EP3266904B1 - Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb - Google Patents

Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb Download PDF

Info

Publication number
EP3266904B1
EP3266904B1 EP16177980.6A EP16177980A EP3266904B1 EP 3266904 B1 EP3266904 B1 EP 3266904B1 EP 16177980 A EP16177980 A EP 16177980A EP 3266904 B1 EP3266904 B1 EP 3266904B1
Authority
EP
European Patent Office
Prior art keywords
cell
molten salt
salt electrolysis
heat
electrolysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16177980.6A
Other languages
English (en)
French (fr)
Other versions
EP3266904A1 (de
Inventor
Roman Düssel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trimet Aluminium SE
Original Assignee
Trimet Aluminium SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56363769&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3266904(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Trimet Aluminium SE filed Critical Trimet Aluminium SE
Priority to EP16177980.6A priority Critical patent/EP3266904B1/de
Priority to CN201710541196.9A priority patent/CN107574461A/zh
Publication of EP3266904A1 publication Critical patent/EP3266904A1/de
Application granted granted Critical
Publication of EP3266904B1 publication Critical patent/EP3266904B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a control method for operating a cell of a melt flow electrolysis system, in particular for the production of aluminum.
  • the present invention also relates to a melt-flow electrolysis system, in particular for the production of aluminum, with a melt-flow electrolysis cell.
  • the regeneratively provided energy cannot be stored due to storage media that have not yet been available to a suitable extent and can then be accessed depending on the electricity demand. Furthermore, the regenerative energy can only be fed into the power grid if the corresponding energy sources, in particular the volatile energy sources from wind and sun, enable the conversion into electrical energy and its feeding into the power grid.
  • the consumers in the power grid would therefore have to adapt their electrical energy requirements as far as possible to the feed-in from regenerative energy sources, provided that fossil energy sources are not used as a buffer.
  • Industries that have a very high energy requirement are particularly affected by this trend, because their electricity consumption does not fit in with the general electricity requirement and can therefore hardly be compensated for by other electricity consumers. This includes, in particular, aluminum production, but other branches of industry, particularly those in the chemical industry, are also heavily affected by this development.
  • fused flux electrolysis processes are therefore control processes in the control engineering sense, which can rely on constant, very easily predeterminable boundary conditions.
  • the temperature of the melt inside the melt flow electrolysis cell is determined at relatively long intervals, for example once a day.
  • the solidification temperature is also determined at relatively long intervals, for example after the temperature of the melt has been determined.
  • Another approach is based on the determination of the AlF 3 content of the melt.
  • the thickness of the crust is kept within a practicable range by adapting the voltage drop across the fused salt electrolysis cell, if necessary. For example, in the case of a fused metal electrolysis cell, it is assumed that the crust has a suitable thickness if the temperature of the melt is 8 ° C. above its solidification temperature.
  • Out DE 26 15 652 A1 describes a method for measuring and controlling the energy balance of aluminum furnaces, in which the immersion depth of the anode of the electrolytic cell is changed as a function of a temperature measured in the furnace lining on the side.
  • GB 2 076 428 A discloses a method for operating an aluminum electrolysis cell in which a heat dissipation through heat pipes is controlled as a function of a measured cell wall temperature.
  • CH 648 871 A5 describes a method for checking the board in a fused-salt electrolysis cell, in which the immersion depth of the anode is changed depending on the energy supplied, taking into account the current strength and the ohmic bath resistance.
  • melt flow electrolysis system in which the melt flow electrolysis system is controlled in such a way that the amount of electrical power it consumes is adapted to the amount of electrical power simultaneously fed in by a volatile energy source.
  • the melt flow electrolysis system can be used as a "virtual battery" in the Use power grid.
  • the power consumption of the melt flow electrolysis system is adjusted, within the system limits of the system, to the amount of energy available in the power grid by means of a corresponding control of the power consumption.
  • the present invention has the object of providing a method for operating a cell of a melt-flow electrolysis system, in particular for the production of aluminum, as well as a melt-flow electrolysis system, in particular for the production of aluminum, with a corresponding melt-flow electrolysis cell, whereby an economical and process-reliable Production process when operating the melt flow electrolysis system is also possible under the prerequisite of fluctuating availability of electrical energy in the power grid.
  • An object of the present invention is to provide a control method and a melt-flow electrolysis system of the technical field described above, whereby the melt-flow electrolysis can be operated safely with variable availability of electrical energy, in particular without additional loading of the melt-flow electrolysis cells or the efficiency of the melt-flow electrolysis, in particular the production of Aluminum.
  • a control method according to the invention is defined in claim 1.
  • a melt flow electrolysis system according to the invention results from claim 8.
  • a use according to the invention of the control method or the melt flow electrolysis system results from claim 14.
  • the control method according to the invention for operating a cell of a melt flow electrolysis system, in particular for the production of aluminum is characterized in that a first control variable is an energy balance of the cell, which takes into account the electrical energy entering the melt flow electrolysis cell and the thermal energy exiting the melt flow electrolysis cell, with a second
  • the controlled variable is a thermal state of the cell.
  • “regulation” or “regulation” is understood to mean a process in which a variable, the “controlled variable”, is continuously recorded, compared with another variable, the “reference variable”, and in the sense of an approximation to the Reference variable is influenced.
  • the closed action sequence, in which the controlled variable continuously influences itself in the action path of the control loop, is characteristic of the control.
  • “regulation” or “regulation” is also understood to mean a process in which the “controlled variable” is continuously simulated instead of measured, compared with the “reference variable” and influenced in the sense of an adjustment to the reference variable. With this form of control in the present sense, too, the closed action sequence, in which the controlled variable continuously influences itself in the action path of the control loop, is characteristic.
  • direct or indirect measurement of the heat output can be dispensed with and this can instead be determined on the basis of a simulation of the heat output.
  • the previous mode of operation must be deviated from.
  • the operation of the Melt-flow electrolysis cell regulated in such a way that the electrolyte temperature is in a relatively wide temperature range. According to the invention, this is brought about by the control-related consideration of the heat balance.
  • the heat balance is understood to mean an energy balance which takes into account the electrical energy entering the fused electrolysis cell and the thermal energy exiting the fused electrolysis cell.
  • the proportion of the electrical energy entering the aluminum electrolysis cell used for the production of aluminum is also preferably determined.
  • this proportion of the electrical energy entering the aluminum electrolysis cell can be assumed to be constant and the proportion introduced as heat into the aluminum electrolysis cell can be determined from the difference between the total electrical energy and the energy used for production, which is assumed to be constant.
  • the heat balance of the fused flux electrolysis cell is consequently determined and the operation of the fused flow electrolysis cell is regulated on the basis of the heat balance as a control variable.
  • a thermocouple and / or a device, in particular a measuring device, for determining a volume flow of exhaust air from the cell and / or a device, in particular a measuring device, for determining a volume flow of a heat transport fluid in a heat exchanger on the cell is or are preferred as a measuring element or several measuring elements are used to determine the first controlled variable, ie the heat balance.
  • At least 6, preferably at least 12, more preferably at least 30, more preferably at least are preferred 60, thermocouples arranged on the cell in order to be able to determine the temperature distribution on the cell and thus also the heat balance as precisely as possible.
  • melt flow electrolysis cells of a melt flow electrolysis system are provided with the thermocouple or the multiple thermocouples. This simplifies the design effort of the overall system and largely achieves the desired goal of the regulated operation of the melt flow electrolysis system.
