine konkave Gelenkfläche 11 auf, die an einer korrespondierenden, am äußeren Umfang der Buchse 12 ausgebildeten konvexen Gelenkfläche 10 abgleitet. Die Buchse 12 weist eine Querbohrung auf, in welche der Bolzen 13 eingeschoben wird und so die Buchse 12 ortsfest an der Welle 7 hält. Das zweiteilige Ritzel 8 wird mittels einer verschraubten und nicht bezeichneten Scheibe in axialer Richtung zusammengehalten und somit auf der Buchse 12 gesichert.The FIG. 5 shows in an exploded view the structure of the coupling between pinion and shaft: On the mounted in a housing of the transport unit 3 and of there projecting shaft 7, the pinion 8 is pushed and held there about the inserted into a bore pin 13 rotatably about the axis of rotation 7a. In order to enable a two-dimensional pivoting of the pinion 8 relative to the shaft 7, the two-part pinion 8 on its inner surface on a concave joint surface 11, which slides on a corresponding, formed on the outer circumference of the bushing 12 convex articular surface 10. The bushing 12 has a transverse bore into which the bolt 13 is inserted, thus holding the bushing 12 stationary on the shaft 7. The two-part pinion 8 is held together by means of a screwed and not designated disc in the axial direction and thus secured to the bush 12.

Claims (3)

Computerimplementiertes Verfahren zur Konstruktion des Tragwerks eines Treppenschrägaufzugs mit einer ersten und einer zweiten Laufschiene (1, 2) und einer an diesen geführten Transporteinheit (3), wobei das Verfahren folgende Schritte umfasst: - Festlegen eines räumlichen Verlaufs der ersten Laufschiene (1) entsprechend den von der Tragwerksinstallation vorgegebenen Rahmenbedingungen; - Festlegen einer Raumachse (G) entsprechend den von der Tragwerksinstallation vorgegebenen Rahmenbedingungen; - Festlegen einer geometrischen Ausgestaltung der Transporteinheit (3); - Bestimmen eines räumlichen Verlaufs einer an der ersten (1) oder an der zweiten (2) Laufschiene ausgebildeten Zahnradschiene (14), der zum Eingriff eines Ritzels (8) der zur Raumachse (G) ausgerichteten Transporteinheit (3) an der Zahnradschiene (14) notwendig ist, wobei zur Bestimmung des räumlichen Verlaufs der Zahnradschiene (14) der räumliche Positionsverlauf der entlang der ersten Laufschiene (1) geführten und entlang der Raumachse (G) ausgerichteten Transporteinheit (3), insbesondere mittels einer dreidimensionalen Modellsimulation simuliert wird. Computer-implemented method for constructing the structure of a staircase inclined elevator with a first and a second track rail (1, 2) and a transport unit (3) guided thereon, the method comprising the following steps: - Determining a spatial course of the first track (1) according to the framework conditions imposed by the structural installation; - Determining a spatial axis (G) according to the framework conditions imposed by the structural installation; - Determining a geometric configuration of the transport unit (3); Determining a spatial course of a gear rail (14) formed on the first (1) or on the second (2) running rail and engaging a pinion (8) of the transport unit (3) aligned with the space axis (G) on the gear rail (14 ) is necessary, wherein for determining the spatial course of the gear rail (14) of the spatial position of the guided along the first track (1) and along the spatial axis (G) aligned transport unit (3), in particular by means of a three-dimensional model simulation is simulated. Verfahren gemäß Anspruch 1, wobei bei der Bestimmung des räumlichen Verlaufs der Zahnradschiene (14) eine mögliche Bewegung des Ritzels (8) einer Transporteinheit (3) berücksichtigt wird, welches über ein zumindest zwei rotatorische Freiheitsgrade bereitstellendes Gelenk (9) drehfest an eine Welle (7) gekoppelt ist, die drehfest an den Abtrieb des Motors der Transporteinheit (3) gekoppelt ist.Method according to claim 1, wherein in the determination of the spatial course of the gear rail (14) a possible movement of the pinion (8) of a transport unit (3) is taken into account, which rotationally fixed to a shaft (9) via a joint (9) providing at least two rotational degrees of freedom 7) is coupled, which is non-rotatably coupled to the output of the motor of the transport unit (3). Computerprogramm-Speichermedium mit einem darauf gespeicherten Programm, welches, wenn es auf einem Computer-Prozessor ausgeführt wird oder im Speicher eines Computers geladen ist, den Computer dazu veranlasst, ein Verfahren gemäß einem der Ansprüche 1 oder 2 durchzuführen.A computer program storage medium having a program stored thereon which, when executed on a computer processor or loaded into the memory of a computer, causes the computer to perform a method according to one of claims 1 or 2.
EP17197908.1A 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift Active EP3293136B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
HRP20211892TT HRP20211892T1 (en) 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift
PL17197908T PL3293136T3 (en) 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift
RS20211480A RS62638B1 (en) 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift
SI201631376T SI3293136T1 (en) 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16162732.8A EP3225580B1 (en) 2016-03-30 2016-03-30 Simulation-assisted stair lift structure
EP16176744.7A EP3225581B1 (en) 2016-03-30 2016-06-28 Stairlift with a movable driving pinion meshing

