EP3272696A1 - Zylinder/kolben-aggregat für eine stütze - Google Patents
Zylinder/kolben-aggregat für eine stütze Download PDFInfo
- Publication number
- EP3272696A1 EP3272696A1 EP17178260.0A EP17178260A EP3272696A1 EP 3272696 A1 EP3272696 A1 EP 3272696A1 EP 17178260 A EP17178260 A EP 17178260A EP 3272696 A1 EP3272696 A1 EP 3272696A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- piston
- piston rod
- hydraulic
- unit according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims description 22
- 230000008054 signal transmission Effects 0.000 claims description 15
- 230000001419 dependent effect Effects 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 241000309551 Arthraxon hispidus Species 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/62—Constructional features or details
- B66C23/72—Counterweights or supports for balancing lifting couples
- B66C23/78—Supports, e.g. outriggers, for mobile cranes
- B66C23/80—Supports, e.g. outriggers, for mobile cranes hydraulically actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/08—Characterised by the construction of the motor unit
- F15B15/14—Characterised by the construction of the motor unit of the straight-cylinder type
- F15B15/1423—Component parts; Constructional details
- F15B15/1466—Hollow piston sliding over a stationary rod inside the cylinder
Definitions
- the present invention relates to a cylinder / piston unit, in particular for a support, which has a hydraulic cylinder with a cylinder chamber and a longitudinally movable piston, wherein the piston carries a piston rod, which is at least partially hollow.
- Such a cylinder / piston unit is from the Scriptures DE 20 2014 000 335 U1 known.
- an electrical signal line can be guided, via which a force sensor integrated in the piston rod can be read out.
- the electrical signal line is designed as a spiral cable and leads from the piston rod through an opening in the piston in the cylinder chamber filled with hydraulic fluid and through it to the end of the hydraulic cylinder facing away from the piston, where the signal line via an electrical feedthrough from the cylinder / piston unit exits and leads from there to an evaluation device.
- an inner tube extending through the cylinder space is provided, which protrudes into the at least partially hollow piston rod via a bore in the piston and can be pushed telescopically into it.
- the inner tube is sealed to the piston and / or the hollow piston rod relative to the cylinder chamber and forms together with the hollow piston rod a hydraulic fluid-free interior through which a signal transmission can take place.
- the hydraulic fluid-filled cylinder space is thus formed by the annular space surrounding the inner tube. Accordingly, the piston is annular and sealed against both the cylinder inner wall and the inner tube.
- an outer piston ring for sealing the piston relative to the cylinder inner wall piston and piston rod can of course also be designed as a so-called plunger and sealed by means of a so-called stuffing box seal on the cylinder head.
- a wireless signal transmission path extends through the hydraulic fluid-free interior a wireless signal transmission path.
- the wireless Signal transmission path can be formed, for example, as an optical free space transmission path, in particular infrared transmission path. As such, it is simple and inexpensive to implement.
- While a cable connection and also a connection via sliding contacts is susceptible to signal interruptions, for example caused by cable breakage due to material fatigue due to frequent disassembly and contraction, or due to contact difficulties of the sliding contacts, for example due to corrosion or wear of the sliding contacts, is a wireless transmission in the hydraulic fluid-free interior safely protected against signal loss. Also, the risk of a short circuit caused by fatigue is reduced.
- a multi-channel signal transmission can be achieved by a simple modulation, which is much easier than to install several sliding contacts in the piston rod.
- a wireless connection is associated with less technical effort compared to sliding contacts.
- an electrical line can be laid by the hydraulic fluid-free interior. This is preferably designed so that the length of the electrical line automatically adapts to the stroke of the piston. This can preferably be realized by means of a spiral cable.
- Such an electrical line can in principle also serve for data transmission through the cylinder / piston unit, but in combination with a wireless signal transmission path, the electrical line can be used as a pure electrical supply line for supplying power to an electrical circuit arranged at the distal end of the piston rod. For example, a transmitter / receiver and / or a sensor with associated control circuit, be formed.
- means for wireless energy transmission to an electrical circuit arranged at the end of the piston rod can also be provided,
- a transmitter / receiver and / or a sensor, each with associated control circuit are provided.
- a sensor is arranged at the distal end of the piston rod, in particular a force sensor which generates a support force-dependent signal, which is transmitted through the hydraulic fluid-free interior.
- the cylinder / piston unit can thus be used in a hydraulic support of a mobile work machine and allows monitoring of the transmitted over the support support forces.
- the sensor and an associated control circuit in particular a microcontroller, are supplied with operating voltage via an electrical supply line extending through the hydraulic medium-free interior, or alternatively wirelessly.
- the present invention also relates to a hydraulic support for supporting work machines, with a cylinder / piston unit of the type mentioned above.
- a column foot is arranged, wherein in the column foot or the piston rod, a force sensor for determining the support acting supporting forces is integrated.
- the force sensor can be read out via the hydraulic fluid-free interior.
- FIG. 1 schematically shown crane vehicle has laterally extended support arm 1, at the free end of each a hydraulic support is arranged.
- the vertically extending hydraulic support comprises a hydraulic cylinder 2 with a downwardly directed piston rod 3, at whose lower end a joint head 5 is arranged.
- a force sensor 4 is integrated above the joint head 5, with the aid of which a proportional to a supporting force or at least dependent on a supporting force measuring signal can be generated.
- a force sensor is often referred to as a force transducer.
- the condyle 5 forms a ball-jointed connection to a support leg 6, in that the condyle 5 is received by a socket formed on the support leg 6.
- the support arms 1 are laterally extendable or swung out in a conventional manner, so that the crane vehicle can be supported laterally by extending the hydraulic cylinders 2 when the support arms are extended or swiveled out. For transport, however, the support arms are pushed or pivoted into a transport position.
- the force sensor 4 integrated into the end of the piston rod 3 can be arranged, for example, within a receiving bushing formed on the lower end of the piston rod 3, into which a journal movable in the bushing is inserted "floating", at the lower end of which the condyle 5 is located.
- a receiving bushing formed on the lower end of the piston rod 3, into which a journal movable in the bushing is inserted "floating", at the lower end of which the condyle 5 is located.
