EP3266904B1 - Installation a electrolyse ignee et procede de reglage de son fonctionnement - Google Patents

Installation a electrolyse ignee et procede de reglage de son fonctionnement Download PDF

Info

Publication number
EP3266904B1
EP3266904B1 EP16177980.6A EP16177980A EP3266904B1 EP 3266904 B1 EP3266904 B1 EP 3266904B1 EP 16177980 A EP16177980 A EP 16177980A EP 3266904 B1 EP3266904 B1 EP 3266904B1
Authority
EP
European Patent Office
Prior art keywords
cell
molten salt
salt electrolysis
heat
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16177980.6A
Other languages
German (de)
English (en)
Other versions
EP3266904A1 (fr
Inventor
Roman Düssel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trimet Aluminium SE
Original Assignee
Trimet Aluminium SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56363769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3266904(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trimet Aluminium SE filed Critical Trimet Aluminium SE
Priority to EP16177980.6A priority Critical patent/EP3266904B1/fr
Priority to CN201710541196.9A priority patent/CN107574461A/zh
Publication of EP3266904A1 publication Critical patent/EP3266904A1/fr
Application granted granted Critical
Publication of EP3266904B1 publication Critical patent/EP3266904B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a control method for operating a cell of a melt flow electrolysis system, in particular for the production of aluminum.
  • the present invention also relates to a melt-flow electrolysis system, in particular for the production of aluminum, with a melt-flow electrolysis cell.
  • the regeneratively provided energy cannot be stored due to storage media that have not yet been available to a suitable extent and can then be accessed depending on the electricity demand. Furthermore, the regenerative energy can only be fed into the power grid if the corresponding energy sources, in particular the volatile energy sources from wind and sun, enable the conversion into electrical energy and its feeding into the power grid.
  • the consumers in the power grid would therefore have to adapt their electrical energy requirements as far as possible to the feed-in from regenerative energy sources, provided that fossil energy sources are not used as a buffer.
  • Industries that have a very high energy requirement are particularly affected by this trend, because their electricity consumption does not fit in with the general electricity requirement and can therefore hardly be compensated for by other electricity consumers. This includes, in particular, aluminum production, but other branches of industry, particularly those in the chemical industry, are also heavily affected by this development.
  • fused flux electrolysis processes are therefore control processes in the control engineering sense, which can rely on constant, very easily predeterminable boundary conditions.
  • the temperature of the melt inside the melt flow electrolysis cell is determined at relatively long intervals, for example once a day.
  • the solidification temperature is also determined at relatively long intervals, for example after the temperature of the melt has been determined.
  • Another approach is based on the determination of the AlF 3 content of the melt.
  • the thickness of the crust is kept within a practicable range by adapting the voltage drop across the fused salt electrolysis cell, if necessary. For example, in the case of a fused metal electrolysis cell, it is assumed that the crust has a suitable thickness if the temperature of the melt is 8 ° C. above its solidification temperature.
  • Out DE 26 15 652 A1 describes a method for measuring and controlling the energy balance of aluminum furnaces, in which the immersion depth of the anode of the electrolytic cell is changed as a function of a temperature measured in the furnace lining on the side.
  • GB 2 076 428 A discloses a method for operating an aluminum electrolysis cell in which a heat dissipation through heat pipes is controlled as a function of a measured cell wall temperature.
  • CH 648 871 A5 describes a method for checking the board in a fused-salt electrolysis cell, in which the immersion depth of the anode is changed depending on the energy supplied, taking into account the current strength and the ohmic bath resistance.
  • melt flow electrolysis system in which the melt flow electrolysis system is controlled in such a way that the amount of electrical power it consumes is adapted to the amount of electrical power simultaneously fed in by a volatile energy source.
  • the melt flow electrolysis system can be used as a "virtual battery" in the Use power grid.
  • the power consumption of the melt flow electrolysis system is adjusted, within the system limits of the system, to the amount of energy available in the power grid by means of a corresponding control of the power consumption.
  • the present invention has the object of providing a method for operating a cell of a melt-flow electrolysis system, in particular for the production of aluminum, as well as a melt-flow electrolysis system, in particular for the production of aluminum, with a corresponding melt-flow electrolysis cell, whereby an economical and process-reliable Production process when operating the melt flow electrolysis system is also possible under the prerequisite of fluctuating availability of electrical energy in the power grid.
  • An object of the present invention is to provide a control method and a melt-flow electrolysis system of the technical field described above, whereby the melt-flow electrolysis can be operated safely with variable availability of electrical energy, in particular without additional loading of the melt-flow electrolysis cells or the efficiency of the melt-flow electrolysis, in particular the production of Aluminum.
  • a control method according to the invention is defined in claim 1.
  • a melt flow electrolysis system according to the invention results from claim 8.
  • a use according to the invention of the control method or the melt flow electrolysis system results from claim 14.
