EP3291651B1 - Device and method for creating atmospheric plasma - Google Patents

Device and method for creating atmospheric plasma Download PDF

Info

Publication number
EP3291651B1
EP3291651B1 EP17001337.9A EP17001337A EP3291651B1 EP 3291651 B1 EP3291651 B1 EP 3291651B1 EP 17001337 A EP17001337 A EP 17001337A EP 3291651 B1 EP3291651 B1 EP 3291651B1
Authority
EP
European Patent Office
Prior art keywords
plasma
medium
wall
plasma head
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17001337.9A
Other languages
German (de)
French (fr)
Other versions
EP3291651A1 (en
Inventor
Manuel Kunz
André Hellinger
Sudarsan Vedantha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bdtronic GmbH
Original Assignee
Bdtronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bdtronic GmbH filed Critical Bdtronic GmbH
Priority to SI201731291T priority Critical patent/SI3291651T1/en
Priority to RS20230008A priority patent/RS63874B1/en
Publication of EP3291651A1 publication Critical patent/EP3291651A1/en
Application granted granted Critical
Publication of EP3291651B1 publication Critical patent/EP3291651B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements

Definitions

  • the invention relates to a device for generating an atmospheric plasma according to the features of claim 1.
  • the invention also relates to a method for generating an atmospheric plasma according to claim 5.
  • a plasma head with a transformer and a plasma nozzle is used to generate an atmospheric plasma.
  • a process gas in the plasma nozzle is ionized by a discharge due to the high voltage generated by the transformer.
  • the process gas then exits the nozzle as a directed plasma jet or plasma flame.
  • the power loss of the transformer which accumulates as heat in the housing of the plasma head, has proven to be particularly disadvantageous in this compact design. This heat generation can be so great that the transformer fails or is damaged. The generation of plasma is thus influenced by this heat development.
  • the invention is therefore based on the object of creating a device and a method for generating an atmospheric plasma, with which stable and reliable operation is ensured.
  • a device for solving this problem has the features of claim 1.
  • a plasma head to which a transformer and at least one plasma nozzle is assigned, the transformer and the plasma nozzle forming a spatial unit, having a supply line for a medium flowing through for active temperature control of the plasma head and being in a wall of a housing of the plasma head at least one channel for guiding the medium is arranged.
  • the channel extends at least in regions over the wall of the plasma head, being connected to at least one inlet.
  • the medium is the process gas.
  • the plasma head can be actively tempered by the flowing medium. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively temperature-controlled.
  • the flowing medium constantly transports heat away from the plasma head.
  • the plasma head can be kept at a stable temperature during the entire operating time due to the subsequent flow of the medium.
  • a temperature can thus be generated in the plasma head via the medium flowing through, at which a maximum yield of plasma is achieved and at the same time the plasma head works in a particularly stable and reliable manner.
  • the invention provides that as a medium for temperature control, in particular for cooling, the plasma head, preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used.
  • the plasma head preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used.
  • the process gas as a cooling medium is particularly advantageous since it has to be fed to the plasma head anyway.
  • the process gas first flows through the area around the transformer before it is fed to the plasma nozzle for plasma generation.
  • the temperature of the process gas which is increased by absorbing the thermal energy, has no effect whatsoever on the efficiency of the plasma formation.
  • the process gas is mixed with another medium which has proven to be particularly good as a cooling medium. In this way, the heat can be dissipated quickly from the plasma head and a plasma flame can be generated at the same time, without having to install an additional line for the cooling medium on the plasma head.
  • a particularly advantageous embodiment of the present invention can provide that in a housing, preferably in a wall of the housing, a channel, in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line.
  • a channel in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line.
  • the second end of the channel can either be free, so that the gas is fed into the atmosphere, or it can be connected to the supply line for the plasma nozzle, so that the medium is used directly as a process gas for plasma generation. With this design, the compact design of the plasma head can be maintained.
  • the meandering channel for the medium can be realized by parallel, perpendicular, in particular parallel to a longitudinal axis of the housing, bores in the wall of the housing.
  • the channels can initially be open to the end faces of the hollow-cylindrical housing.
  • These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or isolated from each other, so that the meandering channel is formed in the wall.
  • the base or cover part of the housing is, for example, screwed or glued to the housing.
  • a further exemplary embodiment can provide for the channel to be designed as a screw in the wall of the housing.
  • Such a housing with a screw-like channel in the wall can be produced, for example, using an additive process such as a 3D printer.
  • the channel is designed as an evaporator for a liquid medium.
  • a liquid medium is first fed into the channel in order to then be fed into the plasma nozzle as a gas. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can be increased and at the same time the medium can be used at least partially as a process gas. This also enables layer deposition.
  • the present invention can further provide that at least one heat sink, in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing.
  • at least one heat sink in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing.
  • it can also have cooling bodies on the outside.
  • These heat sinks can then in turn be actively cooled by applying a cooling medium, preferably by a fan.
  • a method for solving the problem mentioned at the outset has the measures of claim 5 . Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively temperature-controlled by a flowing medium, the medium being guided through a channel in a wall of a housing of the plasma head for the active temperature control of the plasma head , whereby the process gas is used as the medium.
  • process heat from the transformer can be actively and efficiently dissipated.
  • a different heat development of the transformer is to be expected.
  • the heat dissipation from the plasma head can be actively controlled so that the plasma head can be operated at an optimal operating temperature. At the optimum operating temperature, the plasma head is particularly reliable and stable.
  • a further exemplary embodiment of the present invention can provide that for the active temperature control, preferably cooling, of the plasma head, the medium is guided through the housing, preferably through a wall of the housing, of the plasma head, in particular through a channel in the wall of the plasma head and the passage of the medium is controlled by a valve so that the flow depends on the temperature of the plasma head.
  • the present invention can further provide that, for the active temperature control, the medium guided through the wall is preheated and/or is guided through the wall under a predetermined pressure.
  • a temperature sensor is arranged in the plasma head, which measures the temperature and transmits it to a control unit, which accordingly pre-cools or heats the medium.
  • the pressure can also be varied. For example, when there is a large amount of thermal energy to be dissipated, the pressure of the medium can be increased to control the temperature of the plasma head. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit of time is increased. Likewise, the pressure of the medium with which it is guided through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-temperature control and varying the pressure ensure particularly efficient and therefore reliable and stable operation of the plasma head.
  • a further advantageous exemplary embodiment of the present invention can provide that the medium for tempering the plasma head is applied to an outside of the wall. Applying the medium to the outside of the housing or the wall in this way creates a particularly simple way of cooling the plasma head.
  • FIG 1 An embodiment of a plasma head 10 according to the invention is shown in FIG 1 shown highly schematized in cross section.
  • the plasma head 10 consists of a housing 11, inside which a transformer 12 and a plasma nozzle 13 are arranged.
  • the transformer 12 is enclosed by an insulator 14 and connected to a voltage source 15 .
  • the high voltage required to ignite the plasma is generated by the transformer 12 and the voltage source 15 .
  • a wall 23 of the housing 11 of the plasma head 10 is connected to a ground 29 .
  • the plasma nozzle 13 has an electrode 16 which is coupled to the transformer 12 .
  • the tip of this needle-shaped electrode 16 points in the direction of a ring electrode 17 serving as an outlet for the plasma.
  • Process gas is conducted into the nozzle volume 19 through a process gas inlet 18 .
  • the process gas is shown schematically as arrow 20 here. In reality, the nozzle volume 19 is filled almost homogeneously by a permanent flow of the process gas 18 .
  • An electrical discharge between the electrode 16 and the ring electrode 17 causes the process gas to be ionized, symbolically represented here as a lightning bolt 21 .
  • the ionized gas leaves the plasma nozzle 13 through the ring electrode 17 as a plasma jet 22 or as a plasma flame.
  • At least one channel 24 is formed in the wall 23 of the plasma head 10 .
  • this channel 24 extends in a meandering manner through the entire wall 23.
  • a rolled-up wall 23 of the plasma head 10 is shown schematically, so that the meandering course of the channel 24 in the wall 23 becomes clear.
  • the channel 24 has an inlet 25 and an outlet 26 .
  • a medium is let into the inlet 25 via a valve (not shown) or from a storage volume, so that the medium flows at a predetermined pressure through the channel 24 in the direction of the outlet 26 (see arrow 27).
  • the medium flowing through which is the process gas, dissipates the heat developed by the transformer 12 .
  • This process gas After this process gas has flowed through the channel 24 and has absorbed heat energy from the transformer 12 , it is conducted through the process gas inlet 18 into the nozzle volume 19 by a connecting means 28 shown here in broken lines.
  • the connecting means 18 can be, for example, a hose or a short piece of pipe. This connecting means 18 can also be integrated in the housing 11 or the plasma head 10 .
  • the channel 24 is integrated into the housing 11 or into the wall 23 .
  • a control device which determines the temperature in the plasma head 10 via a temperature sensor, also not shown, in the plasma head 10 and controls the inflow of the process gas in the channel 24 accordingly.
  • FIG. 1 shows the 3 another embodiment of a channel 30.
  • the medium as previously at the in 1 described embodiment described, fed to the channel 30 through an inlet, not shown, and fed to the nozzle volume 19 via a connecting means 28 in the manner described above.
  • the channel 30 is arranged in the wall 23 of the plasma head 10 in the manner of a screw. This screw-like arrangement of the channel 30 allows a particularly long contact surface to be produced between the medium and the wall 23, so that the thermal energy is transferred to the medium in a particularly efficient manner.
  • the wall 23 may be assigned cooling bodies (not shown), such as cooling fins, on its outer side 31 .
  • the thermal energy of the transformer 12 is also effectively dissipated from the plasma head 10 through these cooling ribs, around which a medium for cooling can also flow, for example.