- measured values of the force sensor 4 are transmitted through piston rod 3 and hydraulic cylinder 2 to an evaluation device arranged on the support arm 1 or inside the crane vehicle, at least remote from piston rod end and support leg 6, respectively.
- the transmission of the measured values from the force sensor 4 is effected by a hydraulic medium-free interior, which is formed by the piston rod 3, hollow at least in sections, and a telescopically inserted inner tube 8, which penetrates the cylinder space in the longitudinal direction.
- FIG. 2 An embodiment of such a cylinder / piston unit with hydraulic fluid-free interior is in FIG. 2 shown in a longitudinal section.
- the cylinder / piston unit comprises a hydraulic cylinder 2, in whose hydraulic fluid-filled cylinder space a longitudinally movable piston 7 is arranged in this.
- the piston 7 is sealed via one or more outer piston rings (not shown) with respect to the inner wall of the hydraulic cylinder in a conventional manner.
- the downwardly facing piston rod 3 is arranged and protrudes on the cylinder head via a corresponding bottom opening in the hydraulic cylinder 2, which may also be provided with a hydraulic seal and / or scrapers, out of this down.
- the piston rod 3 By pressurization or supply of hydraulic fluid in the hydraulic chamber above the piston 7, the piston rod 3 is extended, retracted by discharging hydraulic fluid from the upper hydraulic chamber or supplying hydraulic fluid into the hydraulic chamber below the piston 7 again.
- the piston rod 3 is partially, namely provided by the arranged at its lower end force sensor 4 to the piston 7 with a central longitudinal bore 3 ', which also extends through the piston 7 in the longitudinal direction.
- the piston rod 3 is hollow inside.
- a centrally extending along its longitudinal axis inner tube 8 is also arranged, which protrudes telescopically into the central longitudinal bore 7 'in the piston 7 and further into the central longitudinal bore 3' of the piston rod 3.
- the inner tube 8 is sealingly sealed via a hydraulic seal 9 inserted in the piston 7, for example an inner piston ring. The inner tube 8 is thus inserted telescopically into the hollow piston rod 3 when the piston 7 retracts.
- the inner tube 8 is guided via a corresponding bore to the outside and secured there.
- a seal 10 seals the connection between the inner tube 8 and the outlet bore at the upper end of the hydraulic cylinder.
- the longitudinal bores 3 ', 7' by piston 7 and piston rod 3 together with the telescopically insertable inner tube 8 into this hydraulic fluid-free, compared to the hydraulic chamber of the hydraulic cylinder 2 fluidically sealed interior, are transmitted by the measuring signals of the force sensor 4.
- an infrared transmission path which is formed by an infrared transmitter 20, an infrared receiver 21, a transmitter-side control circuit 22 and a receiver-side control circuit 23.
- a connected to the spiral cable 11 terminal 12 which is connected to a power source, and connected to the receiver-side control circuit 23 signal terminal 13 for the measurement signals of the force sensor 4 from.
- the signal terminal 13 is connected directly or via further circuit parts with an evaluation device, while the power connector 12 is connected as mentioned with a power source.
- Such an energy transmission path comprises a (micro) wave generator coupled to a transmitter in the column base 6.
- a microwave receiver and a rectifier are provided, which the transmit converted microwave energy into a DC voltage for the supply of sensor 4 and control circuit 22.
- FIG. 3 A block diagram of an infrared transmission path, as used in the interior of the hydraulic fluid-free interior, is shown schematically in FIG. 3 shown. That from the sensor 4 FIG. 2 The upcoming load-bearing-dependent analog measurement signal is applied to the input of an analog-to-digital converter 22a.
- the digital outputs of the analog-to-digital converter 22a are connected to a transmission-side control circuit 22b, to which an infrared transmitter 20, for example in the form of an infrared light-emitting diode, is connected.
- the transmitter-side control circuit 22b converts the digital signals coming from the analog-to-digital converter 22a into digital communication signals, which are transmitted from the infrared transmitter 20 in the form of short light pulses via the free space transmission path 24 to an infrared receiver 21.
- the infrared receiver 21 for example in the form of an infrared-sensitive photodiode, is connected to a receiver-side control circuit 23a, which evaluates the light pulses received from the infrared receiver 21 and converted into electrical signals on the basis of the transmission protocol used and extracts the transmitted digital data representing the measurement signal of the force sensor 4 , These can then optionally be given via a corresponding digital output of the receiver-side control circuit 23a to a digital-to-analog converter 23b, which again generates an analog measurement signal which corresponds to the measurement signal originally output by the force sensor 4.
- the digitized measurement signal can also be output on the data line 13 at the upper end of the hydraulic cylinder 2 for further processing in an evaluation device, or the signal can be converted into various other types of digital signals.
- optical free-space transmission methods can also be used, for example in the visible Spectral range, are used.
- wireless signal transmission methods such as a high-frequency range short-range radio transmission conceivable.
- An acoustic signal transmission through the hydraulic means-free interior, for example in the ultrasonic range is possible in the context of the present invention.
- the signal transmission between the sensor 4 and the evaluation device takes place unidirectionally, so that only measured values of the sensor 4 can be transmitted to the evaluation device.
- bidirectional signal transmission is also possible and included within the scope of the present invention, so that control commands and acknowledgments can also be transmitted to the sensor 4 and its associated control circuit 22.
- a transmitter and receiver with associated control circuits would be arranged on both the side of the sensor 4 and on the far side of the hydraulic cylinder.
- a duplex transmission path has the advantage that this can be ensured by means of an 'acknowledgment function' a complete or error-free transmission.
- An example of such an acknowledgment function would be the following communication:
- the transmitter sends out signals in the form of a data packet (e.g., value: 12345, binary value: 011000000111001, number of bits sent: 15).
- the receiver sends back a signal to the transmitter and determines how many bits (here: 15) were received.
- the transmitter checks if all values (15 bits) have been completely transmitted. If so, the sender sends the next signal, if not, the erroneously received packet is resent.
- the spiral cable 11 which is also guided by the hydraulic fluid-free interior of the cylinder / piston unit, only the power supply of sensor 4 and control circuit 22.
