EP3258874B1 - Dispositif d'entrée pour système chirurgical robotique - Google Patents

Dispositif d'entrée pour système chirurgical robotique Download PDF

Info

Publication number
EP3258874B1
EP3258874B1 EP16752764.7A EP16752764A EP3258874B1 EP 3258874 B1 EP3258874 B1 EP 3258874B1 EP 16752764 A EP16752764 A EP 16752764A EP 3258874 B1 EP3258874 B1 EP 3258874B1
Authority
EP
European Patent Office
Prior art keywords
input
scaling factor
distance
input handle
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16752764.7A
Other languages
German (de)
English (en)
Other versions
EP3258874A1 (fr
EP3258874A4 (fr
Inventor
William Peine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Publication of EP3258874A1 publication Critical patent/EP3258874A1/fr
Publication of EP3258874A4 publication Critical patent/EP3258874A4/fr
Application granted granted Critical
Publication of EP3258874B1 publication Critical patent/EP3258874B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • B25J13/065Control stands, e.g. consoles, switchboards comprising joy-sticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation

Definitions

  • Robotic surgical systems have been used in minimally invasive medical procedures.
  • the robotic surgical system is controlled by a surgeon interfacing with a user interface.
  • the user interface allows the surgeon to manipulate an end effector that acts on a patient.
  • the user interface includes an input controller or handle that is moveable by the surgeon to control the robotic surgical system.
  • Robotic surgical systems typically used a scaling factor to scale down the motions of the surgeons hands to determine the desired position of the end effector within the patient so that the surgeon could more precisely move the end effector inside the patient.
  • the larger the scaling factor the farther the surgeon had to move the input device handle to move the end effector the same distance. Since the input device handle has a fixed range of motion, this meant that for larger scaling factors the surgeon may have reached an end of the range of motion of an input handle more often. The surgeon then had to "clutch" the handle to decouple the motion of the input handles from the end effector so that the surgeon could move the handles to a new position within the workspace of the user interface away from the end of the range motion while the instruments remain stationary.
  • a robotic surgical system includes a linkage, an input handle, and a processing unit.
  • the linkage moveably supports a surgical tool relative to a base.
  • the input handle is moveable in a plurality of directions.
  • the processing unit is in communication with the input handle and is operatively associated with the linkage to move the surgical tool based on a scaled movement of the input handle.
  • the scaling varies depending on whether the input handle is moved towards a center of a workspace or away from the center of the workspace.
  • the workspace represents a movement range of the input handle.
  • the processing unit is configured to scale a first movement of the input handle towards the center of the workspace by a first scaling factor and to scale a second movement of the input handle away from the center of the workspace by a second scaling factor different from the first scaling factor.
  • the processing unit is configured to scale the input distance by dividing a distance of the first movement by the first scaling factor and a distance of the second movement by the second scaling factor.
  • the first and second scaling factors may be in a range of about 1.0 to about 10.0 and the second scaling factor may be larger than the first scaling factor.
  • the first scaling factor may be between 0.70 and 1.40 times as large as the second scaling factor.
  • the processing unit is configured to vary the scaling based on a distance of the input handle from the center of the workspace.
  • the processing unit may be configured to linearly or exponentially scale the input distance based on a distance of the input handle from at least one of the center of the workspace and a limit of movement of the input handle.
  • the processing unit may be configured to increase a movement of the surgical tool as the location of the input handle is further from the center of the workspace.
  • the processing unit may be configured to decrease a movement of the surgical tool as the location of the input handle is further from the center of the workspace.
  • the workspace includes a first section that is located a predetermined distance from the center of the workspace.
  • the first and second scaling factors may be constant when the input handle is in the first section and at least one of the first or second scaling factors varies when the input handle is outside of the first section.
  • a robotic surgical system in another aspect of the present disclosure, includes a linkage, an input handle, and a processing unit.
  • the linkage moveably supports a surgical tool relative to a base.
  • the input handle is moveable a first input distance in a first input direction and a second input distance in a second input direction that is opposite the first input direction.
  • the second input distance is different from the first input distance.
  • the processing unit is in communication with the input handle and is operatively associated with the linkage to move the surgical tool.
  • the processing unit is configured to move the surgical tool an output distance in a first output direction in response to the first input distance and to move the surgical tool the same output distance in a second out direction opposite the first input direction in response to the second input distance.
  • a method of operating a surgical robot includes detecting a plurality of movements of an input handle that is moveable in a plurality of directions, scaling a detected movement of the input handle towards a center of a workspace by a first scaling factor, scaling a detected movement of the input handle away from the center of the workspace by a second scaling factor different from the first scaling factor, and actuating a linkage based on the scaled detected movements to move a surgical tool that is moveably supported by the linkage.
  • the method includes dividing a distance of the detected movement of the input handle toward the center of the workspace by the first scaling factor and dividing a distance of the detected movement of the input handle away from the center of the workspace by the second scaling factor.
  • the method includes varying the scaling of the detected movements based on a distance of the input handle from the center of the workspace.
  • the method may include linearly or exponentially varying the scaling of the detected movements based on a distance of the input handle from at least one of the center of the workspace and a limit of movement of the input handle.
  • the method may include adjusting the actuation of the linkage to increase or decrease a movement of the surgical tool as the location of the input handle is further from the center of the workspace.
  • the method may include setting the first and second scaling factors as constant when the input handle is in a section of the workspace located within a predetermined distance of the center of the workspace and varying at least one of the first and second scaling factors when the input handle is outside the section.
  • a robotic surgical system in another aspect of the present disclosure, includes an arm having an end, a tool supported on the end of the arm, an input handle, and a processing unit.
  • the input handle is moveable an input distance and includes a repositioning control that has activated and deactivated states.
  • the processing unit is in communication with the input handle and is operatively associated with the arm to move the tool.
  • the processing unit is configured to scale the input distance of the input handle by a first scaling factor when the repositioning control is in the activated state and to sale the input distance by a second scaling factor when the repositioning control is in the deactivated state.
  • the first scaling factor is larger than the second scaling factor.
  • the first scaling factor may be in a range of about 100 to about 1000 and the second scaling factor may be in a range of about 1 to about 10.
  • the processing unit may be configured to scale the input distance by dividing the input distance by the first scaling factor when the repositioning control is in the activated state and by dividing the input distance by the second scaling factor when the reposition control is in the deactivated state.
