EP3289221B1 - Fluidpumpe - Google Patents

Fluidpumpe Download PDF

Info

Publication number
EP3289221B1
EP3289221B1 EP16719085.9A EP16719085A EP3289221B1 EP 3289221 B1 EP3289221 B1 EP 3289221B1 EP 16719085 A EP16719085 A EP 16719085A EP 3289221 B1 EP3289221 B1 EP 3289221B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump
combination
stator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16719085.9A
Other languages
English (en)
French (fr)
Other versions
EP3289221A1 (de
Inventor
Nils BORNEMANN
Stefan TILLER
Antonio Casellas
Ümit Aydin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Powder Metallurgy Engineering GmbH
Original Assignee
GKN Sinter Metals Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Sinter Metals Engineering GmbH filed Critical GKN Sinter Metals Engineering GmbH
Publication of EP3289221A1 publication Critical patent/EP3289221A1/de
Application granted granted Critical
Publication of EP3289221B1 publication Critical patent/EP3289221B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor

Definitions

  • the present invention relates to a fluid pump which is driven by an electric motor, a pump rotor being coupled to the electric motor.
  • WO 2006/021616 A1 is an electric machine with an axial electric motor.
  • a rotor of the electric machine is arranged between two laterally arranged stators and has guide elements along its circumference that are embedded in a non-ferromagnetic material of the rotor.
  • the object of the present invention is to provide a particularly leak-proof fluid machine that can safely transport different media, in particular aggressive media.
  • a fluid pump is proposed, driven by an electric motor which is coupled to a pump rotor of the fluid pump, the electric motor being an axial flux electric motor, the electric motor rotor of which is also the pump rotor and the pump rotor and the electric motor rotor housed in a common housing are, in which the pump rotor and the electric motor rotor rotates integrated like a disk as a combination rotor, the common housing having a fluid inlet and a fluid outlet to the combination rotor.
  • a pump chamber and magnets of the electric motor that are axially aligned to the axis of rotation are arranged. This allows the formation of field lines in the axial direction, so that a torque can be impressed on the combination rotor.
  • a multiplicity of axially aligned magnets are distributed along a circumference of the combination rotor in the combination rotor.
  • the magnets can be close to or close to an outer circumference be arranged on an inner circumference of the combination rotor.
  • soft magnetic elements can also be used. Therefore, if magnets are used in the following, the relevant explanations also apply to the use of soft magnetic elements, such as those used in a reluctance motor, for example.
  • the magnets or soft magnetic elements can have different geometries. They can be shaped as cylindrical disks, as pie-shaped sections or in any other geometry. These can also result in a closed ring which forms part of the combination rotor.
  • At least one stator of the electric motor is arranged at the end of the combination rotor, cores of the stator aligned axially parallel to the rotor axis of rotation having at least in part a soft magnetic material.
  • a multiplicity of cores, preferably at least five cores, are arranged in an axially aligned manner distributed around the circumference.
  • a first stator of the axial flux motor frames the combination rotor on a first end face and a second stator of the axial flux motor frames the combination rotor on a second end face of the common housing opposite the first end face.
  • a further development (not according to the invention) provides that cores of the first stator and of the second stator lie exactly opposite one another, axially parallel to the rotor axis of rotation.
  • This arrangement has the advantage, for example, of the direct amplification of the respective acting electromagnetic forces.
  • An embodiment according to the invention provides that the cores of the first stator and the second stator are offset from one another, axially parallel to the rotor axis of rotation. In this way, for example, field lines distributed axially around the circumference can be generated.
  • the common housing has an amagnetic material at least in an area between the rotating combination rotor and the cores of the stator. As a result, the necessary formation of the electromagnetic field for generating a torque on the combination rotor is not or only slightly disturbed.
  • a pump chamber is closed off in the common housing and a fluid inflow and / or a fluid outflow to the pump chamber is preferably carried out axially along the axis of rotation, particularly preferably by the electric motor.
  • the combination rotor has a co-rotating pump wheel, a shaft of the combination rotor being arranged and mounted within the common housing.
  • the combination rotor rotates about an axis of rotation in the common housing, a co-rotating pump wheel being seated on the axis of rotation.
  • the combination rotor and the pump wheel can have the same axis of rotation or each use different axes of rotation arranged parallel to one another.
