EP3291651A1 - Device and method for creating atmospheric plasma - Google Patents
Device and method for creating atmospheric plasma Download PDFInfo
- Publication number
- EP3291651A1 EP3291651A1 EP17001337.9A EP17001337A EP3291651A1 EP 3291651 A1 EP3291651 A1 EP 3291651A1 EP 17001337 A EP17001337 A EP 17001337A EP 3291651 A1 EP3291651 A1 EP 3291651A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- medium
- head
- housing
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005496 tempering Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 31
- 239000002826 coolant Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/36—Circuit arrangements
Definitions
- the invention relates to an apparatus for generating an atmospheric plasma according to the features of claim 1. Furthermore, the invention relates to a method for producing an atmospheric plasma according to claim 7.
- a plasma head with a transformer and a plasma nozzle is used.
- a process gas is ionized in the plasma nozzle by a discharge.
- the process gas then exits the nozzle as directed plasma steel or plasma flame.
- Known plasma systems have a cooling in which the heat is dissipated by convection from the housing of the plasma head.
- this type of cooling is sufficient only for certain designs or sizes and mounting positions of the plasma head.
- the cooling of the transformer proves to be insufficient by pure convection during continuous use of the plasma head.
- the invention is therefore based on the object to provide an apparatus and a method for generating an atmospheric plasma, with which a stable and reliable operation is ensured.
- a plasma head is associated with a transformer and at least one plasma nozzle, wherein the transformer and the plasma nozzle form a spatial unit, having a supply line for a flowing medium for active temperature control of the plasma head. Due to the flowing medium, the plasma head can be actively tempered. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively tempered. The flowing medium permanently removes heat from the plasma head. Due to the subsequent flow of the medium, the plasma head can be kept at a stable temperature during the entire operating time. Thus, a temperature in the plasma head can be generated via the medium flowing through, in which a maximum yield of plasma is achieved and at the same time the plasma head works particularly stable and reliable.
- the invention also provides that as the medium for temperature control, in particular for cooling, the plasma head, preferably of the transformer, an electrode or a plasma nozzle, a liquid, a gas, compressed air or the process gas itself is usable, in particular that the medium Mixture of the Liquid, gas, compressed air or process gas.
- the process gas as a cooling medium is particularly advantageous since this anyway has to be supplied to the plasma head. According to the invention, therefore, the process gas first flows through the area around the transformer before it is supplied to the plasma nozzle for plasma generation. The elevated temperature of the process gas due to the absorption of the thermal energy has no effect on the efficiency of the plasma formation.
- the process gas is mixed with a further medium, which has proven to be particularly good as a cooling medium.
- a further medium which has proven to be particularly good as a cooling medium.
- a particularly advantageous embodiment of the present invention may provide that in a housing, preferably in a wall of the housing, a, in particular meandering, channel for guiding the medium is arranged, which extends at least partially over the wall of the housing and with the at least a supply line is connected.
- a meandering configuration of the channel has proven to be particularly efficient for the transfer of heat energy to the medium.
- One end of the channel is a supply line for the medium, for example for the process gas.
- the second end of the channel can either be free, so that the gas is discharged into the atmosphere, or be connected to the supply line for the plasma nozzle, so that the medium used as process gas directly for plasma generation.
- the meandering channel for the medium can be realized by parallel, vertical, in particular parallel to a longitudinal axis of the housing, holes in the wall of the housing.
- the channels may initially be open to the end faces of the hollow cylindrical housing. These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or insulated from each other, so that the meandering channel is formed in the wall.
- the Floor or cover part of the housing is screwed or glued to the housing, for example.
- a further embodiment may provide that the channel is designed as a screw in the wall of the housing.
- Such a housing with a helical channel in the wall can be produced, for example, by a generative method, such as a 3D printer.
- the channel is designed as an evaporator for the liquid medium.
- a liquid medium is passed into the channel, to be then passed as a gas in the plasma nozzle. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can thereby be increased and at the same time the medium at least partially used as process gas. This also allows a layer deposition.
- the present invention can further provide that at least one heat sink, in particular cooling fins, are arranged on an outer side of the wall or of the housing, along which the medium can be guided.
- at least one heat sink in particular cooling fins
- this can also have heat sinks on the outside. These heat sinks can then be actively cooled again by the application of a cooling medium, preferably by a fan.
- a method for solving the above-mentioned problem comprises the measures of claim 7. Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively tempered by a flowing medium. Through this active temperature control of the plasma head process heat of the transformer can be actively and efficiently dissipated. Depending on the size and design of the plasma head, a different heat development of the transformer can be expected. By controlling the flow of the medium, the heat removal from the plasma head can be actively controlled so that the plasma head can be operated at an optimum operating temperature. At the optimum operating temperature, the plasma head behaves particularly reliable and stable.
- a liquid, a gas, compressed air, the process gas or a mixture of these substances is used for active temperature control, preferably cooling, of the plasma head as a medium.
- active temperature control preferably cooling
- various media are selected to ensure a particularly efficient operation of the plasma head.
- a further embodiment of the present invention may provide that for the active temperature control, preferably cooling, of the plasma head, the medium is passed through the housing, preferably through a wall of the housing, the plasma head, in particular through a channel in the wall of the plasma head.
- This passage of the medium can be regulated by a valve, so that the flow occurs as a function of the temperature of the plasma head.
- the present invention can further provide that, for the active temperature control, the medium guided through the wall is pre-tempered and / or guided through the wall at a predetermined pressure.
- a temperature sensor to be arranged in the plasma head which measures the temperature and transmits it to a control unit which accordingly pre-cools or heats the medium.