- the wireless signal transmission of the measuring signals by the hydraulic fluid-free interior of the cylinder / piston unit ensures a particularly robust and trouble-free readout of the sensor 4, as well as a galvanic decoupling of the following evaluation on board the crane vehicle from the load on the ground pillar foot 6.
- a wireless signal transmission is of course in addition to a wired power supply and signal transmission through a corresponding extending through the hydraulic fluid-free interior signal line possible and in Within the scope of the present invention.
- a load cell can be used. Such serves as a load cell for the measurement of compressive forces and can be formed for example by a spring body load cell with ring torsion spring.
- a toroidal deformation body is disposed within the load cell, which is acted upon on its inner side with force and attached to its outer side on the thrust bearing of the load cell. Due to the load, the ring torsion spring undergoes a torsion, by which it is compressed at the top and stretched at the bottom. About strain gauges, which are attached to the top and bottom of the ring torsion spring, this deformation can be measured.
- the load cell can also be formed by a hollow body expansion cylinder.
- other types of force transducers such as piezo force transducers or resistance force transducers, can be used in the context of the present invention.
- a corresponding electrical circuit and evaluation device for reading the force transducer can either be arranged externally and be connected via appropriate, guided by the hydraulic fluid-free interior of the cylinder / piston unit electrical signal lines to the force transducer or alternatively be located above the force transducer in an overlying receiving space.
- a cylinder / piston assembly of the type described above can be used as a support member in all types of work machines, especially in mobile work equipment where support is required.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Zylinder/Kolben-Aggregat, insbesondere für eine Stütze, welches einen Hydraulikzylinder mit einem Zylinderraum und einem darin längs beweglichen Kolben aufweist, wobei der Kolben eine Kolbenstange trägt, die zumindest abschnittsweise hohl ausgeführt ist.
- Ein solches Zylinder/Kolben-Aggregat ist aus der Schrift
DE 20 2014 000 335 U1 bekannt. Durch die zumindest abschnittsweise hohle Kolbenstange kann eine elektrische Signalleitung geführt werden, über die ein in der Kolbenstange integrierter Kraftsensor ausgelesen werden kann. Die elektrische Signalleitung ist als Spiralkabel ausgebildet und führt von der Kolbenstange durch eine Öffnung im Kolben in den mit Hydraulikmittel gefüllten Zylinderraum und durch diesen hindurch bis zu dem Kolben abgewandten Ende des Hydraulikzylinders, wo die Signalleitung über eine elektrische Durchführung aus dem Zylinder/Kolben-Aggregat austritt und von dort zu einer Auswertungseinrichtung führt. - Das Signalkabel durch den Zylinderraum zu führen birgt gewisse Nachteile im Hinblick auf Betriebssicherheit und Lebenserwartung des Zylinder/Kolben-Aggregats. So besteht einerseits die Gefahr, dass das Signalkabel bei vollständig eingefahrenem Kolben zwischen Kolben und Zylinderende eingeklemmt wird und so Schaden nimmt. Andererseits kann die isolierende Ummantelung der Signalleitung durch das Hydraulikmittel angegriffen werden.
- Aus der Schrift
DE202009004673 ist ein Zylinder/Kolben-Aggregat mit hohler Kolbenstange bekannt, bei dem eine am dem Kolben gegenüberliegenden Zylinderboden befestigte massive Stange in die Kolbenstange hineinragt und in diese einschiebbar ist. Mittels Schleifkontakten kann über die innere Stange eine elektrische Verbindung zwischen Kolbenstange und Zylinderboden hergestellt werden. Auch hier ist die durch den Hydraulikraum verlaufende elektrische Verbindung einerseits stör- anderseits verschleißanfällig. - Es ist daher eine Aufgabe der vorliegenden Erfindung, ein verbessertes Zylinder/Kolben-Aggregat anzugeben, welches eine betriebssichere und störungsunanfällige Signalübertragung vom Ende der Kolbenstange zum abgewandten Ende des Hydraulikzylinders ermöglicht.
- Diese und weitere Aufgaben werden gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.
- Erfindungsgemäß ist bei einem Zylinder/Kolben-Aggregat der eingangs genannten Art ein durch den Zylinderraum verlaufendes Innenrohr vorgesehen, welches über eine Bohrung im Kolben in die zumindest abschnittsweise hohle Kolbenstange hineinragt und in diese teleskopisch einschiebbar ist. Hierbei ist das Innenrohr am Kolben und/oder der hohlen Kolbenstange gegenüber dem Zylinderraum abgedichtet und bildet zusammen mit der hohlen Kolbenstange einen hydraulikmittelfreien Innenraum, durch den eine Signalübertragung erfolgen kann.
- Der hydraulikmittelgefüllte Zylinderraum wird somit durch den das Innenrohr umgebenden Ringraum gebildet. Entsprechend ist der Kolben ringförmig ausgebildet und sowohl gegenüber der Zylinderinnenwand als auch dem Innenrohr gedichtet. Anstelle eines äußeren Kolbenringes zur Dichtung des Kolbens gegenüber der Zylinderinnenwand können Kolben und Kolbenstange selbstverständlich auch als sogenannter Tauchkolben ausgeführt und mittels einer sogenannten Stopfbuchsendichtung am Zylinderkopf gedichtet sein.
- Bei einer besonders bevorzugten Weiterbildung der vorliegenden Erfindung verläuft durch den hydraulikmittelfreien Innenraum eine drahtlose Signalübertragungsstrecke. Durch das Innenrohr ist eine solche drahtlose Übertragungsstrecke gut vor äußeren Störeinflüssen geschützt und ermöglicht somit eine sichere Datenübertragung durch das Zylinder/Kolben-Aggregat hindurch. Die drahtlose Signalübertragungsstrecke kann beispielsweise als optische Freiraumübertragungsstrecke, insbesondere Infrarotübertragungsstrecke, ausgebildet sein. Als solche ist sie einfach und kostengünstig realisierbar.