  • Another embodiment again provides that a first and a second end of the shaft or the axis of rotation of the combination rotor each end in the common housing.
  • the common housing preferably has only static seals, but no seal due to a relative movement between a fixed part of the common housing and a component that is moved outward and moved for it. Rather, a component that is movable relative to the common housing, such as a shaft, can be dispensed with.
  • An axle for the combination rotor can, for example, be guided out of the common housing on at least one side. If an aggressive fluid is to be conveyed by means of the fluid pump, for example dispensing with a dynamically stressed seal allows a longer service life of the fluid pump.
  • a further development of the method provides that the cores of the stator are pressed and manufactured from a soft magnetic material.
  • the common housing is also produced by means of a cup-shaped first component and a side cover to be attached to it as the second component.
  • a bearing for a shaft of the combination rotor can be provided in a base of the first component, the counterpart of which is arranged, for example, in the side cover.
  • Axial bearings, but also axial / radial bearings, in particular roller bearings, can preferably be used. It is preferred to use bearings that have been lubricated for life.
  • Fig. 1 shows a first view of a fluid pump 1 in an assembled state.
  • An inner housing 2 is connected to a first and a second side cover 3, 4, preferably connected releasably in a repeatable manner. This can be done, for example, by screwing through holes 5. These are distributed around the circumference, which enables a pump chamber in the inner housing 2 to be sealed off.
  • the first and the second side covers 3, 4 have stator cores 6 which are each aligned axially with respect to a rotor axis in the interior of the inner housing 2.
  • the stator cores 6 are each wound with a winding so that an electromagnetic field can be generated.
  • a circuit board can be arranged on a cover 7, by means of which the respective windings can be interconnected and controlled.
  • a liquid can be fed centrally via a feed as a fluid inflow 8.
  • a fluid is supplied or discharged from the side.
  • Fig. 2 shows in an exemplary embodiment an inner housing 2 with an internally arranged Combination rotor 9.
  • the combination rotor rotates in the inner housing 2.
  • the combination rotor 9 can have recesses 10 into which, for example, magnets or soft magnetic elements can be inserted.
  • a pump chamber 11 is located in an interior of the combination rotor 9.
  • a gerotor 12 is located in the pump chamber.
  • a gerotor instead of a gerotor as a fluid pump, an impeller pump, a vane pump, a P-rotor, a roller cell pump, a rotary vane pump or a radial piston pump can also be used in the inner housing 2 be arranged.
  • the respective pump wheel can either be part of the combination rotor or, as in the gerotor shown, be arranged on an axis and therefore also rotate.
  • permanent magnets as an axial flux electric motor, a permanently excited synchronous or brushless direct current motor, abbreviated BLDC, can be formed, while, for example, a reluctance motor can be created as an electric motor in an axial design using soft magnetic elements.
  • a stator which is arranged here because of its position on the back of the inner housing 2 shown, can have a soft magnetic material, for example a soft magnetic composite, abbreviated to SMC, or a combination of electrical steel sheets and SMC.
  • FIG. 11 shows a sectional view of the fluid pump 1 from FIG Fig. 1 in a sectional view.
  • the inner housing 2 together with the respective first and second side covers 3, 4 form a sealed, common housing 14 in which a pump wheel is driven by means of the combination rotor 9.
  • the illustration shows the disk-like geometry of the combination rotor 9.
  • the common housing 14 has the axially arranged fluid inflow 8 and a fluid outflow 15 arranged axially opposite.
  • the fluid inflow 8 can lead a fluid to the pump wheel, in this case to the gerotor, by means of a lateral recess in the second side cover.
  • the fluid outflow 15 can open into the pump space opposite or, as in the case of some types of pumps, offset for this purpose. Radial fluid guidance is also possible.
  • Fig. 4 shows the second side cover 4 from Fig. 1 with attached connection piece 16 from a side perspective.
  • the connecting pieces 16 allow, for example, the screwing or fastening of the axial pump formed in this way in an installation space, for example a car engine compartment.
  • Fig. 5 shows the second side cover 4 from Fig. 1 in another perspective.
  • Two orifices 17 are shown, through which fluid can flow to and from the pump chamber.
  • At least one non-magnetic material is provided as the material in a region of the side cover which is opposite the stator cores (not shown).
  • the area that is swept over by the combination rotor is made of non-magnetic material.
  • the non-magnetic material is preferably also electrically non-conductive.
  • an amagnetic metal can also be used.
  • the side cover can be manufactured, for example, as an injection-molded part or as a sintered component. Different materials can also be used.