- the pressure can also vary.
- the pressure of the medium for tempering the plasma head can be increased. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit time is increased.
- the pressure of the medium through which it passes through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-tempering and varying the pressure can ensure a particularly efficient and thus reliable as well as stable operation of the plasma head.
- an outside of the wall is acted upon by the medium for controlling the temperature of the plasma head.
- FIG. 1 An embodiment of a plasma head 10 according to the invention is shown in Fig. 1 shown very schematically in cross section.
- the plasma head 10 consists of a housing 11, inside which a transformer 12 and a plasma nozzle 13 are arranged.
- the transformer 12 is enclosed by an insulator 14 and connected to a voltage source 15.
- a wall 23 of the housing 11 of the plasma head 10 is connected to a ground 29.
- the plasma nozzle 13 has an electrode 16 which is coupled to the transformer 12. This needle-shaped electrode 16 points with its tip in the direction of a serving as an exit for the plasma ring electrode 17.
- process gas is passed into the nozzle volume 19.
- the process gas is shown here schematically as arrow 20.
- the nozzle volume 19 is filled almost homogeneously by a permanent flow of the process gas 18.
- an ionization of the process gas symbolically represented here as lightning 21 occurs.
- the ionized gas leaves the plasma nozzle 13 through the ring electrode 17 as a plasma jet 22 or as a plasma flame.
- a channel 24 is formed in the wall 23 of the plasma head 10 in the wall 23 of the plasma head 10 in the wall 23 of the plasma head 10 at least one channel 24 is formed.
- This channel 24 extends in the embodiment shown here meandering through the entire wall 23.
- Fig. 2 schematically a rolled wall 23 of the plasma head 10 is shown, so that the meandering course of the channel 24 in the wall 23 is clear.
- the channel 24 has an inlet 25 and an outlet 26.
- a medium is introduced into the inlet 25 via a valve, not shown, or from a supply volume, so that the medium flows at a predetermined pressure through the channel 24 in the direction of the outlet 26 (see arrows 27).
- the flowing medium which may be a gas or a liquid, dissipates the heat developed by the transformer 12.
- a particularly preferred embodiment of the invention provides that the medium is the process gas. After it has passed through the channel 24 and absorbed heat energy of the transformer 12, this process gas is conducted through the process gas inlet 18 into the nozzle volume 19 through a connection means 28 shown here in dashed lines.
- the connecting means 18 may be, for example, a hose or a short pipe piece. This connection means 18 may also be integrated in the housing 11 or the plasma head 10.
- the channel 24 is integrated in the housing 11 or in the wall 23.
- the process gas is pre-cooled or admitted into the channel 24 at an increased pressure.
- a control device not shown, which determines the temperature in the plasma head 10 via a temperature sensor, also not shown in the plasma head 10 and controls the inflow of the process gas in the channel 24 accordingly.
- a channel 24 shows the Fig. 3 a further embodiment of a channel 30.
- the medium as previously on the in Fig. 1 described embodiment, fed through an inlet, not shown, the channel 30 and fed via a connecting means 28 in the manner described above, the nozzle volume 19.
- the channel 30 is arranged helically in the wall 23 of the plasma head 10 in the second embodiment.
- the wall 23 are associated on its outer side 31, not shown, heat sink, such as cooling fins.
- heat sink such as cooling fins.
- the thermal energy of the transformer 12 is also effectively derived from the plasma head 10.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
Zur Behandlung von Oberflächen aus Kunststoff, Metall, Keramik usw. zum Zwecke der Reinigung oder der Aktivierung ist es bekannt, diese mit einem atmosphärischen Plasma zu beaufschlagen. Es ist bekannt für die Plasmaerzeugung einen Transformator und eine Plasmadüse in einen gemeinsamen Plasmakopf zu integrieren. Als nachteilig dabei hat sich die Verlustleistung des Transformators erwiesen, welche sich als Wärme in dem Plasmakopf staut. Diese Wärmeentwicklung kann derart groß sein, dass die Plasmaerzeugung beeinflusst wird. Die Erfindung schafft eine Vorrichtung sowie ein Verfahren zur Erzeugung eines atmosphärischen Plasmas, mit dem ein stabiler und zuverlässiger Betrieb gewährleistet wird. Dazu ist es vorgesehen, dass einem Plasmakopf (10) ein Transformator (12) und mindestens eine Plasmadüse (13) zugeordnet ist und der Plasmakopf (10) mindestens eine Zuleitung für ein durchströmendes Medium zur aktiven Temperierung des Plasmakopfes (10) aufweist.For the treatment of surfaces of plastic, metal, ceramic, etc. for the purpose of cleaning or activation, it is known to apply these with an atmospheric plasma. It is known for plasma generation to integrate a transformer and a plasma nozzle in a common plasma head. A disadvantage here is the power loss of the transformer has proven, which accumulates as heat in the plasma head. This heat development can be so great that the plasma generation is influenced. The invention provides an apparatus and a method for producing an atmospheric plasma, with which a stable and reliable operation is ensured. For this purpose, it is provided that a plasma head (10) is associated with a transformer (12) and at least one plasma nozzle (13) and the plasma head (10) has at least one supply line for a flowing medium for active temperature control of the plasma head (10).
Description
Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines atmosphärischen Plasmas gemäß den Merkmalen des Anspruchs 1. Des Weiteren betrifft die Erfindung ein Verfahren zur Erzeugung eines atmosphärischen Plasmas gemäß Anspruch 7.The invention relates to an apparatus for generating an atmospheric plasma according to the features of claim 1. Furthermore, the invention relates to a method for producing an atmospheric plasma according to claim 7.
