EP3271635B1 - Vorrichtung zum kühlen eines flüssiggases - Google Patents

Vorrichtung zum kühlen eines flüssiggases Download PDF

Info

Publication number
EP3271635B1
EP3271635B1 EP16712971.7A EP16712971A EP3271635B1 EP 3271635 B1 EP3271635 B1 EP 3271635B1 EP 16712971 A EP16712971 A EP 16712971A EP 3271635 B1 EP3271635 B1 EP 3271635B1
Authority
EP
European Patent Office
Prior art keywords
gas
pressure
phase
vessel
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16712971.7A
Other languages
English (en)
French (fr)
Other versions
EP3271635A1 (de
Inventor
Bruno Deletre
Nicolas HAQUIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3271635A1 publication Critical patent/EP3271635A1/de
Application granted granted Critical
Publication of EP3271635B1 publication Critical patent/EP3271635B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0169Liquefied gas, e.g. LPG, GPL subcooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/038Subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/041Stratification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/045Methods for emptying or filling by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating

Definitions

  • the invention relates to the field of cooling gaseous bodies stored in a liquefied form, and relates in particular to the cooling of a combustible gas such as liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • Liquefied natural gas is stored in sealed and thermally insulating tanks at cryogenic temperatures.
  • Such tanks can be part of an onshore storage facility or be installed in a floating structure, such as an LNG vessel for example.
  • the thermal insulation barriers of liquefied natural gas storage tanks are inevitably the site of a thermal flow tending to heat the contents of the tank. This heating results in an increase in the enthalpy of the contents of the tank and, consequently, in a move away of all or part of the cargo from its conditions of equilibrium at almost atmospheric pressure. This increase in enthalpy is therefore likely to cause evaporation of the liquefied natural gas and a loss of natural gas stored in liquid form.
  • An idea at the basis of the invention is to propose a method for cooling a liquefied gas and an installation for storing and cooling a liquefied gas allowing better control of the natural evaporation of the liquefied gas while maintaining a large fraction of liquefied gas in a thermodynamic state allowing its durable storage.
  • the invention provides a method for cooling a liquefied gas stored in the interior space of a sealed and thermally insulating tank according to claim 1.
  • the liquefied gas, stored in the vessel can be cooled to a temperature below its equilibrium temperature of vaporization at atmospheric pressure. Consequently, the liquefied gas can be maintained in a sub-cooled thermodynamic state allowing it to be stored or transferred to a tank at atmospheric pressure while maintaining a low, or even zero, rate of evaporation of the liquefied gas.
  • Such a process therefore allows better control of the vaporization of liquefied natural gas. This generates a reduction in the loss of cargo and therefore an increase in the financial value of the cargo.
  • the vaporization of the liquefied gas intended to supply the gas consuming equipment in the vapor phase can be carried out without the aid of an external heat source, as opposed to forced vaporization installations using a heat exchange with sea water, an intermediate liquid or combustion gases from the engine or specific burners.
  • an external heat source can also be provided in a complementary manner.
  • the invention provides an installation for storing and cooling a liquefied gas according to claim 12.
  • the invention relates to a vessel or an off-shore liquefaction equipment, such as a liquefaction barge, comprising an aforementioned installation for the storage and cooling of a liquefied gas.
  • the ship has a hull and the sealed and thermally insulating tank of the installation is placed in said hull.
  • the circuit for using the gas in the vapor phase is equipment for producing energy, such as equipment for propelling the ship.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or terrestrial storage installation to or from the tank of the vessel. ship.
  • gas is generic in nature and is equally intended for a gas consisting of a single pure substance or a gas mixture consisting of a plurality of components.
  • a liquefied gas thus designates a chemical body or a mixture of chemical bodies which has been placed in a liquid phase at low temperature and which would appear in a vapor phase under normal temperature and pressure conditions.
  • an installation 1 for storing and cooling a liquefied gas according to a first embodiment is shown.
  • Such an installation 1 can be installed on land or on a floating structure such as a liquefaction or regasification barge.
  • the installation may be intended for a storage unit associated with one or more components that consume gas in the form of vapor, such as generators, steam generators, burners or any another device consuming gas in the form of vapor whether it is adjacent to the storage unit or on a gas distribution network in the vapor phase supplied by the storage unit.
  • the installation may be intended for a liquefied natural gas transport ship, such as an LNG carrier, but may also be intended for any ship including the powertrain, generators, generators vapors or any other consuming organ are supplied with gas.
  • a merchandise transport vessel such as an LNG carrier
  • a passenger transport vessel such as a passenger transport vessel
  • a fishing vessel such as a floating electricity production unit or the like.
  • the installation 1 comprises a sealed and thermally insulating tank 2.
  • the tank 2 is a membrane tank.
  • a membrane tank may in particular comprise a multilayer structure comprising, from the outside towards the inside of the tank 2, a secondary thermally insulating barrier 3 comprising insulating elements resting against a supporting structure 4, a secondary waterproofing membrane 5. resting against the secondary thermally insulating barrier 3, a primary thermally insulating barrier 6 comprising insulating elements resting against the secondary waterproofing membrane 5 and a primary waterproofing membrane 7 intended to be in contact with the liquefied gas 8 contained in the tank .
  • such membrane tanks 2 are described in patent applications WO14057221 , FR2691520 and FR2877638 .
  • the tank 1 can also be a tank of type A, B or C.
  • a tank is self-supporting and can in particular have a parallelepiped, prismatic, spherical, cylindrical or multi-Iobic shape.