  • One embodiment provides that the side cover 4 is produced together with the stator cores.
  • a sintering process can be used, for example from the DE 10 2009 042 598 A1 and the JP H08-134509 A is apparent, to which reference is made in this regard in the context of the disclosure. While from the DE 10 2009 042 598 A1 and the JP H08-134509 A shows how, for example, the same or different sintered materials can be produced with one another, goes from the DE 10 2009 042 603 A1 shows how prefabricated components can be precisely incorporated into a component to be sintered.
  • stator with, for example, prefabricated stator cores made of, for example, sintered material, as well as when using electrical steel sheets as soft magnetic elements in the combination rotor to manufacture a reluctance motor.
  • Magnets can also be introduced in this way, whereby these are preferably only inserted after sintering due to the temperatures during sintering.
  • Fig. 6 shows in an exemplary embodiment a second version of a further, third side cover 18.
  • the third side cover 18 has, for example, soft magnetic poles 19, which are preferably made from soft magnetic composites. For example, as shown, these can extend to a surface and thus also form a border of the inner housing.
  • soft magnetic poles 19 which are preferably made from soft magnetic composites.
  • these can extend to a surface and thus also form a border of the inner housing.
  • Such a structure has the advantage that the side cover can otherwise be made from non-magnetic metal, for example from metallic powder by means of a sintering process.
  • the proposed fluid pump can be used in different areas of application get used. Liquids of the most varied types such as Newtonian fluids or Bingham fluids as well as gases can be transported. The use can include a wide variety of areas such as the chemical industry, the food industry, use in machines and systems or in the vehicle, aircraft and shipping sectors.
  • the fluids can include alkalis or acids, have a corrosive effect, be cooled or heated.
  • Oil pump in an internal combustion engine Circulation pump, for example in a cooling circuit or in the heating area; as a circulation pump, for example in drinking water systems; Lubricant pump; as a hydraulic clutch actuator; in fuel delivery; in the case of the injection system in the area of the common rail in the case of gasoline or diesel direct injection; as an air conditioning compressor; as a vacuum pump; as a servo pump, for example in the area of power steering assistance; in the brake booster; in transmissions, in particular automatic transmissions, for example for cooling, for maintaining a pressure, as a suction pump; in the field of aquariums; with PC and server cooling such as water cooling; in medical technology, for example in a dialysis machine, an infusion pump, an insulin pump; in exhaust gas aftertreatment, for example when adding urea; as a vent pump; with brake boosters, when filling pneumatic actuators; with active trolleys; in windshield and headlight cleaning systems; in washing facilities; as a submersible pump; as a drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Fluidpumpe, die mit einem Elektromotor angetrieben wird, wobei ein Pumpenrotor mit dem Elektromotor gekoppelt ist.
  • Aus der WO 2006/021616 A1 ist eine Elektromaschine mit einem axialen Elektromotor hervorgehend. Zwischen zwei jeweils seitlich angeordneten Statoren ist ein Rotor der Elektromaschine angeordnet, der entlang seines Umfangs Leitelemente aufweist, die in einem nicht-ferromagnetischen Material des Rotors eingebettet sind.
  • Aus der US H1966 H ist ein Axialflussmotor mit zwei Statoren und einem dazwischen angeordneten Rotor bekannt, wobei innerhalb des Rotors ein Zahnrad einer Pumpe angeordnet ist.
  • Aus der US 5,145,329 A ist ein Axialflussmotor mit zwei Statoren und einem dazwischen angeordneten Rotor bekannt, wobei innerhalb des Rotors eine Zahnradpaarung einer Gerotor-Pumpe angeordnet ist.
  • Aufgabe der vorliegenden Erfindung ist es, eine besonders dichte Fluidmaschine zur Verfügung zu stellen, die unterschiedliche Medien, insbesondere auch aggressive Medien sicher transportieren kann.
  • Diese Aufgabe wird mit einer Fluidpumpe mit den Merkmalen des Anspruchs 1 und mit einem Verfahren mit den Merkmalen des Anspruchs 13 gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen gehen aus den nachfolgenden Unteransprüchen, Beschreibung und Figuren hervor. Die einzelnen Merkmale einzelner Ausgestaltungen sind jedoch nicht auf diese beschränkt. Vielmehr können ein oder mehrerer Merkmale aus ein oder mehreren Ausgestaltungen mit ein oder mehreren Merkmalen einer anderen Ausgestaltung verknüpft werden. Des Weiteren ist die Formulierung der beiden unabhängigen Ansprüche jeweils ein erster Versuch, den Erfindungsgegenstand zu beschreiben. Die Erfindung selbst geht aus der gesamten Offenbarung hervor, weswegen auch ein oder mehrere Merkmale der unabhängigen Ansprüche ergänzt, ersetzt oder auch gestrichen werden können.
