EP3265879A1 - Mouvement horloger à régulateur à résonance tridimensionnelle magnétique - Google Patents

Mouvement horloger à régulateur à résonance tridimensionnelle magnétique

Info

Publication number
EP3265879A1
EP3265879A1 EP16707124.0A EP16707124A EP3265879A1 EP 3265879 A1 EP3265879 A1 EP 3265879A1 EP 16707124 A EP16707124 A EP 16707124A EP 3265879 A1 EP3265879 A1 EP 3265879A1
Authority
EP
European Patent Office
Prior art keywords
oscillating
regulator
systems
magnetic
timepiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16707124.0A
Other languages
German (de)
English (en)
Other versions
EP3265879B1 (fr
Inventor
Mathias Buttet
Jean-Michel BLUMENTHAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hublot SA
Original Assignee
Hublot SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hublot SA filed Critical Hublot SA
Publication of EP3265879A1 publication Critical patent/EP3265879A1/fr
Application granted granted Critical
Publication of EP3265879B1 publication Critical patent/EP3265879B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/02Oscillators acting by gravity, e.g. pendulum swinging in a plane
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance

Definitions

  • the present invention relates to an oscillating regulator for a timepiece, and a watch assembly incorporating such a regulator. It therefore also concerns a watch movement and a timepiece as such incorporating such a regulator, and particularly a watch, such as a wristwatch, as such incorporating such a regulator.
  • the accuracy of a conventional mechanical watch rests largely on the operation of its regulator.
  • the latter is generally in the form of an oscillating system, most often comprising a pendulum-balance or a pendulum.
  • This oscillating system has a clean and stable operating frequency, which is exploited to impose a measure of time controlled watch. It is linked to an energy accumulator, like a cylinder, which dispenses energy to an escapement by a cog. The escapement then periodically transmits pulses to the oscillating system to sustain its oscillations in a sustainable manner.
  • the oscillating system power distribution system is designed to maintain oscillation movements without disturbing them.
  • some solutions rely on complex mechanical systems.
  • vortex-based solutions whose principle is the setting in motion of the regulator around one or more axes of rotation to finally make its overall operation less dependent on its orientation.
  • These complex solutions are very expensive and the improvement of the accuracy of the oscillating system-based regulator is only achieved at the cost of a development of a complex mechanical system, which is not easy.
  • the general object of the invention is to propose a solution for measuring time for a timepiece that does not include all or part of the disadvantages of the solutions of the state of the art.
  • a first object of the invention is to provide a solution for measuring time to achieve high accuracy, especially for use within a wristwatch, in particular to greatly reduce or even cancel the the detrimental effect of gravity on the isochronism of the watch.
  • a second object of the invention is to provide a solution for measuring space-saving time, compatible with use within a watch, in particular a wristwatch.
  • the invention is based on an oscillating timepiece controller, comprising an oscillating timepiece controller, characterized in that it comprises at least two oscillating systems resonants each comprising at least one magnetic component adapted to exchange magnetic energy during their oscillations and characterized in that the axes of at least two oscillating systems have a different orientation.
  • magnetic component we mean a component sensitive to a magnetic field: it can be either a so-called magnetized component such as a permanent or non-permanent magnet, that is to say a component generating a clean magnetic field important, or a so-called magnetizable component, that is to say, maintaining virtually no clean magnetic field after excitation, this is for example the case of materials called soft ferromagnetic materials.
  • the timepiece oscillating regulator may comprise a primary oscillating system, exerting a magnetic force on at least one other secondary oscillating system, each secondary oscillating system being such that two secondary oscillating systems have practically no magnetic force or no magnetic force one over the other.
  • the primary oscillating system may comprise at least one magnetic component comprising a magnetized component, in particular a magnet, and the at least one secondary oscillating system may comprise a magnetic component made of magnetizable material.
  • the timepiece oscillating controller may comprise three or an odd number of resonant oscillating systems greater than three, of different orientations.
  • the oscillating regulator may comprise at least one platform connecting all the oscillating systems to each other.
  • each oscillating system can be mounted on the same platform so that each oscillating system is only provided with a rotational movement relative to this platform.
  • the oscillating systems can all be of the same type, in particular of the spring-balance or pendulum type.
  • the oscillating systems can be of the spiral balance type and a magnetic component can be:
  • a flyweight fixed on the serge of the balance spring particularly fixed by driving, gluing, welding, riveting, or screwing; and or
  • the axes of rotation of each of its oscillating systems may be oriented at an angle less than or equal to 60 degrees with respect to a central axis, or the rotational axes of each of its oscillating systems may be mounted on contiguous faces of a cube.
  • the invention also relates to a watch movement, characterized in that it comprises an oscillating regulator as described above.
  • the watch movement may include a power source and a gear train for transmitting energy from the power source to a single primary oscillating system, the magnetic components of which exert a magnetic force on each other secondary oscillating system of the regulator.
  • the secondary oscillation systems of the oscillating regulator may have little or no magnetic force on each other.
  • the invention also relates to a timepiece, including a watch or wristwatch, characterized in that it comprises an oscillating regulator as described above or a watch movement as described above.
  • the timepiece may comprise a dial and the oscillation systems of the oscillating regulator may be equidistributed around a central axis substantially perpendicular to the dial.
  • the invention also relates to a watch which comprises a single source of energy, linked to a single primary oscillating system of the oscillating regulator by one or more wheels (s).
  • the invention also relates to a method for measuring time from an oscillating regulator, characterized in that it comprises the following steps:
  • FIG. 1 represents a simplified perspective view of an oscillating regulator according to one embodiment of the invention.
  • FIG. 2 represents a view from below of the oscillating regulator according to the embodiment of the invention.
  • Figure 3 shows a side view of the oscillating regulator according to the embodiment of the invention.
  • the principle implemented in the embodiment which will be described below rests on the one hand on the fact of using several balances operating in resonance by a magnetic energy exchange between them and on the other hand on the fact of use at least two differently oriented rockers, to achieve a regulator solution that will simply be called a three-dimensional resonance regulator.
  • FIG. 1 thus represents a three-dimensional resonance oscillating regulator, according to one embodiment, which comprises a platform 1 forming a pyramid, on which are arranged three oscillating systems 20, 30, 40 operating in resonance, of the spiral-balance type in this embodiment.
  • the platform 1 is fixed relative to the plate supporting the other components of the watch movement.
  • the platform 1 is in the form of a cube or part of a cube, three adjacent faces perpendicular to each other forming support surfaces 2, 3, 4 of each of the three identical oscillating systems respectively.
  • each oscillating system 20, 30, 40 is of the spiral balance type.
  • the first balance spring is arranged around an axis of rotation 22, mounted perpendicular to the surface 2.
  • This system oscillator further comprises in a known manner a balance, comprising a serge 23 fulfilling the function of flywheel, rotatably mounted around the axis of rotation 22, via a spiral spring called simply spiral 24
  • the sprung balance is commonly used in the field of watchmaking and will not be further detailed here.
  • two other sets of sprung-balance type are arranged around axes of rotation 32, 42 respectively arranged on the surfaces 3, 4 of the platform 1, and forming two other oscillating systems of the regulator.
  • the oscillating regulator is composed of three complementary oscillating systems, all of which have different orientations. In the proposed embodiment, these orientations are perpendicular to each other.
  • the oscillating systems can be mounted on three sides of a non-cubic pyramid, having non-perpendicular faces.
  • This pyramid may have a central axis and the three oscillating systems may be arranged on three planes of the pyramid evenly distributed around this central axis.
  • the three oscillating systems are arranged on three contiguous faces of a cube, that is to say that the surfaces 2, 3, 4 are perpendicular to each other and coincide with the three faces of the cube. a cubes.
  • these surfaces could coincide with certain surfaces of a regular polyhedron, not necessarily cubic.
  • a technical problem of such a three-dimensional resonance oscillating controller configuration comes from the size it requires due to the use of several oscillating systems and their arrangement in three dimensions of space.
  • a technical solution consists in minimizing the overall height of the regulator.
  • the surfaces 2, 3, 4 may be slightly inclined relative to each other, that is to say that the axes of rotation 22, 32, 42 of the oscillating systems have angles preferably equal to or less than 60 degrees, even less than or equal to 50 degrees.
  • the regulator according to the embodiment comprises a particular oscillating system, called primary oscillating system, associated, in a not shown clockwork movement, with a conventional energy distribution system, which allows for example a single wheel of exhaust 7 to transmit pulses of energy to his oscillations, through an anchor for example, in a known manner.
  • primary oscillating system associated, in a not shown clockwork movement
  • conventional energy distribution system which allows for example a single wheel of exhaust 7 to transmit pulses of energy to his oscillations, through an anchor for example, in a known manner.