  • a method, which is not part of the invention, of repositioning an input handle of a robotic surgical system includes detecting movement of an input handle of the robotic surgical system an input distance with a repositioning control of the input handle in a deactivated state, detecting whether a repositioning control of the input handle is in an activated or deactivated state, scaling the input distance to a first output distance or a different second output distance depending on the state of the repositioning control, and actuating movement of a tool supported on an end of a moveable arm of a robotic surgical system the respective scaled first or second output distance.
  • the method which is not part of the invention, includes dividing the input distance by a first scaling factor in a range of 1 to 10 as part of the scaling of the input distance to the first output distance and dividing the input distance by a second scaling factor in a range of 100 to 1000 as part of scaling the input distance to the second output distance.
  • the method may include changing an orientation of the tool as part of the actuating movement when the detected movement of the input handle includes a detected orientation change of the input handle.
  • a robotic surgical system including an arm having an end, a tool supported on the end of the arm, an input handle moveable an input distance, an imaging device, and a processing unit.
  • the imaging device is configured to capture images of the tool within a surgical site of a patient.
  • the processing unit is in communication with the input handle.
  • the processing unit is also operatively associated with the arm to move the tool and is in communication with the imaging arm.
  • the processing unit is configured to scale the input distance of the input handle to an output distance based on the position of the imaging device relative to the surgical site of the patient.
  • the system includes an imaging arm with the imaging device positioned at the end of the imaging arm.
  • the input handle may be moveable within a workspace having a center and a limit of movement.
  • the input distance may be defined by the distance between the center and the limit of movement.
  • the imaging device may be configured to zoom out the captured images as the input handle approaches the limit of movement.
  • the processing unit may be operatively associated with the imaging arm and may be configured to move the imaging device away from the surgical site to zoom out the captured images.
  • the system includes a display that is configured to display the captured images from the imaging device.
  • the processing unit may be configured to scale the input distance to the output distance such that the movement of the tool on the display is substantially equal to the input distance.
  • the system includes a switch that is configured to selectively switch the association of the input handle between the tool and the imaging arm.
  • the switch may be a foot switch or disposed on the input handle.
  • a method of scaling movement of a tool supported on an end of an arm based on the position of an imaging device relative to a surgical site includes determining the position of the imaging device relative to the surgical site with a processing unit and moving an input handle of a robotic surgical system an input distance to move the tool on output distance.
  • the tool is operatively associated to the input handle by the processing unit.
  • the processing unit scales the input distance to the output distance based on the position of the imaging device relative to the surgical site.
  • moving the input handle includes moving the input handle towards a limit of movement of the input handle.
  • the method may include the processing unit moving the imaging device relative to the surgical site as the input handle approaches the limit of movement.
  • the method may include the processing unit varying a scaling factor as the imaging device is moved relative to the surgical site.
  • the processing unit may scale the input distance to the output distance by the scaling factor.
  • a robotic surgical system in another aspect of the present disclosure, includes an arm having an end, a tool supported on the end of the arm, an input handle, and a processing unit.
  • the input handle is moveable an input distance in a first input direction and a second input direction opposite the first input direction.
  • the processing unit is in communication with the input handle and is operatively associated with the arm to move the tool.
  • the processing unit is configured to scale the input distance of the input handle to a first output distance of the tool in response to movement of the input handle in the first input direction and to a second output distance of the tool in response to movement of the input handle in the second input direction, the first output distance being different than the second output distance.
  • the processing unit is configured to scale the input distance of the input handle by a first scaling factor in response to movement of the input handle in the first direction and to scale the input distance of the input handle by a second scaling factor in response to movement of the input handle in the second direction.
  • the second scaling factor may be different than the first scaling factor.
  • the processing unit may be configured to scale the input distance by dividing the input distance by one of the first or second scaling factors.
  • the first scaling factor may be in a range of about 1 to about 10 and the second scaling factor may be in a range of about 1 to about 10.
  • the input handle is moveable within a workspace having a center and a limit of movement.
  • the movement of the input handle in the first direction may be towards the limit of movement and the movement of the input handle in the second direction may be towards the center.
  • the processing unit may be configured to further scale the input distance in response to a location of the input handle between the center and the limit of movement.
  • the processing unit may be configured to linearly or exponentially scale the input distance in response to the location of the input handle between the center and the limit of movement.
  • the processing unit may be configured to increase the first output distance as the location of the input handle is further from the center.
  • the processing unit may be configured to decrease the second output distance as the location of the input handle is further from the center.
  • the input handle is configured to scale the input distance of the input handle by a first scaling factor in response to movement of the input handle in the first direction and to scale the input distance of the input handle by a second scaling factor in response to movement of the input handle in the second direction.
  • the second scaling factor may be different than the first scaling factor.
  • the work space may include a first point between the center and the limit of movement with the first and second scaling factor being constant when the input handle is between the center and the first point.
  • One of the first or second scaling factors may vary when the input handle is between the first point and the limit of movement based on the location of the handle.
  • a robotic surgical system in another aspect of the present disclosure, includes an arm having an end, a tool supported on the end of the arm, and input handle, and a processing unit.
  • the input handle being moveable a first input distance in a first input direction and a second input distance in a second input direction opposite the first input direction, the second input distance being different than the first input distance.
  • the processing unit is in communication with the input handle and operatively associated with the arm to move the tool.
  • the processing unit is configured to move the tool an output distance in a first output direction in response to the first input distance and to move the tool the output distance in a second output direction opposite the first input direction in response to the second input distance.
  • a method of operation a surgical robot includes moving an input handle of a robotic surgical system an input distance in a first input direction to move a tool supported on an end of an arm of the robotic surgical system a first output distance in response to the movement of the input handle in the first input direction and moving the input handle of the robotic surgical system, the input distance, in a second input direction opposite the first input direction to move the tool a second out distance in response to the movement of the input handle in the second input direction, the second output distance being different than the first output distance.