  • Type C tanks have the particularity of allowing liquefied natural gas to be stored at pressures substantially higher than atmospheric pressure.
  • Liquefied gas 8 is a combustible gas.
  • the liquefied gas 8 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture comprising mainly methane as well as one or more other hydrocarbons, such as ethane, propane, n- butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in small proportions.
  • LNG liquefied natural gas
  • the fuel gas can also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons obtained from the refining of petroleum comprising essentially propane and butane.
  • LPG liquefied petroleum gas
  • the liquefied gas 8 is stored in the interior space of the vessel in a state of two-phase liquid-vapor equilibrium.
  • the gas is therefore present in the vapor phase in the upper part of the vessel and in the liquid phase in the lower part of the vessel.
  • the equilibrium temperature of liquefied natural gas corresponding to its two-phase liquid-vapor equilibrium state is approximately -162 ° C when stored at atmospheric pressure.
  • the installation 1 comprises a gas sampling circuit in the vapor phase 9.
  • the gas sampling circuit in the vapor phase 9 comprises a duct 10 passing through a wall of the vessel 2 in order to define an evacuation passage for the vapor phase, from the inside to the outside of the tank 2.
  • the duct 10 comprises an inlet 11 opening inside the interior space of the tank 2.
  • the inlet 11 opens into an upper portion of the 'interior space of the tank 2.
  • the inlet 11 can in particular open out above the maximum filling limit of the tank so as to open into the gas phase.
  • the sampling circuit 9 also comprises a vacuum pump 12 which is connected, upstream, to the pipe 10 and, downstream, to a circuit for using gas in the vapor phase 13.
  • the vacuum pump 12 is thus capable of sucking through the pipe 10 a flow of gas in the vapor phase present in the interior space of the vessel 2 and to discharge it towards the circuit for using gas in the vapor phase 13.
  • the circuit of sampling 9 comprises a valve 19 or a non-return valve, arranged upstream or downstream of the vacuum pump 12 and thus making it possible to avoid a return of the gas flow in the vapor phase towards the interior space of the tank 2.
  • the vacuum pump 12 is able to generate, in the vapor phase arranged in the upper part of the interior space of the tank 2, a pressure P1 lower than atmospheric pressure.
  • a pressure P1 lower than atmospheric pressure the vacuum pump 12 also generates a pressure P1 lower than atmospheric pressure in the vapor phase of the interior of the tank.
  • the vapor phase being placed at a pressure P1 lower than atmospheric pressure, the vaporization of the liquefied gas 8 present in the tank 2 is favored at the liquid / vapor interface while the liquefied gas 8 stored in the tank 2 is placed in a two-phase liquid-vapor equilibrium state in which the liquefied gas has a temperature below the liquid-vapor equilibrium temperature of said liquefied gas at atmospheric pressure.
  • FIG. 3 represents a liquid-vapor equilibrium diagram of methane.
  • This diagram represents a domain, denoted L, in which the methane is present in the liquid phase and a domain, denoted V, in which the methane is present in the vapor phase, as a function of the temperature represented on the ordinate and the pressure on the abscissa.
  • Point P t1 represents a two-phase equilibrium state corresponding to the state of methane stored in a tank at atmospheric pressure and at a temperature of approximately -162 ° C.
  • the methane storage pressure in the tank has dropped below atmospheric pressure, for example to an absolute pressure of about 500 mbar, the methane equilibrium shifts to the left up to point P t2 .
  • the methane thus relaxed therefore undergoes a temperature reduction of approximately 7 ° C while a part of the methane in the liquid phase is vaporized by subtracting from the liquid methane stored in the tank the calories necessary for its vaporization. .
  • the liquefied gas is maintained in a sub-cooled thermodynamic state so that a return to storage in the tank at atmospheric pressure or its subsequent transfer to a vessel at atmospheric pressure can be carried out while maintaining a low rate of evaporation of the liquefied gas, or even zero, while avoiding or reducing the phenomena of flash vaporization at the start of transfer.
  • the vacuum pump 12 is a cryogenic pump, that is to say a pump capable of withstanding cryogenic temperatures below -150 ° C. It must also comply with ATEX regulations, that is to say designed to prevent any risk of explosion.
  • FIG. 3 there is schematically shown the installation 1 to illustrate the fact that the sampling circuit 9 and the vacuum pump 12 make it possible to supply both a cooling power P to the liquefied gas contained in the tank 2 and a flow of gas in phase steam Q to the user circuit 13.
  • the demand for gas in the vapor phase desired in the utilization circuit 13 may be the main criterion for sizing and controlling the vacuum pump 12.
  • the vacuum pump 12 is controlled as a function of 'a flow setpoint generated by the circuit for using gas in the vapor phase 12.
  • the installation 1 is equipped with a flow measurement sensor capable of delivering a signal representative of the flow of steam delivered by the vacuum pump 12 and a control device 18 able to control the vacuum pump 12 so as to control the measured flow rate value to the flow rate setpoint.
  • the pressure prevailing inside the tank therefore changes as a function of time and of the flow rate setpoint generated by the use circuit 13.
  • the vacuum pump 12 is dimensioned so as to generate a sufficient flow rate to supply the utilization circuit 13.
  • the average power of the main engine in offshore vessels is typically 1. order from a few MW to a few tens of MW. If the flow of gas in the vapor phase Q delivered by the vacuum pump 12 does not make it possible to produce a cooling capacity corresponding to the totality of the need in the storage tank, it is possible to provide an auxiliary cooling device, not shown, to provide an auxiliary cooling power P to the liquefied gas contained in the tank 2.
  • the cooling power necessary to maintain the gas contained in the tank at a target temperature below its vaporization temperature at atmospheric pressure may be the criterion for sizing and controlling the vacuum pump 12, in particular if the The need for gas in the vapor phase of the user circuit 8 is high and that one does not wish to excessively cool the gas in the liquid phase contained in the container.