  • This primary oscillating system is equipped with magnetic components 35, more particularly visible in FIG. 2.
  • two small magnetic weights are fixed on the serge 33, 180 degrees about the axis 32 to guarantee a dynamic balance of the serge.
  • the other two oscillating systems called secondary oscillating systems, are also equipped with magnetic components 25, 45.
  • these magnetic components are likewise two magnetic flyweights equidistributed on the serge 23, 43 of their rockers. .
  • the three oscillating systems, primary and secondary have the same structure, including magnetic components adapted to exchange magnetic energy.
  • the operation of this regulator will now be explained, with reference to FIG. 3 representing a schematic diagram.
  • the primary oscillating system is driven by the motor of the watch movement, for example a mainspring, in a conventional manner.
  • this motor forms a source of energy 5.
  • the watch movement comprises advantageously a single source of energy, and comprises for example a single barrel.
  • its magnetic components travel in a repetitive path. On this path, they exert tangential forces of repulsion on the magnetic components 25, 45 respectively of the two oscillating systems 20, 40 secondary.
  • FIG. 3 summarizes this operation, and likewise describes a method of operating a watch movement regulator:
  • a power source 5 transmits pulses to a primary oscillating system
  • the primary oscillating system transmits magnetic energy to two secondary oscillating systems 20, 40.
  • the two oscillating systems 20, 40 secondary are independent of one another.
  • their magnetic components 25, 45 exert no force (or negligible force) on each other.
  • the magnetic components 35 of the primary oscillating system are permanent magnets, more simply called magnets, while the magnetic components 25, 45 of the secondary oscillating systems 20, 40 are simple magnetizable elements, which are sensitive to the magnetic field exerted by the magnets of the primary oscillating system but exert almost no force on each other.
  • the magnetic components 25, 45 of the secondary oscillating systems are arranged in a 90 degree offset on their respective serge 23, 43, so that during their oscillations, which are in phase because of the resonance phenomenon which will be specified hereinafter, when one of them is in its position as close as possible to the serge of the other secondary oscillator, the magnetic components of this other serge are in a position remote from this magnetic component, from preferably the furthest position, of the order of 90 degrees from this position.
  • the embodiment has been described by way of non-limiting example, and there are many possible variants for the magnetic components of each oscillating system.
  • it could alternatively be only one magnetic weight by serge, or in another variant at least three magnetic flyweights.
  • these flyweights are evenly distributed over the oscillating system.
  • Each magnetic component of a secondary oscillating system may be in a magnetizable material of ferromagnetic type, for example a soft iron pellet coated with an anticorrosion layer, for example nickel.
  • Each magnetic component can be in the form of a magnetic cylinder, fixed in a hole made in the serge of an oscillating system.
  • the magnetic component may have another shape.
  • This attachment to the oscillating system can be done by driving, gluing, welding, or riveting in a socket.
  • the latter can be mounted mobile on the oscillating system, in particular by screwing with a thread realized in its periphery.
  • the magnetic component may comprise a threaded zone for its fastening by screwing into a corresponding threaded opening of the oscillating system.
  • each magnetic component of cylindrical shape, extends in a direction perpendicular to the axis of rotation of the oscillating system.
  • the magnetic component could be fixed in another orientation, for example parallel to this axis of rotation.
  • a magnetic component can be formed directly by a component of the oscillating system itself, for example a part or the whole of the serge.
  • the magnetic components exert repulsive forces on one another for the transfer of magnetic energy from one primary oscillating system to another secondary. As a variant not shown, this force could be a magnetic attraction force.
  • the three oscillating systems 20, 30, 40 of this embodiment are of the same nature, have the same oscillating geometries. They will naturally tend towards coherent oscillations, in phase, by the phenomenon called resonance in the state of the art.
  • the primary oscillating system will share part of its energy received with two secondary oscillating systems 20, 40, by a magnetic energy transmission, as explained above, and this architecture will automatically induce the oscillations in phase of the three oscillators 20, 30, 40, by the resonance phenomenon.
  • it is deliberately chosen to have at least two oscillating systems in resonance oriented differently, which gives them more chance of resisting external harmful influences.
  • this configuration allows the controller to be less dependent on the effect of the gravitational force, to have a less dependent operation of its orientation, which is particularly interesting in an implementation within a wristwatch case .
  • a first oscillating system of the regulator will have its axis oriented in an unfavorable direction, increasing the friction and the resistances to its natural oscillation, in particular for example when its balance is in a perpendicular direction (i.e. say that its axis of rotation is horizontal), at least one other oscillating system will not be in this unfavorable direction.
  • the regulator used implements a solution of three-dimensional resonance, by the choice of at least two oscillating systems operating in resonance and oriented differently. This three-dimensional resonance makes it possible to obtain an astonishingly more accurate result than all the resonance solutions previously tested in the state of the art.
  • the controller comprises three oscillating systems.
  • Other embodiments can be obtained by choosing any other number of oscillating systems, at least two as mentioned above.
  • at least two oscillating systems do not have the same orientation.
  • all the oscillating systems will have a different orientation, and will be distributed homogeneously in space to optimize their non-dependence on the orientation of the regulator.
  • their axes of rotation can be equidistributed around a certain axis.
  • the main components of the oscillating systems such as a balance wheel, a balance spring, a pendulum, etc., can also be distributed homogeneously around this same axis.
  • oscillating systems selected in the embodiment described are of the balance sprung type. Of course, any other oscillating system can alternatively be used, such as oscillating systems based on pendulum. Each oscillating system is adjustable to determine the ideal setting for their resonance operation.
  • the oscillating systems are interconnected via one or alternatively two platforms, on which one or more ends of their axes are mounted.
  • all the rockers are capped by a pendulum bridge (shell) equipped with a racking system for adjusting each spiral independently.
  • These platforms and the oscillating systems can also form a compact and integral assembly, mechanically linked, and allowing a mechanical energy transmission between the oscillating systems, complementary to the magnetic energy transmission described, and promoting the resonance of these different systems.
  • the entire controller has its own oscillating property, a proper oscillation frequency, called the resonance frequency.
  • the platform will advantageously be in a material with favorable vibratory properties, such as brass, a noble metal, and so on.
  • a platform could be composed of separate parts fixed together. Some ends of oscillating systems could be linked to a platform and other ends could remain free. All oscillating systems of the regulator are not necessarily linked to the same platform.
  • a specific, dedicated platform has been provided in the embodiment.
  • the platform function can be filled by a component of the timepiece such as a plate, a dial, a bridge, etc.
  • the oscillating systems can be arranged on separate and independent platforms, or mounted in any manner close to each other, the components magnetic enough to make them resonate. It suffices that in their oscillations, magnetic components travel in a path such that they pass close to exert an impulse on each other necessary and sufficient oscillation movement secondary oscillating systems.
  • some or all of the other elements forming the watch movement are made of materials that are not very sensitive to magnetic fields.
  • each oscillating system is only rotatable about its axis of rotation relative to the rest of the watch, particularly with respect to one or more platforms of the watch to which it is linked.
  • the axis of rotation of each oscillating system is fixed with respect to the watch movement or the watch.
  • the geometry of the platform 1 has been described by way of non-limiting example. It could naturally occupy any other form, be formed of several surfaces not necessarily planar, but curved, or even a single curved surface, since it allows the assembly in different orientations of at least two oscillating systems.
  • the planes perpendicular to the axes of the different oscillating systems can thus form part of an irregular polyhedron, that is to say that some surfaces of an irregular polyhedron could be perpendicular to the axes of rotation of the oscillating systems of the regulator.
  • the regulator described above is particularly powerful within a wristwatch. Naturally, it also remains useful for any implementation more broadly within any watch movement, for any timepiece.
  • the principle of the three-dimensional resonance controller remains compatible with other approaches to improve the accuracy of the regulator.
  • it can for example be combined with a vortex type solution.
  • the three-dimensional resonance regulator makes it possible to greatly reduce, or even cancel, the harmful effect of gravity and more generally the various defects of the oscillating systems on the isochronism of the watch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Régulateur oscillant pour pièce d'horlogerie comprenant au moins deux systèmes oscillants (20, 30) résonants comprenant chacun au moins un composant magnétique (25, 35) adapté pour échanger entre les systèmes oscillants une énergie magnétique lors de leurs oscillations. Les axes (22, 32) d'au moins deux desdites systèmes oscillants (20, 30) présentent une orientation sensiblement différente entre eux.