  • Es wird eine Fluidpumpe vorgeschlagen, angetrieben mit einem Elektromotor, der mit einem Pumpenrotor der Fluidpumpe gekoppelt ist, wobei der Elektromotor ein Axialfluss-Elektromotor ist, dessen Elektromotor-Rotor auch der Pumpenrotor ist und der Pumpenrotor und der Elektromotor-Rotor in einem gemeinsamen Gehäuse untergebracht sind, in dem der Pumpenrotor und der Elektromotor-Rotor scheibenformartig als Kombinationsrotor integriert sich dreht, wobei das gemeinsame Gehäuse einen Fluidzu- und einen Fluidabfluss zu dem Kombinationsrotor aufweist.
  • Gemäß einer Weiterbildung ist vorgesehen, dass ausgehend von einer Drehachse des Kombinationsrotors, in einer radialen Richtung betrachtet, ein Pumpenraum und axial zur Drehachse ausgerichtete Magnete des Elektromotors angeordnet sind. Dieses erlaubt das Ausbilden von Feldlinien in axialer Richtung, so dass ein Drehmoment auf den Kombinationsrotor aufgeprägt werden kann.
  • Eine Ausgestaltung sieht vor, dass im Kombinationsrotor eine Vielzahl an axial ausgerichteten Magneten entlang eines Umfangs des Kombinationsrotors verteilt sind. Die Magnete können hierbei nahe an einem Außenumfang oder auch nahe an einem Innenumfang des Kombinationsrotors angeordnet sein. Alternativ zu den Magneten können auch weichmagnetische Elemente zum Einsatz kommen. Wird daher im Folgenden von Magneten gesprochen, gelten die diesbezüglichen Ausführungen ebenso für die Nutzung von weichmagnetischen Elementen, wie sie zum Beispiel bei einem Reluktanzmotor eingesetzt werden. Die Magnete bzw. weichmagnetischen Elemente können unterschiedliche Geometrien aufweisen. Sie können als zylindrische Scheiben geformt sein, als Kuchenteil-förmige Abschnitte oder in sonstiger Geometrie. Auch können diese einen geschlossenen Ring ergeben, der einen Teil des Kombinationsrotors bildet.
  • Beispielswiese ist vorgesehen, dass zumindest ein Stator des Elektromotors stirnseitig zu dem Kombinationsrotor angeordnet ist, wobei zur Rotordrehachse achsparallel ausgerichtete Kerne des Stators zumindest zum Teil ein weichmagnetisches Material aufweisen. Eine Vielzahl an Kernen, bevorzugt mindestens fünf Kerne, sind um den Umfang verteilt axial ausgerichtet angeordnet.
  • Erfindungsgemäß ist es, dass ein erster Stator des Axialflussmotors den Kombinationsrotor an einer ersten Stirnseite und ein zweiter Stator des Axialflussmotors den Kombinationsrotor an einer zur ersten Stirnseite entgegengesetzten zweiten Stirnseite des gemeinsamen Gehäuses einrahmen. Dieses erlaubt einerseits eine besonders kompakte Bauform. Zum anderen erlaubt dieses auch die Erzeugung eines stärkeren Drehmoments.
  • Eine (nicht erfindungsgemäße) Weiterbildung sieht vor, dass Kerne des ersten Stators und des zweiten Stators einander achsparallel zur Rotordrehachse genau gegenüber liegen. Diese Anordnung hat zum Beispiel den Vorteil der direkten Verstärkung der jeweiligen wirkenden elektromagnetischen Kräfte.
  • Eine erfindungsgemäße Ausgestaltung sieht vor, dass Kerne des ersten Stators und des zweiten Stators versetzt zueinander achsparallel zur Rotordrehachse gegenüber liegen. Auf diese Weise können zum Beispiel breiter axial um den Umfang verteilte Feldlinien erzeugt werden.
  • Bevorzugt ist es, wenn das gemeinsame Gehäuse zumindest in einem Bereich zwischen dem rotierenden Kombinationsrotor und den Kernen des Stators ein amagnetisches Material aufweist. Dadurch wird die notwendige Ausbildung des elektromagnetischen Feldes zur Erzeugung eines Drehmoments am Kombinationsrotor nicht oder nur gering gestört.
  • Weiterhin ist es bevorzugt, dass ein Pumpenraum im gemeinsamen Gehäuse abgeschlossen ist und ein Fluidzu- und/oder ein Fluidabfluss zu dem Pumpenraum bevorzugt axial entlang der Rotationsachse erfolgt, insbesondere bevorzugt durch den Elektromotor erfolgt.
  • Beispielsweise kann vorgesehen sein, dass der Kombinationsrotor ein mitdrehendes Pumpenrad aufweist, wobei eine Welle des Kombinationsrotors innerhalb des gemeinsamen Gehäuses angeordnet und gelagert ist.
  • Eine Ausgestaltung sieht vor, dass der Kombinationsrotor sich um eine Drehachse in dem gemeinsamen Gehäuse dreht, wobei auf der Drehachse ein mitrotierendes Pumpenrad sitzt. Es können der Kombinationsrotor und das Pumpenrad die gleiche Drehachse aufweisen oder jeweils verschiedene, parallel zueinander angeordnete Drehachsen nutzen.
  • Eine weitere Ausgestaltung sieht wiederum vor, dass ein erstes und ein zweites Ende der Welle bzw. der Drehachse des Kombinationsrotors jeweils in dem gemeinsamen Gehäuse enden.
  • Bevorzugt weist das gemeinsame Gehäuse nur statische Dichtungen auf, hingegen jedoch keine Dichtung aufgrund einer Relativbewegung zwischen einem feststehenden Teil des gemeinsamen Gehäuses und einem nach außen geführten, dazu bewegtem Bauteil. Vielmehr kann auf ein relativ zum gemeinsamen Gehäuse bewegliches Bauteil wie eine Welle verzichtet werden. Eine Achse für den Kombinationsrotor kann zum Beispiel zumindest an einer Seite aus dem gemeinsamen Gehäuse geführt werden. Soll ein aggressives Fluid mittels der Fluidpumpe gefördert werden, erlaubt zum Beispiel der Verzicht auf eine dynamisch beanspruchte Dichtung eine höhere Lebensdauer der Fluidpumpe.
  • Gemäß einem weiteren Gedanken der Erfindung, der zusammen mit der oben wie auch nachfolgend beschriebenen Fluidpumpe zum Einsatz kommt, wird ein Verfahren zum Herstellen einer Fluidpumpe mit den folgenden Schritten vorgeschlagen:
    • Herstellen eines Kombinationsrotors als Pumpen- und ein Elektromotor-Rotor in Scheibenbauart mit axialem Anordnen von Magneten bzw. weichmagnetischen Elementen im Kombinationsrotor,