Zur Behandlung von beispielsweise Oberflächen aus Kunststoff, Metall, Keramik usw. zum Zwecke der Reinigung, Oberflächenaktivierung, Polymerisation, Keimreduzierung und dergleichen ist es bekannt, diese mit einem atmosphärischen Plasma zu beaufschlagen. Durch die Reinigung und/oder Aktivierung der Oberfläche mittels eines atmosphärischen Plasmas kann diese beispielsweise mit einer Flüssigkeit oder einem Klebstoff besser benetzt werden.For the treatment of, for example, surfaces made of plastic, metal, ceramic, etc. for the purpose of cleaning, surface activation, polymerization, germ reduction and the like, it is known to apply these to an atmospheric plasma. By cleaning and / or activating the surface by means of an atmospheric plasma, it can be better wetted, for example with a liquid or an adhesive.
Zur Erzeugung eines atmosphärischen Plasmas wird ein Plasmakopf mit einem Transformator und einer Plasmadüse verwendet. Durch die von dem Transformator erzeugte Hochspannung wird ein Prozessgas in der Plasmadüse durch eine Entladung ionisiert. Das Prozessgas tritt sodann als gerichteter Plasmastahl oder Plasmaflamme aus der Düse aus.To generate an atmospheric plasma, a plasma head with a transformer and a plasma nozzle is used. By the high voltage generated by the transformer, a process gas is ionized in the plasma nozzle by a discharge. The process gas then exits the nozzle as directed plasma steel or plasma flame.
Um Probleme wie beispielsweise Kabelbrüche, Durchschläge oder Verlustleistungen zu vermeiden, ist es bekannt, den Transformator und die Plasmadüse in einem gemeinsamen Plasmakopf zu integrieren. Durch diese kompakte Bauweise des Plasmakopfes kann auf lange Kabel sowie Elektronik verzichtet werden, was die Gefahr eines Kabelbruches oder von Durchschlägen reduziert.To avoid problems such as cable breaks, breakdowns or power losses, it is known to integrate the transformer and the plasma nozzle in a common plasma head. Due to this compact design of the Plasma head can be dispensed with long cables and electronics, which reduces the risk of cable breakage or breakdowns.
Als besonders nachteilig bei dieser kompakten Bauweise hat sich die Verlustleistung des Transformators erwiesen, welche sich als Wärme in dem Gehäuse des Plasmakopfes staut. Diese Wärmeentwicklung kann derart groß sein, dass der Transformator ausfällt oder beschädigt wird. Durch diese Wärmeentwicklung wird somit die Plasmaerzeugung beeinflusst.Particularly disadvantageous in this compact design, the power loss of the transformer has proven, which accumulates as heat in the housing of the plasma head. This heat development can be so great that the transformer fails or is damaged. This heat development thus influences the plasma generation.
Bekannte Plasmasysteme weisen eine Kühlung auf, bei der die Wärme durch Konvektion vom Gehäuse des Plasmakopfes abgeführt wird. Diese Art der Kühlung reicht jedoch nur für bestimmte Bauformen bzw. Größen sowie Einbaulagen des Plasmakopfes aus. Beispielsweise erweist sich die Kühlung des Transformators durch reine Konvektion bei Dauereinsatz des Plasmakopfes als nicht ausreichend.Known plasma systems have a cooling in which the heat is dissipated by convection from the housing of the plasma head. However, this type of cooling is sufficient only for certain designs or sizes and mounting positions of the plasma head. For example, the cooling of the transformer proves to be insufficient by pure convection during continuous use of the plasma head.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung sowie ein Verfahren zur Erzeugung eines atmosphärischen Plasmas zu schaffen, mit dem ein stabiler und zuverlässiger Betrieb gewährleistet wird.The invention is therefore based on the object to provide an apparatus and a method for generating an atmospheric plasma, with which a stable and reliable operation is ensured.
Eine Vorrichtung zur Lösung dieser Aufgabe weist die Merkmale des Anspruchs 1 auf. Demnach ist es vorgesehen, dass einem Plasmakopf dem ein Transformator und mindestens eine Plasmadüse zugeordnet ist, wobei der Transformator und die Plasmadüse eine räumliche Einheit bilden, eine Zuleitung für ein durchströmendes Medium zur aktiven Temperierung des Plasmakopfes aufweist. Durch das strömende Medium lässt sich der Plasmakopf aktiv temperieren. Demnach kann in Abhängigkeit von der Bauform bzw. der Größe und des Betriebes des Plasmakopfes dieser aktiv temperiert werden. Durch das strömende Medium wird permanent Wärme aus dem Plasmakopf abtransportiert. Durch das Nachströmen des Mediums kann der Plasmakopf während der gesamten Betriebszeit auf einer stabilen Temperatur gehalten werden. Somit lässt sich über das durchströmende Medium eine Temperatur in dem Plasmakopf erzeugen, bei der eine maximale Ausbeute an Plasma erzielt wird und zeitgleich der Plasmakopf besonders stabil und zuverlässig arbeitet.An apparatus for achieving this object has the features of claim 1. Accordingly, it is provided that a plasma head is associated with a transformer and at least one plasma nozzle, wherein the transformer and the plasma nozzle form a spatial unit, having a supply line for a flowing medium for active temperature control of the plasma head. Due to the flowing medium, the plasma head can be actively tempered. Accordingly, depending on the design or the size and the operation of the plasma head, it can be actively tempered. The flowing medium permanently removes heat from the plasma head. Due to the subsequent flow of the medium, the plasma head can be kept at a stable temperature during the entire operating time. Thus, a temperature in the plasma head can be generated via the medium flowing through, in which a maximum yield of plasma is achieved and at the same time the plasma head works particularly stable and reliable.