- Während eine Kabelverbindung und auch eine Verbindung über Schleifkontakte anfällig für Signalunterbrechungen ist, beispielsweise verursacht durch Kabelbruch aufgrund von Materialermüdung durch häufiges Auseinander- und Zusammenziehen, oder aufgrund von Kontaktschwierigkeiten der Schleifkontakte, beispielsweise wegen Korrosion oder Abnutzung der Schleifkontakte, ist eine drahtlose Übertragung im hydraulikmittelfreien Innenraum sicher gegen Signalausfälle geschützt. Auch das Risiko eines Kurzschlusses, der durch Ermüdung verursacht wird, ist verringert. Außerdem kann durch eine einfache Modulation eine mehrkanalige Signalübertragung erreicht werden, was deutlich einfacher ist, als mehrere Schleifkontakte in der Kolbenstange anzubringen. Außerdem ist eine Drahtlosverbindung im Vergleich zu Schleifkontakten mit geringerem technischem Aufwand verbunden.
- Zusätzlich oder alternativ kann durch den hydraulikmittelfreien Innenraum eine elektrische Leitung verlegt sein. Diese ist vorzugsweise so ausgebildet, dass sich die Länge der elektrischen Leitung automatisch an den Hubweg des Kolbens anpasst. Dies lässt sich vorzugsweise mittels eines Spiralkabels realisieren. Eine solche elektrische Leitung kann grundsätzlich auch einer Datenübertragung durch das Zylinder/Kolben-Aggregat hindurch dienen, in Kombination mit einer drahtlosen Signalübertragungsstrecke kann jedoch die elektrische Leitung als reine elektrische Versorgungsleitung zur Strom- bzw. Spannungsversorgung einer am entfernten Ende der Kolbenstange angeordneten elektrischen Schaltung, beispielsweise eines Senders/Empfängers und/oder eines Sensors mit zugehöriger Steuerschaltung, ausgebildet sein.
- Alternativ zu einer durch den hydraulikmittelfreien Innenraum verlaufenden elektrischen Versorgungsleitung können auch Mittel zur drahtlosen Energieübertragung zu einer am Ende der Kolbenstange angeordneten elektrischen Schaltung, beispielsweisen einem Sender/Empfänger und/oder einem Sensor mit jeweils zugehöriger Steuerschaltung, vorgesehen werden.
- Bei einer bevorzugten Ausbildung ist am entfernten Ende der Kolbenstange ein Sensor angeordnet, insbesondere ein Kraftsensor, der ein stützkraftabhängiges Signal erzeugt, welches durch den hydraulikmittelfreien Innenraum übertragen wird. Das Zylinder/Kolben-Aggregat kann somit in einer hydraulischen Stütze einer mobilen Arbeitsmaschine eingesetzt werden und ermöglicht eine Überwachung der über die Stütze übertragenen Abstützkräfte. Hierbei ist es insbesondere vorteilhaft, wenn der Sensor und eine zugehörige Steuerschaltung, insbesondere Mikrocontroller, über eine durch den hydraulikmittelfreien Innenraum verlaufende elektrische Versorgungsleitung - oder alternativ drahtlos - mit Betriebsspannung versorgt werden. Somit werden keine ungeschützt außerhalb der Stütze verlaufenden elektrischen Leitungen benötigt und Sensor und Steuerschaltung sind gut vor externen Einflüssen und Beschädigungen geschützt.
- Insbesondere betrifft die vorliegende Erfindung auch eine hydraulische Stütze zur Abstützung von Arbeitsmaschinen, mit einem Zylinder/Kolben-Aggregat der vorstehend genannten Art. Am Ende der Kolbenstange wird hierbei ein Stützenfuß angeordnet, wobei in den Stützenfuß oder die Kolbenstange ein Kraftsensor zur Bestimmung auf die Stütze wirkender Stützkräfte integriert ist. Der Kraftsensor ist dabei über den hydraulikmittelfreien Innenraum auslesbar.
- Weitere Vorteile und Eigenschaften der vorliegenden Erfindung ergeben sich aus der Beschreibung der nachfolgenden Ausführungsbeispiele anhand der Figuren; dabei zeigt:
- Figur 1
- eine schematische Ansicht eines Kranfahrzeugs mit seitlichen Stützauslegern und hydraulischen Stützen, bei dem die vorliegende Erfindung zum Einsatz kommt,
- Figur 2
- einen Längsschnitt durch ein Zylinder/Kolben-Aggregat und
- Figur 3
- ein Blockschaltbild einer Infrarotübertragungsstrecke.
- Das in
Figur 1 schematisch gezeigte Kranfahrzeug weist seitlich ausgefahrene Stützausleger 1 auf, an deren freiem Ende jeweils eine hydraulische Stütze angeordnet ist. Die vertikal verlaufende hydraulische Stütze umfasst einen Hydraulikzylinder 2 mit einer nach unten gerichteten Kolbenstange 3, an deren unterem Ende ein Gelenkkopf 5 angeordnet ist. Innerhalb der Kolbenstange 3 ist oberhalb des Gelenkkopfs 5 ein Kraftsensor 4 integriert, mit dessen Hilfe ein zu einer Stützkraft proportionales oder zumindest von einer Stützkraft abhängiges Messsignal erzeugt werden kann. Ein solcher Kraftsensor wird häufig auch als Kraftaufnehmer bezeichnet. Der Gelenkkopf 5 bildet eine kugelgelenkige Verbindung zu einem Stützfuß 6, indem der Gelenkkopf 5 von einer an dem Stützfuß 6 ausgebildeten Gelenkpfanne aufgenommen wird. - Die Stützausleger 1 sind in herkömmlicher Weise seitlich ausfahrbar oder ausschwenkbar, sodass das Kranfahrzeug bei ausgefahrenen bzw. ausgeschwenkten Stützauslegern durch Ausfahren der Hydraulikzylinder 2 seitlich abgestützt werden kann. Zum Transport werden die Stützausleger hingegen in eine Transportstellung eingeschoben oder eingeschwenkt.