  • thermocouples can function individually or jointly as a measuring element in the control engineering sense. This basically also applies to the device for determining the volume flow of the exhaust air from the cell, which can determine the mass flow as an alternative or in addition to the volume flow and can preferably also determine information on the temperature of the exhaust air.
  • Such a device for determining the volume flow of the exhaust air from the cell or the device for determining a volume flow of the heat transfer fluid in the heat exchanger can also function, for example, by determining a speed of a fan or a corresponding element, also indirectly, for example via the energy consumption or the (Rotary) field of an electric motor driving the fan. In this way it is possible to determine the volume flow of exhaust air or heat transport fluid without measuring it directly, because the volume flow is generated at least to a substantial extent by the fan or a corresponding element. Nevertheless, this determination of the volume flow in the Regulation of the operation of the fused metal electrolysis cell can be processed as "measurement".
  • Said heat transfer fluid can in particular be air, which can be guided along the cell wall, for example, in a basically known heat exchanger.
  • the heat transport fluid in addition to the volume flow or instead of the volume flow, a mass flow can also be determined, and the temperature of the heat transport fluid can also preferably be determined.
  • the heat exchanger can influence the extent of cooling or heat loss of the fused-salt electrolysis cell and thus in particular the thickness of the crust along its edge and thus influence the heat balance in several ways.
  • thermocouple devices for determining a volume flow of an exhaust air from the cell and measuring device for determining a volume flow of a heat transfer fluid in a heat exchanger on the cell, for continuous detection of a heat supplied to the cell and a heat dissipated from the cell Heat suitable and designed.
  • the cell has side walls, a floor and an exhaust air duct, with arranged on or in at least one of the side walls, the floor or the exhaust air duct, preferably on or in all side walls and the floor and particularly preferably also on or in the exhaust air duct
  • Thermocouples are used as measuring elements to determine the heat balance.
  • At least one heat exchanger and / or at least one exhaust gas flow flap and / or a chemical composition of the melt, in particular an AlF 3 metering, and / or at least one crossbeam for positioning at least one anode in the cell as an actuator to act on a heat input and / or are preferred a heat discharge is used.
  • the above-mentioned elements make it possible to vary the heat input and / or heat output within relatively wide limits, the heat input or heat output being used as a manipulated variable when regulating the heat balance. In principle, there are also other ways of varying the heat input or heat output, but the above-mentioned elements have proven to be particularly effective in connection with fused-salt electrolysis cells.
  • a corresponding adjustment of the voltage drop across the fused-melt electrolysis cell is carried out. This can be brought about in particular by changing the distance between the anode or a plurality of anodes and the cathode or a plurality of cathodes.
  • An increase in the current basically brings more heat into the fused-salt electrolysis cell, while a reduction in the voltage, ie a reduction in the distance between the electrodes, leads to a fundamentally lower heat input.
  • the position of the exhaust gas flow flap or heat exchanger is preferably used to further influence the heat output from the fused salt electrolysis cell taken because the variation of the heat input is possible more effectively than that of the heat output.
  • An entry of material to be melted, in particular aluminum oxide and cryolite, and / or a discharge of molten material, in particular aluminum, and / or a change in a melt flow electrolysis current strength are also taken into account as a disturbance variable.
  • the entry of material to be melted changes not only the temperature of the electrolyte bath, but also its chemical composition, which has an impact on the heat balance of the operation of the melt flow electrolysis cell.
  • the melt flow electrolysis current strength changes the energy input and thus the amount of heat supplied.
  • the strength of the current can vary in an uncontrolled manner within certain limits, in particular due to the variable energy present in the power network and thus bypassing the regulation of the fused-salt electrolysis itself.
  • a third control variable is a chemical state of the cell.
  • the thermal state of the cell is to be understood in particular as the temperature of the electrolyte as a decisive variable.
  • other elements of the cell also contribute to its thermal Condition at.
  • the most critical part of the cell is the electrolyte, because its temperature must be kept above its solidification temperature in any case in order to keep the melt flow electrolysis system functional.
  • the chemical state of the cell is therefore also largely determined by the solidification temperature of the electrolyte, which depends in particular on the "AlF 3 excess".
  • a melt-flow electrolysis system according to the invention in particular for the production of aluminum, with a melt-flow electrolysis cell is characterized in that the melt-flow electrolysis system has a control device which is designed to carry out one of the control methods described above.
  • the melt flow electrolysis system comprises a thermocouple and / or a measuring device for determining a volume flow of exhaust air from the melt flow electrolysis cell and / or, if a heat exchanger for influencing a heat input or heat output by means of a heat transport fluid on at least one outer surface of the melt flow electrolysis cell is included, a measuring device for determination a volume flow rate of the heat transport fluid in the heat exchanger at the fused salt electrolysis cell.
  • these elements are particularly well suited to be used as measuring elements in the inventive control, because they provide meaningful information for determining the heat balance of the fused metal electrolysis cell and therefore allow the control to be implemented particularly easily.
  • the melt flow electrolysis cell of a preferred melt flow electrolysis system has side walls, a base and an exhaust air duct, with thermocouples on or in at least one of the side walls, the base or the exhaust air duct, preferably on or in all side walls and the base and particularly preferably also on or in the exhaust air duct are arranged. This makes it possible to determine the heat balance of the fusible flow electrolysis cell particularly well and is therefore particularly suitable for use in the context of the invention.
  • the melt flow electrolysis system comprises a heat exchanger for influencing a heat input or heat output by means of a heat transport fluid on at least one outer surface of the melt flow electrolysis cell and / or an adjustable exhaust gas flow flap for influencing a volume flow of an exhaust gas from the melt flow electrolysis cell and / or a device for changing a chemical composition of the melt, in particular for changing a dosage of AlF 3 in the melt, and / or a cross member for positioning an anode in the melt flow electrolysis cell.
  • heat loss and heat input can be efficiently adjusted and varied within wide limits in order to adapt the heat balance as efficiently as possible to its setpoint. There are basically other ways of influencing the heat balance, but they are less effective and therefore inefficient.
  • a preferred melt-flow electrolysis system comprises a device for determining a mass of material to be melted introduced into the melt-flow electrolysis cell, in particular aluminum oxide and cryolite, and / or a device for determining a mass of molten material removed from the melt-flow electrolysis cell, in particular aluminum.
  • the material introduced into the cell and removed from the cell not only changes the heat balance in that heat is removed from or brought into the fused metal electrolysis cell system, but also partially changes the chemical composition of the contents of the cell Fused metal electrolysis cell, which has an influence in particular on the solidification temperature of the electrolyte and should therefore be taken into account when regulating the heat balance.
  • the change in the temperature of the material in the cell also has an influence on the chemical composition of the melt due to the change in the thickness of the edge crust caused by this.
  • An increase in temperature leads to further melting of the crust and thus a reduction in the proportion of AlF 3 in the melt. Since this last-mentioned process exhibits a certain inertia and pendulum motion, the determination of the chemical composition was error-prone shortly after the current intensity supplied to the cell was varied.
  • the control according to the invention can compensate for these errors and avoid misinterpretations.
  • the above-described control method or a melt-flow electrolysis system described above provided that the melt-flow electrolysis system is connected to a power grid in order to be supplied with electrical energy for the melt-flow electrolysis, in other words wherein a current used for operating the cell is supplied from the power grid, used to compensate for fluctuations in feeding energy into the power grid.