Description

Mouvement horloger à régulateur à résonance tridimensionnelle magnétique Introduction
La présente invention concerne un régulateur oscillant pour pièce d'horlogerie, et un assemblage horloger intégrant un tel régulateur. Elle concerne donc aussi un mouvement d'horlogerie et une pièce d'horlogerie en tant que tels intégrant un tel régulateur, et particulièrement une montre, comme une montre bracelet, en tant que telle intégrant un tel régulateur.
Etat de l'Art La précision d'une montre mécanique conventionnelle repose en grande partie sur le fonctionnement de son régulateur. Ce dernier se présente généralement sous la forme d'un système oscillant, comprenant la plupart du temps un ensemble balancier-spiral ou un pendule. Ce système oscillant présente une fréquence de fonctionnement propre et stable, qui est exploitée pour imposer une mesure de temps maîtrisée à la montre. Il est lié à un accumulateur d'énergie, comme un barillet, qui dispense une énergie à un échappement par un rouage. L'échappement transmet ensuite de manière périodique des pulsations au système oscillant pour entretenir ses oscillations de manière durable. Le système de distribution d'énergie au système oscillant est conçu pour entretenir les mouvements d'oscillation sans les perturber.
Le fonctionnement d'un tel régulateur de l'état de la technique reste toutefois imparfait, du fait des imperfections intrinsèques du système oscillant et/ou du système de distribution d'énergie qui lui est associé, qui vont décaler son fonctionnement d'un fonctionnement idéal et théorique. De plus, le régulateur est aussi soumis à l'influence de la force de gravitation qui peut varier si l'orientation du régulateur change, ce qui est le cas dans une montre bracelet. Ces différents phénomènes conduisent à une perte de précision de la mesure du temps d'une pièce d'horlogerie.
Pour pallier certains de ces inconvénients, certaines solutions reposent sur des systèmes mécaniques complexes. S'agissant par exemple de réduire l'influence de la gravitation, il existe en particulier des solutions à base de tourbillon, dont le principe est la mise en mouvement du régulateur autour d'un ou plusieurs axes de rotation pour rendre finalement son fonctionnement global moins dépendant de son orientation. Ces solutions complexes sont très coûteuses et l'amélioration de la précision du régulateur à base de système oscillant n'est atteinte qu'au prix d'une mise au point d'un système mécanique complexe, ce qui n'est pas aisé.
D'autres solutions pour améliorer la précision de la mesure du temps par un régulateur à base de système oscillant ont été proposées, comme celle décrite à titre d'exemple par le document EP1 640821 . Ce document décrit un mouvement d'horlogerie utilisant une pluralité de balanciers fonctionnant en résonance. Ce principe permet théoriquement de s'affranchir des défauts d'un seul balancier et d'obtenir une mesure de temps globalement améliorée, puisque les éventuels différents défauts de chaque balancier sont censés être compensés par les autres balanciers qui ne présenteront probablement pas les mêmes défauts au même instant. Le régulateur global formé par la réunion des balanciers en résonance présenterait ainsi un fonctionnement en moyenne plus précis et fiable que celui de chaque balancier indépendant le constituant. Cette solution est basée sur une approche théorique. Toutefois, sa mise en pratique pose des problèmes techniques qui n'ont pas été surmontés. En effet, pour obtenir le fonctionnement stable en résonance de différents balanciers, il faut que ces balanciers soient dotés des mêmes propriétés oscillatoires, soient de préférence identiques en poids, géométrie, réglage de fonctionnement, et subissent à tout instant exactement les mêmes influences extérieures. Ces conditions étant rarement atteintes, le principe de la résonance n'a ainsi pas pu apporter les résultats espérés pour la mesure du temps dans l'état de la technique.
Le document WO2014180767 propose ainsi une solution simplifiée et plus performante, reposant sur plusieurs balanciers fonctionnant en résonance. Il reste toutefois toujours complexe en pratique d'atteindre une résonance entre des balanciers et d'atteindre les avantages théoriques qu'une telle solution pourrait apporter.
Ainsi, l'invention a pour objet général de proposer une solution de mesure du temps pour une pièce d'horlogerie qui ne comprend pas tout ou partie des inconvénients des solutions de l'état de la technique.
Plus précisément, un premier objet de l'invention est de proposer une solution de mesure du temps permettant d'atteindre une grande précision, notamment pour une utilisation au sein d'une montre-bracelet, notamment permettant de fortement réduire, voire annuler, l'effet néfaste de la pesanteur sur l'isochronisme de la montre.
Un second objet de l'invention est de proposer une solution de mesure du temps peu encombrante, compatible avec une utilisation au sein d'une montre, notamment une montre-bracelet.
Brève description de l'invention
A cet effet, l'invention repose sur un régulateur oscillant pour pièce d'horlogerie, comprenant un régulateur oscillant pour pièce d'horlogerie, caractérisé en ce qu'il comprend au moins deux systèmes oscillants résonants comprenant chacun au moins un composant magnétique adapté pour s'échanger une énergie magnétique lors de leurs oscillations et caractérisé en ce que les axes d'au moins deux systèmes oscillants présentent une orientation différente.
Par « composant magnétique », nous entendons un composant sensible à un champ magnétique : il peut s'agir soit d'un composant dit magnétisé comme un aimant permanent ou non permanent, c'est-à-dire un composant générant un champ magnétique propre important, soit un composant dit magnétisable, c'est à dire ne conservant quasiment pas de champ magnétique propre après excitation, c'est par exemple le cas des matériaux dénommés matériaux ferromagnétiques doux.
Le régulateur oscillant pour pièce d'horlogerie peut comprendre un système oscillant primaire, exerçant une force magnétique sur au moins un autre système oscillant secondaire, chaque système oscillant secondaire étant tel que deux systèmes oscillants secondaires n'exercent quasiment aucune force magnétique voire aucune force magnétique l'un sur l'autre. Le système oscillant primaire peut comprendre au moins un composant magnétique comprenant un composant magnétisé, notamment un aimant et le au moins un système oscillant secondaire peut comprendre un composant magnétique en matériau magnétisable. Le régulateur oscillant pour pièce d'horlogerie peut comprendre trois ou un nombre impair de systèmes oscillants résonants supérieur à trois, d'orientations différentes.
Tous les systèmes oscillants peuvent être équirépartis autour d'un axe central. Le régulateur oscillant peut comprendre au moins une plateforme reliant tous les systèmes oscillants entre eux.
L'axe de rotation de chaque système oscillant peut être monté sur une même plateforme de sorte que chaque système oscillant est uniquement doté d'un mouvement de rotation par rapport à cette plateforme.
Les systèmes oscillants peuvent tous être de même type, notamment de type balancier-spiral ou pendule.