- Der in das Ende der Kolbenstange 3 integrierte Kraftsensor 4 kann beispielsweise innerhalb einer am unteren Ende der Kolbenstange 3 ausgeformte Aufnahmebuchse angeordnet sein, in die ein in der Buchse beweglicher Zapfen "schwimmend" eingesetzt ist, an dessen unterem Ende sich der Gelenkkopf 5 befindet. Eine solche Ausführung ist beispielsweise in der Patentanmeldung
DE 10 2016 104 502 der Anmelderin gezeigt, auf die, um unnötige Wiederholungen zu vermeiden, hiermit vollumfänglich Bezug genommen wird. - Wesentlich im Rahmen der vorliegenden Erfindung ist, dass Messwerte des Kraftsensors 4 durch Kolbenstange 3 und Hydraulikzylinder 2 hindurch zu einer am Stützausleger 1 oder innerhalb des Kranfahrzeugs, jedenfalls zumindest entfernt von Kolbenstangenende und Stützfuß 6, angeordneten Auswerteeinrichtung übertragen werden bzw. von dieser auslesbar sind. Gemäß einem Aspekt der vorliegenden Erfindung erfolgt die Übertragung der Messwerte von dem Kraftsensor 4 durch einen hydraulikmittelfreien Innenraum, der von der zu diesem Zweck zumindest abschnittsweise hohl ausgeführten Kolbenstange 3 und einem teleskopisch in diese einschiebbaren Innenrohr 8 gebildet wird, welches den Zylinderraum in Längsrichtung durchdringt.
- Ein Ausführungsbeispiel eines solchen Zylinder/Kolben-Aggregats mit hydraulikmittelfreiem Innenraum ist in
Figur 2 in einem Längsschnitt gezeigt. Das Zylinder/Kolben-Aggregat umfasst einen Hydraulikzylinder 2, in dessen hydraulikmittelgefülltem Zylinderraum ein in diesem längsbeweglicher Kolben 7 angeordnet ist. Der Kolben 7 ist über ein oder mehrere äußere Kolbenringe (nicht gezeigt) gegenüber der Innenwand des Hydraulikzylinders in herkömmlicher Weise gedichtet. Am Kolben 7 ist die nach unten weisende Kolbenstange 3 angeordnet und ragt am Zylinderkopf über eine entsprechende bodenseitige Öffnung im Hydraulikzylinder 2, die ebenfalls mit einer Hydraulikdichtung und/oder Abstreifern versehen sein kann, aus diesem nach unten heraus. Durch Druckbeaufschlagung bzw. Zuführen von Hydraulikmittel in den Hydraulikraum oberhalb des Kolbens 7 wird die Kolbenstange 3 ausgefahren, durch Ablassen von Hydraulikmittel aus dem oberen Hydraulikraum bzw. Zuführen von Hydraulikmittel in den Hydraulikraum unterhalb des Kolbens 7 wieder eingefahren. - Die Kolbenstange 3 ist abschnittsweise, nämlich von dem an ihrem unteren Ende angeordneten Kraftsensor 4 bis hin zum Kolben 7 mit einer mittigen Längsbohrung 3' versehen, die sich auch durch den Kolben 7 in Längsrichtung hindurch erstreckt. Mit anderen Worten, die Kolbenstange 3 ist innen hohl. Im Inneren des Hydraulikzylinders 2 ist außerdem ein zentrisch entlang seiner Längsachse verlaufendes Innenrohr 8 angeordnet, welches teleskopisch in die mittige Längsbohrung 7' im Kolben 7 und weiter in die zentrale Längsbohrung 3' der Kolbenstange 3 hineinragt. Gegenüber der Längsbohrung 7' bzw. dem Kolben 7 ist das Innenrohr 8 über eine in den Kolben 7 eingesetzte Hydraulikdichtung 9, beispielsweise einem inneren Kolbenring, gleitend gedichtet. Das Innenrohr 8 wird somit bei einem Einfahren des Kolbens 7 teleskopisch in die innen hohle Kolbenstange 3 eingeschoben.
- Am oberen Ende des Hydraulikzylinders 2 ist das Innenrohr 8 über eine entsprechende Bohrung nach außen geführt und dort befestigt. Eine Dichtung 10 dichtet die Verbindung zwischen Innenrohr 8 und der Austrittsbohrung am oberen Ende des Hydraulikzylinders. Die Längsbohrungen 3', 7' durch Kolben 7 und Kolbenstange 3 bilden zusammen mit dem teleskopisch in diese einschiebbaren Innenrohr 8 einen hydraulikmittelfreien, gegenüber dem Hydraulikraum des Hydraulikzylinders 2 fluidisch gedichteten Innenraum, durch den Messsignale des Kraftsensors 4 übertragen werden.
- Im Ausführungsbeispiel verläuft durch den hydraulikmittelfreien Innenraum eine Infrarotübertragungsstrecke, die von einem Infrarotsensender 20, einem Infrarotempfänger 21, einer senderseitigen Steuerschaltung 22 und einer empfängerseitigen Steuerschaltung 23 gebildet wird. Die Stromversorgung für den am unteren Ende der Kolbenstange 3 angeordneten Kraftsensor 4, den Infrarotsender 20 und die zugehörige Steuerschaltung 22 erfolgt über ein ebenfalls durch den hydraulikmittelfreien Innenraum geführtes Spiralkabel 11, welches als Versorgungsleitung dient. Am oberen Ende des Innenrohres 8 treten ein mit dem Spiralkabel 11 verbundener Anschluss 12, der mit einer Stromquelle verbunden wird, und ein mit der empfängerseitigen Steuerschaltung 23 verbundener Signalanschluss 13 für die Messsignale des Kraftsensors 4 aus. Der Signalanschluss 13 wird direkt oder über weitere Schaltungsteile mit einer Auswerteeinrichtung verbunden, während der Stromanschluss 12 wie erwähnt mit einer Stromquelle verbunden wird.
- Anstelle einer durch den hydraulikmittelfreien Innenraum geführten Versorgungsleitung 11 kann natürlich auch eine autarke Stromversorgung mittels Batterie o.ä. vorgesehen sein. Eine weitere Möglichkeit besteht darin, eine drahtlose Energieübertragung vorzusehen. Eine solche Energieübertragungsstrecke umfasst einem (Mikro-)Wellengenerator gekoppelt mit einem Transmitter im Stützenfuß 6. Auf Seiten des Sensors 4 bzw. der zugehörigen Steuerschaltung 22 werden ein Mikrowellen-Empfänger und ein Gleichrichter vorgesehen, die die übertragene Mikrowellenenergie in eine Gleichspannung für die Versorgung von Sensor 4 und Steuerschaltung 22 umwandeln.