  • the control method according to the invention for operating a cell of a melt flow electrolysis system, in particular for the production of aluminum is characterized in that a first control variable is an energy balance of the cell, which takes into account the electrical energy entering the melt flow electrolysis cell and the thermal energy exiting the melt flow electrolysis cell, with a second
  • the controlled variable is a thermal state of the cell.
  • “regulation” or “regulation” is understood to mean a process in which a variable, the “controlled variable”, is continuously recorded, compared with another variable, the “reference variable”, and in the sense of an approximation to the Reference variable is influenced.
  • the closed action sequence, in which the controlled variable continuously influences itself in the action path of the control loop, is characteristic of the control.
  • “regulation” or “regulation” is also understood to mean a process in which the “controlled variable” is continuously simulated instead of measured, compared with the “reference variable” and influenced in the sense of an adjustment to the reference variable. With this form of control in the present sense, too, the closed action sequence, in which the controlled variable continuously influences itself in the action path of the control loop, is characteristic.
  • direct or indirect measurement of the heat output can be dispensed with and this can instead be determined on the basis of a simulation of the heat output.
  • the previous mode of operation must be deviated from.
  • the operation of the Melt-flow electrolysis cell regulated in such a way that the electrolyte temperature is in a relatively wide temperature range. According to the invention, this is brought about by the control-related consideration of the heat balance.
  • the heat balance is understood to mean an energy balance which takes into account the electrical energy entering the fused electrolysis cell and the thermal energy exiting the fused electrolysis cell.
  • the proportion of the electrical energy entering the aluminum electrolysis cell used for the production of aluminum is also preferably determined.
  • this proportion of the electrical energy entering the aluminum electrolysis cell can be assumed to be constant and the proportion introduced as heat into the aluminum electrolysis cell can be determined from the difference between the total electrical energy and the energy used for production, which is assumed to be constant.
  • the heat balance of the fused flux electrolysis cell is consequently determined and the operation of the fused flow electrolysis cell is regulated on the basis of the heat balance as a control variable.
  • a thermocouple and / or a device, in particular a measuring device, for determining a volume flow of exhaust air from the cell and / or a device, in particular a measuring device, for determining a volume flow of a heat transport fluid in a heat exchanger on the cell is or are preferred as a measuring element or several measuring elements are used to determine the first controlled variable, ie the heat balance.
  • At least 6, preferably at least 12, more preferably at least 30, more preferably at least are preferred 60, thermocouples arranged on the cell in order to be able to determine the temperature distribution on the cell and thus also the heat balance as precisely as possible.
  • melt flow electrolysis cells of a melt flow electrolysis system are provided with the thermocouple or the multiple thermocouples. This simplifies the design effort of the overall system and largely achieves the desired goal of the regulated operation of the melt flow electrolysis system.
  • thermocouples can function individually or jointly as a measuring element in the control engineering sense. This basically also applies to the device for determining the volume flow of the exhaust air from the cell, which can determine the mass flow as an alternative or in addition to the volume flow and can preferably also determine information on the temperature of the exhaust air.
  • Such a device for determining the volume flow of the exhaust air from the cell or the device for determining a volume flow of the heat transfer fluid in the heat exchanger can also function, for example, by determining a speed of a fan or a corresponding element, also indirectly, for example via the energy consumption or the (Rotary) field of an electric motor driving the fan. In this way it is possible to determine the volume flow of exhaust air or heat transport fluid without measuring it directly, because the volume flow is generated at least to a substantial extent by the fan or a corresponding element. Nevertheless, this determination of the volume flow in the Regulation of the operation of the fused metal electrolysis cell can be processed as "measurement".
  • Said heat transfer fluid can in particular be air, which can be guided along the cell wall, for example, in a basically known heat exchanger.
  • the heat transport fluid in addition to the volume flow or instead of the volume flow, a mass flow can also be determined, and the temperature of the heat transport fluid can also preferably be determined.
  • the heat exchanger can influence the extent of cooling or heat loss of the fused-salt electrolysis cell and thus in particular the thickness of the crust along its edge and thus influence the heat balance in several ways.
  • thermocouple devices for determining a volume flow of an exhaust air from the cell and measuring device for determining a volume flow of a heat transfer fluid in a heat exchanger on the cell, for continuous detection of a heat supplied to the cell and a heat dissipated from the cell Heat suitable and designed.
  • the cell has side walls, a floor and an exhaust air duct, with arranged on or in at least one of the side walls, the floor or the exhaust air duct, preferably on or in all side walls and the floor and particularly preferably also on or in the exhaust air duct
  • Thermocouples are used as measuring elements to determine the heat balance.
  • At least one heat exchanger and / or at least one exhaust gas flow flap and / or a chemical composition of the melt, in particular an AlF 3 metering, and / or at least one crossbeam for positioning at least one anode in the cell as an actuator to act on a heat input and / or are preferred a heat discharge is used.