Les systèmes oscillants peuvent être de type balancier-spiral et un composant magnétique peut être :
- une masselotte fixée sur la serge du balancier spiral, notamment fixée par chassage, collage, soudage, rivetage, ou vissage ; et/ou
- un composant magnétisé ou magnétisable du balancier spiral.
Les axes de rotation de chacun de ses systèmes oscillants peuvent être orientés selon un angle inférieur ou égal à 60 degrés par rapport à un axe central, ou les axes de rotations de chacun de ses systèmes oscillants peuvent être montés sur des faces contigues d'un cube.
L'invention porte aussi sur un mouvement horloger, caractérisé en ce qu'il comprend un régulateur oscillant tel que décrit précédemment. Le mouvement horloger peut comprendre une source d'énergie et un rouage pour la transmission d'énergie depuis la source d'énergie vers un seul système oscillant primaire, dont les composants magnétiques exercent une force magnétique sur chaque autre système oscillant secondaire du régulateur. Les systèmes oscillants secondaires du régulateur oscillant peuvent ne quasiment pas exercer de force magnétique l'un sur l'autre, voire n'exercer aucune force magnétique l'un sur l'autre. L'invention porte aussi sur une pièce d'horlogerie, notamment montre ou montre-bracelet, caractérisée en ce qu'elle comprend un régulateur oscillant tel que décrit précédemment ou un mouvement horloger tel que décrit précédemment. La pièce d'horlogerie peut comprendre un cadran et les systèmes oscillants du régulateur oscillant peuvent être équirépartis autour d'un axe central sensiblement perpendiculaire au cadran.
L'invention porte aussi sur une montre qui comprend une seule source d'énergie, liée à un seul système oscillant primaire du régulateur oscillant par un ou plusieurs rouage(s).
L'invention porte aussi sur un procédé de mesure du temps à partir d'un régulateur oscillant, caractérisé en ce qu'il comprend les étapes suivantes :
- transmission d'énergie d'une source d'énergie vers un système oscillant primaire du régulateur oscillant, et
- transmission d'énergie magnétique du système oscillant primaire vers au moins un système oscillant secondaire. Brève description des figures
Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un mode de réalisation particulier fait à titre non-limitatif en relation avec les figures jointes parmi lesquelles : La figure 1 représente une vue en perspective simplifiée d'un régulateur oscillant selon un mode de réalisation de l'invention.
La figure 2 représente une vue de dessous du régulateur oscillant selon le mode de réalisation de l'invention.
La figure 3 représente une vue de côté du régulateur oscillant selon le mode de réalisation de l'invention. Le principe implémenté dans le mode de réalisation qui va être décrit ci- après repose d'une part sur le fait d'utiliser plusieurs balanciers fonctionnant en résonance par un échange d'énergie magnétique entre eux et d'autre part sur le fait d'utiliser au moins deux balanciers d'orientation différente, pour atteindre une solution de régulateur qui sera simplement qualifié de régulateur à résonance tridimensionnelle.
La figure 1 représente ainsi un régulateur oscillant, à résonance tridimensionnelle, selon un mode de réalisation, qui comprend une plateforme 1 formant une pyramide, sur laquelle sont agencés trois systèmes oscillants 20, 30, 40 fonctionnant en résonance, de type balancier- spiral dans ce mode de réalisation. La plateforme 1 est fixe par rapport à la platine supportant les autres composants du mouvement horloger.
La plateforme 1 se présente comme un cube ou une partie de cube, dont trois faces adjacentes, perpendiculaires les unes aux autres, forment des surfaces 2, 3, 4 de support de respectivement chacun des trois systèmes oscillants identiques.
Dans ce mode de réalisation, chaque système oscillant 20, 30, 40 est de type balancier spiral. Le premier balancier spiral est agencé autour d'un axe de rotation 22, monté perpendiculairement à la surface 2. Ce système oscillant comprend de plus de manière connue un balancier, comprenant une serge 23 remplissant la fonction de volant d'inertie, monté mobile en rotation autour de l'axe de rotation 22, par l'intermédiaire d'un ressort en spirale appelé simplement spiral 24. Le balancier-spiral est couramment utilisé dans le domaine de l'horlogerie et ne sera pas plus détaillé ici. De manière similaire, deux autres ensembles de type balancier-spiral sont agencés autour d'axes de rotation 32, 42 agencés respectivement sur les surfaces 3, 4 de la plateforme 1 , et formant deux autres systèmes oscillants du régulateur.
Ainsi, dans ce mode de réalisation, le régulateur oscillant est composé de trois systèmes oscillants complémentaires, qui présentent tous les trois des orientations différentes. Dans le mode de réalisation proposé, ces orientations sont perpendiculaires les unes aux autres.
En variante, les systèmes oscillants peuvent être montés sur trois faces d'une pyramide non cubique, présentant des faces non perpendiculaires. Cette pyramide peut présenter un axe central et les trois systèmes oscillants peuvent être disposés sur trois plans de la pyramide répartis de manière homogène autour de cet axe central. Selon la variante avantageuse décrite ci-dessus, les trois systèmes oscillants sont agencés sur trois faces contigues d'un cube, c'est-à-dire que les surfaces 2, 3, 4 sont perpendiculaires entre elles et coïncident avec les trois faces d'un cubes. En variante encore, ces surfaces pourraient coïncider avec certaines surfaces d'un polyèdre régulier, non nécessairement cubique.
En remarque, un problème technique d'une telle configuration de régulateur oscillant à résonance tridimensionnelle provient de l'encombrement qu'il nécessite du fait de l'utilisation de plusieurs systèmes oscillants et de leur agencement selon trois dimensions de l'espace. A cet effet, une solution technique consiste à minimiser la hauteur globale du régulateur. Pour cela, les surfaces 2, 3, 4 peuvent être peu inclinées les unes par rapport aux autres, c'est-à-dire que les axes de rotation 22, 32, 42 des systèmes oscillants présenteraient des angles de préférence inférieurs ou égaux à 60 degrés, voire inférieurs ou égaux à 50 degrés.
Le régulateur selon le mode de réalisation comprend un système oscillant 30 particulier, appelé système oscillant primaire, associé, dans un mouvement d'horlogerie non représenté, à un système de distribution d'énergie conventionnel, qui permet par exemple à une unique roue d'échappement 7 de lui transmettre des impulsions d'énergie maintenant ses oscillations, par l'intermédiaire d'une ancre par exemple, de manière connue.
Ce système oscillant 30 primaire est équipé de composants magnétiques 35, plus particulièrement visibles sur la figure 2. Dans le mode de réalisation représenté, deux petites masselottes magnétiques sont fixées sur la serge 33, à 180 degrés autour de l'axe 32 pour garantir un équilibre dynamique de la serge. De manière similaire, les deux autres systèmes oscillants, appelés systèmes oscillants secondaires, sont aussi équipés de composants magnétiques 25, 45. Dans ce mode de réalisation, ces composants magnétiques sont de même deux masselottes magnétiques équiréparties sur la serge 23, 43 de leurs balanciers. Ainsi, les trois systèmes oscillants, primaire et secondaires, présentent la même structure, incluant des composants magnétiques adaptés pour s'échanger une énergie magnétique.