  • Such fluctuations lead to an imbalance between feed-in and consumption, which results in frequency deviations and / or voltage deviations in the network within a very short time, which endanger the stable operation of the network and must therefore be corrected immediately to avoid network breakdowns ("blackouts").
  • melt flow electrolysis system according to the invention or the control method for operating the melt flow electrolysis system are designed in such a way that the melt flow electrolysis system can be operated within the system limits with different consumption capacities the fused-salt electrolysis process can be used very well as a buffer to compensate for these power balance imbalances and thus to stabilize the grid.
  • Figure 1 shows a diagram of a preferred process management by means of closed real-time heat balance control.
  • the heat balance is used as the reference variable w (t).
  • a control deviation e (t) of the heat balance that is to say a deviation of the heat balance from the target value, is compensated for by a controller on the basis of a heat balance feedback y m (t).
  • the controller determines through the comparison between the reference variable w (t) and feedback y m (t) a deviation of the determined heat balance y (t) from the reference variable w (t) and determines appropriate countermeasures in order to adapt the controlled variable to the reference variable.
  • the heat loss or heat input are viewed as the general manipulated variable u (t).
  • the controller can, for example, influence a heat exchanger, exhaust gas flow dampers, the bath chemistry and the voltage inside the molten electrolysis cell.
  • the specific manipulated variable u S (t) which can be influenced by the controller, can, for example, be the flap position of exhaust gas flow flaps in an exhaust gas duct, a dosage of AlF 3 in the electrolyte bath, a flow rate of heat transfer fluid in the heat exchanger or a crossbar position, i.e.
  • the controlled system is therefore the fused metal electrolysis cell with its components such as the heat exchanger, the exhaust gas flow guide, the crossbeam, fan, flaps, etc.
  • the heat balance can be determined, for example, by thermocouples for measuring the temperatures on the side walls, the floor and the exhaust air duct as well as by elements for determining a volume flow of both the exhaust air and a heat transfer fluid possibly flowing through a heat exchanger in connection with an evaluation unit.
  • the data measured and evaluated by these measuring elements are fed to the controller in order to set the corresponding actuators appropriately.
  • the heat in the fused salt electrolysis cell is mainly generated in the area of the anode-cathode distance.
  • a reduction in the distance when the amperage increases and an increase in the distance when the amperage is reduced represents a first measure for regulating the heat balance. This varies the ohmic resistance of the fused-salt electrolysis cell, which is within certain limits, in particular due to a minimum distance between anode and aluminum pool as well as a energy-efficient processes are determined is possible.
  • an exhaust gas flow can be varied and in this way the heat balance of the fused-salt electrolysis cell can also be influenced.
  • An increase in the exhaust gas flow increases heat output, while a reduction in the exhaust gas flow acts as an insulation.
  • melt flow electrolysis system in particular an aluminum electrolysis system, without the requirement of a to operate a constant amperage made available from the power grid in an economically viable manner.
  • FIG. 12 shows a schematic view of a melt flow electrolysis system with a melt flow electrolysis cell 30.
  • the melt flow electrolysis cell 30 is laterally bounded by cell walls 32 and also has a cell bottom 34, which at the same time functions as a cathode for the melt flow electrolysis process inside the cell 30.
  • Inside the cell 30 there is an anode 36 protruding from above into the cell 30 and the melt 38, 35.1, which includes cryolite and molten aluminum, among other things.
  • a heat exchanger 39 is arranged through which a fluid, such as. B. air, CO 2 , nitrogen or a liquid is passed.
  • the heat exchanger 39 is particularly preferably connected via a line system 31 to a heat store 33, which can be formed, for example, by a conventional or also a latency heat store.
  • heat can be conducted from the heat store 33 through the line system 31 to the heat exchanger 39.
  • the inside of the fused metal electrolysis cell can be effectively heated via the cell walls 32 by less heat being radiated to the outside, because the temperature difference between the inside of the cell and the outside of the cell walls 32 is reduced, and the solidification of the melt is thereby inhibited.
  • the same effect is achieved by varying the exhaust gases sucked up or retained.
  • a control device 37 is designed to operate the cell of the melt flow electrolysis system in such a way that its heat balance is controlled, as has been described above.
  • the fusible electrolysis cell comprises a multiplicity of thermocouples (not shown) in its side walls, the bottom and also in the area of its exhaust air duct adjoining the fusible electrolysis cell at the top. The measurement results recorded by these thermocouples are fed to the regulating device 37 and evaluated there to regulate the operation of the melt-flow electrolysis cell.
  • the power grid can also be kept stable despite the infeed of volatile energy sources, without having to resort to special (currently insufficiently available) storage devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft ein Regelungsverfahren zum Betreiben einer Zelle einer Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium. Ferner betrifft die vorliegende Erfindung eine Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, mit einer Schmelzflusselektrolysezelle.
  • STAND DER TECHNIK
  • In vielen Industrienationen der Welt wird geplant und zum Teil bereits umgesetzt, die Energieversorgung hin zu sogenannten regenerativen Energien zu verschieben, um die Erzeugung von möglicherweise klimaschädlichen Gasen wie CO2 deutlich zu reduzieren und um von fossilen Energieträgern zunehmend unabhängig zu werden.
  • Die regenerativ bereitgestellte Energie kann aufgrund bisher nicht in geeignetem Umfang verfügbarer Speichermedien nicht gespeichert und anschließend in Abhängigkeit des Strombedarfs abgerufen werden. Ferner kann die regenerative Energie nur dann in das Stromnetz eingespeist werden, wenn die entsprechenden Energiequellen, insbesondere die volatilen Energiequellen aus Wind und Sonne, die Umwandlung in elektrische Energie und deren Einspeisung in das Stromnetz ermöglichen. Die sich im Stromnetz befindlichen Abnehmer müssten also ihren elektrischen Energiebedarf weitestgehend an die Einspeisung durch regenerative Energieträger anpassen, soweit auf fossile Energieträger als Puffer verzichtet wird. Besonders betroffen von diesem Trend sind Industriezweige, die einen sehr hohen Energiebedarf haben, weil deren Stromabnahme sich nicht ohne weiteres in den allgemeinen Strombedarf einfügt und daher kaum durch andere Stromabnehmer ausgeglichen werden kann. Hierzu zählt insbesondere die Aluminiumherstellung, aber auch andere Industriezweige insbesondere aus der Chemieindustrie sind von dieser Entwicklung stark betroffen.
  • Eine verstärkte Nutzung von volatilen Energiequellen hat nicht nur zur Folge, dass der Preis für die Bereitstellung elektrischer Energie insgesamt steigt, sondern auch dass die Verfügbarkeit von ausreichend großen elektrischen Energiemengen im Stromnetz nicht immer sichergestellt sein kann. Aus diesem Grund besteht das Problem, dass Industrieanlagen insbesondere aus dem energieintensiven Bereich in Gegenden mit diskontinuierlicher Stromversorgung voraussichtlich nicht mehr wirtschaftlich arbeiten können.
  • Bisher wird eine Schmelzflusselektrolysezelle über die der Zelle zugeführte Stromstärke gesteuert, wobei feste Annahmen zum thermodynamischen Gleichgewicht der Schmelzflusselektrolysezelle getroffen werden. Dies ist bei gleichbleibenden Randbedingungen, insbesondere Stromaufnahme, elektrischer Zellenwiderstand, thermische Auslegung der Schmelzflusselektrolysezelle oder gleichbleibende Abgasabfuhr, zuverlässig möglich.
  • Bekannte Schmelzflusselektrolyseverfahren sind also im regelungstechnischen Sinne Steuerungsverfahren, die sich auf konstante, sehr gut vorbestimmbare Randbedingungen verlassen können. In relativ großen Abständen, beispielsweise einmal täglich, wird die Temperatur der Schmelze im Innern der Schmelzflusselektrolysezelle bestimmt. Ferner wird ebenfalls in relativ großen Abständen, beispielsweise im Anschluss an die Bestimmung der Temperatur der Schmelze, die Erstarrungstemperatur bestimmt. Ein anderer Ansatz basiert auf der Bestimmung des AlF3-Gehalts der Schmelze. Auf der Basis dieser Werte wird durch eine gegebenenfalls erforderliche Anpassung der über die Schmelzflusselektrolysezelle abfallenden Spannung die Dicke der Kruste in einem praktikablen Bereich gehalten. Beispielsweise wird bei einer Schmelzflusselektrolysezelle angenommen, dass die Kruste eine geeignete Dicke hat, wenn die Temperatur der Schmelze 8°C über deren Erstarrungstemperatur liegt.
  • Aus DE 26 15 652 A1 geht ein Verfahren zum Messen und Steuern der Energiebilanz von Aluminium-Öfen hervor, bei dem die Eintauchtiefe der Anode der Elektrolysezelle in Abhängigkeit einer im seitlichen Ofenfutter gemessenen Temperatur verändert wird.