  • the above-mentioned elements make it possible to vary the heat input and / or heat output within relatively wide limits, the heat input or heat output being used as a manipulated variable when regulating the heat balance. In principle, there are also other ways of varying the heat input or heat output, but the above-mentioned elements have proven to be particularly effective in connection with fused-salt electrolysis cells.
  • a corresponding adjustment of the voltage drop across the fused-melt electrolysis cell is carried out. This can be brought about in particular by changing the distance between the anode or a plurality of anodes and the cathode or a plurality of cathodes.
  • An increase in the current basically brings more heat into the fused-salt electrolysis cell, while a reduction in the voltage, ie a reduction in the distance between the electrodes, leads to a fundamentally lower heat input.
  • the position of the exhaust gas flow flap or heat exchanger is preferably used to further influence the heat output from the fused salt electrolysis cell taken because the variation of the heat input is possible more effectively than that of the heat output.
  • An entry of material to be melted, in particular aluminum oxide and cryolite, and / or a discharge of molten material, in particular aluminum, and / or a change in a melt flow electrolysis current strength are also taken into account as a disturbance variable.
  • the entry of material to be melted changes not only the temperature of the electrolyte bath, but also its chemical composition, which has an impact on the heat balance of the operation of the melt flow electrolysis cell.
  • the melt flow electrolysis current strength changes the energy input and thus the amount of heat supplied.
  • the strength of the current can vary in an uncontrolled manner within certain limits, in particular due to the variable energy present in the power network and thus bypassing the regulation of the fused-salt electrolysis itself.
  • a third control variable is a chemical state of the cell.
  • the thermal state of the cell is to be understood in particular as the temperature of the electrolyte as a decisive variable.
  • other elements of the cell also contribute to its thermal Condition at.
  • the most critical part of the cell is the electrolyte, because its temperature must be kept above its solidification temperature in any case in order to keep the melt flow electrolysis system functional.
  • the chemical state of the cell is therefore also largely determined by the solidification temperature of the electrolyte, which depends in particular on the "AlF 3 excess".
  • a melt-flow electrolysis system according to the invention in particular for the production of aluminum, with a melt-flow electrolysis cell is characterized in that the melt-flow electrolysis system has a control device which is designed to carry out one of the control methods described above.
  • the melt flow electrolysis system comprises a thermocouple and / or a measuring device for determining a volume flow of exhaust air from the melt flow electrolysis cell and / or, if a heat exchanger for influencing a heat input or heat output by means of a heat transport fluid on at least one outer surface of the melt flow electrolysis cell is included, a measuring device for determination a volume flow rate of the heat transport fluid in the heat exchanger at the fused salt electrolysis cell.
  • these elements are particularly well suited to be used as measuring elements in the inventive control, because they provide meaningful information for determining the heat balance of the fused metal electrolysis cell and therefore allow the control to be implemented particularly easily.
  • the melt flow electrolysis cell of a preferred melt flow electrolysis system has side walls, a base and an exhaust air duct, with thermocouples on or in at least one of the side walls, the base or the exhaust air duct, preferably on or in all side walls and the base and particularly preferably also on or in the exhaust air duct are arranged. This makes it possible to determine the heat balance of the fusible flow electrolysis cell particularly well and is therefore particularly suitable for use in the context of the invention.
  • the melt flow electrolysis system comprises a heat exchanger for influencing a heat input or heat output by means of a heat transport fluid on at least one outer surface of the melt flow electrolysis cell and / or an adjustable exhaust gas flow flap for influencing a volume flow of an exhaust gas from the melt flow electrolysis cell and / or a device for changing a chemical composition of the melt, in particular for changing a dosage of AlF 3 in the melt, and / or a cross member for positioning an anode in the melt flow electrolysis cell.
  • heat loss and heat input can be efficiently adjusted and varied within wide limits in order to adapt the heat balance as efficiently as possible to its setpoint. There are basically other ways of influencing the heat balance, but they are less effective and therefore inefficient.
  • a preferred melt-flow electrolysis system comprises a device for determining a mass of material to be melted introduced into the melt-flow electrolysis cell, in particular aluminum oxide and cryolite, and / or a device for determining a mass of molten material removed from the melt-flow electrolysis cell, in particular aluminum.
  • the material introduced into the cell and removed from the cell not only changes the heat balance in that heat is removed from or brought into the fused metal electrolysis cell system, but also partially changes the chemical composition of the contents of the cell Fused metal electrolysis cell, which has an influence in particular on the solidification temperature of the electrolyte and should therefore be taken into account when regulating the heat balance.
  • the change in the temperature of the material in the cell also has an influence on the chemical composition of the melt due to the change in the thickness of the edge crust caused by this.
  • An increase in temperature leads to further melting of the crust and thus a reduction in the proportion of AlF 3 in the melt. Since this last-mentioned process exhibits a certain inertia and pendulum motion, the determination of the chemical composition was error-prone shortly after the current intensity supplied to the cell was varied.