Le fonctionnement de ce régulateur va maintenant être explicité, en référence avec la figure 3 représentant un schéma de principe. Le système oscillant 30 primaire est entraîné par le moteur du mouvement d'horlogerie, par exemple un ressort de barillet, de manière classique. En remarque, ce moteur forme une source d'énergie 5. Le mouvement d'horlogerie comprend avantageusement une seule source d'énergie, et comprend par exemple un seul barillet. Dans le mouvement d'oscillation du le système oscillant primaire, ses composants magnétiques 35 parcourent un chemin répétitif. Sur ce chemin, ils exercent des forces tangentielles de répulsion sur les composants magnétiques 25, 45 de respectivement les deux systèmes oscillants 20, 40 secondaires. Cette force magnétique exercée a pour effet la transmission d'impulsions périodiques transmises à ces systèmes oscillants secondaires, qui sont ainsi entraînés en oscillation de manière stable, grâce à l'énergie magnétique transmise par le système oscillant 30 primaire, et indirectement par la source d'énergie 5 unique du mouvement d'horlogerie. La figure 3 résume ce fonctionnement, et décrit de même un procédé de fonctionnement d'un régulateur de mouvement d'horlogerie :
- dans une première étape E1 , une source d'énergie 5 transmet des impulsions à un système oscillant 30 primaire, et
- dans une seconde étape E2, le système oscillant 30 primaire transmet de l'énergie magnétique à deux systèmes oscillants 20, 40 secondaires.
Il en résulte qu'une seule source d'énergie met en mouvement direct et indirect les trois systèmes oscillants orientés selon les trois axes de l'espace.
En remarque, les deux systèmes oscillants 20, 40 secondaires sont indépendants l'un de l'autre. Notamment, leurs composants magnétiques 25, 45 n'exercent aucune force (ou une force négligeable) les uns sur les autres. Pour cela, les composants magnétiques 35 du système oscillant 30 primaire sont des aimants permanents, appelés plus simplement aimants, alors que les composants magnétiques 25, 45 des systèmes oscillants 20, 40 secondaires sont de simples éléments magnétisables, qui sont sensibles au champ magnétique exercé par les aimants du système oscillant primaire mais n'exercent quasiment aucune force les uns sur les autres. En variante, les composants magnétiques 25, 45 des systèmes oscillants secondaires sont disposés de manière décalée à 90 degrés sur leur serge 23, 43 respective, de sorte que lors de leurs oscillations, qui sont en phase du fait du phénomène de résonance qui sera précisé ci-après, lorsque l'un d'entre eux se trouve dans sa position la plus proche possible de la serge de l'autre oscillateur secondaire, les composants magnétiques de cette autre serge se trouvent dans une position éloignée de ce composant magnétique, de préférence la position la plus éloignée, de l'ordre de 90 degrés de cette position.
Naturellement, le mode de réalisation a été décrit à titre d'exemple non limitatif, et il existe de nombreuses variantes possibles pour les composants magnétiques de chaque système oscillant. Notamment, il pourrait en variante n'y avoir qu'une seule masselotte magnétique par serge, ou selon une autre variante au moins trois masselottes magnétiques. De préférence, ces masselottes sont réparties de manière homogène sur le système oscillant.
Chaque composant magnétique d'un système oscillant secondaire peut se présenter dans un matériau magnétisable de type ferromagnétique, par exemple une pastille de fer doux revêtue d'une couche d'anticorrosion, par exemple de nickel.
Chaque composant magnétique peut se présenter sous la forme d'un cylindre magnétique, fixé dans un trou pratiqué dans la serge d'un système oscillant. En variante, le composant magnétique peut présenter une autre forme.
Cette fixation sur le système oscillant peut se faire par chassage, collage, soudage, ou rivetage dans une douille. Cette dernière peut être montée mobile sur le système oscillant, notamment par vissage grâce à un filetage réalisé dans son pourtour. En variante, le composant magnétique peut comprendre une zone filetée pour sa fixation par vissage dans une ouverture filetée correspondante du système oscillant. En remarque, dans les cas d'une fixation par vissage, il est possible de réaliser un réglage fin du système oscillant, en modifiant les tours de vissage.
Dans le mode de réalisation représenté, chaque composant magnétique, de forme cylindrique, s'étend dans une direction perpendiculaire à l'axe de rotation du système oscillant. En variante, le composant magnétique pourrait être fixé selon une autre orientation, par exemple parallèle à cet axe de rotation.
En variante, tout ou partie du système oscillant est directement formé dans un matériau magnétisé, de sorte qu'il n'est plus nécessaire d'ajouter des aimants supplémentaires comme les masselottes décrites précédemment. Ainsi, un composant magnétique peut être formé directement par un composant du système oscillant lui-même, par exemple une partie ou la totalité de la serge. Dans le mode de réalisation décrit, les composants magnétiques exercent des forces de répulsion l'un sur l'autre pour le transfert d'énergie magnétique d'un système oscillant primaire vers un autre secondaire. En variante non représentée, cette force pourrait être une force magnétique d'attraction.
Les trois systèmes oscillants 20, 30, 40 de ce mode de réalisation sont de même nature, possèdent les mêmes géométries oscillantes. Ils vont tendre naturellement vers des oscillations cohérentes, en phase, par le phénomène appelé résonance dans l'état de la technique. Le système oscillant 30 primaire va partager une partie de son énergie reçue avec deux systèmes oscillants 20, 40 secondaires, par une transmission d'énergie magnétique, tel qu'explicité ci-dessus, et cette architecture va automatiquement induire les oscillations en phase des trois oscillateurs 20, 30, 40, par le phénomène de résonance. Pour optimiser cette résonance et son efficacité, il est choisi volontairement d'avoir au moins deux systèmes oscillants en résonance orientés différemment, ce qui leur donne plus de chance de résister aux influences néfastes extérieures. Notamment, cette configuration permet au régulateur d'être moins dépendant de l'effet de la force de gravitation, d'avoir un fonctionnement moins dépendant de son orientation, ce qui est particulièrement intéressant dans une implémentation au sein d'un boîtier de montre bracelet. En effet, lorsqu'un premier système oscillant du régulateur aura son axe orienté dans une direction défavorable, augmentant les frottements et les résistances à son oscillation naturelle, notamment par exemple lorsque son balancier se trouve dans une direction perpendiculaire (c'est-à-dire que son axe de rotation est horizontal), au moins un autre système oscillant ne sera pas dans cette direction défavorable. L'influence de cet autre système oscillant sur le premier système oscillant va s'opposer à l'influence néfaste de la force de gravitation et le résultat obtenu en sortie du régulateur sera d'une part plus précis que s'il n'y avait que le