  • the vacuum pump is controlled as a function of a pressure setpoint prevailing in the internal space of the tank.
  • the installation 1 is equipped with a pressure sensor designed to measure the pressure in the interior space of the tank and with a control device 18 able to control the vacuum pump 12 so as to control the pressure. value of the pressure measured at the pressure setpoint.
  • Pressure absolute setpoint is greater than 120 mbar and for example between 750 mbar and 980 mbar.
  • the vacuum pump 12 is dimensioned so as to generate a vacuum in the internal space of the tank corresponding to the target pressure. Moreover, if the steady state does not make it possible to produce the flow of gas in the vapor phase corresponding to the totality of the need in the user circuit 13, it is possible to provide an auxiliary vaporization device, not shown, to provide a auxiliary steam flow Q aux to the user circuit 13.
  • the vacuum pump must have a flow / pressure characteristic adapted to the needs of the circuit for using gas in the vapor phase 13 and to the necessary cooling capacity.
  • the utilization circuit 13 may in particular include equipment for producing power from the power train, not shown, making it possible to propel the ship.
  • energy production equipment is chosen in particular from heat engines, combustion cells and gas turbines.
  • the power generation equipment is a heat engine
  • the engine can be mixed diesel-natural gas fuel.
  • Such engines can operate either in diesel mode in which the engine is supplied entirely with diesel or in natural gas mode in which the engine fuel consists mainly of natural gas while a small quantity of pilot diesel is injected to initiate the combustion. combustion.
  • the user circuit 13 further comprises a heat exchanger, not illustrated, making it possible to further heat the gas flow in the vapor phase to temperatures compatible with the operation of the equipment. gas consumer.
  • the additional heat exchanger can in particular ensure thermal contact between the flow of gas in the vapor phase and sea water, between the flow of gas in the vapor phase and combustion gases generated by energy production equipment. or by the engine directly, or between the flow of gas in vapor phase and air used as oxidizer by the engine in order to increase its efficiency.
  • the user circuit 13 may also include a compressor making it possible to heat the gas flow in the vapor phase and to compress it to pressures compatible with the specifications of energy production equipment supplied with combustible gas, for example of the order of 5 to 6 bars absolute.
  • the installation 1 also comprises a forced vaporization device which takes a flow of liquefied gas in liquid phase in the interior space of the tank 2 and vaporizes it by means of an exchanger. heat.
  • a forced vaporization device which takes a flow of liquefied gas in liquid phase in the interior space of the tank 2 and vaporizes it by means of an exchanger. heat.
  • Such a gas flow has a composition substantially identical to that of the liquefied gas contained in the interior space of the vessel. Consequently, the flow of gas in the vapor phase thus obtained can be mixed with the flow of gas withdrawn via the withdrawal circuit 9 in order to reach the contents of the most volatile components compatible with the supply of the production equipment of energy.
  • the installation 1 comprises, in the embodiment shown, a vacuum pump 16 which is connected to a pipe 17 opening into the internal space of the primary thermally insulating barrier 6 so as to allow maintenance of the gas phase of the primary thermally insulating barrier 6 at a pressure P2 below atmospheric pressure.
  • the installation comprises a vacuum pump 14 which is connected to a pipe 15 opening into the internal space of the secondary thermally insulating barrier 3 and is thus able to maintain the gas phase of the secondary thermally insulating barrier 3 under an absolute pressure P3 less than atmospheric pressure.
  • Maintaining the thermally insulating barriers at pressures P2 and P3 below atmospheric pressure is particularly advantageous. In fact, this makes it possible on the one hand to increase the insulating power of said thermally insulating barriers. On the other hand, it also ensures that the pressure prevailing in the thermally insulating barriers 3, 6 are not much greater than the pressure prevailing in the interior space of the tank 2, which would be liable to damage the sealing membranes 7, 5 and in particular the sealing membrane primary 7 by causing it to be pulled out.
  • the vacuum pumps 14, 16 are controlled such that the pressure P2 of the gas phase of the primary thermally insulating barrier 6 and the pressure P3 of the gas phase of the secondary thermally insulating barrier 3 are lower. or equal to the pressure P1 prevailing in the internal space of the tank.
  • the pressure P3 may be greater than or equal to the pressure P2, which makes it possible to prevent the liquefied gas from being sucked in, in the event of a leak in the waterproofing membranes. towards the secondary thermally insulating barrier.
  • the pressure differential between the pressures P2 and P3 is less than 100 mbar and preferably between 10 and 50 mbar.
  • the installation 1 comprises a stirring device making it possible to create a current inside the internal space of the tank 2.
  • a stirring device aims to limit thermal stratification inside the tank 2 and thus makes it possible to homogenize the temperature of the liquefied gas and, consequently, to optimize the yield of the process.
  • the stirring device may in particular include a loop for recirculating the liquefied gas.
  • the agitation device comprises one or more pumps, such as a tank unloading pump, associated with an unloading line capable of being placed in communication with a tank loading line so as to create a liquefied gas circulation loop.
  • the installation 1 further comprises a vacuum bell 20 housed in the interior space of the tank 2.
  • the vacuum bell 20 is a hollow body arranged in the upper part of the internal space of the tank 2 in such a way that its upper portion is in contact and filled with the gaseous phase of the gas stored in the tank 2 and that its lower portion is immersed in the liquid phase of the gas stored in the tank 2.
  • the vacuum bell 20 is here of cylindrical shape with circular section. However, the vacuum bell 20 may have other shapes, for example parallelepiped with a square or rectangular section.
  • the inlet 11 of the vapor phase gas sampling circuit 9 opens into the upper portion of the vacuum bell 20.