  • the control according to the invention can compensate for these errors and avoid misinterpretations.
  • the above-described control method or a melt-flow electrolysis system described above provided that the melt-flow electrolysis system is connected to a power grid in order to be supplied with electrical energy for the melt-flow electrolysis, in other words wherein a current used for operating the cell is supplied from the power grid, used to compensate for fluctuations in feeding energy into the power grid.
  • Such fluctuations lead to an imbalance between feed-in and consumption, which results in frequency deviations and / or voltage deviations in the network within a very short time, which endanger the stable operation of the network and must therefore be corrected immediately to avoid network breakdowns ("blackouts").
  • melt flow electrolysis system according to the invention or the control method for operating the melt flow electrolysis system are designed in such a way that the melt flow electrolysis system can be operated within the system limits with different consumption capacities the fused-salt electrolysis process can be used very well as a buffer to compensate for these power balance imbalances and thus to stabilize the grid.
  • Figure 1 shows a diagram of a preferred process management by means of closed real-time heat balance control.
  • the heat balance is used as the reference variable w (t).
  • a control deviation e (t) of the heat balance that is to say a deviation of the heat balance from the target value, is compensated for by a controller on the basis of a heat balance feedback y m (t).
  • the controller determines through the comparison between the reference variable w (t) and feedback y m (t) a deviation of the determined heat balance y (t) from the reference variable w (t) and determines appropriate countermeasures in order to adapt the controlled variable to the reference variable.
  • the heat loss or heat input are viewed as the general manipulated variable u (t).
  • the controller can, for example, influence a heat exchanger, exhaust gas flow dampers, the bath chemistry and the voltage inside the molten electrolysis cell.
  • the specific manipulated variable u S (t) which can be influenced by the controller, can, for example, be the flap position of exhaust gas flow flaps in an exhaust gas duct, a dosage of AlF 3 in the electrolyte bath, a flow rate of heat transfer fluid in the heat exchanger or a crossbar position, i.e.
  • the controlled system is therefore the fused metal electrolysis cell with its components such as the heat exchanger, the exhaust gas flow guide, the crossbeam, fan, flaps, etc.
  • the heat balance can be determined, for example, by thermocouples for measuring the temperatures on the side walls, the floor and the exhaust air duct as well as by elements for determining a volume flow of both the exhaust air and a heat transfer fluid possibly flowing through a heat exchanger in connection with an evaluation unit.
  • the data measured and evaluated by these measuring elements are fed to the controller in order to set the corresponding actuators appropriately.
  • the heat in the fused salt electrolysis cell is mainly generated in the area of the anode-cathode distance.
  • a reduction in the distance when the amperage increases and an increase in the distance when the amperage is reduced represents a first measure for regulating the heat balance. This varies the ohmic resistance of the fused-salt electrolysis cell, which is within certain limits, in particular due to a minimum distance between anode and aluminum pool as well as a energy-efficient processes are determined is possible.
  • an exhaust gas flow can be varied and in this way the heat balance of the fused-salt electrolysis cell can also be influenced.
  • An increase in the exhaust gas flow increases heat output, while a reduction in the exhaust gas flow acts as an insulation.
  • melt flow electrolysis system in particular an aluminum electrolysis system, without the requirement of a to operate a constant amperage made available from the power grid in an economically viable manner.
  • FIG. 12 shows a schematic view of a melt flow electrolysis system with a melt flow electrolysis cell 30.
  • the melt flow electrolysis cell 30 is laterally bounded by cell walls 32 and also has a cell bottom 34, which at the same time functions as a cathode for the melt flow electrolysis process inside the cell 30.
  • Inside the cell 30 there is an anode 36 protruding from above into the cell 30 and the melt 38, 35.1, which includes cryolite and molten aluminum, among other things.
  • a heat exchanger 39 is arranged through which a fluid, such as. B. air, CO 2 , nitrogen or a liquid is passed.
  • the heat exchanger 39 is particularly preferably connected via a line system 31 to a heat store 33, which can be formed, for example, by a conventional or also a latency heat store.
  • heat can be conducted from the heat store 33 through the line system 31 to the heat exchanger 39.
  • the inside of the fused metal electrolysis cell can be effectively heated via the cell walls 32 by less heat being radiated to the outside, because the temperature difference between the inside of the cell and the outside of the cell walls 32 is reduced, and the solidification of the melt is thereby inhibited.
  • the same effect is achieved by varying the exhaust gases sucked up or retained.
  • a control device 37 is designed to operate the cell of the melt flow electrolysis system in such a way that its heat balance is controlled, as has been described above.
  • the fusible electrolysis cell comprises a multiplicity of thermocouples (not shown) in its side walls, the bottom and also in the area of its exhaust air duct adjoining the fusible electrolysis cell at the top. The measurement results recorded by these thermocouples are fed to the regulating device 37 and evaluated there to regulate the operation of the melt-flow electrolysis cell.
  • the power grid can also be kept stable despite the infeed of volatile energy sources, without having to resort to special (currently insufficiently available) storage devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (15)