    • Einsetzen des Kombinationsrotors in einen Außenring,
    • Einsetzen einer Welle bzw. Achse,
    • seitliches Anbringen von zumindest einer Seitenwand an den Außenring zum fluiddichten Abdichten des Kombinationsrotors unter Aufnahme eines Endes der Welle bzw. Achse in die Seitenwand
    • seitliches Anbringen von zumindest einem Stator eines Elektromotors an die Seitenwand zum Antrieb des Kombinationsrotors in dem mittels zumindest Außenring und Seitenwand gebildeten gemeinsamen Gehäuses, wobei Kerne des Stators achsparallel zur Rotationsachse des Kombinationsrotors angeordnet werden.
  • Eine Weiterbildung des Verfahrens sieht vor, dass die Kerne des Stators aus einem weichmagnetischen Material verpresst und hergestellt werden.
  • Es besteht die Möglichkeit, dass das gemeinsame Gehäuse auch mittels eines topfförmigen ersten Bauteils und einem darauf zu befestigendem Seitendeckel als zweitem Bauteil hergestellt wird. Dadurch kann in einem Boden des ersten Bauteils eine Lagerung für eine Welle des Kombinationsrotors vorgesehen, deren Gegenstück beispielsweise in dem Seitendeckel angeordnet ist. Vorzugsweise können Axiallager, aber auch Axial/Radiallager zum Einsatz kommen, insbesondere Wälzlager. Vorzugsweise werden Lager verwendet, die eine Lebensdauerschmierung aufweisen.
  • Die nachfolgenden Figuren zeigen in beispielhafter Weise verschiedene Ausgestaltungen der Erfindung zur beispielhaften Darstellung, ohne dass damit die Erfindung beschränkt sein soll. Vielmehr können ein oder mehrere Merkmale aus einer Ausgestaltung mit anderen Merkmalen aus der Beschreibung wie auch aus den anderen Figuren zu weiteren Ausgestaltungen, auch nicht näher figürlich dargestellten Ausgestaltungen verknüpft werden. Es zeigen:
    • Fig. 1 eine beispielhafte Ausgestaltung einer Fluidpumpe,
    • Fig. 2 eine Innenansicht auf die Fluidpumpe aus Fig. 1,
    • Fig. 3 eine Schnittansicht der Fluidpumpe aus Fig. 1
    • Fig. 4 eine Schrägansicht auf einen Seitendeckel mit eingelassenen Anschlussstutzen,
    • Fig. 5 eine weitere Schrägansicht auf den Seitendeckel aus Fig. 4, und
    • Fig. 6 eine weitere Ausgestaltung einer Seitenabdeckung.
  • Fig. 1 zeigt in einer ersten Ansicht eine Fluidpumpe 1 in einem zusammengebauten Zustand. Ein Innengehäuse 2 ist mit einem ersten und einem zweiten Seitendeckel 3, 4 verbunden, vorzugsweise wiederholbar lösbar verbunden. Dieses kann zum Beispiel mittels Verschraubung durch Löcher 5 erfolgen. Diese sind um den Umfang herum verteilt, wodurch eine Abdichtung einer Pumpenkammer im Innengehäuse 2 ermöglicht wird. Der erste und der zweite Seitendeckel 3, 4 weisen Statorkerne 6 auf, die jeweils axial verlaufend zu einer Rotorachse im Inneren des Innengehäuses 2 ausgerichtet sind. Die Statorkerne 6 sind jeweils umwickelt mit einer Wicklung, so dass ein elektromagnetisches Feld erzeugt werden kann. Hierzu ist beispielsweise eine Platine auf einer Abdeckung 7 anordbar, mittels der eine Verschaltung der jeweiligen Wicklungen und Ansteuerung derselben ermöglicht wird. Über die Abdeckung 7 kann zentral zum Beispiel eine Flüssigkeit über eine Zuführung als Fluidzufluss 8 zentral zugeführt werden. Es besteht aber ebenfalls die Möglichkeit, dass ein Fluid seitlich zu- bzw. abgeführt wird.
  • Fig. 2 zeigt in beispielhafter Ausgestaltung ein Innengehäuse 2 mit innen angeordnetem Kombinationsrotor 9. Der Kombinationsrotor dreht sich in dem Innengehäuse 2. Der Kombinationsrotor 9 kann Aussparungen 10 aufweisen, in die zum Beispiel Magnete bzw. weichmagnetische Elemente einsetzbar sind. In einem Innenraum des Kombinationsrotor 9 befindet sind ein Pumpenraum 11. In dem Pumpenraum befindet sich ein Gerotor 12. Anstelle eines Gerotors als Fluidpumpe kann auch eine Flügelradpumpe, eine Flügelzellenpumpe, ein P-Rotor, eine Rollenzellenpumpe, eine Drehschieberpumpe oder auch eine Radialkolbenpumpe im Innengehäuse 2 angeordnet sein. Hierbei kann das jeweilige Pumpenrad entweder Bestandteil des Kombinationsrotors sein oder so wie bei dem dargestellten Gerotor auf einer Achse angeordnet sein und sich darum ebenfalls drehen.
  • Der Kombinationsrotor 9, der gleichzeitig auch der Rotor des Elektromotors ist, kann Permanentmagnete oder auch weichmagnetische Elemente zum Beispiel in den Aussparungen 10 aufweisen. So kann mit Permanentmagneten als Axialfluss-Elektromotor ein permanenterregter Synchron- oder bürstenloser Gleichstrommotor, abgekürzt BLDC, gebildet werden, während beispielsweise mit weichmagnetischen Elementen ein Reluktanzmotor als Elektromotor in axialer Bauweise geschaffen werden kann. Ein Stator, der hier wegen der Lage auf der Rückseite des dargestellten Innengehäuses 2 angeordnet ist, kann ein weichmagnetisches Material aufweisen, zum Beispiel ein Soft Magnetic Composite, abgekürzt SMC, oder ein Kombination aus Elektroblechen und SMC.