  • moving the input handle of the robotic surgical system in the first input direction includes moving the input handle towards a limit of movement of a workspace.
  • Moving the input handle of the robotic surgical system in the second input direction may include moving the input handle towards a center of a workspace.
  • moving the input handle of the robotic surgical system in the first direction includes transmitting an input signal to a processing unit of the robotic surgical system including a location of the input handle relative to a center of a workspace.
  • the method may include the processing unit controlling the first output distance based on the input distance, the first input direction, and the location of the input handle relative to the center of the workspace.
  • moving the input handle of the robotic surgical system in the second input direction includes transmitting an input signal to a processing unit of the robotic surgical system including a location of the input handle relative to a center of a workspace.
  • the method may include the processing unit controlling the second output distance based on the input distance, the second input direction, and the location of the input handle relative to the center of the workspace.
  • a method, which is not part of the invention, of operating a surgical robot includes moving an input handle of a robotic surgical system a first input distance away from a center of a workspace to move a tool supported on an end of an arm of a surgical robot an output distance in a first output direction and moving the input handle of the robotic surgical system a second input distance towards the center of the workspace to move the tool, the output distance, in a second output direction opposite the first output direction, the second input distance being different than the first input distance.
  • the robotic surgical system includes an arm having an end, a tool supported on the end of the arm, an input handle, and a processing unit.
  • the input handle movable an input distance and including a repositioning control having an activated state and a deactivated state.
  • the processing unit may be in communication with the input handle and operatively associated with the arm to move the tool.
  • the processing unit is configured to scale the input distance of the input handle by a first scaling factor when the repositioning control is in the activated state and to scale the input distance by a second scaling factor when the repositioning control is in the deactivated state.
  • the first scaling factor is larger than the second scaling factor.
  • the first scaling factor is in a range of about 100 to about 1000 and the second scaling factor is in a range of about 1 to about 10.
  • the processing unit may be configured to scale the input distance by dividing the input distance by the first scaling factor when the repositioning control in in the activated state and by dividing the input distance by the second scaling factor when the reposition control is in the deactivated state.
  • a method, which is not part of the invention, of repositioning an input handle of a robotic surgical system includes moving an input handle of a robotic surgical system an input distance with a repositioning control of the input handle in a deactivated state to move a tool supported on an end of an arm of the robotic surgical system a first output distance, and moving the input handle of the robotic surgical system, the input distance, with the repositioning control of the input handle in an activated state to move the tool a second output distance.
  • the input handle being in communication with a processing unit to operatively associate the tool of the robotic surgical system with the input handle.
  • the processing unit scaling the input distance to a first output distance when the input handle is in the deactivated state and scaling the input distance to a second output distance when the input handle is in the activated state.
  • scaling the input distance to the first output distance includes dividing the input distance by a first scaling factor in a range of about 1 to about 10 and scaling the input distance to the second output distance includes dividing the input distance by a second scaling factor in a range of about 100 to about 1000.
  • Moving the input handle the input distance with the repositioning control in the activated state may include an orientation of the input handle operatively associated with an orientation of the tool.
  • the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel.
  • proximal refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician.
  • a robotic surgical system 1 in accordance with the present disclosure is shown generally as a robotic system 10, a processing unit 30, and a user interface 40.
  • the robotic system 10 generally includes linkages 12 and a robot base 18.
  • the linkages 12 moveably support an end effector or tool 20 which is configured to act on tissue.
  • the linkages 12 may be in the form of arms each having an end 14 that supports an end effector or tool 20 which is configured to act on tissue.
  • the ends 14 of the arms 12 may include an imaging device 16 for imaging a surgical site "S".
  • the user interface 40 is in communication with robot base 18 through the processing unit 30.
  • the user interface 40 includes a display device 44 which is configured to display three-dimensional images.
  • the display device 44 displays three-dimensional images of the surgical site "S" which may include data captured by imaging devices 16 positioned on the ends 14 of the arms 12 and/or include data captured by imaging devices that are positioned about the surgical theater (e.g., an imaging device positioned within the surgical site "S", an imaging device positioned adjacent the patient "P", imaging device 56 positioned at a distal end of an imaging arm 52).
  • the imaging devices e.g., imaging devices 16, 56
  • the imaging devices may capture visual images, infra-red images, ultrasound images, X-ray images, thermal images, and/or any other known real-time images of the surgical site "S".
  • the imaging devices transmit captured imaging data to the processing unit 30 which creates three-dimensional images of the surgical site "S” in real-time from the imaging data and transmits the three-dimensional images to the display device 44 for display.
  • the user interface 40 also includes input handles 42 which allow a clinician to manipulate the robotic system 10 (e.g., move the arms 12, the ends 14 of the arms 12, and/or the tools 20).
  • Each of the input handles 42 is in communication with the processing unit 30 to transmit control signals thereto and to receive feedback signals therefrom. Additionally or alternatively, each of the input handles 42 may include control interfaces (not shown) which allow the surgeon to manipulate (e.g., clamp, grasp, fire, open, close, rotate, thrust, slice, etc.) the tools 20 supported at the ends 14 of the arms 12.
  • each of the input handles 42 is moveable through a predefined workspace "W” to move the ends 14 of the arms 12 within a surgical site "S".
  • the workspace "W” is shown in two-dimensions in FIG. 2 that the workspace "W” is a three-dimensional workspace.
  • the three-dimensional images on the display device 44 are orientated such that the movement of the input handle 42 moves the ends 14 of the arms 12 as viewed on the display device 44. It will be appreciated that the orientation of the three-dimensional images on the display device may be mirrored or rotated relative to view from above the patient "P".
  • the size of the three-dimensional images on the display device 44 may be scaled to be larger or smaller than the actual structures of the surgical site permitting the surgeon to have a better view of structures within the surgical site "S".
  • the tools 20 are moved within the surgical site "S” as detailed below.
  • movement of the tools 20 may also include movement of the ends 14 of the arms 12 which support the tools 20.
  • the movement of the tools 20 is scaled relative to the movement of the input handles 42.
  • the input handles 42 send control signals to the processing unit 30.
  • the processing unit 30 analyzes the control signals to move the tools 20 in response to the control signals.