  • GB 2 076 428 A offenbart ein Verfahren zum Betreiben einer Aluminiumelektrolysezelle, bei dem in Abhängigkeit einer gemessenen Zellwandtemperatur ein Wärmeaustrag durch Wärmerohre gesteuert wird.
  • CH 648 871 A5 beschreibt ein Verfahren zur Kontrolle des Bordes in einer Schmelzflusselektrolysezelle, bei dem die Eintauchtiefe der Anode in Abhängigkeit der zugeführten Energie unter Berücksichtigung der Stromstärke und des ohmschen Badwiderstands verändert wird.
  • Aus der deutschen Patentanmeldung DE 10 2011 078656 A1 der Anmelderin geht ein Verfahren zum Betreiben einer Schmelzflusselektrolyseanlage hervor, bei dem die Schmelzflusselektrolyseanlage so gesteuert wird, dass die von ihr aufgenommene Menge an elektrischer Leistung an die gleichzeitig durch eine volatile Energiequelle eingespeiste Menge an elektrischer Leistung angepasst ist. Gemäß dem dort beschriebenen Verfahren lässt sich die Schmelzflusselektrolyseanlage als "virtuelle Batterie" im Stromnetz verwenden. Der Stromverbrauch der Schmelzflusselektrolyseanlage wird, innerhalb der Systemgrenzen der Anlage, an die im Stromnetz vorhandene Energiemenge durch eine entsprechende Steuerung der Stromaufnahme angepasst. Bei einer erhöhten Stromaufnahme wird überschüssige Energie durch Wärmetauscher an der Zellenwand der Schmelzflusselektrolysezelle abgeführt, um ein vollständiges Abschmelzen der Kruste im Inneren der Schmelzflusselektrolysezelle zu verhindern. Bei reduzierter Stromaufnahme wird durch die Wärmetauscher der Temperaturgradient an der Seitenwand der Schmelzflusselektrolysezelle reduziert, um ein zu großes Anwachsen dieser Kruste zu verhindern.
  • Angesichts der aus DE 10 2011 078656 A1 bekannten Erfindung besteht jedoch noch Verbesserungsbedarf beim Betrieb der Schmelzflusselektrolyseanlage, weil die Steuerung des Betriebs der Schmelzflusselektrolysezellen durch variable Stromaufnahme und gegebenenfalls damit gekoppelte zusätzliche Wärmeabfuhr oder Wärmezufuhr ungenau ist und daher noch keinen gesicherten Produktionsablauf bei variabler Stromstärke zulässt.
  • Um diesem Problem zu begegnen, stellt sich die vorliegende Erfindung die Aufgabe, ein Verfahren zum Betreiben einer Zelle einer Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, sowie eine Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, mit einer entsprechenden Schmelzflusselektrolysezelle bereitzustellen, wodurch ein wirtschaftlicher und prozesssicherer Produktionsablauf beim Betrieb der Schmelzflusselektrolyseanlage auch unter der Voraussetzung schwankender Verfügbarkeit von elektrischer Energie im Stromnetz möglich ist.
  • Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Regelungsverfahren und eine Schmelzflusselektrolyseanlage des oben beschriebenen technischen Gebiets bereitzustellen, wodurch die Schmelzflusselektrolyse bei variabler Verfügbarkeit elektrischer Energie sicher betrieben werden kann, insbesondere ohne die Schmelzflusselektrolysezellen zusätzlich zu belasten oder die Effizienz der Schmelzflusselektrolyse, insbesondere der Herstellung von Aluminium, herabzusetzen.
  • DARSTELLUNG DER ERFINDUNG
  • Ein erfindungsgemäßes Regelungsverfahren ist in Anspruch 1 definiert. Eine erfindungsgemäße Schmelzflusselektrolyseanlage ergibt sich aus Anspruch 8. Eine erfindungsgemäße Verwendung des Regelungsverfahrens oder der Schmelzflusselektrolyseanlage ergibt sich aus Anspruch 14. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Das erfindungsgemäße Regelungsverfahren zum Betreiben einer Zelle einer Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, ist dadurch gekennzeichnet, dass eine erste Regelgröße eine Energiebilanz der Zelle ist, welche die in die Schmelzflusselektrolysezelle eintretende elektrische Energie und die aus der Schmelzflusselektrolysezelle austretende Wärmeenergie berücksichtigt, wobei eine zweite Regelgröße ein thermischer Zustand der Zelle ist.
  • Im vorliegenden Zusammenhang wird unter einer "Regelung" beziehungsweise unter dem "Regeln" ein Vorgang verstanden, bei dem fortlaufend eine Größe, die "Regelgröße", erfasst, mit einer anderen Größe, der "Führungsgröße", verglichen und im Sinne einer Angleichung an die Führungsgröße beeinflusst wird. Für das Regeln ist der geschlossene Wirkungsablauf, bei dem die Regelgröße im Wirkungsweg des Regelkreises fortlaufend sich selbst beeinflusst, kennzeichnend. Im vorliegenden Zusammenhang wird unter einer "Regelung" beziehungsweise unter dem "Regeln" ferner ein Vorgang verstanden, bei dem fortlaufend die "Regelgröße" simuliert statt gemessen, mit der "Führungsgröße" verglichen und im Sinne einer Angleichung an die Führungsgröße beeinflusst wird. Auch bei dieser Form des Regelns im vorliegenden Sinne ist der geschlossene Wirkungsablauf, bei dem die Regelgröße im Wirkungsweg des Regelkreises fortlaufend sich selbst beeinflusst, kennzeichnend. Allerdings kann nach Erstellung eines Simulationsprogramms beispielsweise für den Wärmeaustrag aus einer Schmelzflusselektrolysezelle auf eine unmittelbare oder mittelbare Messung des Wärmeaustrags verzichtet und dieser stattdessen auf der Grundlage einer Simulation des Wärmeaustrags bestimmt werden.
  • Bisher war der ausschließliche Garant für ein stabiles Schmelzflusselektrolyseverfahren im vorliegenden Zusammenhang eine gleichbleibende Elektrolyttemperatur in der Zelle.
  • Bei variierenden Energieverfügbarkeiten im Stromnetz, muss von der bisherigen Betriebsweise abgewichen werden. Statt einer Steuerung des Betriebs der Schmelzflusselektrolysezelle mit dem Ziel einer gleichbleibenden Elektrolyttemperatur und Krustendicke wird erfindungsgemäß der Betrieb der Schmelzflusselektrolysezelle geregelt, und zwar so, dass die Elektrolyttemperatur sich in einem relativ breiten Temperaturband befindet. Dies wird erfindungsgemäß durch die regelungstechnische Berücksichtigung der Wärmebilanz bewirkt. Unter der Wärmebilanz wird im vorliegenden Zusammenhang eine Energiebilanz verstanden, welche die in die Schmelzflusselektrolysezelle eintretende elektrische Energie und die aus der Schmelzflusselektrolysezelle austretende Wärmeenergie berücksichtigt.
  • Bevorzugt wird im Fall einer Aluminiumelektrolyseanlage bzw. Aluminiumelektrolysezelle ferner der für die Produktion von Aluminium verwendete Anteil der in die Aluminiumelektrolysezelle eintretenden elektrischen Energie bestimmt. Alternativ kann dieser Anteil der in die Aluminiumelektrolysezelle eintretenden elektrischen Energie als konstant angenommen und der als Wärme in die Aluminiumelektrolysezelle eingebrachte Anteil aus der Differenz zwischen der gesamten elektrischen Energie und der als konstant angenommenen für die Produktion verwendeten Energie bestimmt werden.
  • Erfindungsgemäß wird folglich die Wärmebilanz der Schmelzflusselektrolysezelle ermittelt und der Betrieb der Schmelzflusselektrolysezelle auf der Grundlage der Wärmebilanz als Regelgröße geregelt. Bevorzugt wird beziehungsweise werden ein Thermoelement und/oder eine Vorrichtung, insbesondere eine Messvorrichtung, zur Bestimmung eines Volumenstroms einer Abluft von der Zelle und/oder eine Vorrichtung, insbesondere eine Messvorrichtung, zur Bestimmung eines Volumenstroms eines Wärmetransportfluids in einem Wärmetauscher an der Zelle als ein Messglied oder mehrere Messglieder zur Bestimmung der ersten Regelgröße, d.h. der Wärmebilanz, verwendet.
  • Bevorzugt werden mindestens 6, bevorzugt mindestens 12, weiter bevorzugt mindestens 30, weiter bevorzugt mindestens 60, Thermoelemente an der Zelle angeordnet, um die Temperaturverteilung an der Zelle und damit auch die Wärmebilanz möglichst genau bestimmen zu können.
  • Gemäß einer Ausführungsform werden nicht alle Schmelzflusselektrolysezellen einer Schmelzflusselektrolyseanlage, insbesondere nur eine Schmelzflusselektrolysezelle einer Schmelzflusselektrolyseanlage mit mehr als einer Schmelzflusselektrolysezelle mit dem Thermoelement oder den mehreren Thermoelementen versehen. Dies vereinfacht den konstruktiven Aufwand der Gesamtanlage und erreicht weitgehend das gewünschte Ziel des geregelten Betreibens der Schmelzflusselektrolyseanlage.
  • Die Thermoelemente können einzeln oder gemeinsam als Messglied im regelungstechnischen Sinne fungieren. Dies gilt grundsätzlich auch für die Vorrichtung zur Bestimmung des Volumenstroms der Abluft von der Zelle, die alternativ oder zusätzlich zum Volumenstrom den Massenstrom bestimmen kann und bevorzugt auch Informationen zur Temperatur der Abluft bestimmen kann.
  • Eine solche Vorrichtung zur Bestimmung des Volumenstroms der Abluft von der Zelle oder die Vorrichtung zur Bestimmung eines Volumenstroms des Wärmetransportfluids in dem Wärmetauscher kann beispielsweise auch über die Bestimmung einer Drehzahl eines Ventilators oder eines entsprechenden Elements funktionieren, dies auch indirekt, beispielsweise über die Energieaufnahme oder das (Dreh-)Feld eines den Ventilator antreibenden Elektromotors. Auf diese Weise ist es möglich, den Volumenstrom von Abluft bzw. Wärmetransportfluid zu bestimmen, ohne ihn unmittelbar zu messen, weil der Volumenstrom durch den Ventilator oder ein entsprechendes Element zumindest zu einem wesentlichen Anteil erzeugt wird. Gleichwohl kann diese Bestimmung des Volumenstroms bei der Regelung des Betriebs der Schmelzflusselektrolysezelle als "Messung" verarbeitet werden.
  • Das genannte Wärmetransportfluid kann insbesondere Luft sein, die beispielsweise in einem grundsätzlich bekannten Wärmetauscher an der Zellenwand entlang geführt werden kann. Auch hinsichtlich des Wärmetransportfluids kann neben dem Volumenstrom oder anstelle des Volumenstroms ein Massenstrom bestimmt werden, und auch die Temperatur des Wärmetransportfluids kann bevorzugt bestimmt werden. Der Wärmetauscher kann bei Verwendung entsprechend temperierter Wärmetransportfluide auf das Ausmaß der Kühlung bzw. des Wärmeverlusts der Schmelzflusselektrolysezelle und somit insbesondere die Dicke der Kruste entlang ihres Randes Einfluss nehmen und somit in mehrfacher Hinsicht die Wärmebilanz beeinflussen.