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines atmosphärischen Plasmas gemĂ¤ĂŸ den Merkmalen des Anspruchs 1. Des Weiteren betrifft die Erfindung ein Verfahren zur Erzeugung eines atmosphärischen Plasmas gemĂ¤ĂŸ Anspruch 5.The invention relates to a device for generating an atmospheric plasma according to the features of claim 1. The invention also relates to a method for generating an atmospheric plasma according to claim 5.

Zur Behandlung von beispielsweise Oberflächen aus Kunststoff, Metall, Keramik usw. zum Zwecke der Reinigung, Oberflächenaktivierung, Polymerisation, Keimreduzierung und dergleichen ist es bekannt, diese mit einem atmosphärischen Plasma zu beaufschlagen. Durch die Reinigung und/oder Aktivierung der Oberfläche mittels eines atmosphärischen Plasmas kann diese beispielsweise mit einer FlĂ¼ssigkeit oder einem Klebstoff besser benetzt werden.For the treatment of, for example, surfaces made of plastic, metal, ceramics, etc. for the purpose of cleaning, surface activation, polymerisation, germ reduction and the like, it is known to apply an atmospheric plasma to them. By cleaning and/or activating the surface by means of an atmospheric plasma, it can be better wetted with a liquid or an adhesive, for example.

Zur Erzeugung eines atmosphärischen Plasmas wird ein Plasmakopf mit einem Transformator und einer PlasmadĂ¼se verwendet. Durch die von dem Transformator erzeugte Hochspannung wird ein Prozessgas in der PlasmadĂ¼se durch eine Entladung ionisiert. Das Prozessgas tritt sodann als gerichteter Plasmastahl oder Plasmaflamme aus der DĂ¼se aus.A plasma head with a transformer and a plasma nozzle is used to generate an atmospheric plasma. A process gas in the plasma nozzle is ionized by a discharge due to the high voltage generated by the transformer. The process gas then exits the nozzle as a directed plasma jet or plasma flame.

Um Probleme wie beispielsweise KabelbrĂ¼che, Durchschläge oder Verlustleistungen zu vermeiden, ist es bekannt, den Transformator und die PlasmadĂ¼se in einem gemeinsamen Plasmakopf zu integrieren. Durch diese kompakte Bauweise des Plasmakopfes kann auf lange Kabel sowie Elektronik verzichtet werden, was die Gefahr eines Kabelbruches oder von Durchschlägen reduziert.In order to avoid problems such as cable breaks, breakdowns or power losses, it is known to integrate the transformer and the plasma nozzle in a common plasma head. Due to this compact design of the plasma head, long cables and electronics can be dispensed with, which reduces the risk of cable breaks or breakdowns.