premier système oscillant, et d'autre part plus stable, puisque moins dépendant de l'orientation du régulateur. Par exemple, dans le mode de réalisation choisi, lorsqu'un balancier sera en position verticale, dans laquelle la pesanteur bouleverse généralement son fonctionnement idéal, au moins un autre balancier sera en position non verticale, et de préférence proche de l'horizontal, de sorte à bénéficier d'un fonctionnement moins, voire pas du tout, perturbé par la pesanteur. Dans tous les cas, lorsque la pesanteur modifie le fonctionnement d'un des balanciers, elle ne modifiera pas celui des autres balanciers de la même manière : le résultat moyen résultant de la résonance entre les différents balanciers restera ainsi peu sensible à la pesanteur. Ainsi, le régulateur utilisé met en œuvre une solution de résonance tridimensionnelle, par le choix d'au moins deux systèmes oscillants fonctionnant en résonance et orientés différemment. Cette résonance tridimensionnelle permet d'obtenir un résultat étonnement plus précis que toutes les solutions de résonance précédemment essayées dans l'état de la technique.
Dans le mode de réalisation représenté, le régulateur comprend trois systèmes oscillants. D'autres modes de réalisation peuvent être obtenus en choisissant tout autre nombre de systèmes oscillants, au moins deux comme cela a été évoqué ci-dessus. D'autre part, comme cela a été vu, deux systèmes oscillants au moins ne présentent pas la même orientation. De préférence, tous les systèmes oscillants présenteront une orientation différente, et seront répartis de manière homogène dans l'espace pour optimiser leur non-dépendance envers l'orientation du régulateur. Par exemple, leurs axes de rotation peuvent être équirépartis autour d'un certain axe. De manière complémentaire, les composants principaux des systèmes oscillants, comme un balancier, un spiral, un pendule, etc., peuvent aussi être répartis de manière homogène autour de ce même axe. D'autre part, il sera aussi avantageux de prévoir un nombre impair de systèmes oscillants, trois, voire cinq, représentant le meilleur compromis entre la performance et la simplicité. Quel que soit le nombre de systèmes oscillants, il y aura un seul système primaire, tous les autres étant secondaires, recevant de l'énergie magnétique du premier et étant indépendants entre eux. En variante de réalisation, il pourrait y avoir plus d'un seul système primaire, par exemple deux, ou plus.
Les systèmes oscillants retenus dans le mode de réalisation décrit sont de type balancier-spiral. Naturellement, n'importe quel autre système oscillant peut en variante être utilisé, comme des systèmes oscillants à base de pendule. Chaque système oscillant est réglable, afin de déterminer le réglage idéal pour leur fonctionnement en résonance.
D'autre part, les systèmes oscillants sont reliés entre eux par l'intermédiaire d'une ou en variante de deux plateformes, sur lesquelles une ou des extrémités de leurs axes sont montées. Dans le mode de réalisation, tous les balanciers sont coiffés par un pont de balancier (coque) équipé d'un système de raquetterie permettant le réglage de chacun des spiraux de façon indépendante. Ces plateformes et les systèmes oscillants peuvent aussi former alors un ensemble compact et solidaire, mécaniquement lié, et permettant une transmission d'énergie mécanique entre les systèmes oscillants, complémentaire à la transmission d'énergie magnétique décrite, et favorisant la mise en résonance de ces différents systèmes. L'ensemble du régulateur présente une propriété oscillante propre, une fréquence d'oscillation propre, appelée fréquence de résonance.
Il est ainsi avantageux d'utiliser une plateforme se présentant en une seule pièce, monolithique, et offrant un agencement avec une distance peu importante entre les différents systèmes oscillants. D'autre part, la plateforme sera avantageusement dans un matériau aux propriétés vibratoires favorables, comme du laiton, un métal noble, ou etc. En variante, une plateforme pourrait être composée de parties distinctes fixées entre elles. Certaines extrémités de systèmes oscillants pourraient être liées à une plateforme et d'autres extrémités pourraient rester libres. Tous les systèmes oscillants du régulateur ne sont pas obligatoirement liés à une même plateforme. Enfin, une plateforme spécifique, dédiée, a été prévue dans le mode de réalisation. Toutefois, en variante, la fonction de plateforme peut être remplie par un composant de la pièce d'horlogerie comme une platine, un cadran, un pont, etc. Naturellement, les systèmes oscillants peuvent être disposés sur des plateformes distinctes et indépendantes, ou montés de manière quelconque à proximité les uns des autres, les composants magnétiques suffisant à leur mise en résonance. Il suffit que dans leurs oscillations, des composants magnétiques parcourent une trajectoire telle qu'ils passent à proximité pour exercer une impulsion l'un sur l'autre nécessaire et suffisante au mouvement d'oscillation des systèmes oscillants secondaires.
Avantageusement, hormis les composants magnétiques, une partie, voire la totalité des autres éléments formant le mouvement horloger sont réalisés dans des matériaux peu sensibles aux champs magnétiques.
Il apparaît que la solution retenue est très simple, notamment en comparaison avec les systèmes complexes de type tourbillon. Dans les modes de réalisation décrits, chaque système oscillant est uniquement mobile en rotation autour de son axe de rotation par rapport au reste de la montre, notamment par rapport à une ou plusieurs plateformes de la montre à laquelle / auxquelles il est lié. Ainsi, l'axe de rotation de chaque système oscillant est fixe par rapport au mouvement d'horlogerie ou la montre.
D'autre part, la géométrie de la plateforme 1 a été décrite à titre d'exemple non limitatif. Elle pourrait naturellement occuper toute autre forme, être formée de plusieurs surfaces non nécessairement planes, mais courbes, voire d'une seule surface courbée, dès lors qu'elle permet l'assemblage selon des orientations différentes d'au moins deux systèmes oscillants. Les plans perpendiculaires aux axes des différents systèmes oscillants peuvent ainsi former une partie d'un polyèdre irrégulier, c'est-à-dire que certaines surfaces d'un polyèdre irrégulier pourraient être perpendiculaires aux axes de rotation des systèmes oscillants du régulateur.
Le régulateur décrit précédemment est particulièrement performant au sein d'une montre bracelet. Naturellement, il reste aussi utile pour toute implémentation plus largement au sein de tout mouvement horloger, pour toute pièce d'horlogerie.
De plus l'absence de liaison mécanique entre les systèmes oscillants facilite le réglage et améliore donc la précision du régulateur.
D'autre part, le principe du régulateur à résonance tridimensionnelle reste compatible avec d'autres approches permettant d'améliorer la précision du régulateur. Ainsi, il peut par exemple être combiné avec une solution de type tourbillon. Finalement, le régulateur à résonance tridimensionnelle permet de fortement réduire, voire annuler, l'effet néfaste de la pesanteur et plus généralement des différents défauts des systèmes oscillants sur l'isochronisme de la montre.