  • Bevorzugt ist das Regelungsverfahren, insbesondere die obengenannten Einrichtungen Thermoelement, Messvorrichtung zur Bestimmung eines Volumenstroms einer Abluft von der Zelle und Messvorrichtung zur Bestimmung eines Volumenstroms eines Wärmetransportfluids in einem Wärmetauscher an der Zelle, zur kontinuierlichen Erfassung einer der Zelle zugeführten Wärme und einer von der Zelle abgeführte Wärme geeignet und ausgestaltet. Somit ist es besonders leicht möglich, die Wärmebilanz als Regelgröße zu nutzen. Neben den obigen möglichen Messgliedern bestehen jedoch auch Alternativen wie Wärmekameras, um bei der Bestimmung der Wärmebilanz zu unterstützen.
  • In einer bevorzugten Ausführungsform weist die Zelle Seitenwände, einen Boden und eine Abluftführung auf, wobei an oder in zumindest einer der Seitenwände, dem Boden oder der Abluftführung, bevorzugt an oder in allen Seitenwänden und dem Boden und besonders bevorzugt auch an oder in der Abluftführung angeordnete Thermoelemente als Messglieder zur Bestimmung der Wärmebilanz verwendet werden. Alternativ ist es auch möglich, nur einige der Seitenwände, nur den Boden, nur die Abluftführung oder Mischungen hiervon für die Anordnung von Thermoelementen als Messglieder zu verwenden.
  • Bevorzugt wird mindestens ein Wärmetauscher und/oder mindestens eine Abgasstromklappe und/oder eine chemische Zusammensetzung der Schmelze, insbesondere eine AlF3 Dosierung, und/oder mindestens eine Traverse zur Positionierung mindestens einer Anode in der Zelle als Stellglied zur Einwirkung auf einen Wärmeeintrag und/oder einen Wärmeaustrag verwendet. Durch die obengenannten Elemente ist es möglich, den Wärmeeintrag und/oder Wärmeaustrag in relativ weiten Grenzen zu variieren, wobei der Wärmeeintrag beziehungsweise Wärmeaustrag als Stellgröße bei der Regelung der Wärmebilanz genutzt werden. Grundsätzlich gibt es auch andere Möglichkeiten, den Wärmeeintrag beziehungsweise Wärmeaustrag zu variieren, aber die oben genannten Elemente haben sich als besonders wirkungsvoll im Zusammenhang mit Schmelzflusselektrolysezellen herausgestellt.
  • Bevorzugt wird bei einer Veränderung der von der Schmelzflusselektrolyseanlage oder -zelle aufgenommenen Stromstärke, die maßgeblich den Energie- und damit auch den Wärmeeintrag definiert, eine entsprechende Anpassung der über die Schmelzflusselektrolysezelle abfallenden Spannung vorgenommen. Dies kann insbesondere durch eine Veränderung des Abstands zwischen der Anode oder mehreren Anoden und der Kathode oder mehreren Kathoden bewirkt werden. Ein Ansteigen des Stroms bringt dabei grundsätzlich mehr Wärme in die Schmelzflusselektrolysezelle, während ein Reduzieren der Spannung, d.h. ein Reduzieren des Abstands zwischen den Elektroden, zu einem grundsätzlich geringeren Wärmeeintrag führt. Bevorzugt wird ferner durch Stellung der Abgasstromklappe oder Wärmetauscher weiter auf den Wärmeaustrag aus der Schmelzflusselektrolysezelle Einfluss genommen, weil die Variation des Wärmeeintrags effektiver möglich ist als diejenige des Wärmeaustrags.
  • Mit Vorteil werden auch ein Eintrag von zu schmelzendem Material, insbesondere Aluminiumoxid und Kryolith, und/oder ein Austrag von geschmolzenem Material, insbesondere Aluminium, und/oder eine Änderung einer Schmelzflusselektrolysestromstärke als Störgröße berücksichtigt. Der Eintrag von zu schmelzendem Material verändert nicht nur die Temperatur des Elektrolytbades, sondern auch dessen chemische Zusammensetzung, was Einfluss auf die Wärmebilanz des Betriebs der Schmelzflusselektrolysezelle hat. Ähnliches gilt auch für den Austrag, das heißt die Entnahme von geschmolzenem Material, das vor allem Wärmeenergie aus dem System entnimmt und zum Teil auch dessen chemische Zusammensetzung verändert. Die Schmelzflusselektrolysestromstärke ändert den Energieeintrag und damit die zugeführte Wärmemenge. Die Stromstärke kann insbesondere aufgrund variabler im Stromnetz vorhandener Energie und damit vorbei an der Regelung der Schmelzflusselektrolyse selbst, in gewissen Grenzen unkontrolliert, variieren. Durch die Berücksichtigung der Wärmebilanz können derartige Änderungen der Schmelzflusselektrolysestromstärke im Hinblick auf den von ihnen erzielten Effekt berücksichtigt werden, sodass sichergestellt sein kann, dass alle Konsequenzen der variierenden Stromstärken im Hinblick auf die Prozesssicherheit berücksichtigt werden können.
  • In einer bevorzugten Ausführungsform des Regelungsverfahrens ist eine dritte Regelgröße ein chemischer Zustand der Zelle. Unter dem thermischen Zustand der Zelle ist im vorliegenden Zusammenhang insbesondere die Temperatur des Elektrolyten als maßgebliche Größe zu verstehen. Natürlich tragen auch andere Elemente der Zelle zu deren thermischem Zustand bei. Der kritischste Teil der Zelle ist jedoch der Elektrolyt, weil dessen Temperatur auf jeden Fall oberhalb seiner Erstarrungstemperatur gehalten werden muss, um die Schmelzflusselektrolyseanlage funktionsfähig zu halten. Der chemische Zustand der Zelle ist deswegen auch maßgeblich durch die Erstarrungstemperatur des Elektrolyten bestimmt, die insbesondere vom "AlF3-Überschuss" abhängt.
  • Eine erfindungsgemäße Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, mit einer Schmelzflusselektrolysezelle ist dadurch gekennzeichnet, dass die Schmelzflusselektrolyseanlage eine Regelungsvorrichtung aufweist, die zur Ausführung eines der oben beschriebenen Regelungsverfahren ausgebildet ist.
  • Bevorzugt umfasst die Schmelzflusselektrolyseanlage ein Thermoelement und/oder eine Messvorrichtung zur Bestimmung eines Volumenstroms einer Abluft von der Schmelzflusselektrolysezelle und/oder, sofern bevorzugt ein Wärmetauscher zur Beeinflussung eines Wärmeeintrags oder Wärmeaustrags mittels eines Wärmetransportfluids an zumindest einer Außenfläche der Schmelzflusselektrolysezelle umfasst ist, eine Messvorrichtung zur Bestimmung eines Volumenstroms des Wärmetransportfluids in dem Wärmetauscher an der Schmelzflusselektrolysezelle. Wie oben beschrieben wurde, eignen sich diese Elemente besonders gut dazu, als Messglied bei der erfindungsgemäßen Regelung genutzt zu werden, weil sie aussagekräftige Informationen zur Bestimmung der Wärmebilanz der Schmelzflusselektrolysezelle bereitstellen und die Regelung daher besonders leicht umsetzten lassen.
  • Die Schmelzflusselektrolysezelle einer bevorzugten Schmelzflusselektrolyseanlage weist Seitenwände, einen Boden und eine Abluftführung auf, wobei an oder in zumindest einer der Seitenwände, dem Boden oder der Abluftführung, bevorzugt an oder in allen Seitenwänden und dem Boden und besonders bevorzugt auch an oder in der Abluftführung Thermoelemente angeordnet sind. Dies ermöglicht es besonders gut, die Wärmebilanz der Schmelzflusselektrolysezelle zu bestimmen und eignet sich daher besonders gut zum Einsatz im erfindungsgemäßen Zusammenhang.
  • Mit Vorteil umfasst die Schmelzflusselektrolyseanlage einen Wärmetauscher zur Beeinflussung eines Wärmeeintrags oder Wärmeaustrags mittels eines Wärmetransportfluids an zumindest einer Außenfläche der Schmelzflusselektrolysezelle und/oder eine einstellbare Abgasstromklappe zur Beeinflussung eines Volumenstroms eines Abgases von der Schmelzflusselektrolysezelle und/oder eine Vorrichtung zur Veränderung einer chemischen Zusammensetzung der Schmelze, insbesondere zur Veränderung einer Dosierung von AlF3 in der Schmelze, und/oder eine Traverse zur Positionierung einer Anode in der Schmelzflusselektrolysezelle. Durch die genannten Elemente, die sich als Stellglieder im regelungstechnischen Sinne einsetzen lassen, können Wärmeverlust und Wärmeeintrag in weiten Grenzen auf effiziente Art und Weise eingestellt und variiert werden, um die Wärmebilanz bestmöglich und effizient an ihren Sollwert anzupassen. Grundsätzlich gibt es auch andere Möglichkeiten, auf die Wärmebilanz Einfluss zu nehmen, die jedoch weniger effektiv und daher ineffizient funktionieren.
  • Ferner umfasst eine bevorzugte Schmelzflusselektrolyseanlage eine Vorrichtung zur Bestimmung einer Masse von in die Schmelzflusselektrolysezelle eingebrachtem, zu schmelzendem Material, insbesondere Aluminiumoxid und Kryolith, und/oder eine Vorrichtung zur Bestimmung einer Masse von aus der Schmelzflusselektrolysezelle entnommenem, geschmolzenem Material, insbesondere Aluminium. Das in die Zelle eingebrachte und aus der Zelle entnommene Material verändert nicht nur die Wärmebilanz, indem Wärme aus dem System Schmelzflusselektrolysezelle entnommen oder in es hineingebracht wird, sondern ändert zum Teil auch die chemische Zusammensetzung des Inhaltes der Schmelzflusselektrolysezelle, was insbesondere Einfluss auf die Erstarrungstemperatur des Elektrolyten hat und bei der Regelung der Wärmebilanz daher berücksichtigt werden sollte. Hierzu ist anzumerken, dass auch die Änderung der Temperatur des in der Zelle befindlichen Materials wegen der hierdurch hervorgerufenen Änderung der Dicke der Randkruste auf die chemische Zusammensetzung der Schmelze Einfluss nimmt. Eine Erhöhung der Temperatur führt zu einem weiteren Abschmelzen der Kruste und damit einer Verringerung des Anteils an AlF3 in der Schmelze. Da dieser zuletzt genannte Prozess eine gewisse Trägheit und Pendelbewegung aufweist, war die Bestimmung der chemischen Zusammensetzung kurz nach einer Variierung der der Zelle zugeführten Stromstärke fehlerbehaftet. Durch die erfindungsgemäße Regelung können diese Fehler ausgeglichen und Fehlinterpretationen vermieden werden.