Als besonders nachteilig bei dieser kompakten Bauweise hat sich die Verlustleistung des Transformators erwiesen, welche sich als Wärme in dem Gehäuse des Plasmakopfes staut. Diese Wärmeentwicklung kann derart groĂŸ sein, dass der Transformator ausfällt oder beschädigt wird. Durch diese Wärmeentwicklung wird somit die Plasmaerzeugung beeinflusst.The power loss of the transformer, which accumulates as heat in the housing of the plasma head, has proven to be particularly disadvantageous in this compact design. This heat generation can be so great that the transformer fails or is damaged. The generation of plasma is thus influenced by this heat development.

Bekannte Plasmasysteme, wie beispielsweise in US 2015/0054405 A1 beschrieben, weisen eine KĂ¼hlung auf, bei der die Wärme durch Konvektion vom Gehäuse des Plasmakopfes abgefĂ¼hrt wird. Diese Art der KĂ¼hlung reicht jedoch nur fĂ¼r bestimmte Bauformen bzw. GrĂ¶ĂŸen sowie Einbaulagen des Plasmakopfes aus. Beispielsweise erweist sich die KĂ¼hlung des Transformators durch reine Konvektion bei Dauereinsatz des Plasmakopfes als nicht ausreichend.Known plasma systems, such as in U.S. 2015/0054405 A1 described, have a cooling in which the heat is dissipated by convection from the housing of the plasma head. However, this type of cooling is only sufficient for certain designs or sizes and installation positions of the plasma head. For example, the cooling of the transformer by pure convection proves to be insufficient when the plasma head is used continuously.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung sowie ein Verfahren zur Erzeugung eines atmosphärischen Plasmas zu schaffen, mit dem ein stabiler und zuverlässiger Betrieb gewährleistet wird.The invention is therefore based on the object of creating a device and a method for generating an atmospheric plasma, with which stable and reliable operation is ensured.

Eine Vorrichtung zur Lösung dieser Aufgabe weist die Merkmale des Anspruchs 1 auf.A device for solving this problem has the features of claim 1.

Demnach ist es vorgesehen, dass einem Plasmakopf dem ein Transformator und mindestens eine PlasmadĂ¼se zugeordnet ist, wobei der Transformator und die PlasmadĂ¼se eine räumliche Einheit bilden, eine Zuleitung fĂ¼r ein durchströmendes Medium zur aktiven Temperierung des Plasmakopfes aufweist und wobei in einer Wandung eines Gehäuses des Plasmakopfes mindestens ein Kanal zur FĂ¼hrung des Mediums angeordnet ist. Dabei erstreckt sich der Kanal wenigstens bereichsweise Ă¼ber die Wandung des Plasmakopfes, wobei er mit mindestens einem Einlass verbunden ist. Bei dem Medium handelt es sich um das Prozessgas. Durch das strömende Medium lässt sich der Plasmakopf aktiv temperieren. Demnach kann in Abhängigkeit von der Bauform bzw. der GrĂ¶ĂŸe und des Betriebes des Plasmakopfes dieser aktiv temperiert werden. Durch das strömende Medium wird permanent Wärme aus dem Plasmakopf abtransportiert. Durch das Nachströmen des Mediums kann der Plasmakopf während der gesamten Betriebszeit auf einer stabilen Temperatur gehalten werden. Somit lässt sich Ă¼ber das durchströmende Medium eine Temperatur in dem Plasmakopf erzeugen, bei der eine maximale Ausbeute an Plasma erzielt wird und zeitgleich der Plasmakopf besonders stabil und zuverlässig arbeitet.Accordingly, it is provided that a plasma head to which a transformer and at least one plasma nozzle is assigned, the transformer and the plasma nozzle forming a spatial unit, having a supply line for a medium flowing through for active temperature control of the plasma head and being in a wall of a housing of the plasma head at least one channel for guiding the medium is arranged. In this case, the channel extends at least in regions over the wall of the plasma head, being connected to at least one inlet. The medium is the process gas. The plasma head can be actively tempered by the flowing medium. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively temperature-controlled. The flowing medium constantly transports heat away from the plasma head. The plasma head can be kept at a stable temperature during the entire operating time due to the subsequent flow of the medium. A temperature can thus be generated in the plasma head via the medium flowing through, at which a maximum yield of plasma is achieved and at the same time the plasma head works in a particularly stable and reliable manner.

Die Erfindung sieht es vor, dass als Medium zur Temperierung, insbesondere zur KĂ¼hlung, des Plasmakopfes, vorzugsweise des Transformators, eine Elektrode oder einer PlasmadĂ¼se das Prozessgas selbst verwendbar ist. DieThe invention provides that as a medium for temperature control, in particular for cooling, the plasma head, preferably the transformer, an electrode or a Plasma nozzle the process gas itself can be used. the

Verwendung des Prozessgases als KĂ¼hlmedium ist besonders vorteilhaft, da dieses sowieso dem Plasmakopf zugefĂ¼hrt werden muss. ErfindungsgemĂ¤ĂŸ durchströmt daher das Prozessgas zunächst den Bereich um den Transformator, bevor es fĂ¼r die Plasmaerzeugung der PlasmadĂ¼se zugefĂ¼hrt wird. Die durch die Aufnahme der thermischen Energie erhöhte Temperatur des Prozessgases hat keinerlei Auswirkungen auf die Effizienz der Plasmabildung. FĂ¼r eine besonders effiziente Arbeitsweise des Plasmakopfes kann es erfindungsgemĂ¤ĂŸ auĂŸerdem vorteilhaft sein, wenn das Prozessgas mit einem weiteren Medium, welches sich besonders gut als KĂ¼hlmedium erwiesen hat, gemischt wird. Auf diese Weise lässt sich die Wärme aus dem Plasmakopf schnell abfĂ¼hren und gleichzeitig eine Plasmaflamme erzeugen, ohne dass eine zusätzliche Leitung fĂ¼r das KĂ¼hlmedium an dem Plasmakopf installiert werden muss.The use of the process gas as a cooling medium is particularly advantageous since it has to be fed to the plasma head anyway. According to the invention, the process gas first flows through the area around the transformer before it is fed to the plasma nozzle for plasma generation. The temperature of the process gas, which is increased by absorbing the thermal energy, has no effect whatsoever on the efficiency of the plasma formation. For a particularly efficient mode of operation of the plasma head, it can also be advantageous according to the invention if the process gas is mixed with another medium which has proven to be particularly good as a cooling medium. In this way, the heat can be dissipated quickly from the plasma head and a plasma flame can be generated at the same time, without having to install an additional line for the cooling medium on the plasma head.