Claims

Revendications
1 . Régulateur oscillant pour pièce d'horlogerie, caractérisé en ce qu'il comprend au moins deux systèmes oscillants (20, 30) résonants comprenant chacun au moins un composant magnétique (25, 35) adapté pour s'échanger une énergie magnétique lors de leurs oscillations et caractérisé en ce que les axes (22, 32) d'au moins deux systèmes oscillants (20, 30) présentent une orientation différente.
2. Régulateur oscillant pour pièce d'horlogerie selon la revendication précédente, caractérisé en ce qu'il comprend un système oscillant (30) primaire, exerçant une force magnétique sur au moins un autre système oscillant (20 ; 20, 40) secondaire, chaque système oscillant (20 ; 20, 40) secondaire étant tel que deux systèmes oscillants secondaires n'exercent aucune force magnétique l'un sur l'autre.
3. Régulateur oscillant pour pièce d'horlogerie selon la revendication précédente, caractérisé en ce que le système oscillant (30) primaire comprend au moins un composant magnétique (35) comprenant un aimant et en ce que le au moins un système oscillant (20) secondaire comprend un composant magnétique (25) en matériau magnétisable.
4. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce qu'il comprend trois ou un nombre impair de systèmes oscillants résonants supérieur à trois, d'orientations différentes.
5. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce que tous ses systèmes oscillants sont équirépartis autour d'un axe central.
6. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins une plateforme reliant tous les systèmes oscillants entre eux.
7. Régulateur oscillant pour pièce d'horlogerie selon la revendication précédente, caractérisé en ce que l'axe de rotation (22, 32, 42) de chaque système oscillant (20, 30, 40) est monté sur une même plateforme (1 ) de sorte que chaque système oscillant est uniquement doté d'un mouvement de rotation par rapport à cette plateforme.
8. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce que les systèmes oscillants sont tous de même type, notamment de type balancier-spiral ou pendule.
9. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce que les systèmes oscillants (20, 30) sont de type balancier-spiral et en ce qu'un composant magnétique (25, 35) est :
- une masselotte fixée sur la serge (23, 33) du balancier spiral, notamment fixée par chassage, collage, soudage, rivetage, ou vissage ; et/ou
- un composant magnétisé ou magnétisable du balancier spiral.
1 0. Régulateur oscillant pour pièce d'horlogerie selon l'une des revendications précédentes, caractérisé en ce que les axes de rotation (22, 32, 42) de chacun de ses systèmes oscillants sont orientés selon un angle inférieur ou égal à 60 degrés par rapport à un axe central, ou en ce que les axes de rotations de chacun de ses systèmes oscillants sont montés sur des faces contigues d'un cube.
1 1 . Mouvement horloger, caractérisé en ce qu'il comprend un régulateur oscillant selon l'une des revendications précédentes.
1 2. Mouvement horloger selon la revendication précédente, caractérisé en ce qu'il comprend une source d'énergie (5) et un rouage pour la transmission d'énergie depuis la source d'énergie (5) vers un seul système oscillant (30) primaire, dont les composants magnétiques (35) exercent une force magnétique sur chaque autre système oscillant (20, 40) secondaire du régulateur.
1 3. Mouvement horloger selon la revendication précédente, caractérisé en ce que les systèmes oscillants (20, 40) secondaires du régulateur oscillant n'exercent pas de force magnétique l'un sur l'autre.
14. Pièce d'horlogerie, notamment montre ou montre-bracelet, caractérisée en ce qu'elle comprend un régulateur oscillant selon l'une des revendications 1 à 1 0 ou un mouvement horloger selon l'une des revendications 1 1 à 13.
1 5. Pièce d'horlogerie selon la revendication précédente, caractérisée en ce qu'elle comprend un cadran et en ce que les systèmes oscillants du régulateur oscillant sont équirépartis autour d'un axe central sensiblement perpendiculaire au cadran.
1 6. Montre selon la revendication 14 ou 1 5, caractérisée en ce qu'elle comprend une seule source d'énergie (5), liée à un seul système oscillant (30) primaire du régulateur oscillant par un ou plusieurs rouage(s).
1 7. Procédé de mesure du temps à partir d'un régulateur oscillant selon l'une des revendications 1 à 1 0, caractérisé en ce qu'il comprend les étapes suivantes : - transmission d'énergie (E1 ) d'une source d'énergie (5) vers un système oscillant (30) primaire du régulateur oscillant, et
- transmission d'énergie magnétique du système oscillant (30) primaire vers au moins un système oscillant (20 ; 40) secondaire.
EP16707124.0A 2015-03-04 2016-03-01 Mouvement horloger à régulateur à résonance tridimensionnelle magnétique Active EP3265879B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00292/15A CH710817B1 (fr) 2015-03-04 2015-03-04 Mouvement horloger à régulateur résonant à interaction magnétique.
PCT/EP2016/054300 WO2016139196A1 (fr) 2015-03-04 2016-03-01 Mouvement horloger à régulateur à résonance tridimensionnelle magnétique