  • Eine Innenumfangsfläche 13 des Innengehäuses 2 kann derart feinbearbeitet sein, dass es im Zusammenspiel mit einem Seitendeckel eine Dichtung bildet. Die Innenumfangsfläche 13 kann jedoch auch eine zusätzliche Dichtung aufweisen, die mit einer komplementären Seite des Seitendeckels abdichtend zusammenwirkt. Fig. 3 zeigt eine Schnittansicht der Fluidpumpe 1 aus Fig. 1 in einer Schnittansicht. Das Innengehäuse 2 zusammen mit den jeweiligem ersten und zweiten Seitendeckel 3, 4 bilden ein abgedichtetes, gemeinsames Gehäuse 14, in dem ein Pumpenrad mittels des Kombinationsrotors 9 angetrieben wird. Die Darstellung zeigt die scheibenartige Geometrie des Kombinationsrotors 9. Das gemeinsame Gehäuse 14 weist bei dieser Ausgestaltung den axial angeordneten Fluidzufluss 8 und einen gegenüber axial angeordneten Fluidabfluss 15 auf. Der Fluidzufluss 8 kann hierzu im zweiten Seitendeckel mittels seitlicher Aussparung ein Fluid zum Pumpenrad, in diesem Fall zum Gerotor führen. In dem ersten Seitendeckel 3 kann wiederum gegenüberliegend oder wie bei einigen Pumpenarten versetzt hierzu der Fluidabfluss 15 in den Pumpenraum münden. Eine radiale Fluidführung ist ebenfalls möglich.
  • Fig. 4 zeigt den zweiten Seitendeckel 4 aus Fig. 1 mit aufgesetzten Anschlussstutzen 16 aus einer Seitenperspektive. Die Anschlussstutzen 16 erlauben zum Beispiel das Verschrauben bzw. Befestigen der so gebildeten Axialpumpe in einem Bauraum, zum Beispiel einem PKW-Motorraum.
  • Fig. 5 zeigt den zweiten Seitendeckel 4 aus Fig. 1 in einer weiteren Perspektive. So sind zwei Mündungen 17 dargestellt, über die Fluid zum bzw. vom Pumpenraum fließen kann. In einem Bereich des Seitendeckels, der den nichtdargestellten Statorkernen gegenüberliegt, ist als Material zumindest ein amagnetisches Material vorgesehen. Beispielswiese wird derjenige Bereich, der von dem Kombinationsrotor überstrichen wird, aus amagnetischem Material hergestellt. Bevorzugt ist das amagnetische Material auch elektrisch nichtleitend. So kann neben Keramik, Kunststoff auch ein amagnetisches Metall zum Einsatz kommen. Der Seitendeckelkann zum Beispiel als Spritzgußteil hergestellt werden oder auch als Sinterbauteil. So können auch verschiedene Materialien zum Einsatz kommen. Eine Ausgestaltung sieht vor, dass der Seitendeckel 4 zusammen mit den Statorkernen gemeinsam hergestellt wird. Hierzu kann ein Sinterverfahren zum Einsatz kommen, wie es zum Beispiel aus der DE 10 2009 042 598 A1 und der JP H08-134509 A hervorgeht, auf die diesbezüglich im Rahmen der Offenbarung verwiesen wird. Während aus der DE 10 2009 042 598 A1 und der JP H08-134509 A hervorgehen, wie zum Beispiel gleiche oder auch unterschiedliche Sintermaterialien miteinander produziert werden können, geht aus der DE 10 2009 042 603 A1 hervor, wie vorgefertigte Komponenten in ein zu sinterndes Bauteil genau eingebracht werden können. Letzteres ist zum Beispiel für die Herstellung des Stators mit beispielsweise vorgefertigten Statorkernen aus beispielswiese gesintertem Material möglich wie auch bei der Nutzung von Elektroblechen als weichmagnetische Elemente im Kombinationsrotor zur Herstellung eines Reluktanzmotors. Auch können Magnete auf diese Weise eingebracht werden, wobei diese aufgrund der Temperaturen beim Sintern vorzugsweise auch erst nach dem Sintern eingefügt werden.
  • Fig. 6 zeigt in beispielhafter Ausgestaltung eine zweite Version eines weiteren, dritten Seitendeckels 18. Der dritte Seitendeckel 18 weist beispielweise weichmagnetische Pole 19 auf, die vorzugsweise aus Soft Magnetic Composites hergestellt sind. Diese können zum Beispiel wie dargestellt bis zu einer Oberfläche reichen und somit auch eine Berandung des Innengehäuses bilden. Ein derartiger Aufbau hat den Vorteil, dass der Seitendeckel ansonsten aus amagnetischem Metall hergestellt werden kann, zum Beispiel mittels eines Sinterprozesses aus metallischem Pulver.
  • Die vorgeschlagene Fluidpumpe kann in unterschiedlichen Anwendungsgebieten zum Einsatz gelangen. Es können Flüssigkeiten unterschiedlichster Art wie Newton'sche Fluide oder auch Bingham'sche Fluide wie auch Gase transportiert werden. Die Nutzung kann unterschiedlichste Bereiche umfassen wie die chemische Industrie, die Nahrungsmittelindustrie, die Nutzung in Maschinen und Anlagen oder auch im Fahrzeug-, Flugzeug- und Schifffahrtsbereich. Die Fluide können Laugen oder Säuren umfassen, korrosiv wirken, gekühlt oder erhitzt sein. Nur beispielhaft ohne abschließend zu sein, werden die folgenden Beispiele angeführt:
    Ölpumpe bei einem Verbrennungsmotor; Umwälzpumpe, zum Beispiel bei einem Kühlkreislauf oder auch im Heizungsbereich; als Zirkulationspumpe, zum Beispiel in Trinkwasseranlagen; Schmierstoffpumpe; als hydraulische Kupplungsaktuator; bei der Kraftstoffförderung; bei der Einspritzanlage im Bereich des Common Rail bei der Benzin- oder auch Dieseldirekteinspritzung; als Klimakompressor; als Vakuumpumpe; als Servopumpe, zum Beispiel im Bereich der Lenkkraftunterstützung; bei der Bremskraftverstärkung; in Getrieben, insbesondere Automatikgetrieben zum Beispiel zur Kühlung, zum Aufrechterhalten eines Drucks, als Absaugpumpe; im Bereich von Aquarien; bei PC- und Serverkühllungen wie zum Beispiel bei einer Wasserkühlung; in der Medizintechnik, zum Beispiel bei einem Dialysegerät, einer Infusionspumpe, einer Insulinpumpe; bei der Abgasnachbehandlung, zum Beispiel bei der Zugabe von Harnstoff; als Entlüftungspumpe; bei Bremskraftverstärkern, bei der Befüllung von pneumatischen Aktuatoren; bei aktiven Fahrwerken; in Scheiben- bzw. Scheinwerferreinigungsanlagen; in Waschanlagen; als Tauchpumpe; als Antriebspumpe in hydraulischen Maschinen; in einem Hybridantrieb zum Beispiel eines Fahrzeugs.