  • the vacuum pump 12 is able to generate in the upper portion of the vacuum bell a lower pressure P1. at atmospheric pressure which makes it possible to promote vaporization of the liquefied gas inside the vacuum chamber 20.
  • the pressure sensor is advantageously placed inside the upper portion of the vacuum bell 20.
  • the use of such a vacuum bell 20 has the particular advantages of reducing the dimensioning constraints of the vacuum pump 12 and of limiting the vacuum prevailing in the rest of the interior space of the tank 2 so as to limit the stresses exerted on the primary waterproofing membrane 7 in the case of a membrane tank, of type A, B or C.
  • the vacuum bell 20 makes it possible to limit the depressurization to a element of smaller dimensions than those of the tank and whose design and sizing can be optimized to meet the target depression without the entire tank being subjected to this sizing constraint.
  • the dimensioning of the tank can therefore be optimized as a function of an internal operating pressure while the vacuum bell is dimensioned as a function of the target vacuum.
  • the free surface inside the bell must be of the order of 1/10 of the free surface at inside the tank.
  • the critical buckling pressure of the vessel is therefore substantially proportional to the cube of its maximum working pressure multiplied by a constant which depends on the material used and on the safety coefficient chosen by the designer. For the majority of candidate materials, this constant is less than 1 and often less than 0.1. Thus, the critical buckling pressure when the vessel is subjected to a vacuum is often more than 10 times lower than the maximum working pressure.
  • the vacuum bell 20 therefore makes it possible to pass the vacuum likely to prevail in the rest of the gas phase of the tank from 100 mbar to 10 mbar, which makes it possible in particular to limit the thickness of the membrane of the tank. .
  • the vacuum bell 20 allows in the above case to limit the thickness of the membrane to 25 mm while 'it should have been 29 mm in the absence of the vacuum bell 20.
  • the section of the vacuum chamber is advantageously between 1/5 and 1/100 of the section of the tank.
  • the free surface of the liquefied gas inside the vessel is caused to change as a function of the filling level of the vessel. Indeed, the free surface is maximum when the tank is filled halfway up and decreases when one approaches the maximum filling level of the tank.
  • the dimensioning of the vacuum bell 20 may be different depending on whether the maximum free surface area of the liquefied gas - that is to say that corresponding to a tank which is halfway filled - or a surface free of liquefied gas when the tank is close to its maximum fill level.
  • a cylindrical vacuum bell For example, considering a pressure ratio of 10 between the vapor phase depression in the tank and in the bell, for a cylindrical tank 20 meters long and 4 meters in radius, the radius of a cylindrical vacuum bell would be about 2.25 meters considering the maximum free surface of the liquefied gas. However, since liquefied natural gas transport vessel tanks are intended to be filled close to their maximum filling level, a lower bell radius of the order of 2 meters is sufficient and makes it possible to reduce the size of the bell. vacuum 20. Under these same conditions, a vacuum bell of square section may have a side dimension of 4 meters.
  • the vacuum bell 20 has a more complex shape and its section progressively changes as a function of the height of the tank so that the ratio between the free surface inside the vacuum bell 20 and that of the free surface in the rest of the tank remains substantially constant over the entire height of the vacuum bell 20.
  • the vacuum bell 20 is for example made of metal in order to promote thermal exchanges between the gas present inside and outside the vacuum bell 20.
  • the vacuum bell 20 can be equipped with structural reinforcing elements allowing it to resist the target vacuum.
  • the reinforcing elements can be of all types and in particular be hollow or solid reinforcing elements, passing transversely through the bell or disposed at the periphery inside or outside the vacuum bell 20.
  • the vacuum bell 20 may be traversed by hollow tubes extending substantially horizontally and passing right through said vacuum bell.
  • hollow tubes allow the passage of fluid and are capable of promoting heat exchange between the gas present inside and outside the vacuum bell 20.
  • such hollow tubes are also capable of contributing to the pressure. reinforcement of the vacuum bell 20.
  • the vacuum bell 20 can in particular be supported by said loading / unloading tower in order to withstand the forces due to its weight and to the movements of the liquefied gas.
  • a loading / unloading tower extends substantially over the entire height of the tank and is suspended from the ceiling wall.
  • the tower can consist of a tripod type structure, that is to say comprising three vertical masts.
  • the loading / unloading tower supports one or more unloading lines and one or more loading lines, each of the unloading lines being associated with an unloading pump which is itself supported by the loading / unloading tower.
  • the vacuum bell 20 can however be supported by any other suitable means.
  • the vacuum bell 20 is immersed deep enough inside the liquid phase so that its lower portion remains immersed in the liquid phase when the liquefied gas is subjected to the “sloshing” phenomenon. To do this, the vacuum bell 20 can in particular extend more than 1 meter below the height of the tank corresponding to the maximum filling height.
  • FIG 4 there is a cutaway view of an LNG carrier 70 equipped with such a liquefied natural gas storage and cooling installation.
  • the figure 4 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary waterproof membrane intended to be in contact with the liquefied natural gas contained in the vessel, a secondary waterproof membrane arranged between the primary waterproof barrier and the double hull 72 of the vessel, and two thermally insulating barriers arranged respectively between the primary waterproofing membrane and the secondary waterproofing membrane and between the secondary waterproofing membrane and the double shell 72.
  • the loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of suitable connectors, to a maritime or port terminal for transferring a cargo of liquefied natural gas from or to the tank 71. .
  • the figure 4 also represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a mobile arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be swiveled and adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (22)