Bevorzugt sieht es die Erfindung außerdem vor, dass als Medium zur Temperierung, insbesondere zur Kühlung, des Plasmakopfes, vorzugsweise des Transformators, eine Elektrode oder einer Plasmadüse, eine Flüssigkeit, ein Gas, Druckluft oder das Prozessgas selbst verwendbar ist, insbesondere dass das Medium eine Mischung aus der Flüssigkeit, des Gases, der Druckluft oder des Prozessgases ist. Je nach Bauform bzw. Größe kann ein anderes Medium für eine effektive Temperierung besonders vorteilhaft sein. Insbesondere die Verwendung des Prozessgases als Kühlmedium ist besonders vorteilhaft, da dieses sowieso dem Plasmakopf zugeführt werden muss. Erfindungsgemäß durchströmt daher das Prozessgas zunächst den Bereich um den Transformator, bevor es für die Plasmaerzeugung der Plasmadüse zugeführt wird. Die durch die Aufnahme der thermischen Energie erhöhte Temperatur des Prozessgases hat keinerlei Auswirkungen auf die Effizienz der Plasmabildung. Für eine besonders effiziente Arbeitsweise des Plasmakopfes kann es erfindungsgemäß außerdem vorteilhaft sein, wenn das Prozessgas mit einem weiteren Medium, welches sich besonders gut als Kühlmedium erwiesen hat, gemischt wird. Auf diese Weise lässt sich die Wärme aus dem Plasmakopf schnell abführen und gleichzeitig eine Plasmaflamme erzeugen, ohne dass eine zusätzliche Leitung für das Kühlmedium an dem Plasmakopf installiert werden muss.Preferably, the invention also provides that as the medium for temperature control, in particular for cooling, the plasma head, preferably of the transformer, an electrode or a plasma nozzle, a liquid, a gas, compressed air or the process gas itself is usable, in particular that the medium Mixture of the Liquid, gas, compressed air or process gas. Depending on the design or size, another medium can be particularly advantageous for effective temperature control. In particular, the use of the process gas as a cooling medium is particularly advantageous since this anyway has to be supplied to the plasma head. According to the invention, therefore, the process gas first flows through the area around the transformer before it is supplied to the plasma nozzle for plasma generation. The elevated temperature of the process gas due to the absorption of the thermal energy has no effect on the efficiency of the plasma formation. For a particularly efficient operation of the plasma head, it may also be advantageous according to the invention if the process gas is mixed with a further medium, which has proven to be particularly good as a cooling medium. In this way, the heat from the plasma head can be dissipated quickly and simultaneously generate a plasma flame, without an additional line for the cooling medium must be installed on the plasma head.
Ein besonders vorteilhaftes Ausführungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass in einem Gehäuse, vorzugsweise in einer Wandung des Gehäuses, ein, insbesondere mäanderförmiger, Kanal zur Führung des Mediums angeordnet ist, der sich wenigstens bereichsweise über die Wandung des Gehäuses erstreckt und mit der mindestens einen Zuleitung verbunden ist. Durch die Führung des Kanals durch die Wandung des Plasmakopfes bleibt das Medium besonders lange mit der Wandung in Kontakt, was dazu führt, dass das Medium besonders viel Wärmeenergie des Transformators aufnehmen kann. Insbesondere eine mäanderförmige Ausgestaltung des Kanals hat sich als besonders effizient für den Transfer von Wärmeenergie auf das Medium erwiesen. Ein Ende des Kanals stellt eine Zuleitung für das Medium, beispielsweise für das Prozessgas, dar. Das zweite Ende des Kanals kann entweder frei sein, sodass das Gas in die Atmosphäre geleitet wird, oder mit der Zuleitung für die Plasmadüse verbunden sein, sodass das Medium als Prozessgas direkt für die Plasmaerzeugung verwendet wird. Durch diese Bauart kann die kompakte Bauweise des Plasmakopfes beibehalten werden.A particularly advantageous embodiment of the present invention may provide that in a housing, preferably in a wall of the housing, a, in particular meandering, channel for guiding the medium is arranged, which extends at least partially over the wall of the housing and with the at least a supply line is connected. By guiding the channel through the wall of the plasma head, the medium remains in contact with the wall for a particularly long time, with the result that the medium can absorb a great deal of heat energy from the transformer. In particular, a meandering configuration of the channel has proven to be particularly efficient for the transfer of heat energy to the medium. One end of the channel is a supply line for the medium, for example for the process gas. The second end of the channel can either be free, so that the gas is discharged into the atmosphere, or be connected to the supply line for the plasma nozzle, so that the medium used as process gas directly for plasma generation. By this design, the compact design of the plasma head can be maintained.