Ein besonders vorteilhaftes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass in einem Gehäuse, vorzugsweise in einer Wandung des Gehäuses, ein, insbesondere mäanderförmiger, Kanal zur FĂ¼hrung des Mediums angeordnet ist, der sich wenigstens bereichsweise Ă¼ber die Wandung des Gehäuses erstreckt und mit der mindestens einen Zuleitung verbunden ist. Durch die FĂ¼hrung des Kanals durch die Wandung des Plasmakopfes bleibt das Medium besonders lange mit der Wandung in Kontakt, was dazu fĂ¼hrt, dass das Medium besonders viel Wärmeenergie des Transformators aufnehmen kann. Insbesondere eine mäanderförmige Ausgestaltung des Kanals hat sich als besonders effizient fĂ¼r den Transfer von Wärmeenergie auf das Medium erwiesen. Ein Ende des Kanals stellt eine Zuleitung fĂ¼r das Medium, beispielsweise fĂ¼r das Prozessgas, dar. Das zweite Ende des Kanals kann entweder frei sein, sodass das Gas in die Atmosphäre geleitet wird, oder mit der Zuleitung fĂ¼r die PlasmadĂ¼se verbunden sein, sodass das Medium als Prozessgas direkt fĂ¼r die Plasmaerzeugung verwendet wird. Durch diese Bauart kann die kompakte Bauweise des Plasmakopfes beibehalten werden.A particularly advantageous embodiment of the present invention can provide that in a housing, preferably in a wall of the housing, a channel, in particular meandering, for guiding the medium is arranged, which at least partially extends over the wall of the housing and is connected to the at least connected to a supply line. By guiding the channel through the wall of the plasma head, the medium remains in contact with the wall for a particularly long time, which means that the medium can absorb a particularly large amount of thermal energy from the transformer. In particular, a meandering configuration of the channel has proven to be particularly efficient for the transfer of thermal energy to the medium. One end of the channel represents a supply line for the medium, for example for the process gas. The second end of the channel can either be free, so that the gas is fed into the atmosphere, or it can be connected to the supply line for the plasma nozzle, so that the medium is used directly as a process gas for plasma generation. With this design, the compact design of the plasma head can be maintained.

Der mäanderförmige Kanal fĂ¼r das Medium kann durch parallele, senkrechte, insbesondere parallel zu einer Längsachse des Gehäuses, Bohrungen in der Wandung des Gehäuses realisiert werden. Die Kanäle können zunächst zu den Stirnseiten des hohlzylindrischen Gehäuses offen sein. Diese Ă–ffnungen können durch ein Boden- bzw. Deckelteil des Gehäuses verschlieĂŸbar ausgebildet sein und zwar derart, dass abwechselnd zwei benachbarte Ă–ffnungen miteinander verbunden bzw. voneinander isoliert sind, so dass sich der mäanderförmige Kanal in der Wandung ausbildet. Das Boden- bzw. Deckelteil des Gehäuses wird mit dem Gehäuse beispielsweise verschraubt oder verklebt. Ein weiteres AusfĂ¼hrungsbeispiel kann es vorsehen, dass der Kanal als Schraube in der Wandung des Gehäuses ausgebildet ist. Ein derartiges Gehäuse mit einem schraubenartigen Kanal in der Wandung lässt sich beispielsweise mit einem generativen Verfahren, wie etwa einem 3D-Drucker, herstellen.The meandering channel for the medium can be realized by parallel, perpendicular, in particular parallel to a longitudinal axis of the housing, bores in the wall of the housing. The channels can initially be open to the end faces of the hollow-cylindrical housing. These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or isolated from each other, so that the meandering channel is formed in the wall. The base or cover part of the housing is, for example, screwed or glued to the housing. A further exemplary embodiment can provide for the channel to be designed as a screw in the wall of the housing. Such a housing with a screw-like channel in the wall can be produced, for example, using an additive process such as a 3D printer.

Es kann auĂŸerdem vorgesehen sein, dass der Kanal als Verdampfer fĂ¼r ein flĂ¼ssiges Medium ausgebildet ist. Bei diesem AusfĂ¼hrungsbeispiel wird zunächst ein flĂ¼ssiges Medium in den Kanal geleitet, um sodann als Gas in die PlasmadĂ¼se geleitet zu werden. Da flĂ¼ssige Medien in der Regel eine höhere Wärmekapazität haben als Gase kann dadurch der WärmeĂ¼bertrag zwischen dem Transformator bzw. der Wandung und dem Medium erhöht werden und gleichzeitig das Medium zumindest teilweise als Prozessgas verwendet werden. Dadurch wird zudem eine Schichtabscheidung ermöglicht.It can also be provided that the channel is designed as an evaporator for a liquid medium. In this exemplary embodiment, a liquid medium is first fed into the channel in order to then be fed into the plasma nozzle as a gas. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can be increased and at the same time the medium can be used at least partially as a process gas. This also enables layer deposition.

Vorzugsweise kann es die vorliegende Erfindung weiter vorsehen, dass an einer AuĂŸenseite der Wandung bzw. des Gehäuses mindestens ein KĂ¼hlkörper, insbesondere KĂ¼hlrippen, angeordnet sind, entlang denen das Medium fĂ¼hrbar ist. Alternativ zur Ausbildung von Kanälen in der Wandung kann diese auch KĂ¼hlkörper an der AuĂŸenseite aufweisen. Diese KĂ¼hlkörper lassen sich sodann wiederum aktiv durch die Beaufschlagung eines KĂ¼hlmediums kĂ¼hlen, vorzugsweise durch einen LĂ¼fter.Preferably, the present invention can further provide that at least one heat sink, in particular cooling ribs, along which the medium can be guided, is arranged on an outside of the wall or the housing. As an alternative to the formation of channels in the wall, it can also have cooling bodies on the outside. These heat sinks can then in turn be actively cooled by applying a cooling medium, preferably by a fan.