  1. Procédé de réglage pour faire fonctionner une cellule d'une installation d'électrolyse ignée, en particulier pour la production d'aluminium,
    dans lequel une première grandeur de réglage est un bilan énergétique de la cellule, qui prend en compte l'énergie électrique entrant dans la cellule d'électrolyse ignée et l'énergie calorifique sortant de la cellule d'électrolyse ignée, et
    dans lequel une deuxième grandeur de réglage est un état thermique de la cellule.
  2. Procédé de réglage selon la revendication 1, dans lequel un thermocouple et/ou un dispositif pour déterminer un courant volumique d'un air rejeté de la cellule et/ou un dispositif pour déterminer un courant volumique d'un fluide caloporteur dans un échangeur de chaleur au niveau de la cellule sont utilisés comme élément de mesure pour déterminer la première grandeur de réglage.
  3. Procédé de réglage selon la revendication 1 ou 2, dans lequel la cellule présente des parois latérales, un fond et une évacuation de l'air rejeté,
    dans lequel des thermocouples agencés en tant qu'éléments de mesure sur ou dans au moins une des parois latérales, du fond ou de l'évacuation de l'air rejeté, de préférence sur ou dans toutes les parois latérales et le fond et le plus préférentiellement également sur ou dans l'évacuation de l'air rejeté sont utilisés pour déterminer la première grandeur de réglage.
  4. Procédé de réglage selon l'une quelconque des revendications précédentes, dans lequel au moins un échangeur de chaleur et/ou au moins un clapet de courant de gaz d'échappement et/ou une composition chimique de la masse fondue, en particulier un dosage d'AIF3, et/ou au moins une traverse pour le positionnement d'au moins une anode dans la cellule sont utilisés en tant qu'organe de réglage pour agir sur un apport de chaleur et/ou une sortie de chaleur.
  5. Procédé de réglage selon l'une quelconque des revendications précédentes, dans lequel un apport de matériau à fondre, en particulier de l'oxyde d'aluminium et de la cryolithe, et/ou une sortie de matériau fondu, en particulier de l'aluminium, et/ou une modification d'une intensité de courant d'électrolyse est ou sont pris en compte en tant que grandeur perturbatrice.
  6. Procédé de réglage selon l'une quelconque des revendications précédentes, dans lequel une troisième grandeur de mesure est un état chimique de la cellule.
  7. Procédé de réglage selon l'une quelconque des revendications précédentes, dans lequel un courant utilisé pour un fonctionnement de la cellule est acheminé à partir d'un réseau électrique.
  8. Installation d'électrolyse ignée, en particulier pour la production d'aluminium, avec une cellule d'électrolyse ignée,
    caractérisée en ce que
    l'installation d'électrolyse ignée présente un dispositif de réglage qui est formé pour réaliser un procédé de réglage selon l'une quelconque des revendications précédentes.
  9. Installation d'électrolyse ignée selon la revendication 8,
    comprenant en particulier un échangeur de chaleur pour influer sur un apport de chaleur ou une sortie de chaleur au moyen d'un fluide caloporteur sur au moins une surface extérieure de la cellule d'électrolyse ignée,
    dans laquelle la cellule d'électrolyse ignée présente un thermocouple et/ou un dispositif de mesure pour déterminer un courant volumique d'un air rejeté de la cellule d'électrolyse ignée et/ou un dispositif de mesure pour déterminer un courant volumique du fluide caloporteur dans l'échangeur de chaleur au niveau de la cellule d'électrolyse ignée.
  10. Installation d'électrolyse ignée selon la revendication 8 ou 9, dans laquelle la cellule d'électrolyse ignée présente des parois latérales, un fond et une évacuation de l'air rejeté,
    dans laquelle sur ou dans au moins une des parois latérales, du fond ou de l'évacuation de l'air rejeté, de préférence sur ou dans toutes les parois latérales et le fond et le plus préférentiellement également sur ou dans l'évacuation de l'air rejeté, des thermocouples sont agencés.
  11. Installation d'électrolyse ignée selon l'une quelconque des revendications 8 à 10, comprenant
    un échangeur de chaleur pour influer sur un apport de chaleur ou une sortie de chaleur au moyen d'un fluide caloporteur sur au moins une surface extérieure de la cellule d'électrolyse ignée et/ou
    un clapet de courant de gaz d'échappement réglable pour influer sur un courant volumique d'un gaz d'échappement de la cellule d'électrolyse ignée et/ou
    un dispositif pour modifier une composition chimique de la masse fondue, en particulier pour modifier un dosage d'AlF3 dans la masse fondue, et/ou
    une traverse pour le positionnement d'une anode dans la cellule d'électrolyse ignée.
  12. Installation d'électrolyse ignée selon l'une quelconque des revendications 8 à 11, comprenant un dispositif pour déterminer une masse de matériau à fondre introduit dans la cellule d'électrolyse ignée, en particulier de l'oxyde d'aluminium et de la cryolithe, et/ou un dispositif pour déterminer une masse de matériau fondu retiré de la cellule d'électrolyse ignée, en particulier de l'aluminium.
  13. Installation d'électrolyse ignée selon l'une quelconque des revendications 8 à 12, dans laquelle l'installation d'électrolyse ignée est raccordée à un réseau électrique pour assurer l'alimentation en énergie électrique pour l'électrolyse ignée.
  14. Utilisation d'un procédé de réglage selon la revendication 7 ou d'une installation d'électrolyse ignée selon la revendication 13 pour uniformiser les variations d'une alimentation en énergie dans le réseau électrique.
  15. Utilisation selon la revendication 14, dans laquelle l'énergie fournie par une source de courant volatile provient en particulier d'une installation éolienne et/ou d'une installation solaire.
EP16177980.6A 2016-07-05 2016-07-05 Installation a electrolyse ignee et procede de reglage de son fonctionnement Active EP3266904B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16177980.6A EP3266904B1 (fr) 2016-07-05 2016-07-05 Installation a electrolyse ignee et procede de reglage de son fonctionnement
CN201710541196.9A CN107574461A (zh) 2016-07-05 2017-07-05 熔融电解设备及其运行的调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16177980.6A EP3266904B1 (fr) 2016-07-05 2016-07-05 Installation a electrolyse ignee et procede de reglage de son fonctionnement