  • the processing unit 30 transmits scaled control signals to the robot base 18 to move the tools 20 in response the movement of the input handles 42.
  • the processing unit 30 scales the control signals by dividing an Input distance (e.g., the distance moved by one of the input handles 42) by a scaling factor S F to arrive at a scaled Output distance (e.g., the distance that one of the ends 14 is moved).
  • the clinician if the clinician reaches the edge or limit of the predefined range of motion of an input handle 42, the clinician must clutch the input handle 42 (i.e., decouple the motion of the input handle 42 from the motion of the tool 20 of the respective arm 12) to reposition the input handle 42 back within the predefined workspace "W" before continuing to move the input handle 42 in the same direction.
  • the clinician may be required to clutch the input handle 42 more frequently, which increases the number of steps and thus, the time and/or costs of the surgical procedure.
  • the orientation (e.g., roll, pitch, and yaw) of the tool 20 is also decoupled from the orientation of the input handle 42.
  • the processing unit 30 may be programmed to align the orientation of the tool 20 with the orientation of the input handle 42, which may result in unintended movement of the tool 20 when the input handle 42 is recoupled.
  • the processing unit 30 may recalibrate the orientation of the input handle 42 when it is recoupled to the current orientation of the processing unit 30, which may result in the orientation of the input handle 42 being misrepresented by the tool 20.
  • each of the input handles 42 may include a repositioning control 43 that sends a signal to the processing unit 30 to switch the scaling factor S F between a procedural scaling factor PS F and a repositioning scaling factor RS F .
  • the procedural scaling factor PS F is in a range of about 1.0 to about 10.0 (e.g., 3.0) and the repositioning scaling factor RS F is significantly larger in a range of about 100.0 to about 1000.0 (e.g., 500.0).
  • the two scaling factors allow a clinician to perform a surgical procedure using the procedural scaling factor PS F and when one of the input handles 42 approaches an edge or a limit of movement of the predefined workspace "W", the clinician activates the repositioning control 43 to change to the repositioning scaling factor RS F to move the input handle 42 to a desired position within the predefined workspace "W” without clutching the input handle 42. Once the input handle 42 is at the desired position within the predefined workspace "W”, the clinician deactivates the repositioning control 43 to switch back to the procedural scaling factor PS F to continue the surgical procedure.
  • repositioning control 43 activating and deactivating the repositioning control 43, to reposition the input handle 42 within the predefined workspace "W", the orientational relationship between the input handle 42 and the end 14 of the arm 12 is maintained. It is contemplated a repositioning control 43 on each input handle 42 is activatable independent of a repositioning control 43 on another input handle 42. While the repositioning control 43 is represented as a button, it is contemplated that the repositioning control 43 may be operated by, but not limited to, a switch, a lever, a trigger, an optical sensor, or a voice command.
  • the processing unit 30 may vary the scaling factor S F based on the direction of movement of the input handle 42 within the predefined workspace "W” to keep the input handle 42 substantially centered within the predefined workspace "W".
  • a method 300 of varying the scaling factor S F based on the direction of movement of the input handle 42 is detailed with respect to the "X" axis; however, it will be appreciated that this method 300 may be applied to each of the "X", “Y", and “Z" axes of the predefined workspace "W".
  • the processing unit 30 assigns a first scaling factor S F1 to the movement of the input handle 42, records the direction of movement represented by arrow "A", and identifies the limit of movement represented by the border of the workspace "W”.
  • the processing unit 30 assigns a second scaling factor S F2 to the movement of the input handle 42 that is larger than the first scaling factor S F1 , and records the direction of movement represented by arrow "B”.
  • first scaling factor S F1 may be about 3.0 and the second scaling factor S F2 may be about 4.5. It is contemplated that first scaling factor S F1 may be about 0.70 to about 1.4 times the size of the second scaling factor S F2 . Varying the scaling factor S F in this manner keeps the input handle 42 substantially centered by requiring the clinician to move the input handle 42 a greater distance when moving the input handle 42 towards the center "C" of the predefined workspace "W” as compared to the distance that the clinician moved the input handle 42 away from the center "C” to move the tool 20 the same distance in each direction.
  • the center “C” of the predefined workspace “W” continually shifts relative to the surgical site “S” ( FIG. 1 ) during the surgical procedure. It is contemplated that the shifting of the center “C” of the predefined workspace “W” relative to the surgical site “S” may be imperceptible to the clinician.
  • the direction of arrow “A” is representative of the direction of movement of the input handle 42 away from the center “C” towards a point “F”; however, when the input handle 42 is moved from the center “C” towards a point "H”, the arrow “B” is representative of movement away from the center "C".
  • the first and second scaling factors S F1 , S F2 are the same in each axes (e.g., the "X”, “Y”, and “Z” axes). In some embodiments, the first and second scaling factor S F1 , S F2 in one axis (e.g., the "X” axis) is different from the first and second scaling factors S F1 , S F2 in the other axes (e.g., the "Y” and “Z” axes).
  • the method may include the processing unit 30 varying the first and second scaling factors S F1 , S F2 based on the location of the input handle 42 within the predefined workspace "W" (Steps 350, 355).
  • the method of varying a scaling factor S F based on the location of the input handle 42 is detailed with respect to the "X" axis; however, it will be appreciated that this method may be applied to each of the "X", “Y", and “Z" axes of the predefined workspace "W”.
  • the scaling factors S F1 , S F2 are implemented by differentiating the movement of the input handle 42 to calculate a handle velocity.
  • This handle velocity is multiplied by the scaling factor (e.g., scaling factors S F1 , S F2 ).
  • This scaled velocity is then integrated with the current position of the tool 20 to determine a new position of the tool 20 such that movement of the tool 20 is smooth.
  • the scaled velocity is continuously integrated such that the movement of the tool 20 is smooth even if the scaling factor is varied (e.g., when the scaling factor is smoothly or discreetly varied as detailed below).
  • the second scaling factor S F2 may increase as the location of the input handle 42 moves away from the center “C” of the predefined workspace "W” (e.g., the second scaling factor S F2 may be larger when the input handle 42 is at point “D” than when the input handle 42 is at center “C”, the second scaling factor S F2 may be larger when the input handle 42 is at point “E” than when the input handle 42 is at point "D”, and the second scaling factor S F2 may be larger when the input handle 42 is at point “F” than when the input handle 42 is at point "E”).
  • the second scaling factor S F2 may vary in a linear manner based on the location of the input handle 42 from the center “C” such that at point “F” the second scaling factor S F2 is about 4.5, at point “E” the second scaling factor S F2 is about 4.0, at point “D” the second scaling factor S F2 is about 3.5, and at center “C” the second scaling factor S F2 is about 3.0.
  • the second scaling factor S F2 may vary as a function of the location of the input handle 42 from the center "C".
  • the second scaling factor S F2 may vary in an exponential manner based on the location of the input handle 42 from the center “C” such that at point “F” the second scaling factor S F2 is about 6.5, at point “E” the second scaling factor S F2 is about 4.5, at point “D” the second scaling factor S F2 is about 3.5, and at the center “C” the second scaling factor S F2 is about 3.0.