Ein Verfahren zur Lösung der eingangs genannten Aufgabe weist die MaĂŸnahmen des Anspruchs 5 auf. Demnach ist es vorgesehen, dass ein Plasmakopf, in dessen Gehäuse ein Transformator und mindestens eine PlasmadĂ¼se angeordnet ist, durch ein strömendes Medium aktiv temperiert wird, wobei fĂ¼r die aktive Temperierung des Plasmakopfes das Medium durch einen Kanal in einer Wandung eines Gehäuses des Plasmakopfes geleitet wird, wobei als Medium das Prozessgas verwendet wird. Durch diese aktive Temperierung des Plasmakopfes lässt sich Prozesswärme des Transformators aktiv und effizient abfĂ¼hren. Je nach GrĂ¶ĂŸe und Bauform des Plasmakopfes ist mit einer anderen Wärmeentwicklung des Transformators zu rechnen. Durch Regelung des Flusses des Mediums kann die Wärmeabfuhr aus dem Plasmakopf aktiv gesteuert werden, sodass der Plasmakopf bei einer optimalen Betriebstemperatur betrieben werden kann. Bei der optimalen Betriebstemperatur verhält sich der Plasmakopf besonders zuverlässig und stabil.A method for solving the problem mentioned at the outset has the measures of claim 5 . Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively temperature-controlled by a flowing medium, the medium being guided through a channel in a wall of a housing of the plasma head for the active temperature control of the plasma head , whereby the process gas is used as the medium. With this active temperature control of the plasma head, process heat from the transformer can be actively and efficiently dissipated. Depending on the size and design of the plasma head, a different heat development of the transformer is to be expected. By regulating the flow of the medium, the heat dissipation from the plasma head can be actively controlled so that the plasma head can be operated at an optimal operating temperature. At the optimum operating temperature, the plasma head is particularly reliable and stable.

Ein weiteres AusfĂ¼hrungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass fĂ¼r die aktive Temperierung, vorzugsweise KĂ¼hlung, des Plasmakopfes das Medium durch das Gehäuse, vorzugsweise durch eine Wandung des Gehäuses, des Plasmakopfes, insbesondere durch einen Kanal in der Wandung, des Plasmakopfes geleitet wird und das Durchleiten des Mediums durch ein Ventil geregelt wird, sodass der Durchfluss in Abhängigkeit von der Temperatur des Plasmakopfes erfolgt.A further exemplary embodiment of the present invention can provide that for the active temperature control, preferably cooling, of the plasma head, the medium is guided through the housing, preferably through a wall of the housing, of the plasma head, in particular through a channel in the wall of the plasma head and the passage of the medium is controlled by a valve so that the flow depends on the temperature of the plasma head.

Bevorzugt kann es die vorliegende Erfindung weiter vorsehen, dass fĂ¼r die aktive Temperierung das durch die Wandung gefĂ¼hrte Medium vortemperiert und/oder unter einem vorbestimmten Druck durch die Wandung gefĂ¼hrt wird. Dazu kann es vorgesehen sein, dass in dem Plasmakopf ein Temperatursensor angeordnet ist, welcher die Temperatur misst und an eine Steuereinheit Ă¼berträgt, welche das Medium dementsprechend vorkĂ¼hlt oder erhitzt. Neben der Temperatur des Mediums lässt sich auch der Druck variieren. So kann beispielsweise bei einer groĂŸen Menge abzufĂ¼hrender thermischer Energie der Druck des Mediums zum Temperieren des Plasmakopfes erhöht werden. Durch Erhöhung des Druckes des Mediums wird der Durchfluss erhöht, sodass die aufzunehmende thermische Energie pro Zeiteinheit vergrĂ¶ĂŸert wird. GleichermaĂŸen kann der Druck des Mediums, mit dem dieses durch den Kanal gefĂ¼hrt wird, reduziert werden, wenn nur eine geringe Menge thermische Energie aus dem Plasmakopf abgefĂ¼hrt werden muss. Durch dieses Vortemperieren sowie Variieren des Druckes lässt sich ein besonders effizienter und somit zuverlässiger wie auch stabiler Betrieb des Plasmakopfes gewährleisten.Preferably, the present invention can further provide that, for the active temperature control, the medium guided through the wall is preheated and/or is guided through the wall under a predetermined pressure. For this purpose, it can be provided that a temperature sensor is arranged in the plasma head, which measures the temperature and transmits it to a control unit, which accordingly pre-cools or heats the medium. In addition to the temperature of the medium, the pressure can also be varied. For example, when there is a large amount of thermal energy to be dissipated, the pressure of the medium can be increased to control the temperature of the plasma head. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit of time is increased. Likewise, the pressure of the medium with which it is guided through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-temperature control and varying the pressure ensure particularly efficient and therefore reliable and stable operation of the plasma head.

AuĂŸerdem kann es ein weiteres vorteilhaftes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung vorsehen, dass eine AuĂŸenseite der Wandung mit dem Medium zum Temperieren des Plasmakopfes beaufschlagt wird. Durch diese Beaufschlagung der AuĂŸenseite des Gehäuses bzw. der Wandung mit dem Medium wird eine besonders einfach Art und Weise geschaffen, den Plasmakopf zu kĂ¼hlen.In addition, a further advantageous exemplary embodiment of the present invention can provide that the medium for tempering the plasma head is applied to an outside of the wall. Applying the medium to the outside of the housing or the wall in this way creates a particularly simple way of cooling the plasma head.

Ein bevorzugtes AusfĂ¼hrungsbeispiel der vorliegenden Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert. In dieser zeigen:

Fig. 1
einen Querschnitt durch einen schematisch dargestellten Plasmakopf,
Fig. 2
einen Querschnitt durch eine schematische Darstellung einer Wandung des Plasmakopfes, und
Fig. 3
einen Querschnitt durch ein weiteres AusfĂ¼hrungsbeispiel eines Plasmakopfes.
A preferred embodiment of the present invention is explained in more detail below with reference to the drawings. In this show:
1
a cross section through a plasma head shown schematically,
2
a cross section through a schematic representation of a wall of the plasma head, and
3
a cross section through another embodiment of a plasma head.