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16176744.7A Division EP3225581B1 (en) 2016-03-30 2016-06-28 Stairlift with a movable driving pinion meshing
EP16176744.7A Division-Into EP3225581B1 (en) 2016-03-30 2016-06-28 Stairlift with a movable driving pinion meshing

Publications (2)

Publication Number Publication Date
EP3293136A1 true EP3293136A1 (en) 2018-03-14
EP3293136B1 EP3293136B1 (en) 2021-09-29

Family

ID=55699405

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16162732.8A Active EP3225580B1 (en) 2016-03-30 2016-03-30 Simulation-assisted stair lift structure
EP16176744.7A Active EP3225581B1 (en) 2016-03-30 2016-06-28 Stairlift with a movable driving pinion meshing
EP17197908.1A Active EP3293136B1 (en) 2016-03-30 2016-06-28 Computer-aided construction of a gear wheel rail of a stair lift

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP16162732.8A Active EP3225580B1 (en) 2016-03-30 2016-03-30 Simulation-assisted stair lift structure
EP16176744.7A Active EP3225581B1 (en) 2016-03-30 2016-06-28 Stairlift with a movable driving pinion meshing

Country Status (10)

Country Link
EP (3) EP3225580B1 (en)
DK (1) DK3225580T3 (en)
ES (2) ES2670474T3 (en)
HR (2) HRP20211892T1 (en)
HU (2) HUE037864T2 (en)
NO (1) NO3225580T3 (en)
PL (2) PL3225580T3 (en)
PT (2) PT3225580T (en)
RS (2) RS57184B1 (en)
SI (2) SI3225580T1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547602A (en) * 2020-05-12 2020-08-18 赵金甲 Corridor lifting system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466858A1 (en) * 2017-10-04 2019-04-10 thyssenkrupp Stairlifts B.V. Method of planning platform lift
CN112744668B (en) * 2020-12-30 2022-10-04 王丛乐 Turning track, turning linkage mechanism, stair climbing device and stair climbing system
GB2621860A (en) * 2022-08-24 2024-02-28 Stannah Stairlifts Ltd Improvements in or relating to stairlifts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700812B1 (en) 2005-03-07 2007-07-04 Engelbert Hawle Stairlift comprising a stabilization device
WO2013137733A1 (en) * 2012-03-15 2013-09-19 Otto Ooms B.V. Method, device and computer programme for extracting information about one or more spatial objects
WO2016028146A1 (en) * 2014-08-22 2016-02-25 Handicare Stairlifts B.V. Method and system for designing a stair lift rail assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819522A1 (en) * 1988-06-08 1989-12-14 Kleindienst Gmbh Staircase lift
JP4275246B2 (en) * 1998-11-02 2009-06-10 クマリフト株式会社 Chair type stair lift
WO2009072917A1 (en) * 2007-12-03 2009-06-11 Mihai Petrachioiu Bivalent mechanism for vertically stabilizing a stairlift
FR2927164B1 (en) * 2008-02-01 2010-02-12 Jean Leon Elevation DEVICE FOR MEASURING A STAIR RAMP PROFILE
JP2010070329A (en) * 2008-09-19 2010-04-02 Kuma Lift Gijutsu Kenkyusho:Kk Drive-guide mechanism for chair type stairway elevator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700812B1 (en) 2005-03-07 2007-07-04 Engelbert Hawle Stairlift comprising a stabilization device
WO2013137733A1 (en) * 2012-03-15 2013-09-19 Otto Ooms B.V. Method, device and computer programme for extracting information about one or more spatial objects
WO2016028146A1 (en) * 2014-08-22 2016-02-25 Handicare Stairlifts B.V. Method and system for designing a stair lift rail assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547602A (en) * 2020-05-12 2020-08-18 赵金甲 Corridor lifting system