Der mäanderförmige Kanal für das Medium kann durch parallele, senkrechte, insbesondere parallel zu einer Längsachse des Gehäuses, Bohrungen in der Wandung des Gehäuses realisiert werden. Die Kanäle können zunächst zu den Stirnseiten des hohlzylindrischen Gehäuses offen sein. Diese Öffnungen können durch ein Boden- bzw. Deckelteil des Gehäuses verschließbar ausgebildet sein und zwar derart, dass abwechselnd zwei benachbarte Öffnungen miteinander verbunden bzw. voneinander isoliert sind, so dass sich der mäanderförmige Kanal in der Wandung ausbildet. Das Boden- bzw. Deckelteil des Gehäuses wird mit dem Gehäuse beispielsweise verschraubt oder verklebt. Ein weiteres Ausführungsbeispiel kann es vorsehen, dass der Kanal als Schraube in der Wandung des Gehäuses ausgebildet ist. Ein derartiges Gehäuse mit einem schraubenartigen Kanal in der Wandung lässt sich beispielsweise mit einem generativen Verfahren, wie etwa einem 3D-Drucker, herstellen.The meandering channel for the medium can be realized by parallel, vertical, in particular parallel to a longitudinal axis of the housing, holes in the wall of the housing. The channels may initially be open to the end faces of the hollow cylindrical housing. These openings can be designed to be closable by a base or cover part of the housing in such a way that alternately two adjacent openings are connected to each other or insulated from each other, so that the meandering channel is formed in the wall. The Floor or cover part of the housing is screwed or glued to the housing, for example. A further embodiment may provide that the channel is designed as a screw in the wall of the housing. Such a housing with a helical channel in the wall can be produced, for example, by a generative method, such as a 3D printer.
Es kann außerdem weiter erfindungsgemäß vorgesehen sein, dass der Kanal als Verdampfer für das flüssige Medium ausgebildet ist. Bei diesem Ausführungsbeispiel wird zunächst ein flüssiges Medium in den Kanal geleitet, um sodann als Gas in die Plasmadüse geleitet zu werden. Da flüssige Medien in der Regel eine höhere Wärmekapazität haben als Gase kann dadurch der Wärmeübertrag zwischen dem Transformator bzw. der Wandung und dem Medium erhöht werden und gleichzeitig das Medium zumindest teilweise als Prozessgas verwendet werden. Dadurch wird zudem eine Schichtabscheidung ermöglicht.It may also be further provided according to the invention that the channel is designed as an evaporator for the liquid medium. In this embodiment, first a liquid medium is passed into the channel, to be then passed as a gas in the plasma nozzle. Since liquid media generally have a higher heat capacity than gases, the heat transfer between the transformer or the wall and the medium can thereby be increased and at the same time the medium at least partially used as process gas. This also allows a layer deposition.
Vorzugsweise kann es die vorliegende Erfindung weiter vorsehen, dass an einer Außenseite der Wandung bzw. des Gehäuses mindestens ein Kühlkörper, insbesondere Kühlrippen, angeordnet sind, entlang denen das Medium führbar ist. Alternativ zur Ausbildung von Kanälen in der Wandung kann diese auch Kühlkörper an der Außenseite aufweisen. Diese Kühlkörper lassen sich sodann wiederum aktiv durch die Beaufschlagung eines Kühlmediums kühlen, vorzugsweise durch einen Lüfter.Preferably, the present invention can further provide that at least one heat sink, in particular cooling fins, are arranged on an outer side of the wall or of the housing, along which the medium can be guided. As an alternative to the formation of channels in the wall, this can also have heat sinks on the outside. These heat sinks can then be actively cooled again by the application of a cooling medium, preferably by a fan.
Ein Verfahren zur Lösung der eingangs genannten Aufgabe weist die Maßnahmen des Anspruchs 7 auf. Demnach ist es vorgesehen, dass ein Plasmakopf, in dessen Gehäuse ein Transformator und mindestens eine Plasmadüse angeordnet ist, durch ein strömendes Medium aktiv temperiert wird. Durch diese aktive Temperierung des Plasmakopfes lässt sich Prozesswärme des Transformators aktiv und effizient abführen. Je nach Größe und Bauform des Plasmakopfes ist mit einer anderen Wärmeentwicklung des Transformators zu rechnen. Durch Regelung des Flusses des Mediums kann die Wärmeabfuhr aus dem Plasmakopf aktiv gesteuert werden, sodass der Plasmakopf bei einer optimalen Betriebstemperatur betrieben werden kann. Bei der optimalen Betriebstemperatur verhält sich der Plasmakopf besonders zuverlässig und stabil.A method for solving the above-mentioned problem comprises the measures of claim 7. Accordingly, it is provided that a plasma head, in whose housing a transformer and at least one plasma nozzle is arranged, is actively tempered by a flowing medium. Through this active temperature control of the plasma head process heat of the transformer can be actively and efficiently dissipated. Depending on the size and design of the plasma head, a different heat development of the transformer can be expected. By controlling the flow of the medium, the heat removal from the plasma head can be actively controlled so that the plasma head can be operated at an optimum operating temperature. At the optimum operating temperature, the plasma head behaves particularly reliable and stable.
Insbesondere kann es außerdem vorgesehen sein, dass für die aktive Temperierung, vorzugsweise Kühlung, des Plasmakopfes als Medium eine Flüssigkeit, ein Gas, Druckluft, das Prozessgas oder eine Mischung aus diesen Stoffen verwendet wird. Je nach Temperatur und Anforderungen an das zu erzeugende Plasma können verschiedene Medien gewählt werden, um einen besonders effizienten Betrieb des Plasmakopfes zu gewährleisten.In particular, it can also be provided that a liquid, a gas, compressed air, the process gas or a mixture of these substances is used for active temperature control, preferably cooling, of the plasma head as a medium. Depending on the temperature and requirements for the plasma to be generated various media are selected to ensure a particularly efficient operation of the plasma head.