Ein AusfĂ¼hrungsbeispiel eines erfindungsgemĂ¤ĂŸen Plasmakopfes 10 ist in der Fig. 1 stark schematisiert im Querschnitt dargestellt. Im Wesentlichen besteht der Plasmakopf 10 aus einem Gehäuse 11, in dessen Inneren ein Transformator 12 und eine PlasmadĂ¼se 13 angeordnet sind. Der Transformator 12 ist von einem Isolator 14 umschlossen und an eine Spannungsquelle 15 angeschlossen. Durch den Transformator 12 und die Spannungsquelle 15 wird die fĂ¼r die ZĂ¼ndung des Plasmas erforderliche Hochspannung erzeugt. Eine Wandung 23 des Gehäuses 11 des Plasmakopfes 10 ist an eine Masse 29 angeschlossen.An embodiment of a plasma head 10 according to the invention is shown in FIG 1 shown highly schematized in cross section. Essentially, the plasma head 10 consists of a housing 11, inside which a transformer 12 and a plasma nozzle 13 are arranged. The transformer 12 is enclosed by an insulator 14 and connected to a voltage source 15 . The high voltage required to ignite the plasma is generated by the transformer 12 and the voltage source 15 . A wall 23 of the housing 11 of the plasma head 10 is connected to a ground 29 .

Die PlasmadĂ¼se 13 weist eine Elektrode 16 auf, welche mit dem Transformator 12 gekoppelt ist. Diese nadelförmige Elektrode 16 weist mit ihrer Spitze in Richtung einer als Ausgang fĂ¼r das Plasma dienenden Ringelektrode 17. Durch einen Prozessgaseinlass 18 wird Prozessgas in das DĂ¼senvolumen 19 geleitet. Das Prozessgas ist hier schematisch als Pfeil 20 dargestellt. In der Realität wird das DĂ¼senvolumen 19 nahezu homogen von einem permanenten Fluss des Prozessgases 18 gefĂ¼llt.The plasma nozzle 13 has an electrode 16 which is coupled to the transformer 12 . The tip of this needle-shaped electrode 16 points in the direction of a ring electrode 17 serving as an outlet for the plasma. Process gas is conducted into the nozzle volume 19 through a process gas inlet 18 . The process gas is shown schematically as arrow 20 here. In reality, the nozzle volume 19 is filled almost homogeneously by a permanent flow of the process gas 18 .

Durch eine elektrische Entladung zwischen der Elektrode 16 und der Ringelektrode 17 kommt es zu einer hier symbolisch als Blitz 21 dargestellten Ionisierung des Prozessgases. Das ionisierte Gas verlässt die PlasmadĂ¼se 13 durch die Ringelektrode 17 als Plasmastrahl 22 bzw. als Plasmaflamme.An electrical discharge between the electrode 16 and the ring electrode 17 causes the process gas to be ionized, symbolically represented here as a lightning bolt 21 . The ionized gas leaves the plasma nozzle 13 through the ring electrode 17 as a plasma jet 22 or as a plasma flame.

In der Wandung 23 des Plasmakopfes 10 ist mindestens ein Kanal 24 ausgebildet. Dieser Kanal 24 erstreckt sich bei dem hier dargestellten AusfĂ¼hrungsbeispiel mäanderförmig durch die gesamte Wandung 23. In Fig. 2 ist schematisch eine aufgerollte Wandung 23 des Plasmakopfes 10 dargestellt, sodass der mäanderförmige Verlauf des Kanals 24 in der Wandung 23 deutlich wird. Der Kanal 24 weist einen Einlass 25 und einen Auslass 26 auf. ErfindungsgemĂ¤ĂŸ wird Ă¼ber ein nicht dargestelltes Ventil bzw. von einem Vorratsvolumen ein Medium in den Einlass 25 eingelassen, sodass das Medium mit einem vorbestimmten Druck durch den Kanal 24 in Richtung Auslass 26 strömt (siehe Pfeile 27).At least one channel 24 is formed in the wall 23 of the plasma head 10 . In the exemplary embodiment shown here, this channel 24 extends in a meandering manner through the entire wall 23. In 2 a rolled-up wall 23 of the plasma head 10 is shown schematically, so that the meandering course of the channel 24 in the wall 23 becomes clear. The channel 24 has an inlet 25 and an outlet 26 . According to the invention, a medium is let into the inlet 25 via a valve (not shown) or from a storage volume, so that the medium flows at a predetermined pressure through the channel 24 in the direction of the outlet 26 (see arrow 27).

Das durchströmende Medium, bei dem es sich um das Prozessgas handelt, fĂ¼hrt die durch den Transformator 12 entwickelte Wärme ab. Dieses Prozessgas wird nachdem es den Kanal 24 durchströmt und Wärmeenergie des Transformators 12 aufgenommen hat, durch ein hier gestrichelt dargestelltes Verbindungsmittel 28 durch den Prozessgaseinlass 18 in das DĂ¼senvolumen 19 geleitet. Bei dem Verbindungsmittel 18 kann es sich beispielsweise um einen Schlauch oder ein kurzes RohrstĂ¼ck handeln. Dieses Verbindungsmittel 18 kann auch in dem Gehäuse 11 oder dem Plasmakopf 10 integriert sein. Der Kanal 24 ist in das Gehäuse 11 bzw. in die Wandung 23 integriert.The medium flowing through, which is the process gas, dissipates the heat developed by the transformer 12 . After this process gas has flowed through the channel 24 and has absorbed heat energy from the transformer 12 , it is conducted through the process gas inlet 18 into the nozzle volume 19 by a connecting means 28 shown here in broken lines. The connecting means 18 can be, for example, a hose or a short piece of pipe. This connecting means 18 can also be integrated in the housing 11 or the plasma head 10 . The channel 24 is integrated into the housing 11 or into the wall 23 .

In Abhängigkeit von der GrĂ¶ĂŸe bzw. Bauform oder der von dem Transformator 12 entwickelten thermischen Energie können unterschiedliche Medien als KĂ¼hlmittel benutzt werden. DarĂ¼ber hinaus, ist es denkbar, dass in Abhängigkeit von der entwickelten thermischen Energie das Prozessgas vorgekĂ¼hlt wird oder mit einem erhöhten Druck in den Kanal 24 eingelassen wird. Dazu dient erfindungsgemĂ¤ĂŸ eine nicht dargestellte Steuereinrichtung, die Ă¼ber einen ebenfalls nicht dargestellten Temperatursensor in dem Plasmakopf 10 die Temperatur im Plasmakopf 10 ermittelt und den Zufluss des Prozessgases im Kanal 24 entsprechend steuert.Depending on the size or design or the thermal energy developed by the transformer 12, different media can be used as a coolant. In addition, it is conceivable that, depending on the thermal energy developed, the process gas is pre-cooled or is admitted into the channel 24 at an increased pressure. According to the invention, a control device, not shown, is used for this purpose, which determines the temperature in the plasma head 10 via a temperature sensor, also not shown, in the plasma head 10 and controls the inflow of the process gas in the channel 24 accordingly.