  1. Verfahren zum Kühlen eines im Inneren eines dichten und wärmeisolierenden Gefäßes (2) gelagerten Flüssiggases (8); wobei das Flüssiggas (8), welches im Inneren des Gefäßes (2) gelagert ist, sich in einem zweiphasigen Flüssigkeits-Dampf-Gleichgewicht befindet und eine niedrigere Flüssigkeitsphase und eine höhere Dampfphase aufweist, welche durch eine Phasengrenze getrennt sind, dadurch gekennzeichnet, dass das Verfahren umfasst die Schritte:
    - Ansaugen mittels einer Unterdruckpumpe eines Gasstromes in der Dampfphase in einem Bereich der Dampfphase, welcher in Kontakt ist mit einem Bereich der Phasengrenze, wobei der Schritt des Ansaugen eines Gasstromes in der Dampfphase in dem Bereich der Dampfphase einen Druck P1 erzeugt, welcher niedriger ist als der atmosphärische Druck, sodass ein Verdampfen der Flüssigkeitsphase auf Höhe der Phasengrenze unterstützt wird und dass das Flüssiggas, welches in Kontakt mit der Phasengrenze ist, in ein zweiphasiges Flüssigkeits-Dampf-Gleichgewicht gebracht wird und wobei das Flüssiggas eine niedrigere Temperatur als die Flüssigkeit-Dampf-Gleichgewichtstemperatur des Flüssiggases unter atmosphärischen Druck aufweist; und
    - des Leitens des angesaugten Gasstromes in der Dampfphase zu einem Kreislauf zur Verwendung des Gases in der Dampfphase (13).
  2. Verfahren zum Kühlen gemäß Anspruch 1, in dem der Druck P1 höher ist als 120 mbar absolut.
  3. Verfahren zum Kühlen gemäß Anspruch 1 oder 2, wobei das Ansaugen des Grasstromes in der Dampfphase mittels einer Unterdruckpumpe (12) erreicht wird und wobei man die Unterdruckpumpe (12) in Abhängigkeit eines Durchflusssollwertes, welcher vom Kreislauf zur Verwendung des Gases in der Dampfphase (13) erzeugt wird, steuert.
  4. Verfahren zum Kühlen gemäß Anspruch 1 oder 2, wobei das Ansaugen des Gasstromes in der Dampfphase mittels einer Unterdruckpumpe (12) erreicht wird und wobei man den Druck im Bereich der Dampfphase misst und man die Unterdruckpumpe (12) in Abhängigkeit eines Drucksollwertes und des gemessenen Drucks steuert.
  5. Verfahren zum Kühlen gemäß einem der Ansprüche 1 bis 4, wobei der Druck P1 zwischen 750 mbar absolut und 980 mbar absolut liegt.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, wobei das Gefäß (2) eine Mehrschichtenstruktur, welche auf einer Haltestruktur (4) angeordnet ist, aufweist, wobei die Mehrschichtenstruktur eine Abdichtungsmembran (7), welche in Kontakt mit dem in dem Gefäß enthaltenen Flüssiggas ist, und eine wärmeisolierende Sperre (6), welche zwischen der Abdichtungsmembran (7) und der Haltestruktur (4) angeordnet ist, umfasst, wobei die wärmeisolierende Sperre (6) Isolierblöcke und eine Gasphase umfasst, wobei das Verfahren den Schritt des Aufrechterhaltens der Gasphase der wärmeisolierende Sperre (6) unter einem Druck P2, welcher niedriger oder gleich dem Druck P1 ist, umfasst.
  7. Verfahren gemäß Anspruch 6, wobei die Mehrschichtenstruktur vom Äußeren zum Inneren des Gefäßes (2) eine sekundäre wärmeisolierende Sperre (3), welche Isolierblöcke, die gegen die Haltestruktur (4) und eine Gasphase anliegen, aufweist, eine sekundäre Abdichtungsmembran (5), welche gegen die Isolierblöcke der sekundären Abdichtungssperre (3) anliegen, eine primäre wärmeisolierende Sperre (6), welche Isolationselemente, die gegen die sekundäre Abdichtungsmembran (5) und einer Gasphase anliegen, aufweist, und eine primäre Abdichtungsmembran (7), welche dazu bestimmt ist, mit dem in dem Gefäß enthaltenen Flüssiggas in Kontakt zu treten, umfasst, wobei das Verfahren den Schritt des Aufrechterhaltens der Gasphase der primären wärmeisolierenden Sperre (7) und der Gasphase der sekundären wärmeisolierenden Sperre (3) jeweils unter einem Druck P2 und einem Druck P3 umfasst, wobei der Druck P2 und P3 niedriger oder gleich dem Druck P1 sind.