Ein weiteres Ausführungsbeispiel der vorliegenden Erfindung kann es vorsehen, dass für die aktive Temperierung, vorzugsweise Kühlung, des Plasmakopfes das Medium durch das Gehäuse, vorzugsweise durch eine Wandung des Gehäuses, des Plasmakopfes, insbesondere durch einen Kanal in der Wandung, des Plasmakopfes geleitet wird. Dieses Durchleiten des Mediums kann durch ein Ventil geregelt werden, sodass der Durchfluss in Abhängigkeit von der Temperatur des Plasmakopfes erfolgt.A further embodiment of the present invention may provide that for the active temperature control, preferably cooling, of the plasma head, the medium is passed through the housing, preferably through a wall of the housing, the plasma head, in particular through a channel in the wall of the plasma head. This passage of the medium can be regulated by a valve, so that the flow occurs as a function of the temperature of the plasma head.
Bevorzugt kann es die vorliegende Erfindung weiter vorsehen, dass für die aktive Temperierung das durch die Wandung geführte Medium vortemperiert und/oder unter einem vorbestimmten Druck durch die Wandung geführt wird. Dazu kann es vorgesehen sein, dass in dem Plasmakopf ein Temperatursensor angeordnet ist, welcher die Temperatur misst und an eine Steuereinheit überträgt, welche das Medium dementsprechend vorkühlt oder erhitzt. Neben der Temperatur des Mediums lässt sich auch der Druck variieren. So kann beispielsweise bei einer großen Menge abzuführender thermischer Energie der Druck des Mediums zum Temperieren des Plasmakopfes erhöht werden. Durch Erhöhung des Druckes des Mediums wird der Durchfluss erhöht, sodass die aufzunehmende thermische Energie pro Zeiteinheit vergrößert wird. Gleichermaßen kann der Druck des Mediums, mit dem dieses durch den Kanal geführt wird, reduziert werden, wenn nur eine geringe Menge thermische Energie aus dem Plasmakopf abgeführt werden muss. Durch dieses Vortemperieren sowie Variieren des Druckes lässt sich ein besonders effizienter und somit zuverlässiger wie auch stabiler Betrieb des Plasmakopfes gewährleisten.Preferably, the present invention can further provide that, for the active temperature control, the medium guided through the wall is pre-tempered and / or guided through the wall at a predetermined pressure. For this purpose, provision may be made for a temperature sensor to be arranged in the plasma head which measures the temperature and transmits it to a control unit which accordingly pre-cools or heats the medium. In addition to the temperature of the medium, the pressure can also vary. Thus, for example, in the case of a large amount of thermal energy to be dissipated, the pressure of the medium for tempering the plasma head can be increased. By increasing the pressure of the medium, the flow is increased, so that the thermal energy to be absorbed per unit time is increased. Likewise, the pressure of the medium through which it passes through the channel can be reduced if only a small amount of thermal energy has to be removed from the plasma head. This pre-tempering and varying the pressure can ensure a particularly efficient and thus reliable as well as stable operation of the plasma head.
Außerdem kann es ein weiteres vorteilhaftes Ausführungsbeispiel der vorliegenden Erfindung vorsehen, dass eine Außenseite der Wandung mit dem Medium zum Temperieren des Plasmakopfes beaufschlagt wird. Durch diese Beaufschlagung der Außenseite des Gehäuses bzw. der Wandung mit dem Medium wird eine besonders einfach Art und Weise geschaffen, den Plasmakopf zu kühlen.In addition, it can provide a further advantageous embodiment of the present invention that an outside of the wall is acted upon by the medium for controlling the temperature of the plasma head. By this action on the outside of the housing or the wall with the medium, a particularly simple way is provided to cool the plasma head.
Ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung wird nachfolgend anhand der Zeichnungen näher erläutert. In dieser zeigen:
- Fig. 1
- einen Querschnitt durch einen schematisch dargestellten Plasmakopf,
- Fig. 2
- einen Querschnitt durch eine schematische Darstellung einer Wandung des Plasmakopfes, und
- Fig. 3
- einen Querschnitt durch ein weiteres Ausführungsbeispiel eines Plasmakopfes.
- Fig. 1
- a cross section through a schematically illustrated plasma head,
- Fig. 2
- a cross-section through a schematic representation of a wall of the plasma head, and
- Fig. 3
- a cross section through another embodiment of a plasma head.