  • the second scaling factor S F2 may be constant as the input handle 42 is within a first section S 1 close to the center “C” and linearly or exponentially increase as the location of the input handle 42 is moved away from the center "C" beyond the first section S 1 .
  • the second scaling factor S F2 may increase, in a relatively smooth manner, as the location of the input handle 42 away from the center "C" based on a linear or exponential formula or that the second scaling factor S F2 may change discretely at each of a plurality of points (e.g., points "D", "E", and "F") creating discontinuities in the second scaling factor S F2 .
  • increasing the second scaling factor S F2 requires the clinician to move the input handle 42 a greater distance towards the center “C” when compared to movement of the input handle 42 away from the center “C” to move the tool 20 an equal distance in each direction as the location of the input handle 42 away from the center “C” increases, which shifts the center “C” relative to the surgical site “S” to reduce or eliminate the need to clutch the input handle 42.
  • the first scaling factor S F1 may decrease as the location of the input handle 42 moves away from the center "C" of the predefined workspace "W” (e.g., the first scaling factor S F1 may be smaller when the input handle 42 is at point “D” than when the input handle 42 is at the center “C”, the first scaling factor S F1 may be smaller when the input handle 42 is at point “E” than when the input handle 42 is at point “D”, and the first scaling factor S F1 may be smaller when the input handle 42 is at point "F” than when the input handle 42 is at point “E”).
  • the first scaling factor S F1 may vary in a linear manner based on the location of the input handle 42 from the center “C” such that at the center “C” the first scaling factor S F1 is about 3.0, at point “D” the first scaling factor S F1 is about 2.75, at point “E” the first scaling factor S F1 is about 2.5, and at point “F” the first scaling factor S F1 is about 2.25.
  • the first scaling factor S F1 may vary as a function of the location of the input handle 42 from the center "C".
  • the first scaling factor S F1 may vary in an exponential manner based on the location of the input handle 42 from the center “C” such that at the center “C” the first scaling factor S F1 is about 3.0, at point “D” the first scaling factor S F1 is about 2.75, at point “E” the first scaling factor S F1 is about 2.25, and at point “F” the first scaling factor S F1 is about 1.25.
  • the first scaling factor S F1 may be constant as the input handle 42 is at a location near the center "C" (e.g., when the input handle is between point “D” and a point “G” the first scaling factor S F1 is constant) and linearly or exponentially decreased as the location of the input handle 42 is moved beyond point “D” or point "G".
  • the first scaling factor S F1 may increase, in a relatively smooth manner, as the location of the input handle 42 moves away from the center "C" based on a linear or exponential formula or that the first scaling factor S F1 may change discretely at each of a plurality of points (e.g., points "D", "E", and "F") creating discontinuities in the first scaling factor S F1 .
  • increasing the first scaling factor S F1 allows the clinician to move the input handle 42 a lesser distance away from the center “C” as the location of the input handle 42 away from the center “C” is increased to result in the same movement of the tool 20, which in turn shifts the center “C” relative to the surgical site “S” to reduce or eliminate the need to clutch the input handle 42.
  • each input handle 42 may vary the respective scaling factors S F1 , S F2 in a similar manner or may vary the respective scaling factors S F1 , S F2 in differing manners (e.g., one input handle 42 may vary its scaling factors S F1 , S F2 based on the location of the input handle 42 and another input handle 42 may vary its scaling factors S F1 , S F2 based on the direction of movement of the another input handle relative to the center "C", each input handle 42 may vary its scaling factors S F1 , S F2 using different linear or exponential formulas). It is also contemplated that an input handle 42 may vary one of the scaling factors S F1 , S F2 and the other of the scaling factors S F1 , S F2 may be constant. While points “F” to “J” are shown spaced evenly apart, it is contemplated that points "F” to “J” may be spaced apart different distances from one another. For example, be spaced closer to one another as the points get closer to the limit of movement.
  • the robotic surgical system 1 includes an imaging arm 52 that is controlled by the processing unit 30 and may be selectively controlled by the user interface 40.
  • the imaging arm 52 includes an imaging device 56 disposed on a distal end thereof.
  • the imaging device 56 is located over or within the surgical site "S” and is configured to capture the tools 20 acting within the surgical site "S" of the patient "P” and transmit the captured images to the display 44.
  • the imaging device 56 may be a three-dimensional (3D) camera and the display 44 may be a 3D display enabling the clinician to view the surgical site "S" in three dimensions.
  • the imaging device 56 is moveable relative to or within the surgical site "S” in six degrees of freedom and may be selectively moved by one of the input handles 42.
  • the surgical system 1 may include a foot switch (not shown) that switches one of the input handles 42 between a run mode where the input handle 42 is associated with one of the arms 12 to move the tool 20 within the surgical site "S" and a camera mode where the input handle 42 is associated with the imaging arm 52 to move the imaging device 56 about the surgical site "S". It is also contemplated that one of the input handles 42 may include a camera button (not shown) to operatively associate the input handle 42 with the imaging arm 52.
  • the processing unit 30 may determine the location of the imaging device 56 relative to or within the surgical site “S” to determine the scaling factor S F used to associate the movement of the input handles 42 to the movement of the tools 20 within the surgical site “S". As detailed herein, the processing unit 30 determines the location of the imaging device 56 relative to the surgical site “S” along the "Z” axis to determine the scaling factor S F ; however, the processing unit 30 may determine the scaling factor S F based on the location of the imaging device 56 relative to or within the surgical site "S" in each of the "X", "Y", and "Z" axes.
  • the scaling factor S F when the imaging device 56 is in a first position “L” the scaling factor S F has a first value and when the imaging device 56 is in a second position “M” the scaling factor S F has a second value larger than the first value.
  • the first value may be about “1” when the imaging device 56 is in the first position “L” and as the imaging device 56 is moved closer to the surgical site “S" to the second position "M", the second value may be about "2".
  • a third location "N” may further increase the scaling factor S F to a third value (e.g., about 3).
  • the processing unit 30 may be operatively associated with the imaging arm 52 such that as the scaling factor S F is increased or decreased the processing unit 30 zooms the imaging device 56 in and out from the surgical site "S" to match the movement of the input handles 42 within the predefined workspace "W” to the movement of the tools 20 within the surgical site "S” as viewed by the clinician on the display 44.
  • the zooming in and out of the imaging device 56 may be accomplished by manipulating a lens assembly (not explicitly shown) of the imaging device 56 or by moving the imaging device 56 towards and away from the surgical site "S".
  • the processing unit 30 may zoom the imaging device 56 out when one of the input handles 42 approaches a limit or edge of the predefined workspace "W” to keep the tools 20 within the field of view of the imaging device 56.
  • the processing unit 30 may reposition the imaging device 56 such that the center "C" ( FIG. 2 ) of the input handles 42 are substantially centered on the display device 44.
  • any of the methods of varying the scaling factor S F or moving of the imaging device 56 may be selectively activated or deactivated by a clinician operating the robotic surgical system 1 before or during a surgical procedure.
  • scaling factor S F determined by the processing unit 30 based on the position of the imaging device 56 relative to the surgical site “S” may be varied as detailed above based on the movement of or location of the input handles 42 relative to the center “C" of the predefined workspace "W".