- Ein Blockschaltbild einer Infrarotübertragungsstrecke, wie sie im Inneren des hydraulikmittelfreien Innenraums zum Einsatz kommt, ist schematisch in
Figur 3 gezeigt. Das vom Sensor 4 ausFigur 2 kommende stützlastabhängige analoge Messsignal wird auf den Eingang eines Analog-Digital-Wandlers 22a gegeben. Die digitalen Ausgänge des Analog-Digital-Wandlers 22a sind mit einer sendeseitigen Steuerschaltung 22b verbunden, an die ein Infrarotsender 20, beispielsweise in Form einer Infrarotleuchtdiode, angeschlossen ist. Die senderseitige Steuerschaltung 22b wandelt die vom Analog-Digital-Wandler 22a kommenden Digitalsignale unter Verwendung eines entsprechenden Übertragungsprotokolls in digitale Nachrichtensignale, die von dem Infrarotsender 20 in Form kurzer Lichtimpulse über die Freiraumübertragungsstrecke 24 zu einem Infrarotempfänger 21 gesendet werden. - Der Infrarotempfänger 21, beispielsweise in Form einer infrarotempfindliche Fotodiode, ist an eine empfängerseitige Steuerschaltung 23a angeschlossen, die die vom Infrarotempfänger 21 empfangenen und in elektrische Signale umgesetzten Lichtimpulse anhand des verwendeten Übertragungsprotokolls auswertet und die übertragenen Digitaldaten, welche das Messsignal des Kraftsensors 4 repräsentieren, extrahiert. Diese können dann optional über einen entsprechenden Digitalausgang der empfängerseitigen Steuerschaltung 23a an einen Digital-Analog-Konverter 23b gegeben werden, der daraus wieder ein analoges Messsignal erzeugt, das dem ursprünglich vom Kraftsensor 4 abgegebenen Messsignal entspricht. Alternativ kann selbstverständlich auch das digitalisierte Messsignal an der Datenleitung 13 am oberen Ende des Hydraulikzylinders 2 zur weiteren Verarbeitung in einer Auswerteeinrichtung ausgegeben werden, oder das Signal kann in verschiedene andere Digitalsignalarten konvertiert werden.
- Alternativ zu einer Infrarotübertragungsstrecke wie vorstehend erläutert können auch andere optische Freiraumübertragungsverfahren, beispielsweise im sichtbaren Spektralbereich, eingesetzt werden. Darüber hinaus sind auch andere drahtlose Signalübertragungsverfahren wie etwa eine im Hochfrequenzbereich arbeitende kurzreichweitige Funkübertragung denkbar. Auch eine akustische Signalübertragung durch den hydraulikmittelfreien Innenraum, beispielsweise im Ultraschallbereich ist im Rahmen der vorliegenden Erfindung möglich.
- Im Ausführungsbeispiel erfolgt die Signalübertragung zwischen Sensor 4 und Auswerteeinrichtung unidirektional, so dass lediglich Messwerte des Sensors 4 zur Auswerteeinrichtung übertragen werden können. Möglich und im Rahmen der vorliegenden Erfindung mit umfasst ist jedoch auch eine bidirektionale Signalübertragung, so dass auch Steuerbefehle und Bestätigungen an den Sensor 4 und dessen zugehörige Steuerschaltung 22 übertragen werden können. In diesem Falle wären sowohl auf der Seite des Sensors 4 als auch auf der entfernten Seite des Hydraulikzylinders jeweils ein Sender und Empfänger mit zugehörigen Steuerschaltungen angeordnet.
- Eine Duplex-Übertragungsstrecke bietet den Vorteil, dass hierdurch mittels einer 'Acknowledgment-Funktion' eine vollständige bzw. fehlerfreie Übertragung sichergestellt werden kann. Ein Beispiel für eine solche Acknowledgment-Funktion wäre folgende Kommunikation: Der Sender schickt Signale in Form eines Datenpakets aus (z.B. Wert:12345, binärer Wert: 011000000111001, Anzahl von gesendeten Bits: 15). Nachdem das Signal erhalten wurde, schickt der Empfänger ein Signal an den Sender zurück und ermittelt, wie viele Bits (hier: 15) erhalten wurden. Der Sender überprüft, ob alle Werte (15 Bits) vollständig übertragen wurden. Falls ja schickt der Sender das nächste Signal, falls nicht wird das fehlerhaft empfangene Paket erneut geschickt.
- Im Rahmen des vorliegenden Ausführungsbeispiels dient das Spiralkabel 11, welches ebenfalls durch den hydraulikmittelfreien Innenraum des Zylinder/Kolben-Aggregats geführt ist, lediglich der Stromversorgung von Sensor 4 und Steuerschaltung 22. Die drahtlose Signalübertragung der Messsignale durch den hydraulikmittelfreien Innenraum des Zylinder/Kolben-Aggregats gewährleistet jedoch eine besonders robuste und störungsunanfällige Auslesung des Sensors 4, wie auch eine galvanische Entkopplung der nachfolgenden Auswerteeinrichtung an Bord des Kranfahrzeugs vom auf der Erde lastenden Stützenfuß 6. Alternativ zu einer drahtlosen Signalübertragung ist selbstverständlich neben einer kabelgebundenen Stromversorgung auch eine Signalübertragung durch eine entsprechende durch den hydraulikmittelfreien Innenraum verlaufende Signalleitung möglich und im Rahmen der vorliegenden Erfindung mitumfasst.
- Als Kraftsensor 4 kann beispielsweise eine Kraftmessdose zum Einsatz kommen. Eine solche dient als Kraftaufnehmer zur Messung von Druckkräften und kann beispielsweise durch einen Federkörper-Kraftaufnehmer mit Ringtorsionsfeder gebildet werden. Hierbei ist innerhalb der Kraftmessdose ein torusförmiger Verformungskörper angeordnet, der an seiner Innenseite mit Kraft beaufschlagt und an seiner Außenseite am Gegenlager der Kraftmessdose befestigt ist. Durch die Belastung erfährt die Ringtorsionsfeder eine Torsion, durch die sie an der Oberseite gestaucht und an der Unterseite gestreckt wird. Über Dehnmessstreifen, die an der Ober- und Unterseite der Ringtorsionsfeder befestigt sind, kann diese Verformung gemessen werden. Bei einer anderen Bauform kann die Kraftmessdose auch durch einen Hohlkörper-Dehnzylinder gebildet werden. Neben Federkörper-Kraftaufnehmern mit Dehnmessstreifen können auch andere Arten von Kraftaufnehmern, wie etwa Piezo-Kraftaufnehmer oder Widerstandskraftaufnehmer, im Rahmen der vorliegenden Erfindung eingesetzt werden.