Publications (2)

Publication Number Publication Date
EP3266904A1 EP3266904A1 (fr) 2018-01-10
EP3266904B1 true EP3266904B1 (fr) 2021-03-24

Family

ID=56363769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16177980.6A Active EP3266904B1 (fr) 2016-07-05 2016-07-05 Installation a electrolyse ignee et procede de reglage de son fonctionnement

Country Status (2)

Country Link
EP (1) EP3266904B1 (fr)
CN (1) CN107574461A (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210794B (zh) * 2019-07-10 2021-12-21 郑州轻冶科技股份有限公司 基于分子比的铝电解能量平衡调节方法、系统、铝电解槽
CN112210793B (zh) * 2020-10-19 2022-06-10 郑州轻冶科技股份有限公司 一种侧部带热管换热器的铝电解槽
CN115029735B (zh) * 2022-05-26 2024-01-30 中南大学 一种面向新能源消纳的铝电解热平衡调控装置及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632488A (en) 1969-01-23 1972-01-04 Reynolds Metals Co Reduction cell control system
US4045309A (en) 1975-04-10 1977-08-30 Norsk Hydro A.S Method for measuring and control of the energy in aluminum reduction cells
GB2047745A (en) 1979-04-23 1980-12-03 Alumax Inc Cell for aluminium smelting
EP0044794A1 (fr) 1980-07-23 1982-01-27 Aluminium Pechiney Procédé et appareillage pour réguler de façon précise la cadence d'introduction et la teneur en alumine d'une cuve d'électrolyse ignée, et application à la production d'aluminium
EP0047227A2 (fr) 1980-09-02 1982-03-10 Schweizerische Aluminium Ag Dispositif pour le réglage du flux de chaleur d'une cellule d'électrolyse à fusion de l'aluminium et procédé de fonctionnement de cette cellule
US4333803A (en) 1980-10-03 1982-06-08 Aluminum Company Of America Method and apparatus for controlling the heat balance in aluminum reduction cells
FR2527647A1 (fr) 1982-05-27 1983-12-02 Pechiney Aluminium Dispositif amovible d'alimentation ponctuelle en alumine d'une cuve d'electrolyse pour la production d'aluminium
US5089093A (en) 1989-02-24 1992-02-18 Comalco Aluminum Ltd. Process for controlling aluminum smelting cells
CA1335436C (fr) 1987-04-21 1995-05-02 Benoit Sulmont Procede et dispositif de controle des additions d'electrolyte solide dans les cuves d'electrolyse pour la production d'aluminium
WO1999054526A1 (fr) 1998-04-16 1999-10-28 Aluminium Pechiney Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
WO2002068726A2 (fr) 2001-02-28 2002-09-06 Aluminium Pechiney Procede de regulation d'une cellule d'electrolyse
WO2010031919A1 (fr) 2008-09-16 2010-03-25 E.C.L. Machine de service utilisee pour intervenir sur les cellules d´εlectrolyse de production d'aluminium par electrolyse ignee
DE102011078656A1 (de) 2011-07-05 2013-01-10 Trimet Aluminium Ag Verfahren zum netzgeführten Betreiben einer Industrieanlage
CN104047032A (zh) 2014-06-27 2014-09-17 中国铝业股份有限公司 一种自动调节铝电解槽能量平衡的方法
CN205017018U (zh) 2015-09-21 2016-02-03 顾为东 大型铝电池调峰电站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076428B (en) * 1980-05-19 1983-11-09 Carblox Ltd Aluminium manufacture
CH648871A5 (en) * 1982-07-12 1985-04-15 Alusuisse Method of controlling the crust in an electrolysis cell
WO2008014042A1 (fr) * 2006-07-24 2008-01-31 Alcoa Inc. Systèmes et procédés de contrôle de température de parois latérales et cellules d'électrolyse perfectionnées correspondantes
CN101275247A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种铝电解槽能量平衡的控制方法