  8. Verfahren gemäß Anspruch 7, wobei der Druck P3 höher oder gleich dem Druck P2 ist.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei das Gefäß (2) mit einem flüssigen Brenngas (8), welches ausgewählt wird zwischen Flüssigerdgas, Ethan und Flüssiggas, gefüllt ist.
  10. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei das Gefäß (2) mit einer Unterdruckglocke (20) ausgestattet ist, welche im Inneren des Gefäßes angeordnet ist und einen höheren Abschnitt umfasst, welcher in der Dampfphase angeordnet ist, und einen unteren Abschnitt, welcher in der Flüssigkeitsphase eingetaucht ist, wobei der Bereich der Dampfphase, in welchen der Gasstrom in der Dampfphase angesaugt wird, durch den oberen Abschnitt der Unterdruckglocke (20) gebildet wird.
  11. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei man den Druck P1 in einem oberen Abschnitt des Gefäßes, welcher die gesamte Dampfphase enthält, generiert
  12. Vorrichtung zum Lagern und Kühlen eines Flüssiggases umfassend:
    - ein dichtes und wärmeisolierendes Gefäß (2), welches einen inneren Bereich auf weist, welcher ein Flüssiggas (8), welches in einem zweiphasigen Flüssigkeits-Dampf-Gleichgewicht gespeichert ist, sodass das Flüssiggas eine niedrigere Flüssigphase und eine höhere Dampfphase aufweist, welche durch eine Phasengrenze getrennt sind, umfasst; und
    - einen Kreislauf zur Entnahme des Gases in der Dampfphase (9) umfassend:
    - einen Einlass (11), welcher in den inneren Bereich des Gefäßes (2) oberhalb einer maximalen Füllhöhe des Gefäßes mündet, sodass er, wenn das Gefäß gefüllt ist, in einen Bereich der Dampfphase, welche in Kontakt mit der Phasengrenze ist, mündet; und
    - eine Unterdruckpumpe (12) konfiguriert um durch den Einlass (11) einen im Bereich der Dampfphase befindlichen Gasstrom in der Dampfphase anzusaugen und ihn in Richtung des Kreislaufs zur Verwendung des Gases in der Dampfphase zu lenken, und um in dem Bereich der Dampfphase einen Druck P1, welcher niedriger als der atmosphärische Druck ist, aufrechtzuerhalten, so dass ein Verdampfen der Flüssigkeitsphase auf Höhe der Phasengrenze unterstützt wird und dass das Flüssiggas, welches in Kontakt mit der Phasengrenze ist, in ein zweiphasiges Flüssigkeits-Dampf-Gleichgewicht gebracht wird und wobei das Flüssiggas eine niedrigere Temperatur als die Flüssigkeits-Dampf-Gleichgewichtstemperatur des Flüssiggases unter atmosphärischen Druck aufweist.
  13. Vorrichtung gemäß Anspruch 12, umfassend einen Durchflussmesssensor, welche dazu geeignet ist, ein repräsentatives Signal des Durchflusses des Dampfstromes, welcher durch den Einlass ansaugbar und in Richtung des Verwendungskreislaufes lenkbar ist, zu liefern und eine Steuerungsvorrichtung (18), welche konfiguriert ist, um die Unterdruckpumpe (12) in Abhängigkeit des repräsentativen Signals des Durchflusses des Dampfstromes und des Durchflusssollwertes, welcher vom Kreislauf zur Verwendung des Gases in der Dampfphase (13) erzeugt wird, zu steuern.
  14. Vorrichtung gemäß Anspruch 12, umfassend einen Drucksensor, welcher dazu geeignet ist ein repräsentatives Signal des im Inneren des Gefäßes über der maximalen Füllhöhe herrschenden Druckes zu liefern, und eine Steuerungsvorrichtung (18), welche dazu geeignet ist die Unterdruckpumpe (12) in Abhängigkeit des repräsentativen Signals des Druckes und des Drucksollwertes zu steuern.
  15. Vorrichtung gemäß einem der Ansprüche 12 bis 14, umfassend weiterhin einen Kreislauf zur Verwendung des Gases in der Dampfphase (13) umfassend eine Anlage zur Energieerzeugung.