Claims (11)

  1. Fluidpumpe (1), angetrieben mit einem Elektromotor, der mit einem Pumpenrotor der Fluidpumpe gekoppelt ist, wobei der Elektromotor ein Axialfluss-Elektromotor ist, dessen Elektromotor-Rotor auch der Pumpenrotor ist und der Pumpenrotor und der Elektromotor-Rotor in einem gemeinsamen Gehäuse (2) untergebracht sind, in dem der Pumpenrotor und Elektromotor-Rotor scheibenformartig als Kombinationsrotor (9) integriert sich dreht, wobei das gemeinsame Gehäuse (2) einen Fluidzu- und einen Fluidabfluss (8, 15) zu dem Kombinationsrotor (9) aufweist, wobei ein erster Stator des Axialflussmotors den Kombinationsrotor an einer ersten Stirnseite und ein zweiter Stator des Axialflussmotors den Kombinationsrotor an einer zur ersten Stirnseite entgegengesetzten zweiten Stirnseite des gemeinsamen Gehäuses einrahmen, dadurch gekennzeichnet, dass Kerne (6) des ersten Stators und des zweiten Stators versetzt zueinander achsparallel zur Rotordrehachse gegenüber liegen.
  2. Fluidpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von einer Drehachse des Kombinationsrotors (9), in einer radialen Richtung betrachtet, ein Pumpenraum (11) und axial zur Drehachse ausgerichtete Magnete bzw. weichmagnetische Elemente des Elektromotors angeordnet sind.
  3. Fluidpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Kombinationsrotor (9) eine Vielzahl an axial ausgerichteten Magneten bzw. weichmagnetische Elemente entlang eines Umfangs des Kombinationsrotors (9) verteilt sind.
  4. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Rotordrehachse achsparallel ausgerichtete Kerne (6) des Stators zumindest zum Teil ein weichmagnetisches Material aufweisen.
  5. Fluidpumpe (1) nach Anspruch 4, dadurch gekennzeichnet, dass das gemeinsame Gehäuse (2) zumindest in einem Bereich zwischen dem rotierenden Kombinationsrotor (9) und den Kernen (6) des Stators ein amagnetisches Material aufweist.
  6. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Pumpenraum (11) im gemeinsamen Gehäuse (2) abgeschlossen ist und der Fluidzu- und/oder der Fluidabfluss (8, 15) zu dem Pumpenraum (11) bevorzugt axial entlang der Rotationsachse erfolgt, insbesondere bevorzugt durch den Elektromotor erfolgt.
  7. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kombinationsrotor (9) ein mitdrehendes Pumpenrad aufweist, wobei eine Welle des Kombinationsrotors (9) innerhalb des gemeinsamen Gehäuses (2) angeordnet und gelagert ist.
  8. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Kombinationsrotor (9) sich um eine Drehachse in dem gemeinsamen Gehäuse (2) dreht, wobei auf der Drehachse ein mitrotierendes Pumpenrad sitzt.
  9. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erstes und ein zweites Ende der Welle bzw. der Drehachse des Kombinationsrotors (9) jeweils in dem gemeinsamen Gehäuse (2) enden.
  10. Verfahren zum Herstellen einer Fluidpumpe (1), vorzugsweise einer Fluidpumpe nach einem der Ansprüche 1 bis 9, mit den folgenden Schritten:
    - Herstellen eines Kombinationsrotors (9) als Pumpen- und ein Elektromotor-Rotor in Scheibenbauart mit axialem Anordnen von Magneten bzw. weichmagnetischen Elementen im Kombinationsrotor (9),
    - Einsetzen des Kombinationsrotors (9) in einen Außenring,
    - Einsetzen einer Welle bzw. Achse,
    - seitliches Anbringen von zumindest einer Seitenwand an den Außenring zum fluiddichten Abdichten des Kombinationsrotors (9) unter Aufnahme eines Endes der Welle bzw. Achse in die Seitenwand,
    - seitliches Anbringen von zumindest einem ersten und einem zweiten Stator eines Elektromotors an die Seitenwand zum Antrieb des Kombinationsrotors (9) in dem mittels zumindest Außenring und Seitenwand gebildeten gemeinsamen Gehäuses (2), wobei Kerne (6) des erten und des zweiten Stators achsparallel zur Rotationsachse des Kombinationsrotors (9) angeordnet werden und die Kerne (6) des ersten Stators und des zweiten Stators versetzt zueinander achsparallel zur Rotordrehachse gegenüber liegen.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Kerne (6) des Stators aus einem weichmagnetischen Material verpresst und hergestellt werden.
EP16719085.9A 2015-04-28 2016-04-28 Fluidpumpe Active EP3289221B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015207748.9A DE102015207748A1 (de) 2015-04-28 2015-04-28 Fluidpumpe
PCT/EP2016/059549 WO2016174164A1 (de) 2015-04-28 2016-04-28 Fluidpumpe