Publications (2)

Publication Number Publication Date
EP3265879A1 true EP3265879A1 (fr) 2018-01-10
EP3265879B1 EP3265879B1 (fr) 2023-04-26

Family

ID=55446803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16707124.0A Active EP3265879B1 (fr) 2015-03-04 2016-03-01 Mouvement horloger à régulateur à résonance tridimensionnelle magnétique

Country Status (6)

Country Link
US (1) US10481556B2 (fr)
EP (1) EP3265879B1 (fr)
JP (1) JP6723256B2 (fr)
CN (1) CN107533320B (fr)
CH (1) CH710817B1 (fr)
WO (1) WO2016139196A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1610646S (fr) * 2017-09-14 2018-08-06
EP3719588B1 (fr) * 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Oscillateur horloger auto-réglable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616681A (en) * 1948-07-15 1952-11-04 Sperry Corp Angular velocity responsive apparatus
US3183426A (en) * 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
CH1810272A4 (fr) 1972-12-13 1977-02-28
DE602004020766D1 (de) * 2004-09-22 2009-06-04 Antoine Preziuso Geneve Sa Uhrwerk mit mehreren Unruhen
CH698622B1 (fr) * 2004-12-21 2009-09-15 Gfpi S A Mouvement de pièce d'horlogerie comportant un différentiel et deux échappements.
ATE487964T1 (de) * 2007-02-08 2010-11-15 Complitime S A Uhrwerk
CH702294B1 (fr) * 2009-11-16 2014-05-30 Complitime Sa Mouvement pour pièce d'horlogerie.
CH704062A2 (fr) * 2010-11-09 2012-05-15 Montres Breguet Sa Dispositif antichoc magnétique pour la protection d'un composant horloger.
CH704063B1 (fr) 2010-11-09 2013-07-31 Complitime Sa Pièce d'horlogerie
EP2615504A1 (fr) 2012-01-13 2013-07-17 Manufacture Roger Dubuis S.A. Mouvement d'horlogerie a balanciers inclinés
CH708038B1 (fr) 2013-05-07 2017-12-15 Hublot S A Genève Mouvement horloger à régulateur à résonance tridimensionelle.

Also Published As

Publication number Publication date
JP6723256B2 (ja) 2020-07-15
CH710817B1 (fr) 2019-07-15
CN107533320B (zh) 2020-04-21
CN107533320A (zh) 2018-01-02
JP2018507412A (ja) 2018-03-15
EP3265879B1 (fr) 2023-04-26
WO2016139196A1 (fr) 2016-09-09
US10481556B2 (en) 2019-11-19
CH710817A2 (fr) 2016-09-15
US20180074459A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
EP2115536B1 (fr) Mouvement de montre
EP3130966B1 (fr) Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP1805565B1 (fr) Organe reglant pour montre bracelet, et mouvement mecanique comportant un tel organe reglant
EP2998800B1 (fr) Composant horloger à pivot flexible
CH709291A2 (fr) Oscillateur de pièce d'horlogerie.
EP3172626B1 (fr) Pivot à lame
EP2802942B1 (fr) Piece d'horlogerie a plusieurs balanciers
WO2015096974A2 (fr) Mecanisme de synchronisation d'horlogerie
CH715049A2 (fr) Pièce d'horlogerie comprenant un tourbillon.
EP3265879B1 (fr) Mouvement horloger à régulateur à résonance tridimensionnelle magnétique
WO2014180767A1 (fr) Mouvement horloger à régulateur à résonance tridimensionnelle
EP2889701B1 (fr) Mécanisme de synchronisation d'horlogerie
EP3663868B1 (fr) Mouvement d'horlogerie comportant un tourbillon avec une roue magnetique fixe
WO2018215284A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune
CH708960A2 (fr) Mécanisme de tourbillon ou de carrousel.
CH714600A2 (fr) Pièce d'horlogerie munie d'un tourbillon.
EP3572885B1 (fr) Oscillateur mécanique d'horlogerie isochrone en toute position
EP3944027B1 (fr) Objet portable, notamment montre bracelet, comprenant un dispositif d'alimentation muni d'un convertisseur electromecanique
CH713829B1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.
CH717674A2 (fr) Objet portable, notamment montre bracelet, comprenant un dispositif d'alimentation muni d'un convertisseur électromécanique.
CH719658A2 (fr) Mouvement mécanique horloger.
CH715618A2 (fr) Mouvement d'horlogerie comportant un tourbillon avec une roue magnétique fixe.
CH711408A2 (fr) Mouvement d'horlogerie mécanique muni d'un système de rétroaction du mouvement.
WO2008003735A2 (fr) Montre automatique
CH700132B1 (fr) Fixation d'un ressort spiral dans un mouvement d'horlogerie.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1229 EN DATE DU 05.06.2018)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: G04C 3/04 20060101ALN20220829BHEP

Ipc: G04B 17/06 20060101ALI20220829BHEP

Ipc: G04B 17/28 20060101AFI20220829BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G04C 3/04 20060101ALN20220922BHEP

Ipc: G04B 17/06 20060101ALI20220922BHEP

Ipc: G04B 17/28 20060101AFI20220922BHEP

INTG Intention to grant announced

Effective date: 20221026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016079029

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1563284

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230426

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1563284

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016079029

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240307

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426