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • User Interface Of Digital Computer (AREA)

Claims (13)

  1. Système chirurgical robotique (1) comprenant :
    une tringlerie (12) supportant de manière mobile un outil chirurgical (20) par rapport à une base (8) ;
    une poignée d'entrée (42) mobile dans une pluralité de directions ; et
    une unité de traitement (30) en communication avec la poignée d'entrée et associée fonctionnellement à la tringlerie pour déplacer l'outil chirurgical sur la base d'un mouvement mis à l'échelle de la poignée d'entrée, la mise à l'échelle variant selon que la poignée d'entrée est déplacée vers un centre (C) d'un espace de travail (W) ou à distance du centre de l'espace de travail, l'espace de travail représentant une plage de mouvement de la poignée d'entrée, dans lequel ladite unité de traitement est configurée pour mettre à l'échelle un premier mouvement de la poignée d'entrée vers le centre de l'espace de travail par un premier facteur de mise à l'échelle (SF1) et mettre à l'échelle un second mouvement de la poignée d'entrée à distance du centre de l'espace de travail par un second facteur de mise à l'échelle (SF2) différent du premier facteur de mise à l'échelle, l'espace de travail comportant une première section (S1) située à une distance prédéterminée du centre de l'espace de travail, et dans lequel les premier et second facteurs de mise à l'échelle sont constants lorsque la poignée d'entrée (42) est dans la première section et au moins l'un des premier ou second facteurs de mise à l'échelle varie lorsque la poignée d'entrée est à l'extérieur de la première section sur la base d'une distance de la poignée d'entrée à partir du centre de l'espace de travail.
  2. Système selon la revendication 1, dans lequel l'unité de traitement (30) est configurée pour mettre à l'échelle la distance d'entrée en divisant une distance du premier mouvement par le premier facteur de mise à l'échelle (SF1) et une distance du second mouvement par le second facteur de mise à l'échelle (SF2).
  3. Système selon la revendication 1 ou la revendication 2, dans lequel les premier et second facteurs de mise à l'échelle sont compris dans une plage de 1,0 à 10,0 et le second facteur de mise à l'échelle est supérieur au premier facteur de mise à l'échelle.
  4. Système selon la revendication 3, dans lequel le premier facteur de mise à l'échelle est entre 0,70 et 1,40 fois supérieur au second facteur de mise à l'échelle.
  5. Système selon la revendication 1, dans lequel l'unité de traitement (30) est configurée pour mettre à l'échelle linéairement la distance d'entrée sur la base d'une distance de la poignée d'entrée à partir d'au moins l'un du centre (C) de l'espace de travail (W) et d'une limite de mouvement de la poignée d'entrée (42), de préférence dans lequel l'unité de traitement est configurée pour mettre à l'échelle exponentiellement la distance d'entrée sur la base d'une distance de la poignée d'entrée à partir d'au moins l'un du centre de l'espace de travail et d'une limite de mouvement de la poignée d'entrée.
  6. Système selon l'une quelconque revendication précédente, dans lequel l'unité de traitement (30) est configurée pour augmenter ou diminuer une taille de mouvement de l'outil chirurgical à mesure que l'emplacement de la poignée d'entrée s'éloigne du centre de l'espace de travail.
  7. Système selon l'une quelconque des revendications précédentes, dans lequel l'actionnement de la tringlerie est réglable pour augmenter ou diminuer un mouvement de l'outil chirurgical à mesure que l'emplacement de la poignée d'entrée s'éloigne du centre de l'espace de travail.
  8. Système selon l'une quelconque des revendications précédentes, dans lequel
    l'au moins une tringlerie comprend un bras (12) ayant une extrémité (14) avec l'outil (20) supporté sur l'extrémité du bras ;
    la poignée d'entrée mobile sur une distance d'entrée et comportant une commande de repositionnement (43) ayant un état activé et un état désactivé ; et dans lequel
    l'unité de traitement (30) est configurée pour mettre à l'échelle la distance d'entrée de la poignée d'entrée par un premier facteur de mise à l'échelle lorsque la commande de repositionnement est dans l'état activé et pour mettre à l'échelle la distance d'entrée par un second facteur de mise à l'échelle lorsque la commande de repositionnement est dans l'état désactivé, le premier facteur de mise à l'échelle étant supérieur au second facteur de mise à l'échelle, de préférence dans lequel l'unité de traitement est configurée pour mettre à l'échelle la distance d'entrée en divisant la distance d'entrée par le premier facteur de mise à l'échelle lorsque la commande de repositionnement est dans l'état activé, et en divisant la distance d'entrée par le second facteur de mise à l'échelle lorsque la commande de repositionnement est dans l'état désactivé.
  9. Système selon la revendication 8, dans lequel le premier facteur de mise à l'échelle est compris dans une plage de 100 à 1 000 et le second facteur de mise à l'échelle est compris dans une plage de 1 à 10.
  10. Système selon la revendication 8 ou la revendication 9 comprenant en outre un dispositif d'imagerie (16) configuré pour capturer des images de l'outil (20) à l'intérieur d'un site chirurgical d'un patient.
  11. Système selon la revendication 10 comprenant en outre un bras d'imagerie, le dispositif d'imagerie étant positionné à l'extrémité du bras d'imagerie, et dans lequel ladite unité de traitement est en communication avec le bras d'imagerie, l'unité de traitement étant configurée pour mettre à l'échelle la distance d'entrée de la poignée d'entrée à une distance de sortie sur la base de la position du dispositif d'imagerie par rapport au site chirurgical du patient.
  12. Système selon la revendication 11, dans lequel le dispositif d'imagerie est configuré pour effectuer un zoom arrière sur les images capturées à mesure que la poignée d'entrée s'approche de la limite ou du bord de l'espace de travail (W) prédéfini, de préférence dans lequel l'unité de traitement est associée fonctionnellement au bras d'imagerie et est configurée pour éloigner le dispositif d'imagerie du site chirurgical afin d'effectuer un zoom arrière sur les images capturées.
  13. Système selon la revendication 10, la revendication 11 ou la revendication 12 comprenant en outre un dispositif d'affichage (44) qui est configuré pour afficher les images capturées à partir du dispositif d'imagerie.
EP16752764.7A 2015-02-19 2016-01-20 Dispositif d'entrée pour système chirurgical robotique Active EP3258874B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562118123P 2015-02-19 2015-02-19
PCT/US2016/014031 WO2016133633A1 (fr) 2015-02-19 2016-01-20 Procédé de repositionnement de dispositif d'entrée pour système chirurgical robotique

Publications (3)

Publication Number Publication Date
EP3258874A1 EP3258874A1 (fr) 2017-12-27
EP3258874A4 EP3258874A4 (fr) 2018-11-14
EP3258874B1 true EP3258874B1 (fr) 2024-01-17

Family

ID=56692544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16752764.7A Active EP3258874B1 (fr) 2015-02-19 2016-01-20 Dispositif d'entrée pour système chirurgical robotique

Country Status (7)

Country Link
US (3) US10695142B2 (fr)
EP (1) EP3258874B1 (fr)
JP (2) JP6718463B2 (fr)
CN (2) CN114052918A (fr)
AU (3) AU2016220501B2 (fr)
CA (1) CA2975907C (fr)
WO (1) WO2016133633A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052918A (zh) 2015-02-19 2022-02-18 柯惠Lp公司 机器人手术系统的输入装置的重定位方法
WO2016154173A1 (fr) 2015-03-26 2016-09-29 Covidien Lp Ensembles dispositifs d'entrée destinés à des systèmes chirurgicaux robotiques
CN108366835B (zh) 2015-12-10 2021-07-27 柯惠Lp公司 具有独立的侧倾、俯仰和偏摆缩放的机器人外科手术系统
JP7132922B2 (ja) 2016-12-07 2022-09-07 コーニンクレッカ フィリップス エヌ ヴェ ロボット制御のための画像誘導モーションスケーリング
WO2019014493A1 (fr) * 2017-07-13 2019-01-17 Intuitive Surgical Operations, Inc. Systèmes et procédés de commutation de commande entre de multiples bras d'instruments
AU2018328098A1 (en) 2017-09-05 2020-03-19 Covidien Lp Collision handling algorithms for robotic surgical systems
WO2019050821A1 (fr) 2017-09-05 2019-03-14 Covidien Lp Commande de caméra pour systèmes robotiques chirurgicaux
EP3678580A4 (fr) * 2017-09-05 2021-05-26 Covidien LP Systèmes robotiques chirurgicaux ayant un réalignement de rouleau, tangage, et lacet comprenant des algorithmes de rognage et de retournement
CN111132630B (zh) 2017-09-05 2023-11-07 柯惠Lp公司 包括双编码器的机器人手术系统控制臂
US11583358B2 (en) 2017-09-06 2023-02-21 Covidien Lp Boundary scaling of surgical robots
US10786317B2 (en) 2017-12-11 2020-09-29 Verb Surgical Inc. Active backdriving for a robotic arm
CN111315312A (zh) * 2018-01-04 2020-06-19 柯惠Lp公司 包括扭矩传感器的机器人外科系统
CN110448378B (zh) * 2019-08-13 2021-03-02 北京唯迈医疗设备有限公司 一种沉浸式介入手术一体化控制台
CN112155613B (zh) * 2020-09-14 2021-10-22 武汉联影智融医疗科技有限公司 一种微创医疗手术设备
JP7295831B2 (ja) * 2020-09-28 2023-06-21 川崎重工業株式会社 手術支援システム、患者側装置および演算方法
JP7171669B2 (ja) 2020-10-14 2022-11-15 川崎重工業株式会社 手術支援システム、患者側装置および手術支援システムの制御方法
KR102549114B1 (ko) * 2021-08-02 2023-06-29 주식회사 로엔서지컬 원격 수술용 엔드 이펙터의 이동 거리 조절 장치 및 그 방법
WO2023144602A1 (fr) * 2022-01-25 2023-08-03 Lem Surgical Ag Étalonnage robotisé peropératoire et dimensionnement d'outils chirurgicaux
CN114569252B (zh) * 2022-03-02 2024-01-30 中南大学 手术机器人主从映射比例控制系统及方法
CN116439784A (zh) * 2023-03-07 2023-07-18 极限人工智能有限公司 一种手术器械钳头旋转控制方法及系统