Neben der in den Fig. 1 und 2 dargestellten Ausgestaltung eines Kanals 24 zeigt die Fig. 3 ein weiteres AusfĂ¼hrungsbeispiel fĂ¼r einen Kanal 30. Bei dem in Fig. 3 dargestellten Kanal 30 wird das Medium, wie zuvor an dem in Fig. 1 dargestellten AusfĂ¼hrungsbeispiel beschrieben, durch einen nicht dargestellten Einlass dem Kanal 30 zugefĂ¼hrt und Ă¼ber ein Verbindungsmittel 28 in der zuvor beschriebenen Art und Weise dem DĂ¼senvolumen 19 zugefĂ¼hrt. Der Kanal 30 ist in dem zweiten AusfĂ¼hrungsbeispiel schraubenartig in der Wandung 23 des Plasmakopfes 10 angeordnet. Durch diese schraubenartige Anordnung des Kanals 30 kann eine besonders lange Kontaktfläche zwischen dem Medium und der Wandung 23 erzeugt werden, sodass ein Ăœbertrag der Wärmeenergie an das Medium besonders effizient gestaltet wird.Next to the in the Figures 1 and 2 illustrated embodiment of a channel 24 shows the 3 another embodiment of a channel 30. In the in 3 illustrated channel 30, the medium, as previously at the in 1 described embodiment described, fed to the channel 30 through an inlet, not shown, and fed to the nozzle volume 19 via a connecting means 28 in the manner described above. In the second exemplary embodiment, the channel 30 is arranged in the wall 23 of the plasma head 10 in the manner of a screw. This screw-like arrangement of the channel 30 allows a particularly long contact surface to be produced between the medium and the wall 23, so that the thermal energy is transferred to the medium in a particularly efficient manner.

Neben den hier dargestellten AusfĂ¼hrungsbeispielen ist es auĂŸerdem denkbar, dass die Wandung 23 auf seiner AuĂŸenseite 31 nicht dargestellte KĂ¼hlkörper wie beispielsweise KĂ¼hlrippen zugeordnet sind. Durch diese KĂ¼hlrippen, die beispielsweise ebenfalls mit einem Medium zum KĂ¼hlung umströmt werden können, wird ebenfalls die thermische Energie des Transformators 12 effektiv aus dem Plasmakopf 10 abgeleitet.In addition to the exemplary embodiments shown here, it is also conceivable for the wall 23 to be assigned cooling bodies (not shown), such as cooling fins, on its outer side 31 . The thermal energy of the transformer 12 is also effectively dissipated from the plasma head 10 through these cooling ribs, around which a medium for cooling can also flow, for example.

Claims (7)

  1. Apparatus for generating an atmospheric plasma with a plasma head (10) which has a transformer (12) for generating a high voltage and at least one plasma nozzle (13) which can be supplied with a process gas for plasma generation, wherein the transformer (12) and at least one plasma nozzle (13) form a spatial unit and wherein the plasma head (10) has at least one supply line for a medium that is flowing through, the medium being the process gas, for active temperature control of the plasma head (10), characterized in that in a wall (23) of a housing (11) of the plasma head (10) there is arranged at least one channel (24, 30) for guiding the medium, which extends at least in regions over the wall (23) of the plasma head (10) and which is connected to at least one inlet (25).
  2. Apparatus for generating an atmospheric plasma according to Claim 1, wherein in the wall (23) of the plasma head (10) there is arranged at least one meandering channel (24, 30) for guiding the medium, which extends at least in regions over the wall (23) of the plasma head (10) and which is connected to at least one inlet (25).
  3. Apparatus for generating an atmospheric plasma according to Claim 1 or 2, wherein the channel (24, 30) is in the form of parallel bores, in particular bores arranged parallel to a longitudinal axis of the housing (11), in the wall (23) of the housing (11), wherein the open bores at the face sides of the, in particular hollowcylindrical, housing (11) are connectable or isolatable from one another by way of a base or cover part, so that the meandering channel (24) is formed in the wall (23).
  4. Apparatus for generating an atmospheric plasma according to any of the preceding claims, wherein on an outer side (31) of housing (11) there are arranged at least one cooling body, particular cooling fins, along which the medium can be guided.
  5. Method for generating an atmospheric plasma with a transformer (12) for generating a high voltage and with at least one plasma nozzle (13) which is supplied with a process gas for generation of the plasma, wherein the transformer (12) and the at least one plasma nozzle (13) form a plasma head (10) and the plasma head (10) is actively temperature-controlled by a flowing medium, wherein the medium used is the process gas, characterized in that for the active temperature control of the plasma head (10) the medium is conducted through a channel (24, 30) in a wall (23) of a housing (11) of the plasma head (10) .
  6. Method for generating an atmospheric plasma according to Claim 5, wherein, for the active temperature control, the medium guided through the wall (23) is preadjusted to a temperature and/or guided through the channel (24, 30) under a predetermined pressure.
  7. Method for generating an atmospheric plasma according to Claim 5 or 6, wherein an outer side (31) of the housing (11) is exposed to the medium for temperature control of the plasma head (10).
EP17001337.9A 2016-09-05 2017-08-04 Device and method for creating atmospheric plasma Active EP3291651B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201731291T SI3291651T1 (en) 2016-09-05 2017-08-04 Device and method for creating atmospheric plasma
RS20230008A RS63874B1 (en) 2016-09-05 2017-08-04 Device and method for creating atmospheric plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016010619.0A DE102016010619A1 (en) 2016-09-05 2016-09-05 Apparatus and method for generating an atmospheric plasma

Publications (2)

Publication Number Publication Date
EP3291651A1 EP3291651A1 (en) 2018-03-07
EP3291651B1 true EP3291651B1 (en) 2022-10-12

Family

ID=59558156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17001337.9A Active EP3291651B1 (en) 2016-09-05 2017-08-04 Device and method for creating atmospheric plasma

Country Status (10)