  16. Vorrichtung gemäß einem der Ansprüche 12 bis 15, wobei das Gefäß (2) eine Mehrschichtenstruktur, welche auf einer Haltestruktur (4) angeordnet ist, aufweist, wobei die Mehrschichtenstruktur eine Abdichtungsmembran (7), welche in Kontakt mit dem in dem Gefäß (2) enthaltenen Flüssiggas (8) ist, und eine wärmeisolierende Sperre (6), welche zwischen der Abdichtungsmembran (7) und der Haltestruktur (4) angeordnet ist, und Isolierblöcke und eine Gasphase umfasst, wobei die Vorrichtung weiterhin eine Unterdruckpumpe (16) umfasst, welche angeordnet ist, um die Gasphase der wärmeisolierenden Sperre (6) unter einem Druck P2, welcher niedriger oder gleich dem Druck P1 ist, aufrechtzuerhalten.
  17. Vorrichtung gemäß einem der Ansprüche 12 bis 15, wobei die Mehrschichtenstruktur vom Äußeren zum Inneren des Gefäßes (2) eine sekundäre wärmeisolierende Sperre (3), welche Isolierblöcke, die gegen die Haltestruktur (4) und eine Gasphase anliegen, aufweist, eine sekundäre Abdichtungsmembran (5), welche gegen die Isolierblöcke der sekundären Abdichtungssperre (3) anliegen, eine primäre wärmeisolierende Sperre (6), welche Isolationselemente, die gegen die sekundäre Abdichtungsmembran (5) und einer Gasphase anliegen, aufweist und eine primäre Abdichtungsmembran (7), welche dazu bestimmt ist mit dem in dem Gefäß enthaltenen Flüssiggas in Kontakt zu treten, umfasst, wobei die Vorrichtung weiterhin eine erste Unterdruckpumpe (16), welche angeordnet ist, um die Gasphase der primären wärmeisolierenden Sperre (6) unter einem Druck P2, welcher niedriger oder gleich dem Druck P1 ist, aufrechtzuerhalten und eine zweite Unterdruckpumpe (14), welche angeordnet ist, um die Gasphase der sekundären wärmeisolierenden Sperre (3) unter einem Druck P3, welcher niedriger oder gleich dem Druck P1 ist, zu halten.
  18. Vorrichtung gemäß einem der Ansprüche 12 bis 17, wobei das Gefäß (2) mit einer Unterdruckglocke (20) ausgestattet ist, welche im Inneren des Gefäßes angeordnet ist und einen oberen Abschnitt umfasst, welcher dazu bestimmt ist, mit der Dampfphase des im Inneren des Gefäßes gelagerten Flüssiggases in Kontakt zu treten und einen unteren Abschnitt, welcher dazu bestimmt ist, in der Flüssigkeitsphase des im Inneren des Gefäßes gelagerten Flüssiggases einzutauchen, und wobei der Einlass (11) des Kreislaufes zur Entnahme des Gases in der Dampfphase im Inneren des oberen Bereiches der Unterdruckglocke (20) mündet.
  19. Vorrichtung gemäß Anspruch 18, umfassend einen Drucksensor, welcher dazu geeignet ist, ein repräsentatives Signal des im oberen Bereich der Unterdruckglocke (20) herrschenden Drucks zu liefern.
  20. Schiff oder Offshore-Verflüssigungsanlage umfassend eine Vorrichtung (1) gemäß einem der Ansprüche 12 bis 19.
  21. Verfahren zur Be- oder Entladung eines Schiffes (70) gemäß Anspruch 20, wobei eine Flüssigkeit von oder zu einer schwimmenden oder erdverbundenen Speicheranlage (77) zu oder von dem Gefäß des Schiffes (71) durch isolierte Rohrleitungen (73, 79, 76, 81) geleitet wird.
  22. Transfersystem für eine Flüssigkeit, wobei das System ein Schiff (70) gemäß Anspruch 20, isolierte Rohrleitungen (73, 79, 76, 81), welche so angeordnet sind, dass sie das in der Hülle des Schiffes angeordnete Gefäß (71) mit einer schwimmenden oder erdverbundenen Speicheranlage (77) verbinden, und eine Pumpe umfasst, um eine Flüssigkeit durch isolierte Rohrleitungen von oder zu der schwimmenden oder erdverbundenen Speicheranlage zu oder von dem Gefäß des Schiffes zuleiten.
EP16712971.7A 2015-03-20 2016-03-18 Vorrichtung zum kühlen eines flüssiggases Active EP3271635B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552318A FR3033874B1 (fr) 2015-03-20 2015-03-20 Procede de refroidissement d'un gaz liquefie
PCT/FR2016/050611 WO2016151224A1 (fr) 2015-03-20 2016-03-18 Procédé de refroidissement d'un gaz liquéfié