  • Erfindungsgemäß wird das oben beschriebene Regelungsverfahren oder eine oben beschriebene Schmelzflusselektrolyseanlage, sofern die Schmelzflusselektrolyseanlage an ein Stromnetz angeschlossen ist, um mit elektrischer Energie für die Schmelzflusselektrolyse versorgt zu werden, mit anderen Worten wobei ein für den Betrieb der Zelle genutzter Strom aus dem Stromnetz zugeführt wird, zum Ausgleichen von Schwankungen einer Einspeisung von Energie in das Stromnetz verwendet. Solche Schwankungen führen zu einem Ungleichgewicht zwischen Einspeisung und Verbrauch, was binnen kürzester Zeit Frequenzabweichungen und/oder Spannungsabweichungen im Netz zur Folge hat, die den stabilen Betrieb des Netzes gefährden und daher zur Vermeidung von Netzzusammenbrüchen ("Blackout") unverzüglich korrigiert werden müssen. Dadurch, dass die erfindungsgemäße Schmelzflusselektrolyseanlage beziehungsweise das Regelungsverfahren zum Betrieb der Schmelzflusselektrolyseanlage so ausgebildet sind, dass ein Betrieb der Schmelzflusselektrolyseanlage innerhalb der Systemgrenzen mit unterschiedlichen Abnahmeleistungen möglich ist, kann das Schmelzflusselektrolyseverfahren sehr gut als Puffer zum Ausgleich dieser Leistungsbilanz-Ungleichgewichte und damit zur Netzstabilisierung verwendet werden.
  • Dies ist von besonderem Vorteil, wenn die eingespeiste Energie von einer volatilen Stromquelle, insbesondere einer Windkraftanlage oder einer Solaranlage stammt. Denn durch die erfindungsgemäße Verwendung kann die Netzstabilität auch bei einem relative großen Anteil volatiler Stromquellen an der Einspeisung von Energie in das Stromnetz in vertretbaren Grenzen sichergestellt werden, ohne noch höhere Kosten für die Netzstabilität zu erzeugen. Dies ermöglicht es praktisch erst, einen großen Anteil von volatilen Stromquellen und damit das volle Potenzial regenerativer Energiequellen in Industrieländern zu nutzen.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung und der Gesamtheit der Patentansprüche.
  • KURZE FIGURENBESCHREIBUNG
    • Figur 1 zeigt ein Diagramm einer Prozessführung mittels geschlossener Echtzeitwärmebilanzregelung.
    • Figur 2 zeigt eine schematische Darstellung einer Schmelzflusselektrolysezelle.
  • Figur 1 zeigt ein Diagramm einer bevorzugten Prozessführung mittels geschlossener Echtzeitwärmebilanzregelung. Als Führungsgröße w(t) wird die Wärmebilanz angesetzt. Eine Regelabweichung e(t) der Wärmebilanz, das heißt eine Abweichung der Wärmebilanz vom Sollwert, wird durch einen Regler auf Grundlage einer Wärmebilanzrückführung ym(t) ausgeglichen. Der Regler ermittelt durch den Vergleich zwischen Führungsgröße w(t) und Rückführung ym(t) eine Abweichung der ermittelten Wärmebilanz y(t) von der Führungsgröße w(t) und ermittelt entsprechende Gegenmaßnahmen, um die Regelgröße an die Führungsgröße anzupassen.
  • Als allgemeine Stellgröße u(t) werden der Wärmeverlust beziehungsweise Wärmeeintrag angesehen. Um die allgemeine Stellgröße u(t) einzustellen, kann der Regler beispielsweise Einfluss auf einen Wärmetauscher, auf Abgasstromklappen, die Badchemie und die Spannung im Innern der Schmelzflusselektrolysezelle nehmen. Die konkrete Stellgröße uS(t), die vom Regler beeinflusst werden kann, kann beispielsweise die Klappenposition von in einer Abgasführung vorhandenen Abgasstromklappen, eine Dosierung von AlF3 im Elektrolytbad, einen Strömungsgeschwindigkeit von Wärmetransportfluid im Wärmetauscher oder eine Traversenposition, d.h. eine relative Position einer oder mehrerer Anoden in der Schmelzflusselektrolysezelle, sein, über welche der Abstand zwischen der Anode/den Anoden an der Traverse und dem als Katode fungierenden Aluminiumsee in einer Aluminiumelektrolysezelle oder allgemein einer Kathode eingestellt werden kann. Bei der Regelstrecke handelt es sich also um die Schmelzflusselektrolysezelle mit ihren Bestandteilen wie gegebenenfalls dem Wärmetauscher, der Abgasstromführung, der Traverse, Gebläse, Klappen etc.
  • Hierdurch können also auch als Störgröße d(t) anzusehende äußere Einwirkungen, insbesondere eine Stromstärkeänderung aufgrund von Netzschwankungen, operationelle Eingriffe an der Schmelzflusselektrolysezelle oder eine variierende Produktionseffizienz bei der Herstellung von Aluminium, berücksichtigt werden. Da diese Störgrößen Einfluss auf die Wärmebilanz der Schmelzflusselektrolysezelle haben, können sie auf die erfindungsgemäße Weise weggeregelt werden.
  • Die Wärmebilanz kann beispielsweise durch Thermoelemente zur Messung der Temperaturen an den Seitenwänden, dem Boden und der Abluftführung sowie durch Elemente zur Bestimmung eines Volumenstroms sowohl der Abluft als auch eines möglicherweise durch einen Wärmetauscher fließenden Wärmetransportfluids im Zusammenhang mit einer Auswertungseinheit bestimmt werden. Die durch diese Messglieder gemessenen und ausgewerteten Daten werden dem Regler zugeführt, um die entsprechenden Stellglieder passend einzustellen.
  • Zusammengefasst lässt sich feststellen, dass die Wärme in der Schmelzflusselektrolysezelle hauptsächlich im Bereich des Anoden-Katodenabstandes erzeugt wird. Eine Verringerung des Abstands bei Stromstärkeerhöhung und eine Vergrößerung des Abstands bei Stromstärkeverringerung stellt eine erste Maßnahme zur Regelung der Wärmebilanz dar. Hierdurch wird der Ohm'sche Widerstand der Schmelzflusselektrolysezelle variiert, was in gewissen Grenzen, die insbesondere durch einen Mindestabstand zwischen Anode und Aluminiumsee sowie ein energieeffizientes Verfahren bestimmt sind, möglich ist. Zusätzlich ist es möglich, über optionale Wärmetauscher beispielsweise an den Seitenwänden der Schmelzflusselektrolysezelle Wärme von der Schmelzflusselektrolysezelle abzuführen und ihr zuzuführen, falls die vom Stromnetz zur Verfügung gestellte Energie ein Aufrechterhalten des Schmelzflusselektrolyseprozesses ansonsten nicht ermöglichen sollte. Weiter kann ein Abgasstrom variiert und auf diese Weise ebenfalls die Wärmebilanz der Schmelzflusselektrolysezelle beeinflusst werden. Ein Erhöhen des Abgasstromes vergrößert einen Wärmeaustrag während eine Reduzierung des Abgasstromes wie eine Isolierung wirkt.
  • Auf diese Weise ist es möglich, eine Schmelzflusselektrolyseanlage, insbesondere eine Aluminiumelektrolyseanlage, ohne die Anforderung einer konstanten, aus dem Stromnetz zur Verfügung gestellten Stromstärke wirtschaftlich lohnend zu betreiben.
  • Figur 2 zeigt in einer schematischen Ansicht eine Schmelzflusselektrolyseanlage mit einer Schmelzflusselektrolysezelle 30. Die Schmelzflusselektrolysezelle 30 wird seitlich durch Zellenwände 32 begrenzt und weist darüber hinaus einen Zellenboden 34 auf, der gleichzeitig als Kathode für das Schmelzflusselektrolyseverfahren im Innern der Zelle 30 fungiert. Im Innern der Zelle 30 befindet sich eine von oben in die Zelle 30 hineinragende Anode 36 und die Schmelze 38, 35.1, die u. a. Kryolith und geschmolzenes Aluminium aufweist. Unmittelbar an den Zellenwänden 32 der Schmelzflusselektrolysezelle 30 ist in der in Figur 2 gezeigten Ausführungsform ein Wärmetauscher 39 angeordnet, durch den ein Fluid, wie z. B. Luft, CO2, Stickstoff oder eine Flüssigkeit geleitet wird. Der Wärmetauscher 39 ist dabei besonders bevorzugt über ein Leitungssystem 31 mit einem Wärmespeicher 33 verbunden, der beispielsweise durch einen konventionellen oder auch einen Latenzwärmespeicher gebildet sein kann.
  • Im Fall einer hohen Leistungsaufnahme der Schmelzflusselektrolysezelle 30 wird im Innern der Zelle durch die Elektrolyse eine große Menge Wärmeenergie freigesetzt, die von der Zelle über ihre Seitenwände 32 und den Zellenboden 34 sowie über Abgase nach oben abgegeben wird. Die gewünschte abgegebene Wärme wird dabei so bemessen, dass an der Innenseite der Zellenwände 32 Krusten (Borde) 35.2 der erstarrten Schmelze 35.1 als Schutzschicht gebildet werden. Die Krusten 35.2 variieren lediglich in ihrer Dicke in Abhängigkeit von der Wärmebilanz der Schmelzflusselektrolysezelle.
  • Sofern es nötig werden sollte, dass aufgrund einer zu geringen elektrischen Leistungsaufnahme durch die Schmelzflusselektrolysezelle Wärme von außen zugeführt oder mit anderen Worten die Menge aus der Zelle abgeführter Wärme reduziert werden muss, um die Krusten 35.2 nicht zu groß werden zu lassen, kann Wärme aus dem Wärmespeicher 33 durch das Leitungssystem 31 zum Wärmetauscher 39 geleitet werden. Dadurch kann das Innere der Schmelzflusselektrolysezelle über die Zellenwände 32 effektiv beheizt werden, indem weniger Wärme nach außen abgestrahlt wird, weil der Temperaturunterschied zwischen dem Innern der Zelle und der Außenseite der Zellenwände 32 verringert wird, und dadurch das Erstarren der Schmelze gehemmt wird. Derselbe Effekt wird über eine Variation der nach oben abgesaugten oder zurückgehaltenen Abgase erzielt.
  • Eine Regelungseinrichtung 37 ist dazu ausgestaltet, die Zelle der Schmelzflusselektrolyseanlage derart zu betreiben, dass ihre Wärmebilanz geregelt wird, wie oben beschrieben wurde. Hierfür umfasst die Schmelzflusselektrolysezelle eine Vielzahl von (nicht gezeigten) Thermoelementen in ihren Seitenwänden, dem Boden und auch im Bereich ihrer sich oben an die Schmelzflusselektrolysezelle anschließenden Abluftführung. Die von diese Thermoelementen erfassten Messergebnisse werden der Regelungseinrichtung 37 zugeführt und dort zur Regelung des Betriebs der Schmelzflusselektrolysezelle ausgewertet.
  • Durch den Betrieb einer solchen Schmelzflusselektrolyseanlage kann neben der Erzeugung von beispielsweise Aluminium auch noch das Stromnetz trotz Einspeisung volatiler Energiequellen stabil gehalten werden, ohne auf spezielle (derzeit nicht in ausreichendem Umfang verfügbarer) Speicher und dergleichen zurückgreifen zu müssen.