CN201210660Y (zh) * 2008-06-16 2009-03-18 湖南晟通科技集团有限公司 铝电解槽废热利用装置
CN101962785B (zh) * 2010-10-22 2012-07-04 河南中孚实业股份有限公司 一种铝电解槽低电压运行的热平衡控制方法
CN103603010B (zh) * 2013-11-18 2015-12-02 中南大学 一种铝电解槽电压及热平衡的计算方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632488A (en) 1969-01-23 1972-01-04 Reynolds Metals Co Reduction cell control system
US4045309A (en) 1975-04-10 1977-08-30 Norsk Hydro A.S Method for measuring and control of the energy in aluminum reduction cells
GB2047745A (en) 1979-04-23 1980-12-03 Alumax Inc Cell for aluminium smelting
EP0044794A1 (fr) 1980-07-23 1982-01-27 Aluminium Pechiney Procédé et appareillage pour réguler de façon précise la cadence d'introduction et la teneur en alumine d'une cuve d'électrolyse ignée, et application à la production d'aluminium
EP0047227A2 (fr) 1980-09-02 1982-03-10 Schweizerische Aluminium Ag Dispositif pour le réglage du flux de chaleur d'une cellule d'électrolyse à fusion de l'aluminium et procédé de fonctionnement de cette cellule
US4333803A (en) 1980-10-03 1982-06-08 Aluminum Company Of America Method and apparatus for controlling the heat balance in aluminum reduction cells
FR2527647A1 (fr) 1982-05-27 1983-12-02 Pechiney Aluminium Dispositif amovible d'alimentation ponctuelle en alumine d'une cuve d'electrolyse pour la production d'aluminium
CA1335436C (fr) 1987-04-21 1995-05-02 Benoit Sulmont Procede et dispositif de controle des additions d'electrolyte solide dans les cuves d'electrolyse pour la production d'aluminium
US5089093A (en) 1989-02-24 1992-02-18 Comalco Aluminum Ltd. Process for controlling aluminum smelting cells
WO1999054526A1 (fr) 1998-04-16 1999-10-28 Aluminium Pechiney Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
WO2002068726A2 (fr) 2001-02-28 2002-09-06 Aluminium Pechiney Procede de regulation d'une cellule d'electrolyse
WO2010031919A1 (fr) 2008-09-16 2010-03-25 E.C.L. Machine de service utilisee pour intervenir sur les cellules d´εlectrolyse de production d'aluminium par electrolyse ignee
DE102011078656A1 (de) 2011-07-05 2013-01-10 Trimet Aluminium Ag Verfahren zum netzgeführten Betreiben einer Industrieanlage
CN104047032A (zh) 2014-06-27 2014-09-17 中国铝业股份有限公司 一种自动调节铝电解槽能量平衡的方法
CN205017018U (zh) 2015-09-21 2016-02-03 顾为东 大型铝电池调峰电站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COULOMBE MARIE-MICHELLE: "DIAGNOSTIC THERMIQUE SUR LES CUVES D'ÉLECTROLYSE DE L'ALUMINIUM", UNIVERSITÉ DE SHERBROOKE, 24 June 2013 (2013-06-24), pages 1 - 70, XP055880008, Retrieved from the Internet <URL:https://savoirs.usherbrooke.ca/bitstream/handle/11143/8745/Coulombe_Marie_Michelle_MScA_2013.pdf?sequence=1&isAllowed=y> [retrieved on 20220117]
IFFERT MARTIN: "Use of state-of-the-art sensors to reduce energy consumption at the TRIMET aluminium shelter", PROCEEDINGS OF EMC 2003, 1 January 2003 (2003-01-01), pages 289 - 305, XP055880006
SYSOEV I. A., ERSHOV V. A., KONDRAT’EV V. V.: "Method of Controlling the Energy Balance of Electrolytic Cells for Aluminum Production", METALLURGIST, SPRINGER US, NEW YORK, vol. 59, no. 5-6, 1 September 2015 (2015-09-01), New York, pages 518 - 525, XP055879999, ISSN: 0026-0894, DOI: 10.1007/s11015-015-0134-1