- Eine entsprechende elektrische Schaltung und Auswerteeinrichtung zum Auslesen des Kraftaufnehmers kann entweder extern angeordnet und über entsprechende, durch den hydraulikmittelfreinen Innenraum des Zylinder/Kolben-Aggregats geführte elektrische Signalleitungen mit dem Kraftaufnehmer verbunden sein oder alternativ oberhalb des Kraftaufnehmers in einem darüber befindlichen Aufnahmeraum angeordnet sein.
- Ein Zylinder/Kolben-Aggregat der vorstehend beschriebenen Art kann als Stützenbauteil bei allen Arten von Arbeitsmaschinen, insbesondere bei mobilen Arbeitsgeräten, bei denen eine Abstützung erforderlich ist, zum Einsatz kommen.
Claims (10)
- Zylinder/Kolben-Aggregat insbesondere für eine Stütze, umfassend einen Hydraulikzylinder (2) mit einem Zylinderraum und einen darin längsbeweglichen Kolben (7), der eine Kolbenstange (3) trägt, wobei die Kolbenstange (3) zumindest abschnittsweise hohl ausgeführt ist,
gekennzeichnet durch
ein durch den Zylinderraum verlaufendes Innenrohr (8), welches über eine Bohrung (7') im Kolben (7) in die zumindest abschnittsweise hohle Kolbenstange (3) hineinragt und in diese teleskopisch einschiebbar ist, wobei das Innenrohr (8) am Kolben (7) und/oder der hohlen Kolbenstange (3) gegenüber dem Zylinderraum gedichtet ist und mit dieser einen hydraulikmittelfreien Innenraum bildet. - Zylinder/Kolben-Aggregat nach Anspruch 1, bei dem durch den hydraulikmittelfreien Innenraum eine drahtlose Signalübertragungsstrecke (24) verläuft.
- Zylinder/Kolben-Aggregat nach Anspruch 2, bei dem die Signalübertragungsstrecke (24) als optische Freiraumübertragungsstrecke, insbesondere Infrarot-Übertragungsstrecke, ausgebildet ist.
- Zylinder/Kolben-Aggregat nach einem der vorangehenden Ansprüche, bei dem durch den hydraulikmittelfreien Innenraum eine elektrische Leitung (11) verläuft.
- Zylinder/Kolben-Aggregat nach Anspruch 4, bei dem die elektrische Leitung als Spiralkabel ausgebildet ist.
- Zylinder/Kolben-Aggregat nach Anspruch 4 oder 5, bei dem die elektrische Leitung eine reine elektrische Versorgungsleitung ist.
- Zylinder/Kolben-Aggregat nach einem der Ansprüche 1 bis 3, bei dem Mittel zur drahtlosen Energieübertragung zu einer am Ende der Kolbenstange (3) angeordneten elektrischen Schaltung (4, 22) vorgesehen sind.
- Zylinder/Kolben-Aggregat nach einem der vorangehenden Ansprüche, bei dem am Ende der Kolbenstange (3) ein Sensor (4), insbesondere Kraftsensor, angeordnet ist, der ein stützkraftabhängiges Signal erzeugt, welches durch den hydraulikmittelfreien Innenraum übertragen wird.
- Zylinder/Kolben-Aggregat nach Anspruch 7, bei dem der Sensor (4) und eine zugehörige Steuerschaltung (22), insbesondere Mikrokontroller, über eine durch den hydraulikmittelfreien Innenraum verlaufende elektrische Versorgungsleitung (11) mit Betriebsspannung versorgt werden.
- Hydraulische Stütze zur Abstützung von Arbeitsmaschinen, mit einem Zylinder/Kolben-Aggregat nach einem der vorangehenden Ansprüche, einem am Ende der Kolbenstange angeordneten Stützenfuß (6) und mit einem in Stützenfuß (6) oder Kolbenstange (3) integrierten Kraftsensor (4) zur Bestimmung auf die Stütze (2, 3) wirkender Stützkräfte, wobei der Kraftsensor (4) über den hydraulikmittelfreien Innenraum auslesbar ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016113510.0A DE102016113510A1 (de) | 2016-07-21 | 2016-07-21 | Zylinder/Kolben-Aggregat für eine Stütze |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3272696A1 true EP3272696A1 (de) | 2018-01-24 |
EP3272696B1 EP3272696B1 (de) | 2019-08-07 |
Family
ID=59269796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17178260.0A Active EP3272696B1 (de) | 2016-07-21 | 2017-06-28 | Zylinder/kolben-aggregat für eine stütze |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3272696B1 (de) |
DE (1) | DE102016113510A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3855025A1 (de) * | 2020-01-23 | 2021-07-28 | Weber-Hydraulik GmbH | Zylinderkolbenaggregat mit integriertem kraftmesssystem |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3412391A (en) * | 1964-10-31 | 1968-11-19 | Gullick Ltd | Pressure-fluid-operated devices and means for indicating the condition thereof |
CH488999A (de) * | 1967-12-30 | 1970-04-15 | Maurer & Co | Vorrichtung zur Stellwegmessung bei einer mit einem Druckmedium beaufschlagten Kolben-Zylinder-Einheit |
JPS58137695U (ja) * | 1982-03-12 | 1983-09-16 | 新明和工業株式会社 | ブ−ムを有する車輌の転倒警報装置 |
US4803318A (en) * | 1988-01-07 | 1989-02-07 | Lymburner Robert K | Proximity switch for a cylinder |
US4879440A (en) * | 1988-01-07 | 1989-11-07 | Lymburner Robert K | Proximity switch for a cylinder |
EP0949193A2 (de) * | 1998-04-10 | 1999-10-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Hebezylinder und Mastanordnung eines Gabelhubwagens |
DE202009004673U1 (de) | 2008-08-29 | 2010-01-28 | Liebherr-Werk Ehingen Gmbh | Kolben-Zylinder-Einheit |
WO2013120118A1 (de) * | 2012-02-13 | 2013-08-22 | Palfinger Ag | Abstützvorrichtung für ein fahrzeug |
DE202014000335U1 (de) | 2014-01-17 | 2014-02-24 | Tecsis (Shenzhen) Sensors Co., Ltd. | Meßsystem zur Ermittlung von Stützkräften |
DE102016104502A1 (de) | 2015-03-12 | 2016-09-15 | International Business Machines Corporation | Photovoltaische Einheit mit einkristallinem CZTSSe |