Claims (15)

  1. Regelungsverfahren zum Betreiben einer Zelle einer Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium,
    wobei eine erste Regelgröße eine Energiebilanz der Zelle ist, welche die in die Schmelzflusselektrolysezelle eintretende elektrische Energie und die aus der Schmelzflusselektrolysezelle austretende Wärmeenergie berücksichtigt, und
    wobei eine zweite Regelgröße ein thermischer Zustand der Zelle ist.
  2. Regelungsverfahren nach Anspruch 1, wobei ein Thermoelement und/oder eine Vorrichtung zur Bestimmung eines Volumenstroms einer Abluft von der Zelle und/oder eine Vorrichtung zur Bestimmung eines Volumenstroms eines Wärmetransportfluids in einem Wärmetauscher an der Zelle als ein Messglied zur Bestimmung der ersten Regelgröße verwendet wird oder werden.
  3. Regelungsverfahren nach Anspruch 1 oder 2, wobei die Zelle Seitenwände, einen Boden und eine Abluftführung aufweist,
    wobei an oder in zumindest einer der Seitenwände, dem Boden oder der Abluftführung, bevorzugt an oder in allen Seitenwänden und dem Boden und besonders bevorzugt auch an oder in der Abluftführung angeordnete Thermoelemente als Messglieder zur Bestimmung der ersten Regelgröße verwendet werden.
  4. Regelungsverfahren nach einem der vorhergehenden Ansprüche, wobei mindestens ein Wärmetauscher und/oder mindestens eine Abgasstromklappe und/oder eine chemische Zusammensetzung der Schmelze, insbesondere eine AlF3-Dosierung, und/oder mindestens eine Traverse zur Positionierung mindestens einer Anode in der Zelle als Stellglied zur Einwirkung auf einen Wärmeeintrag und/oder einen Wärmeaustrag verwendet werden.
  5. Regelungsverfahren nach einem der vorhergehenden Ansprüche, wobei ein Eintrag von zu schmelzendem Material, insbesondere Aluminiumoxid und Kryolith, und/oder ein Austrag von geschmolzenem Material, insbesondere Aluminium, und/oder eine Änderung einer Elektrolyse-Stromstärke als Störgröße berücksichtigt wird oder werden.
  6. Regelungsverfahren nach einem der vorhergehenden Ansprüche, wobei eine dritte Regelgröße ein chemischer Zustand der Zelle ist.
  7. Regelungsverfahren nach einem der vorhergehenden Ansprüche, wobei ein für einen Betrieb der Zelle genutzter Strom aus einem Stromnetz zugeführt wird.
  8. Schmelzflusselektrolyseanlage, insbesondere zur Herstellung von Aluminium, mit einer Schmelzflusselektrolysezelle,
    dadurch gekennzeichnet, dass die
    Schmelzflusselektrolyseanlage eine Regelungsvorrichtung aufweist, die zur Ausführung eines Regelungsverfahrens nach einem der vorhergehenden Ansprüche ausgebildet ist.
  9. Schmelzflusselektrolyseanlage nach Anspruch 8,
    insbesondere umfassend einen Wärmetauscher zur Beeinflussung eines Wärmeeintrags oder Wärmeaustrags mittels eines Wärmetransportfluids an zumindest einer Außenfläche der Schmelzflusselektrolysezelle,
    wobei die Schmelzflusselektrolysezelle ein Thermoelement und/oder eine Messvorrichtung zur Bestimmung eines Volumenstroms einer Abluft von der Schmelzflusselektrolysezelle und/oder eine Messvorrichtung zur Bestimmung eines Volumenstroms des Wärmetransportfluids in dem Wärmetauscher an der Schmelzflusselektrolysezelle aufweist.
  10. Schmelzflusselektrolyseanlage nach Anspruch 8 oder 9, wobei die Schmelzflusselektrolysezelle Seitenwände, einen Boden und eine Abluftführung aufweist,
    wobei an oder in zumindest einer der Seitenwände, dem Boden oder der Abluftführung, bevorzugt an oder in allen Seitenwänden und dem Boden und besonders bevorzugt auch an oder in der Abluftführung Thermoelemente angeordnet sind.
  11. Schmelzflusselektrolyseanlage nach einem der Ansprüche 8 bis 10, umfassend
    einen Wärmetauscher zur Beeinflussung eines Wärmeeintrags oder Wärmeaustrags mittels eines Wärmetransportfluids an zumindest einer Außenfläche der Schmelzflusselektrolysezelle und/oder
    eine einstellbare Abgasstromklappe zur Beeinflussung eines Volumenstroms eines Abgases von der Schmelzflusselektrolysezelle und/oder
    eine Vorrichtung zur Veränderung einer chemischen Zusammensetzung der Schmelze, insbesondere zur Veränderung einer Dosierung von AlF3 in der Schmelze, und/oder
    eine Traverse zur Positionierung einer Anode in der Schmelzflusselektrolysezelle.
  12. Schmelzflusselektrolyseanlage nach einem der Ansprüche 8 bis 11, umfassend eine Vorrichtung zur Bestimmung einer Masse von in die Schmelzflusselektrolysezelle eingebrachtem, zu schmelzendem Material, insbesondere Aluminiumoxid und Kryolith, und/oder eine Vorrichtung zur Bestimmung einer Masse von aus der Schmelzflusselektrolysezelle entnommenem, geschmolzenem Material, insbesondere Aluminium.
  13. Schmelzflusselektrolyseanlage nach einem der Ansprüche 8 bis 12, wobei die Schmelzflusselektrolyseanlage an ein Stromnetz angeschlossen ist, um mit elektrischer Energie für die Schmelzflusselektrolyse versorgt zu werden.
  14. Verwendung eines Regelungsverfahrens nach Anspruch 7 oder einer Schmelzflusselektrolyseanlage nach Anspruch 13 zum Ausgleichen von Schwankungen einer Einspeisung von Energie in das Stromnetz.
  15. Verwendung nach Anspruch 14, wobei die eingespeiste Energie von einer volatilen Stromquelle, insbesondere einer Windkraftanlage und/oder einer Solaranlage, stammt.
EP16177980.6A 2016-07-05 2016-07-05 Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb Active EP3266904B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16177980.6A EP3266904B1 (de) 2016-07-05 2016-07-05 Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb
CN201710541196.9A CN107574461A (zh) 2016-07-05 2017-07-05 熔融电解设备及其运行的调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16177980.6A EP3266904B1 (de) 2016-07-05 2016-07-05 Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb

Publications (2)

Publication Number Publication Date
EP3266904A1 EP3266904A1 (de) 2018-01-10
EP3266904B1 true EP3266904B1 (de) 2021-03-24

Family

ID=56363769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16177980.6A Active EP3266904B1 (de) 2016-07-05 2016-07-05 Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb

Country Status (2)

Country Link
EP (1) EP3266904B1 (de)
CN (1) CN107574461A (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210794B (zh) * 2019-07-10 2021-12-21 郑州轻冶科技股份有限公司 基于分子比的铝电解能量平衡调节方法、系统、铝电解槽
CN112210793B (zh) * 2020-10-19 2022-06-10 郑州轻冶科技股份有限公司 一种侧部带热管换热器的铝电解槽
CN115029735B (zh) * 2022-05-26 2024-01-30 中南大学 一种面向新能源消纳的铝电解热平衡调控装置及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632488A (en) 1969-01-23 1972-01-04 Reynolds Metals Co Reduction cell control system
US4045309A (en) 1975-04-10 1977-08-30 Norsk Hydro A.S Method for measuring and control of the energy in aluminum reduction cells
GB2047745A (en) 1979-04-23 1980-12-03 Alumax Inc Cell for aluminium smelting
EP0044794A1 (de) 1980-07-23 1982-01-27 Aluminium Pechiney Verfahren und Vorrichtung zur genauen Regulierung der Zufuhrgeschwindigkeit und des Tonerdegehaltes in einer schmelzflüssigen Elektrolysezelle und Anwendung zur Aluminiumherstellung
EP0047227A2 (de) 1980-09-02 1982-03-10 Schweizerische Aluminium Ag Vorrichtung zum Regulieren des Wärmeflusses einer Aluminiumschmelzflusselektrolysezelle und Verfahren zum Betrieb dieser Zelle
US4333803A (en) 1980-10-03 1982-06-08 Aluminum Company Of America Method and apparatus for controlling the heat balance in aluminum reduction cells
FR2527647A1 (fr) 1982-05-27 1983-12-02 Pechiney Aluminium Dispositif amovible d'alimentation ponctuelle en alumine d'une cuve d'electrolyse pour la production d'aluminium
US5089093A (en) 1989-02-24 1992-02-18 Comalco Aluminum Ltd. Process for controlling aluminum smelting cells
CA1335436C (fr) 1987-04-21 1995-05-02 Benoit Sulmont Procede et dispositif de controle des additions d'electrolyte solide dans les cuves d'electrolyse pour la production d'aluminium
WO1999054526A1 (fr) 1998-04-16 1999-10-28 Aluminium Pechiney Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
WO2002068726A2 (fr) 2001-02-28 2002-09-06 Aluminium Pechiney Procede de regulation d'une cellule d'electrolyse
WO2010031919A1 (fr) 2008-09-16 2010-03-25 E.C.L. Machine de service utilisee pour intervenir sur les cellules d´εlectrolyse de production d'aluminium par electrolyse ignee
DE102011078656A1 (de) 2011-07-05 2013-01-10 Trimet Aluminium Ag Verfahren zum netzgeführten Betreiben einer Industrieanlage
CN104047032A (zh) 2014-06-27 2014-09-17 中国铝业股份有限公司 一种自动调节铝电解槽能量平衡的方法
CN205017018U (zh) 2015-09-21 2016-02-03 顾为东 大型铝电池调峰电站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076428B (en) * 1980-05-19 1983-11-09 Carblox Ltd Aluminium manufacture
CH648871A5 (en) * 1982-07-12 1985-04-15 Alusuisse Method of controlling the crust in an electrolysis cell
US20080017504A1 (en) * 2006-07-24 2008-01-24 Alcoa Inc. Sidewall temperature control systems and methods and improved electrolysis cells relating to same
CN101275247A (zh) * 2007-12-20 2008-10-01 中国铝业股份有限公司 一种铝电解槽能量平衡的控制方法
CN201210660Y (zh) * 2008-06-16 2009-03-18 湖南晟通科技集团有限公司 铝电解槽废热利用装置
CN101962785B (zh) * 2010-10-22 2012-07-04 河南中孚实业股份有限公司 一种铝电解槽低电压运行的热平衡控制方法
CN103603010B (zh) * 2013-11-18 2015-12-02 中南大学 一种铝电解槽电压及热平衡的计算方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632488A (en) 1969-01-23 1972-01-04 Reynolds Metals Co Reduction cell control system
US4045309A (en) 1975-04-10 1977-08-30 Norsk Hydro A.S Method for measuring and control of the energy in aluminum reduction cells
GB2047745A (en) 1979-04-23 1980-12-03 Alumax Inc Cell for aluminium smelting
EP0044794A1 (de) 1980-07-23 1982-01-27 Aluminium Pechiney Verfahren und Vorrichtung zur genauen Regulierung der Zufuhrgeschwindigkeit und des Tonerdegehaltes in einer schmelzflüssigen Elektrolysezelle und Anwendung zur Aluminiumherstellung
EP0047227A2 (de) 1980-09-02 1982-03-10 Schweizerische Aluminium Ag Vorrichtung zum Regulieren des Wärmeflusses einer Aluminiumschmelzflusselektrolysezelle und Verfahren zum Betrieb dieser Zelle
US4333803A (en) 1980-10-03 1982-06-08 Aluminum Company Of America Method and apparatus for controlling the heat balance in aluminum reduction cells
FR2527647A1 (fr) 1982-05-27 1983-12-02 Pechiney Aluminium Dispositif amovible d'alimentation ponctuelle en alumine d'une cuve d'electrolyse pour la production d'aluminium
CA1335436C (fr) 1987-04-21 1995-05-02 Benoit Sulmont Procede et dispositif de controle des additions d'electrolyte solide dans les cuves d'electrolyse pour la production d'aluminium
US5089093A (en) 1989-02-24 1992-02-18 Comalco Aluminum Ltd. Process for controlling aluminum smelting cells
WO1999054526A1 (fr) 1998-04-16 1999-10-28 Aluminium Pechiney Cuve d'electrolyse ignee pour la production d'aluminium par le procede hall-heroult comprenant des moyens de refroidissement
WO2002068726A2 (fr) 2001-02-28 2002-09-06 Aluminium Pechiney Procede de regulation d'une cellule d'electrolyse
WO2010031919A1 (fr) 2008-09-16 2010-03-25 E.C.L. Machine de service utilisee pour intervenir sur les cellules d´εlectrolyse de production d'aluminium par electrolyse ignee
DE102011078656A1 (de) 2011-07-05 2013-01-10 Trimet Aluminium Ag Verfahren zum netzgeführten Betreiben einer Industrieanlage
CN104047032A (zh) 2014-06-27 2014-09-17 中国铝业股份有限公司 一种自动调节铝电解槽能量平衡的方法
CN205017018U (zh) 2015-09-21 2016-02-03 顾为东 大型铝电池调峰电站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COULOMBE MARIE-MICHELLE: "DIAGNOSTIC THERMIQUE SUR LES CUVES D'ÉLECTROLYSE DE L'ALUMINIUM", UNIVERSITÉ DE SHERBROOKE, 24 June 2013 (2013-06-24), pages 1 - 70, XP055880008, Retrieved from the Internet <URL:https://savoirs.usherbrooke.ca/bitstream/handle/11143/8745/Coulombe_Marie_Michelle_MScA_2013.pdf?sequence=1&isAllowed=y> [retrieved on 20220117]
IFFERT MARTIN: "Use of state-of-the-art sensors to reduce energy consumption at the TRIMET aluminium shelter", PROCEEDINGS OF EMC 2003, 1 January 2003 (2003-01-01), pages 289 - 305, XP055880006
SYSOEV I. A., ERSHOV V. A., KONDRAT’EV V. V.: "Method of Controlling the Energy Balance of Electrolytic Cells for Aluminum Production", METALLURGIST, SPRINGER US, NEW YORK, vol. 59, no. 5-6, 1 September 2015 (2015-09-01), New York, pages 518 - 525, XP055879999, ISSN: 0026-0894, DOI: 10.1007/s11015-015-0134-1

Also Published As

Publication number Publication date
EP3266904A1 (de) 2018-01-10
CN107574461A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
EP3266904B1 (de) Schmelzflusselektrolyseanlage und regelungsverfahren zu deren betrieb
DE102015118809B4 (de) Brennstoffzellensystem, Brennstoffzellenfahrzeug und Steuerverfahren für ein Brennstoffzellensystem
WO2014170373A2 (de) Verfahren und vorrichtung zur regelung des ladezustandes eines batteriekraftwerks
DE102009048797B3 (de) Wärmebehandlungsanlage und Verfahren zur Wärmebehandlung von Einsatzgut
DE102013001413B4 (de) Temperaturregelung für eine Brennstoffzelle
WO2017129381A1 (de) Verfahren zum generativen herstellen von bauteilen mit heizbarer bauplattform und anlage für dieses verfahren
DE102018128356A1 (de) Verfahren zur Bewertung der Treibstoffeffizienz von Luftfahrzeugen
DE102012025192A1 (de) Verfahren und Vorrichtung zur Vorkonditionierung von Latentwärmespeicherelementen
EP3161378B1 (de) Regelungsverfahren zum betreiben eines abhitzedampferzeugers
EP2890936B1 (de) Verfahren zur bedarfsgerechten regelung einer vorrichtung für eine schichtlüftung und vorrichtung für eine schichtlüftung
EP0748773B1 (de) Verfahren zur Regelung der Beheizung von Glas-Wannenöfen
DE102020133283A1 (de) Kühlsystem zum Kühlen einer steuerbaren Wärmequelle
WO2013004689A2 (de) Aluminiumelektrolyseanlage für einen netzgeführten betrieb
DE2615652A1 (de) Verfahren zum messen und steuern der energiebilanz von aluminium-oefen
WO2007045215A1 (de) Verfahren und vorrichtung zum verdampfen von material für beschichtungen
EP3029384B1 (de) Dezentrales klimagerät mit einem im innenraumgerät angeordneten latentwärmespeicher
DE69721710T2 (de) Verfahren zur Regelung der Heizung eines Ofens mit Hilfe von unscharfer Logik
EP1550927B1 (de) Verfahren und Anordnung sowie Computerprogramm zur Ermittlung einer Steuergrösse für eine Temperaturregelung für ein System
DE102020214450A1 (de) Verfahren und Vorrichtung zur Vermeidung von Kondenswasserbildung bei einem Inverter
DE102014013921A1 (de) Verfahren zum Überwachen eines flüssigen Kühlmittels
EP0455590A1 (de) Regulierung und Stabilisierung des A1F3-Gehaltes in einer Aluminiumelektrolysezelle
DE19632410C1 (de) Verfahren und Vorrichtung zur Beschichtung eines Bauteils mit einer Wärmedämmschicht
DE102016006453B4 (de) Verfahren zur automatischen Regelung eines Phasenumwandlungsvorganges und seine Verwendung
EP2130260B1 (de) Brennstoffzellensystem und verfahren zur regelung eines brennstoffzellensystems
DE102013018398A1 (de) Verfahren zum Betreiben einer aktiv gekühlten Batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012644

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016012644

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: RIO TINTO ALCAN INTERNATIONAL LIMITED

Effective date: 20211223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1374608

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220720

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230714

Year of fee payment: 8

Ref country code: DE

Payment date: 20230717

Year of fee payment: 8

RIC2 Information provided on ipc code assigned after grant

Ipc: C25C 7/06 20060101ALI20231031BHEP

Ipc: C25C 7/00 20060101ALI20231031BHEP

Ipc: C25C 3/20 20060101AFI20231031BHEP

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230801

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324