Also Published As

Publication number Publication date
ES2899918T3 (en) 2022-03-15
EP3225580A1 (en) 2017-10-04
HRP20180843T1 (en) 2018-06-29
EP3293136B1 (en) 2021-09-29
DK3225580T3 (en) 2018-05-07
SI3225580T1 (en) 2018-06-29
HUE037864T2 (en) 2018-09-28
PL3293136T3 (en) 2022-02-07
PL3225580T3 (en) 2018-10-31
RS57184B1 (en) 2018-07-31
RS62638B1 (en) 2021-12-31
HUE056234T2 (en) 2022-02-28
EP3225580B1 (en) 2018-03-07
NO3225580T3 (en) 2018-08-04
HRP20211892T1 (en) 2022-03-04
PT3225580T (en) 2018-05-10
EP3225581B1 (en) 2019-06-19
ES2670474T3 (en) 2018-05-30
EP3225581A1 (en) 2017-10-04
PT3293136T (en) 2021-11-05
SI3293136T1 (en) 2021-12-31

Similar Documents

Publication Publication Date Title
EP1911716B1 (en) Crane
EP3293136B1 (en) Computer-aided construction of a gear wheel rail of a stair lift
EP2337704B1 (en) Base frame of a vehicle seat comprising two pairs of rails, rockers and one seat support
EP2452664B1 (en) Operating table
WO2015039159A1 (en) Sliding door module/pivoting sliding door module having floating mounting of a rack of a rack-and-pinion drive
AT514501B1 (en) Sliding sliding door module for a rail vehicle
EP2869947B1 (en) Method for producing a connecting element for transmitting rotational movements and connecting element produced thereby
EP2520827B1 (en) Lifting device for lifting loads vertically
EP1928723B1 (en) Axle pivot steering device of a vehicle
EP2331446B1 (en) Gantry crane
EP2754765B1 (en) Device for connecting a first supporting building part with a second supported building part in a manner that transfers force
DE102009038654A1 (en) Bearing component for mounting a drive and steering unit of a truck
DE2834498B2 (en) Garage for parking vehicles on top of each other
EP2066538B1 (en) Rollover wash unit and method for mounting a rollover wash unit
EP0568900B1 (en) Space saving sliding rail system with two U-shaped slides, in particular for motor vehicle seats
EP2369958B1 (en) Double drive for furniture
DE2518778C2 (en) Lateral displacement device for the loading bridge of low-loader railway wagons
DE19547432C2 (en) Window regulator
DE202008016051U1 (en) Double drive for furniture
DE102009046868A1 (en) Rack steering, particularly for motor vehicle, e.g. passenger car or commercial vehicles, comprises teeth at one or both sides of longitudinal axis of rack, where teeth of rack inclines with profile base and tip line
WO2016016064A1 (en) Vehicle seat height adjuster having less play
DE202015103089U1 (en) Rack and pinion steering gear with play and interference fit
EP2407624B1 (en) Profile for a control rod for sliding windows and doors
EP2860080A2 (en) Material pairing for a rack and pinion drive of a sliding door module/swinging door module
DE202023101648U1 (en) amusement ride

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20211892

Country of ref document: HR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171024

AC Divisional application: reference to earlier application

Ref document number: 3225581

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20210215

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20210412

INTG Intention to grant announced

Effective date: 20210415

INTG Intention to grant announced

Effective date: 20210428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3225581

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013932

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3293136

Country of ref document: PT

Date of ref document: 20211105

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20211028

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211124

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210402813

Country of ref document: GR

Effective date: 20211111

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 38874

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E056234

Country of ref document: HU

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20211892

Country of ref document: HR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2899918

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013932

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20211892

Country of ref document: HR

Payment date: 20220623

Year of fee payment: 7

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220629

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20211892

Country of ref document: HR

Payment date: 20230616

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230621

Year of fee payment: 8

Ref country code: PT

Payment date: 20230615

Year of fee payment: 8

Ref country code: NO

Payment date: 20230622

Year of fee payment: 8

Ref country code: NL

Payment date: 20230620

Year of fee payment: 8

Ref country code: FR

Payment date: 20230628

Year of fee payment: 8

Ref country code: DK

Payment date: 20230622

Year of fee payment: 8

Ref country code: DE

Payment date: 20230620

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230619

Year of fee payment: 8

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 38874

Country of ref document: SK

Effective date: 20220628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 8

Ref country code: PL

Payment date: 20230616

Year of fee payment: 8

Ref country code: HU

Payment date: 20230622

Year of fee payment: 8

Ref country code: HR

Payment date: 20230616

Year of fee payment: 8

Ref country code: GR

Payment date: 20230621

Year of fee payment: 8

Ref country code: AT

Payment date: 20230621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230620

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 8

Ref country code: GB

Payment date: 20230622

Year of fee payment: 8

Ref country code: ES

Payment date: 20230830

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929