Publications (2)

Publication Number Publication Date
EP3271635A1 EP3271635A1 (de) 2018-01-24
EP3271635B1 true EP3271635B1 (de) 2020-10-07

Family

ID=53674055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16712971.7A Active EP3271635B1 (de) 2015-03-20 2016-03-18 Vorrichtung zum kühlen eines flüssiggases

Country Status (9)

Country Link
EP (1) EP3271635B1 (de)
JP (1) JP6726201B2 (de)
KR (1) KR102462361B1 (de)
CN (1) CN107636380B (de)
ES (1) ES2834889T3 (de)
FR (1) FR3033874B1 (de)
MY (1) MY182246A (de)
SG (1) SG11201707693PA (de)
WO (1) WO2016151224A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533955A (zh) * 2018-06-06 2018-09-14 张家港艾普能源装备有限公司 Lng储罐
CN110486616A (zh) * 2019-08-07 2019-11-22 彭伊文 用于海工深冷液体预冷、冷却的低蒸发率绝缘储存系统
FR3100055B1 (fr) * 2019-08-19 2021-07-23 Gaztransport Et Technigaz Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux équipant un navire
FR3120097B1 (fr) * 2021-02-22 2023-02-17 Gorry Sebastien Dispositif de compression d’un fluide stocké sous la forme d’un liquide cryogénique, et procédé de fabrication associé
JP2023140787A (ja) * 2022-03-23 2023-10-05 川崎重工業株式会社 液化ガス貯蔵タンクのクールダウン方法
JP2023140786A (ja) * 2022-03-23 2023-10-05 川崎重工業株式会社 液化ガス貯蔵タンクのクールダウン方法
CN114893951B (zh) * 2022-05-10 2023-10-27 重庆炘扬航能源有限公司 一种液化天然气冷箱预冷设备
KR102568581B1 (ko) * 2022-08-26 2023-08-21 에스탱크엔지니어링(주) 액화수소 저장탱크
CN115713848A (zh) * 2022-11-25 2023-02-24 中国第一汽车股份有限公司 一种基于闪蒸预警的电池热安全监控系统及动力电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374639A (en) * 1966-10-25 1968-03-26 Mcmullen John J Leak detection and pressure relief system for insulated liquefied gas storage tanks
FR2586083B1 (fr) * 1985-08-06 1988-06-10 Gaz Transport Procede et dispositif pour ameliorer l'isolation thermique d'une cuve etanche et thermiquement isolante destinee au stockage d'un gaz liquefie
JPS63167424A (ja) * 1986-12-29 1988-07-11 Sony Corp 垂直磁気記録媒体の製造方法
FR2691520B1 (fr) 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
CN2217718Y (zh) * 1995-03-14 1996-01-17 崔文亮 水浴式汽-气液化气自控蒸发装置
CN2228606Y (zh) * 1995-09-22 1996-06-05 刘素华 新型轻烃液体燃料气化罐
CN2275210Y (zh) * 1996-10-04 1998-02-25 姜伟志 液体燃料的气化装置
AT5999U1 (de) * 2002-03-18 2003-02-25 Mi Developments Austria Ag & C Mobiles system zur speicherung von einem flüssigen leichten gas, insbesondere wasserstoff
FR2877638B1 (fr) 2004-11-10 2007-01-19 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
JP2007024166A (ja) * 2005-07-15 2007-02-01 Taiyo Nippon Sanso Corp 低温液化ガス供給装置
KR101577795B1 (ko) * 2009-10-29 2015-12-15 대우조선해양 주식회사 고압가스 분사엔진과 저압가스 분사엔진을 갖는 액화연료가스 추진 선박에 연료가스를 공급하는 시스템
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
FR2996520B1 (fr) 2012-10-09 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante comportant une membrane metalique ondulee selon des plis orthogonaux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20170128416A (ko) 2017-11-22
JP6726201B2 (ja) 2020-07-22
KR102462361B1 (ko) 2022-11-02
CN107636380B (zh) 2020-10-16
SG11201707693PA (en) 2017-10-30
WO2016151224A1 (fr) 2016-09-29
FR3033874B1 (fr) 2018-11-09
ES2834889T3 (es) 2021-06-21
JP2018513944A (ja) 2018-05-31
CN107636380A (zh) 2018-01-26
EP3271635A1 (de) 2018-01-24
MY182246A (en) 2021-01-18
FR3033874A1 (fr) 2016-09-23

Similar Documents

Publication Publication Date Title
EP3271635B1 (de) Vorrichtung zum kühlen eines flüssiggases
EP3218639B1 (de) Vorrichtung und verfahren zum kühlen eines flüssiggases
EP3329172B1 (de) Vorrichtung zum betreiben einer mit einer wärmeisolierenden barriere eines tanks verbundenen pumpvorrichtung zum speichern eines verflüssigten gases
EP2758302B1 (de) Meeresplattform mit externen behältern
EP3250849B1 (de) Vorrichtung zum lagern und transportieren einer kryogenen flüssigkeit an bord eines schiffes
EP3433530B1 (de) Anlage zum zuführen von brenngas zu einem gasverbrauchenden element und zum verflüssigen dieses brenngases
EP1224113B1 (de) Leichter zum lagern von flüssiggas, bestehend aus einer schwimmfähigen betonstruktur
FR3032776A1 (fr) Gestion des fluides dans une cuve etanche et thermiquement isolante
FR2785034A1 (fr) Procede pour eliminer l'evaporation d'un gaz liquefie stocke dans une cuve etanche et isotherme, et dispositif pour sa mise en oeuvre
FR3065941A1 (fr) Procede de manutention d'une cargaison de gaz liquefie et installation de stockage
WO2021053055A1 (fr) Cuve etanche et thermiquement isolante
EP2984386B1 (de) Verbessertes system zur behandlung und zufuhr von erdgas mit einer schaltung zum erwärmen eines tanks
WO2019162594A2 (fr) Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
EP4098539B1 (de) Schiff zum transport oder zur verwendung eines kalten fluids
WO2021099424A1 (fr) Installation pour le stockage d'un gaz liquéfié
WO2022122982A1 (fr) Procédés de mise sous gaz et d'essais gaz dans une installation de stockage de gaz liquéfié
WO2023222926A1 (fr) Dôme gaz et cuve étanche et thermiquement isolante comportant un tel dôme gaz

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1321509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016045322

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20201007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1321509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2834889

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016045322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

26N No opposition filed

Effective date: 20210708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016045322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210318

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240226

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240226

Year of fee payment: 9

Ref country code: IT

Payment date: 20240312

Year of fee payment: 9

Ref country code: FR

Payment date: 20240325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240405

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007