Ein Ausführungsbeispiel eines erfindungsgemäßen Plasmakopfes 10 ist in der
Die Plasmadüse 13 weist eine Elektrode 16 auf, welche mit dem Transformator 12 gekoppelt ist. Diese nadelförmige Elektrode 16 weist mit ihrer Spitze in Richtung einer als Ausgang für das Plasma dienenden Ringelektrode 17. Durch einen Prozessgaseinlass 18 wird Prozessgas in das Düsenvolumen 19 geleitet. Das Prozessgas ist hier schematisch als Pfeil 20 dargestellt. In der Realität wird das Düsenvolumen 19 nahezu homogen von einem permanenten Fluss des Prozessgases 18 gefüllt.The
Durch eine elektrische Entladung zwischen der Elektrode 16 und der Ringelektrode 17 kommt es zu einer hier symbolisch als Blitz 21 dargestellten Ionisierung des Prozessgases. Das ionisierte Gas verlässt die Plasmadüse 13 durch die Ringelektrode 17 als Plasmastrahl 22 bzw. als Plasmaflamme.By means of an electrical discharge between the
In der Wandung 23 des Plasmakopfes 10 ist mindestens ein Kanal 24 ausgebildet. Dieser Kanal 24 erstreckt sich bei dem hier dargestellten Ausführungsbeispiel mäanderförmig durch die gesamte Wandung 23. In
Das durchströmende Medium, bei dem es sich um ein Gas oder eine Flüssigkeit handeln kann, führt die durch den Transformator 12 entwickelte Wärme ab. Ein besonders bevorzugtes Ausführungsbeispiel der Erfindung sieht es vor, dass es sich bei dem Medium um das Prozessgas handelt. Dieses Prozessgas wird nachdem es den Kanal 24 durchströmt und Wärmeenergie des Transformators 12 aufgenommen hat, durch ein hier gestrichelt dargestelltes Verbindungsmittel 28 durch den Prozessgaseinlass 18 in das Düsenvolumen 19 geleitet. Bei dem Verbindungsmittel 18 kann es sich beispielsweise um einen Schlauch oder ein kurzes Rohrstück handeln. Dieses Verbindungsmittel 18 kann auch in dem Gehäuse 11 oder dem Plasmakopf 10 integriert sein. Der Kanal 24 ist in das Gehäuse 11 bzw. in die Wandung 23 integriert.The flowing medium, which may be a gas or a liquid, dissipates the heat developed by the
In Abhängigkeit von der Größe bzw. Bauform oder der von dem Transformator 12 entwickelten thermischen Energie können unterschiedliche Medien als Kühlmittel benutzt werden. Darüber hinaus, ist es denkbar, dass in Abhängigkeit von der entwickelten thermischen Energie das Prozessgas vorgekühlt wird oder mit einem erhöhten Druck in den Kanal 24 eingelassen wird. Dazu dient erfindungsgemäß eine nicht dargestellte Steuereinrichtung, die über einen ebenfalls nicht dargestellten Temperatursensor in dem Plasmakopf 10 die Temperatur im Plasmakopf 10 ermittelt und den Zufluss des Prozessgases im Kanal 24 entsprechend steuert.Depending on the size or design or the thermal energy developed by the
Neben der in den
Neben den hier dargestellten Ausführungsbeispielen ist es außerdem denkbar, dass die Wandung 23 auf seiner Außenseite 31 nicht dargestellte Kühlkörper wie beispielsweise Kühlrippen zugeordnet sind. Durch diese Kühlrippen, die beispielsweise ebenfalls mit einem Medium zum Kühlung umströmt werden können, wird ebenfalls die thermische Energie des Transformators 12 effektiv aus dem Plasmakopf 10 abgeleitet.In addition to the embodiments shown here, it is also conceivable that the
- 1010
- Plasmakopfplasma head
- 1111
- Gehäusecasing
- 1212
- Transformatortransformer
- 1313
- Plasmadüseplasma nozzle
- 1414
- Isolatorinsulator
- 1515
- Spannungsquellevoltage source
- 1616
- Elektrodeelectrode
- 1717
- Ringelektrodering electrode
- 1818
- ProzessgaseinlassProcess gas inlet
- 1919
- Düsenvolumennozzle volume
- 2020
- Pfeilarrow
- 2121
- Blitzlightning
- 2222
- Plasmastrahlplasma jet
- 2323
- Wandungwall
- 2424
- Kanalchannel
- 2525
- Einlassinlet
- 2626
- Auslassoutlet
- 2727
- Pfeilarrow
- 2828
- Verbindungsmittelconnecting means
- 2929
- MasseDimensions
- 3030
- Kanalchannel
- 3131
- Außenseiteoutside
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201731291T SI3291651T1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
RS20230008A RS63874B1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016010619.0A DE102016010619A1 (en) | 2016-09-05 | 2016-09-05 | Apparatus and method for generating an atmospheric plasma |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3291651A1 true EP3291651A1 (en) | 2018-03-07 |
EP3291651B1 EP3291651B1 (en) | 2022-10-12 |
Family
ID=59558156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17001337.9A Active EP3291651B1 (en) | 2016-09-05 | 2017-08-04 | Device and method for creating atmospheric plasma |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP3291651B1 (en) |
DE (1) | DE102016010619A1 (en) |
DK (1) | DK3291651T3 (en) |
ES (1) | ES2935577T3 (en) |
FI (1) | FI3291651T3 (en) |
HU (1) | HUE061142T2 (en) |
PL (1) | PL3291651T3 (en) |
PT (1) | PT3291651T (en) |
RS (1) | RS63874B1 (en) |
SI (1) | SI3291651T1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5247152A (en) * | 1991-02-25 | 1993-09-21 | Blankenship George D | Plasma torch with improved cooling |
DE19900128A1 (en) * | 1998-12-21 | 2000-06-29 | Sulzer Metco Ag Wohlen | Nozzle and nozzle arrangement for a burner head of a plasma spraying device |
US20150054405A1 (en) * | 2012-05-04 | 2015-02-26 | Reinhausen Plasma Gmbh | Plasma generating device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD83890A1 (en) | 1970-05-27 | 1971-08-12 | Cooling medium guide for burner | |
CN1217561C (en) | 2000-04-10 | 2005-08-31 | 特乔尼科斯有限公司 | Twin plasma torch apparatus |
AT503646B1 (en) | 2006-09-15 | 2007-12-15 | Fronius Int Gmbh | Water vapor plasma burner for cutting a workpiece, comprises a feed line for a liquid, a heating device, an evaporator for forming a gas from the liquid, a cathode detachably connected to a movably mounted piston rod, and a nozzle |
DE102009028190A1 (en) | 2009-08-03 | 2011-02-10 | Leibniz-Institut für Plasmaforschung und Technologie e.V. | Cold plasma beam producing device i.e. plasma hand-held device, for microplasma treatment of materials for e.g. cosmetic purpose, has high frequency-generator, coil, body and high voltage-electrode integrally arranged in metal housing |