Family Cites Families (246)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US8529582B2 (en) 1996-12-12 2013-09-10 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US7699855B2 (en) 1996-12-12 2010-04-20 Intuitive Surgical Operations, Inc. Sterile surgical adaptor
US7727244B2 (en) 1997-11-21 2010-06-01 Intuitive Surgical Operation, Inc. Sterile surgical drape
US8182469B2 (en) 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US7666191B2 (en) 1996-12-12 2010-02-23 Intuitive Surgical, Inc. Robotic surgical system with sterile surgical adaptor
US6714839B2 (en) 1998-12-08 2004-03-30 Intuitive Surgical, Inc. Master having redundant degrees of freedom
US6843793B2 (en) * 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
US20020087048A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
EP1109497B1 (fr) 1998-08-04 2009-05-06 Intuitive Surgical, Inc. Eléments articules servant à positionner un manipulateur, dans une chirurgie robotise
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US8600551B2 (en) 1998-11-20 2013-12-03 Intuitive Surgical Operations, Inc. Medical robotic system with operatively couplable simulator unit for surgeon training
US6493608B1 (en) 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US7125403B2 (en) 1998-12-08 2006-10-24 Intuitive Surgical In vivo accessories for minimally invasive robotic surgery
US6770081B1 (en) 2000-01-07 2004-08-03 Intuitive Surgical, Inc. In vivo accessories for minimally invasive robotic surgery and methods
US6799065B1 (en) 1998-12-08 2004-09-28 Intuitive Surgical, Inc. Image shifting apparatus and method for a telerobotic system
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6565554B1 (en) 1999-04-07 2003-05-20 Intuitive Surgical, Inc. Friction compensation in a minimally invasive surgical apparatus
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US8768516B2 (en) 2009-06-30 2014-07-01 Intuitive Surgical Operations, Inc. Control of medical robotic system manipulator about kinematic singularities
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US7594912B2 (en) 2004-09-30 2009-09-29 Intuitive Surgical, Inc. Offset remote center manipulator for robotic surgery
US10188471B2 (en) 1999-09-17 2019-01-29 Intuitive Surgical Operations, Inc. Tele-operative surgical systems and methods of control at joint limits using inverse kinematics
US6206903B1 (en) 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6491691B1 (en) 1999-10-08 2002-12-10 Intuitive Surgical, Inc. Minimally invasive surgical hook apparatus and method for using same
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
US6645196B1 (en) 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
US6902560B1 (en) 2000-07-27 2005-06-07 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6994708B2 (en) 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US7824401B2 (en) 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
CA2792000C (fr) 2001-06-29 2016-08-16 Intuitive Surgical, Inc. Mecanisme de poignet relie a une plate-forme
US6676684B1 (en) 2001-09-04 2004-01-13 Intuitive Surgical, Inc. Roll-pitch-roll-yaw surgical tool
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
ES2388729T3 (es) 2001-12-04 2012-10-18 Tyco Healthcare Group Lp Sistema y método para calibrar un instrumento quirúrgico
US6839612B2 (en) 2001-12-07 2005-01-04 Institute Surgical, Inc. Microwrist system for surgical procedures
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
AU2003257309A1 (en) * 2002-08-13 2004-02-25 Microbotics Corporation Microsurgical robot system
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
KR101026692B1 (ko) 2002-12-06 2011-04-07 인튜어티브 서지컬 인코포레이티드 긴 샤프트를 포함하는 장치
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US7204168B2 (en) * 2004-02-25 2007-04-17 The University Of Manitoba Hand controller and wrist device
US7379790B2 (en) 2004-05-04 2008-05-27 Intuitive Surgical, Inc. Tool memory-based software upgrades for robotic surgery
WO2006015319A2 (fr) 2004-07-30 2006-02-09 Power Medical Interventions, Inc. Rallonge d'arbre souple et procede d'utilisation correspondant
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
US9700334B2 (en) 2004-11-23 2017-07-11 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
US8465474B2 (en) 2009-05-19 2013-06-18 Intuitive Surgical Operations, Inc. Cleaning of a surgical instrument force sensor
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US10555775B2 (en) 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US8147503B2 (en) 2007-09-30 2012-04-03 Intuitive Surgical Operations Inc. Methods of locating and tracking robotic instruments in robotic surgical systems
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
EP1887961B1 (fr) * 2005-06-06 2012-01-11 Intuitive Surgical Operations, Inc. Système chirurgical robotique ultrasonore laparoscopique
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems
US8100133B2 (en) 2005-06-30 2012-01-24 Intuitive Surgical Operations Indicator for tool state and communication in multi-arm robotic telesurgery and method of use
US8273076B2 (en) 2005-06-30 2012-09-25 Intuitive Surgical Operations, Inc. Indicator for tool state and communication in multi-arm robotic telesurgery
US8079950B2 (en) 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
JP5101519B2 (ja) 2005-12-20 2012-12-19 インテュイティブ サージカル インコーポレイテッド ロボット手術システムの機器インターフェース
US7819859B2 (en) 2005-12-20 2010-10-26 Intuitive Surgical Operations, Inc. Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
WO2007111749A2 (fr) 2005-12-20 2007-10-04 Intuitive Surgical, Inc. Procede de manipulation d'une commande par un operateur depassant une limite d'un etat d'un dispositif medical dans un systeme medical robotique
US7762825B2 (en) 2005-12-20 2010-07-27 Intuitive Surgical Operations, Inc. Electro-mechanical interfaces to mount robotic surgical arms
US7741802B2 (en) 2005-12-20 2010-06-22 Intuitive Surgical Operations, Inc. Medical robotic system with programmably controlled constraints on error dynamics
US7689320B2 (en) 2005-12-20 2010-03-30 Intuitive Surgical Operations, Inc. Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations
US7453227B2 (en) 2005-12-20 2008-11-18 Intuitive Surgical, Inc. Medical robotic system with sliding mode control
US8182470B2 (en) 2005-12-20 2012-05-22 Intuitive Surgical Operations, Inc. Telescoping insertion axis of a robotic surgical system
US7757028B2 (en) 2005-12-22 2010-07-13 Intuitive Surgical Operations, Inc. Multi-priority messaging
US7756036B2 (en) 2005-12-22 2010-07-13 Intuitive Surgical Operations, Inc. Synchronous data communication
US8054752B2 (en) 2005-12-22 2011-11-08 Intuitive Surgical Operations, Inc. Synchronous data communication
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7907166B2 (en) 2005-12-30 2011-03-15 Intuitive Surgical Operations, Inc. Stereo telestration for robotic surgery
US7835823B2 (en) 2006-01-05 2010-11-16 Intuitive Surgical Operations, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