Also Published As

Publication number Publication date
CN107574461A (zh) 2018-01-12
EP3266904A1 (fr) 2018-01-10

Similar Documents

Publication Publication Date Title
EP3266904B1 (fr) Installation a electrolyse ignee et procede de reglage de son fonctionnement
DE102015118809B4 (de) Brennstoffzellensystem, Brennstoffzellenfahrzeug und Steuerverfahren für ein Brennstoffzellensystem
WO2014170373A2 (fr) Procédé et dispositif de réglage de l&#39;état de charge d&#39;une centrale à batteries
DE102009048797B3 (de) Wärmebehandlungsanlage und Verfahren zur Wärmebehandlung von Einsatzgut
WO2017129381A1 (fr) Procédé de fabrication générative de composants avec une plate-forme de construction pouvant être chauffée et installation appropriée à ce procédé
DE102012025192A1 (de) Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen
DE102020133283A1 (de) Kühlsystem zum Kühlen einer steuerbaren Wärmequelle
DE2615652A1 (de) Verfahren zum messen und steuern der energiebilanz von aluminium-oefen
DE102012108018A1 (de) Verfahren zur bedarfsgerechten Regelung einer Vorrichtung für eine Schichtlüftung und Vorrichtung für eine Schichtlüftung
WO2013004689A2 (fr) Installation d&#39;électrolyse d&#39;aluminium pour un fonctionnement commuté par le réseau
DE102018216539A1 (de) Verfahren zum Betreiben eines Elektrolichtbogenofens
EP3029384B1 (fr) Installation de climatisation décentralisée avec un accumulateur de chaleur latente
EP0455590A1 (fr) Régulation et stabilisation de la teneur en A1F3 d&#39;une cave d&#39;électrolyse de l&#39;aluminium
DE69721710T2 (de) Verfahren zur Regelung der Heizung eines Ofens mit Hilfe von unscharfer Logik
EP1550927B1 (fr) Procédé, dispositif et logiciel pour la détermination d&#39;une grandeur de commande pour contrôler la température d&#39;un système
DE102020214450A1 (de) Verfahren und Vorrichtung zur Vermeidung von Kondenswasserbildung bei einem Inverter
DE19632410C1 (de) Verfahren und Vorrichtung zur Beschichtung eines Bauteils mit einer Wärmedämmschicht
DE102016006453B4 (de) Verfahren zur automatischen Regelung eines Phasenumwandlungsvorganges und seine Verwendung
EP2130260B1 (fr) Système de pile à combustible et procédé de régulation d&#39;un système de pile à combustible
AT526937B1 (de) Verfahren, Vorrichtung und System für eine Kontrolle eines Aufheizvorgangs eines Brennstoffzellensystems
DE102013018398A1 (de) Verfahren zum Betreiben einer aktiv gekühlten Batterie
DE1752297A1 (de) Verfahren zur Aufrechterhaltung einer vorgegebenen Temperatur in bewegtem Material
AT513841B1 (de) Verfahren zur Beheizung von Gebäuden
DE102013218470A1 (de) Brennstoffzellenanordnung sowie Verfahren zum Betreiben einer Brennstoffzellenanordnung
EP3455929B1 (fr) Controle de refroidissement pour générateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012644

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016012644

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: RIO TINTO ALCAN INTERNATIONAL LIMITED

Effective date: 20211223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1374608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220720

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: C25C 7/06 20060101ALI20231031BHEP

Ipc: C25C 7/00 20060101ALI20231031BHEP

Ipc: C25C 3/20 20060101AFI20231031BHEP

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230801

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240717

Year of fee payment: 9