-
2016
- 2016-07-21 DE DE102016113510.0A patent/DE102016113510A1/de not_active Withdrawn
-
2017
- 2017-06-28 EP EP17178260.0A patent/EP3272696B1/de active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3412391A (en) * | 1964-10-31 | 1968-11-19 | Gullick Ltd | Pressure-fluid-operated devices and means for indicating the condition thereof |
CH488999A (de) * | 1967-12-30 | 1970-04-15 | Maurer & Co | Vorrichtung zur Stellwegmessung bei einer mit einem Druckmedium beaufschlagten Kolben-Zylinder-Einheit |
JPS58137695U (ja) * | 1982-03-12 | 1983-09-16 | 新明和工業株式会社 | ブ−ムを有する車輌の転倒警報装置 |
US4803318A (en) * | 1988-01-07 | 1989-02-07 | Lymburner Robert K | Proximity switch for a cylinder |
US4879440A (en) * | 1988-01-07 | 1989-11-07 | Lymburner Robert K | Proximity switch for a cylinder |
EP0949193A2 (de) * | 1998-04-10 | 1999-10-13 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Hebezylinder und Mastanordnung eines Gabelhubwagens |
DE202009004673U1 (de) | 2008-08-29 | 2010-01-28 | Liebherr-Werk Ehingen Gmbh | Kolben-Zylinder-Einheit |
WO2013120118A1 (de) * | 2012-02-13 | 2013-08-22 | Palfinger Ag | Abstützvorrichtung für ein fahrzeug |
DE202014000335U1 (de) | 2014-01-17 | 2014-02-24 | Tecsis (Shenzhen) Sensors Co., Ltd. | Meßsystem zur Ermittlung von Stützkräften |
DE102016104502A1 (de) | 2015-03-12 | 2016-09-15 | International Business Machines Corporation | Photovoltaische Einheit mit einkristallinem CZTSSe |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3855025A1 (de) * | 2020-01-23 | 2021-07-28 | Weber-Hydraulik GmbH | Zylinderkolbenaggregat mit integriertem kraftmesssystem |
Also Published As
Publication number | Publication date |
---|---|
EP3272696B1 (de) | 2019-08-07 |
DE102016113510A1 (de) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2159428B1 (de) | Kolben-Zylinder-Einheit | |
DE102008058937A1 (de) | Mobiles Arbeitsgerät mit Standsicherheitsüberwachung | |
DE102009032897A1 (de) | Kolben-Zylinderaggregat | |
DE202014000335U1 (de) | Meßsystem zur Ermittlung von Stützkräften | |
DE202015104846U1 (de) | Bedienungsvorrichtung zur manuellen Steuerung einer an der Bedienungsvorrichtung schwebenden Last | |
EP2871149A1 (de) | Antrieb einer Schiebekulisse eines Verriegelungssystems eines Teleskopiersystems eines Kranauslegers | |
EP1162137B1 (de) | Ausfahrbare Informationsvorrichtung für ein U-Boot | |
DE102005060676A1 (de) | Positionssensor in Stabbauweise sowie Verfahren zum Austausch | |
EP3359481A1 (de) | Abstützvorrichtung zum abstützen einer mobilen vorrichtung | |
DE202015000213U1 (de) | Meßsystem zur Ermittlung von Stützkräften mit Funkschnittstelle | |
ITTO20100436A1 (it) | Asta telescopica (kelly) per la realizzazione di pali trivellati. | |
EP3272696B1 (de) | Zylinder/kolben-aggregat für eine stütze | |
DE202014000334U1 (de) | Stützkraftmesseinrichtung mit Induktionskopplung | |
EP2339107A2 (de) | Bohrgerät mit Teleskopbohrschnecke Adapterstück und bohrverfahren zur durchführung von Bohrungen | |
EP1511941B1 (de) | Kontraktionseinheit mit positionssensoreinrichtung | |
DE102012100335B4 (de) | Druckbehälter mit einem darin beweglichen Kolben und einer Vorrichtung zur Positionsbestimmung des Kolbens in dem Druckbehälter | |
DE102013104717B4 (de) | Hydraulikzylinder mit integriertem Wegaufnehmer | |
EP0795513B1 (de) | Balancier-Hebegerät | |
DE3150386A1 (de) | Geraet zum messen der gewichtsbelastung an einem bohrstrang | |
EP3259434B1 (de) | "doppelrohrgestängeabschnitt, doppelrohrgestängeschuss und verfahren zum ausbilden einer elektrisch leitfähigen verbindung in einem doppelrohrgestängeabschnitt" | |
DE102020209578A1 (de) | Zylindereinrichtung für eine hydraulische hubvorrichtung mit wegmessung, hydraulische hubvorrichtung, fahrgestell sowie mobile vorrichtung | |
DE60320241T2 (de) | Kran mit einer Seilwinde und mit einer Zugsteuereinrichtung | |
DE4438166C2 (de) | Vorrichtung zur Ermittlung des Kolbenhubs eines druckmittelbetätigten Arbeitszylinders | |
EP1873480B1 (de) | Prüf- und/oder Montagevorrichtung | |
DE102023107839B3 (de) | Kran mit Aufwipphilfseinrichtung und Verfahren zum Aufwippen eines Auslegers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180508 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66C 23/80 20060101AFI20190128BHEP Ipc: F15B 15/14 20060101ALI20190128BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190312 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1163554 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017001961 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191107 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191207 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191108 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017001961 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200628 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200628 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190807 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1163554 Country of ref document: AT Kind code of ref document: T Effective date: 20220628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240517 Year of fee payment: 8 |