DE102013100617B4 (en) | 2013-01-22 | 2016-08-25 | Epcos Ag | Device for generating a plasma and handheld device with the device |
DE202015001278U1 (en) | 2015-02-16 | 2016-05-19 | Abc-Coron Gmbh | coater |
-
2016
- 2016-09-05 DE DE102016010619.0A patent/DE102016010619A1/en active Pending
-
2017
- 2017-08-04 FI FIEP17001337.9T patent/FI3291651T3/en active
- 2017-08-04 ES ES17001337T patent/ES2935577T3/en active Active
- 2017-08-04 DK DK17001337.9T patent/DK3291651T3/en active
- 2017-08-04 HU HUE17001337A patent/HUE061142T2/en unknown
- 2017-08-04 EP EP17001337.9A patent/EP3291651B1/en active Active
- 2017-08-04 RS RS20230008A patent/RS63874B1/en unknown
- 2017-08-04 PL PL17001337.9T patent/PL3291651T3/en unknown
- 2017-08-04 PT PT170013379T patent/PT3291651T/en unknown
- 2017-08-04 SI SI201731291T patent/SI3291651T1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5247152A (en) * | 1991-02-25 | 1993-09-21 | Blankenship George D | Plasma torch with improved cooling |
DE19900128A1 (en) * | 1998-12-21 | 2000-06-29 | Sulzer Metco Ag Wohlen | Nozzle and nozzle arrangement for a burner head of a plasma spraying device |
US20150054405A1 (en) * | 2012-05-04 | 2015-02-26 | Reinhausen Plasma Gmbh | Plasma generating device |
Also Published As
Publication number | Publication date |
---|---|
ES2935577T3 (en) | 2023-03-08 |
DE102016010619A1 (en) | 2018-03-08 |
RS63874B1 (en) | 2023-02-28 |
EP3291651B1 (en) | 2022-10-12 |
SI3291651T1 (en) | 2023-07-31 |
PT3291651T (en) | 2023-01-16 |
HUE061142T2 (en) | 2023-05-28 |
FI3291651T3 (en) | 2023-01-31 |
PL3291651T3 (en) | 2023-07-03 |
DK3291651T3 (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1547099B1 (en) | Radiation device and method for its operation | |
EP2825715A2 (en) | Method and apparatus for introducing or sinking cavities in rock | |
EP2907527A1 (en) | Operating method for an irradiation device | |
EP2168409B1 (en) | Apparatus for generating a plasma jet | |
DE102013010907A1 (en) | An electric heater and a method of manufacturing an electric heater | |
DE1496444A1 (en) | Method and device for hardening and cooling glass | |
EP2312255B1 (en) | Method and device for cleaning heating surfaces of a heat exchanger charged with flue gas in a combustion assembly during the operation of same | |
DE102009000201B4 (en) | Charging rack and quenching device with charging rack | |
EP3291651B1 (en) | Device and method for creating atmospheric plasma | |
AT521541B1 (en) | Process for heating a medium | |
DE102010007984A1 (en) | Forming and cooling device for a flowable, melted food mass | |
EP2052830A2 (en) | Method for heating an extruded plastic profile by means of infrared radiation | |
DE102010051047A1 (en) | Method for tempering a mold | |
EP1923188A1 (en) | Device for generating particles | |
EP2192366B1 (en) | Device for radiating a substrate | |
DE102010030141A1 (en) | Gas laser and operating method therefor | |
EP2589909A2 (en) | Device for heating or drying of elongated materials | |
DE2808210A1 (en) | Air flow heating appts. - has sloping heating elements spaced apart on vertical supports with spacings in direction of flow | |
DE10136501C1 (en) | Substrate heating device using electromagnetic radiation has cooling medium feed with integrated flow channel directing cooling medium onto substrate outside heated area | |
DE102014112968A1 (en) | Method for hardening a hollow profile and hardening tool | |
DE102015104036A1 (en) | Cooking appliance, in particular oven | |
EP1785206A1 (en) | Method and apparatus for cooling a continuous casting mould by steam | |
EP1119888A1 (en) | Gas laser | |
DE68906118T2 (en) | Coupling device for gas lasers. | |
WO2019002052A1 (en) | Apparatus for pasteurizing an amount of ice cream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180904 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20211001 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05H 1/36 20060101ALI20220331BHEP Ipc: H05H 1/28 20060101AFI20220331BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VEDANTHA, SUDARSAN Inventor name: HELLINGER, ANDRE Inventor name: KUNZ, MANUEL |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017013920 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1524965 Country of ref document: AT Kind code of ref document: T Effective date: 20221115 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3291651 Country of ref document: PT Date of ref document: 20230116 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20230110 Ref country code: DK Ref legal event code: T3 Effective date: 20230112 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 40985 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2935577 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230112 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E061142 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230509 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017013920 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
26N | No opposition filed |
Effective date: 20230713 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20230726 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20240815 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 8 Ref country code: FI Payment date: 20240820 Year of fee payment: 8 Ref country code: IE Payment date: 20240816 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240822 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 8 Ref country code: PT Payment date: 20240829 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240820 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240819 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240828 Year of fee payment: 8 Ref country code: HU Payment date: 20240829 Year of fee payment: 8 Ref country code: SI Payment date: 20240822 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RS Payment date: 20240828 Year of fee payment: 8 Ref country code: IT Payment date: 20240830 Year of fee payment: 8 Ref country code: SE Payment date: 20240821 Year of fee payment: 8 |