Country Link
EP (1) EP3291651B1 (en)
DE (1) DE102016010619A1 (en)
DK (1) DK3291651T3 (en)
ES (1) ES2935577T3 (en)
FI (1) FI3291651T3 (en)
HU (1) HUE061142T2 (en)
PL (1) PL3291651T3 (en)
PT (1) PT3291651T (en)
RS (1) RS63874B1 (en)
SI (1) SI3291651T1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900128B4 (en) * 1998-12-21 2012-01-26 Sulzer Metco Ag Nozzle and nozzle arrangement for a burner head of a plasma spray gun

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD83890A1 (en) 1970-05-27 1971-08-12 Cooling medium guide for burner
US5247152A (en) 1991-02-25 1993-09-21 Blankenship George D Plasma torch with improved cooling
DE60201387T2 (en) 2000-04-10 2005-11-17 Tetronics Ltd., Faringdon DOUBLE PLASMA BURNER DEVICE
AT503646B1 (en) 2006-09-15 2007-12-15 Fronius Int Gmbh Water vapor plasma burner for cutting a workpiece, comprises a feed line for a liquid, a heating device, an evaporator for forming a gas from the liquid, a cathode detachably connected to a movably mounted piston rod, and a nozzle
DE102009028190A1 (en) 2009-08-03 2011-02-10 Leibniz-Institut fĂ¼r Plasmaforschung und Technologie e.V. Cold plasma beam producing device i.e. plasma hand-held device, for microplasma treatment of materials for e.g. cosmetic purpose, has high frequency-generator, coil, body and high voltage-electrode integrally arranged in metal housing
DE102012103938A1 (en) 2012-05-04 2013-11-07 Reinhausen Plasma Gmbh Plasma module for a plasma generating device and plasma generating device
DE102013100617B4 (en) 2013-01-22 2016-08-25 Epcos Ag Device for generating a plasma and handheld device with the device
DE202015001278U1 (en) 2015-02-16 2016-05-19 Abc-Coron Gmbh coater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900128B4 (en) * 1998-12-21 2012-01-26 Sulzer Metco Ag Nozzle and nozzle arrangement for a burner head of a plasma spray gun

Also Published As

Publication number Publication date
SI3291651T1 (en) 2023-07-31
PT3291651T (en) 2023-01-16
DK3291651T3 (en) 2023-01-16
RS63874B1 (en) 2023-02-28
DE102016010619A1 (en) 2018-03-08
ES2935577T3 (en) 2023-03-08
PL3291651T3 (en) 2023-07-03
EP3291651A1 (en) 2018-03-07
HUE061142T2 (en) 2023-05-28
FI3291651T3 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
EP0645946B1 (en) Burner head for plasma spray guns
DE102014213526A1 (en) Device for heating a functional layer
EP2907527A1 (en) Operating method for an irradiation device
EP2168409B1 (en) Apparatus for generating a plasma jet
WO2014206951A1 (en) Electric heating device and method for producing an electric heating device
EP3291651B1 (en) Device and method for creating atmospheric plasma
DE10115937A1 (en) Evaporator for generating feed gas for an arc chamber
WO2011098108A1 (en) Shaping and cooling device for a flowable, melted food mass
AT521541B1 (en) Process for heating a medium
EP1920826A2 (en) Cooling assembly and method for cooling autoclaves
EP1819208B1 (en) Device and method for creating activated and/or ionised particles in a plasma
EP3046686B1 (en) Gas stream device for system for the radiation treatment of substrates
EP2052830A2 (en) Method for heating an extruded plastic profile by means of infrared radiation
EP2985116B1 (en) Purification device and method of cleaning transport rollers in a roller cooling oven of a facility for producing float glass
EP3113904B1 (en) Processing head and processing device
EP1630509B1 (en) Method for heating or cooling a fluid medium
EP2452800A1 (en) Method for tempering a forming tool
DE102017114684B3 (en) Apparatus for pasteurizing an ice cream mass
DE102015104036A1 (en) Cooking appliance, in particular oven
EP3168031B1 (en) Heating device, in particular for an edge strip application device or for a cutting device for cutting films or workpieces made of plastic or rigid foam or for a device for welding workpieces
DE102008052571A1 (en) Diffusion oven useful in semiconductor manufacture and for doping solar cells, comprises reactor enclosed by reaction pipe, outer casing, heating elements, means for locking the pipe, means for locking the casing and vacuum producing means
EP2000200B1 (en) Polymerisation device
EP2893982B1 (en) Painting apparatus
DE2808210A1 (en) Air flow heating appts. - has sloping heating elements spaced apart on vertical supports with spacings in direction of flow
WO2001011734A1 (en) Gas laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180904

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/36 20060101ALI20220331BHEP

Ipc: H05H 1/28 20060101AFI20220331BHEP

INTG Intention to grant announced

Effective date: 20220503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VEDANTHA, SUDARSAN

Inventor name: HELLINGER, ANDRE

Inventor name: KUNZ, MANUEL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013920

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1524965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3291651

Country of ref document: PT

Date of ref document: 20230116

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230110

Ref country code: DK

Ref legal event code: T3

Effective date: 20230112

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 40985

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2935577

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E061142

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230212

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230113

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017013920

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

26N No opposition filed

Effective date: 20230713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230726

Year of fee payment: 7

Ref country code: IT

Payment date: 20230711

Year of fee payment: 7

Ref country code: IE

Payment date: 20230710

Year of fee payment: 7

Ref country code: GB

Payment date: 20230706

Year of fee payment: 7

Ref country code: FI

Payment date: 20230816

Year of fee payment: 7

Ref country code: ES

Payment date: 20230908

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230718

Year of fee payment: 7

Ref country code: BG

Payment date: 20230714

Year of fee payment: 7

Ref country code: AT

Payment date: 20230725

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230712

Year of fee payment: 7

Ref country code: SI

Payment date: 20230714

Year of fee payment: 7

Ref country code: SE

Payment date: 20230710

Year of fee payment: 7

Ref country code: RS

Payment date: 20230719

Year of fee payment: 7

Ref country code: PT

Payment date: 20230707

Year of fee payment: 7

Ref country code: PL

Payment date: 20230712

Year of fee payment: 7

Ref country code: HU

Payment date: 20230720

Year of fee payment: 7

Ref country code: FR

Payment date: 20230710

Year of fee payment: 7

Ref country code: DK

Payment date: 20230814

Year of fee payment: 7

Ref country code: DE

Payment date: 20230728

Year of fee payment: 7

Ref country code: BE

Payment date: 20230719

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221012