Publications (2)

Publication Number Publication Date
EP3289221A1 EP3289221A1 (de) 2018-03-07
EP3289221B1 true EP3289221B1 (de) 2021-06-23

Family

ID=55858768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16719085.9A Active EP3289221B1 (de) 2015-04-28 2016-04-28 Fluidpumpe

Country Status (5)

Country Link
US (1) US11078904B2 (de)
EP (1) EP3289221B1 (de)
CN (1) CN107787409B (de)
DE (1) DE102015207748A1 (de)
WO (1) WO2016174164A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389063A1 (de) * 2017-04-13 2018-10-17 Comet AG Variabler vakuumkondensator und kühlungsverfahren
DE102017222754A1 (de) 2017-12-14 2019-06-19 Magna Powertrain Bad Homburg GmbH Gerotor Pumpe
DE102017223715A1 (de) 2017-12-22 2019-06-27 Magna Powertrain Bad Homburg GmbH Gerotorpumpe und Verfahren zur Herstellung einer solchen
CN111306031A (zh) * 2018-12-12 2020-06-19 杭州三花研究院有限公司 电动泵
CN111725934B (zh) * 2019-03-22 2024-04-23 广东德昌电机有限公司 流体泵
FR3102510B1 (fr) * 2019-10-25 2021-11-12 Safran Helicopter Engines Turbomachine munie d’une pompe électromagnétique à flux magnétique axial
US11916450B2 (en) 2020-04-08 2024-02-27 Halliburton Energy Services, Inc. Axial flux submersible electric motor
EP3957823B1 (de) 2020-08-20 2023-11-08 GKN Sinter Metals Engineering GmbH Pumpenanordnung
EP3957822B1 (de) 2020-08-20 2023-12-13 GKN Sinter Metals Engineering GmbH Pumpenanordnung
CN216665906U (zh) * 2021-11-17 2022-06-03 江门市君顺实业有限公司 一种模块化潜水齿轮泵及皂液器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1010337B (zh) * 1985-05-16 1990-11-07 杨德贵 内切大圆弧卸荷叶片泵或马达
US5145329A (en) * 1990-06-29 1992-09-08 Eaton Corporation Homoplanar brushless electric gerotor
JP3574191B2 (ja) 1994-11-07 2004-10-06 本田技研工業株式会社 多層焼結部品用成形体の製造方法
US6074180A (en) * 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
USH1966H1 (en) * 1997-08-28 2001-06-05 The United States Of America As Represented By The Secretary Of The Navy Integrated motor/gear pump
US6441530B1 (en) * 2000-12-01 2002-08-27 Petersen Technology Corporation D.C. PM motor with a stator core assembly formed of pressure shaped processed ferromagnetic particles
DE10330434A1 (de) * 2003-07-04 2005-02-03 Jostra Ag Zentrifugal-Pumpe
FI20041113A0 (fi) 2004-08-25 2004-08-25 Juha Pyrhoenen Aksiaalivuoinduktiosähkökone
DE102007035239A1 (de) * 2007-07-25 2009-01-29 Joma-Hydromechanic Gmbh Rotorpumpe
DE102009042603A1 (de) 2009-09-23 2011-03-24 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines Verbundbauteils
DE102009042598A1 (de) 2009-09-23 2011-03-24 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines Grünlings
JP5564974B2 (ja) * 2009-12-01 2014-08-06 株式会社ジェイテクト 電動ポンプ及び電動ポンプの取付け構造
JP5759740B2 (ja) * 2011-02-15 2015-08-05 株式会社山田製作所 電動オイルポンプ
JP2013245611A (ja) * 2012-05-25 2013-12-09 Aisin Seiki Co Ltd 電動オイルポンプ
DE102013205442A1 (de) * 2013-03-27 2014-10-02 Robert Bosch Gmbh Pumpe mit Elektromotor

Also Published As

Publication number Publication date
DE102015207748A1 (de) 2016-11-03
CN107787409B (zh) 2020-07-03
US11078904B2 (en) 2021-08-03
EP3289221A1 (de) 2018-03-07
WO2016174164A1 (de) 2016-11-03
CN107787409A (zh) 2018-03-09
US20180128268A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
EP3289221B1 (de) Fluidpumpe
WO2013127626A2 (de) Pumpenanordnung
DE102011001041B4 (de) Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
WO2008119404A1 (de) Anordnung zur förderung von fluiden
EP2459879B1 (de) Zahnradpumpe
DE102009045028A1 (de) Pumpe mit Elektromotor
WO2005095802A1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
DE102010036933A1 (de) Verfahren zum Herstellen eines Stators für eine elektrische Wasserpumpe
DE102010036934A1 (de) Elektrische Wasserpumpe
DE102012210197B4 (de) Elektrische Pumpe und Verfahren zur Herstellung der elektrischen Pumpe
WO2009037019A1 (de) Pumpenrotor für eine spaltrohrpumpe
DE102012219841A1 (de) Elektrische Pumpe und Verfahren zur Herstellung einer elektrischen Pumpe
EP2156534A2 (de) Permanent erregter rotor für arbeitsmaschinen
DE102011079226A1 (de) Flüssigkeitspumpe, insbesondere Wasserpumpe
DE102017223715A1 (de) Gerotorpumpe und Verfahren zur Herstellung einer solchen
WO2013007399A1 (de) Getriebevorrichtung mit mindestens einem elektromotor für ein fahrzeug
EP3114754B1 (de) Elektrische maschine, beispielsweise für ein stromerzeugungsaggregat
DE102016200013B4 (de) Pumpe
WO2012038213A2 (de) Pumpe mit elektromotor
DE102011076025A1 (de) Pumpe mit Elektromotor
DE102016224898A1 (de) Pumpeneinrichtung für ein Automatikgetriebe
WO2013113545A2 (de) Pumpe mit elektromotor
DE102011082587A1 (de) Pumpe mit Elektromotor
WO2012038199A2 (de) Pumpe mit elektromotor
WO2012038214A2 (de) Pumpe mit elektromotor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013272

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1404541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211025

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013272

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016013272

Country of ref document: DE

Owner name: GKN POWDER METALLURGY ENGINEERING GMBH, DE

Free format text: FORMER OWNER: GKN SINTER METALS ENGINEERING GMBH, 42477 RADEVORMWALD, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220428

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220428

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220428

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220428

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623