US8597182B2 (en) 2006-04-28 2013-12-03 Intuitive Surgical Operations, Inc. Robotic endoscopic retractor for use in minimally invasive surgery
EP2038712B2 (fr) 2006-06-13 2019-08-28 Intuitive Surgical Operations, Inc. Système de commande configuré pour compenser des caractéristiques de liaison d'actionneur au joint non idéales dans un système robotique médical
US8784435B2 (en) * 2006-06-13 2014-07-22 Intuitive Surgical Operations, Inc. Surgical system entry guide
KR101477133B1 (ko) 2006-06-13 2014-12-29 인튜어티브 서지컬 인코포레이티드 미소절개 수술 시스템
US8597280B2 (en) 2006-06-13 2013-12-03 Intuitive Surgical Operations, Inc. Surgical instrument actuator
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US7391173B2 (en) 2006-06-30 2008-06-24 Intuitive Surgical, Inc Mechanically decoupled capstan drive
US8151661B2 (en) 2006-06-30 2012-04-10 Intuituve Surgical Operations, Inc. Compact capstan
US7736254B2 (en) 2006-10-12 2010-06-15 Intuitive Surgical Operations, Inc. Compact cable tension tender device
US7935130B2 (en) 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US9226648B2 (en) 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US8444631B2 (en) * 2007-06-14 2013-05-21 Macdonald Dettwiler & Associates Inc Surgical manipulator
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
US8155479B2 (en) 2008-03-28 2012-04-10 Intuitive Surgical Operations Inc. Automated panning and digital zooming for robotic surgical systems
US8808164B2 (en) 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US9895813B2 (en) 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
US9265567B2 (en) 2008-06-30 2016-02-23 Intuitive Surgical Operations, Inc. Vessel sealing instrument with stepped jaw
US8540748B2 (en) 2008-07-07 2013-09-24 Intuitive Surgical Operations, Inc. Surgical instrument wrist
US8821480B2 (en) 2008-07-16 2014-09-02 Intuitive Surgical Operations, Inc. Four-cable wrist with solid surface cable channels
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US8315720B2 (en) 2008-09-26 2012-11-20 Intuitive Surgical Operations, Inc. Method for graphically providing continuous change of state directions to a user of a medical robotic system
US20100116080A1 (en) 2008-11-11 2010-05-13 Intuitive Surgical, Inc. Robotic linkage
US8161838B2 (en) 2008-12-22 2012-04-24 Intuitive Surgical Operations, Inc. Method and apparatus for reducing at least one friction force opposing an axial force exerted through an actuator element
US8335590B2 (en) 2008-12-23 2012-12-18 Intuitive Surgical Operations, Inc. System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US8594841B2 (en) 2008-12-31 2013-11-26 Intuitive Surgical Operations, Inc. Visual force feedback in a minimally invasive surgical procedure
US8374723B2 (en) 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
US8858547B2 (en) 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8918207B2 (en) * 2009-03-09 2014-12-23 Intuitive Surgical Operations, Inc. Operator input device for a robotic surgical system
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US8649554B2 (en) * 2009-05-01 2014-02-11 Microsoft Corporation Method to control perspective for a camera-controlled computer
US8423186B2 (en) 2009-06-30 2013-04-16 Intuitive Surgical Operations, Inc. Ratcheting for master alignment of a teleoperated minimally-invasive surgical instrument
KR102109626B1 (ko) 2009-11-13 2020-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 여분의 닫힘 메커니즘을 구비한 단부 작동기
US20110118708A1 (en) 2009-11-13 2011-05-19 Intuitive Surgical Operations, Inc. Double universal joint
KR101955296B1 (ko) 2009-11-13 2019-03-08 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 컴팩트 손목을 구비한 수술 도구
EP2533678B1 (fr) 2010-02-11 2020-03-25 Intuitive Surgical Operations, Inc. Système pour le maintien automatique d'une orientation de roulis sélectionnée par un opérateur au niveau d'une pointe distale d'un endoscope robotique
JP5571432B2 (ja) * 2010-03-30 2014-08-13 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 医療用ロボットシステム
US8644988B2 (en) 2010-05-14 2014-02-04 Intuitive Surgical Operations, Inc. Drive force control in medical instrument providing position measurements
US20110295268A1 (en) 2010-05-28 2011-12-01 Hansen Medical, Inc. System and method for automated master input scaling
US9019345B2 (en) 2010-07-02 2015-04-28 Intuitive Surgical Operations, Inc. Imaging mode blooming suppression
KR101906539B1 (ko) 2010-07-09 2018-10-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 전기수술 도구 커버
DE102010043584A1 (de) 2010-11-08 2012-05-10 Kuka Laboratories Gmbh Medizinscher Arbeitsplatz
CN105748152B (zh) 2010-11-15 2018-06-26 直观外科手术操作公司 在手术仪器中去耦仪器轴滚动和末端执行器促动
US9439556B2 (en) * 2010-12-10 2016-09-13 Wayne State University Intelligent autonomous camera control for robotics with medical, military, and space applications
KR20120068597A (ko) 2010-12-17 2012-06-27 주식회사 이턴 수술 로봇 시스템 및 적응 제어 방법
US9241766B2 (en) 2010-12-22 2016-01-26 Intuitive Surgical Operations, Inc. Alternate instrument removal
JP6293486B2 (ja) 2011-02-15 2018-03-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド クランプ又は発射の不成功を検出するシステム
KR102156607B1 (ko) 2011-02-15 2020-09-16 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법
US9393017B2 (en) 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
CN103370015B (zh) 2011-02-15 2016-12-21 直观外科手术操作公司 用于指示夹紧预测的系统
EP4364674A1 (fr) 2011-02-15 2024-05-08 Intuitive Surgical Operations, Inc. Indicateur pour l'emplacement d'un couteau dans un instrument d'agrafage ou de fermeture de vaisseaux
BR112013020023B1 (pt) 2011-02-18 2022-08-16 Intuitive Surgical Operations, Inc. Instrumento cirúrgico, método para operar um instrumento cirúrgico e sistema cirúrgico robótico teleoperado
US9259277B2 (en) 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Instrument actuation interface
WO2012166817A2 (fr) 2011-05-31 2012-12-06 Intuitive Surgical Operations, Inc. Instrument chirurgical ayant une seule entrée d'entraînement pour deux mécanismes d'effecteur terminal
CN103607968B (zh) 2011-05-31 2017-07-04 直观外科手术操作公司 机器人外科器械末端执行器的主动控制
KR101802464B1 (ko) * 2011-08-03 2017-11-28 주식회사 미래컴퍼니 수술용 로봇의 마스터 암 구조 및 수술용 마스터 로봇의 제어방법
CN103889360B (zh) 2011-10-21 2017-10-24 直观外科手术操作公司 用于机器人外科手术器械末端执行器的夹持力控制
US8912746B2 (en) 2011-10-26 2014-12-16 Intuitive Surgical Operations, Inc. Surgical instrument motor pack latch
JP6138808B2 (ja) * 2011-10-26 2017-05-31 インテュイティブ サージカル オペレーションズ, インコーポレイテッド カートリッジ状態及び存在を検出する方法及びシステム
EP2774380B1 (fr) 2011-11-02 2019-05-22 Intuitive Surgical Operations, Inc. Procédé et système de suivi de vision stéréo
US9956042B2 (en) * 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
US9144456B2 (en) 2012-04-09 2015-09-29 Intuitive Surgical Operations, Inc. Surgical instrument control
EP3824840A1 (fr) 2012-08-15 2021-05-26 Intuitive Surgical Operations, Inc. Accouplement à libération initiée par l'utilisateur d'une plateforme de montage chirurgicale
JP6255403B2 (ja) 2012-08-15 2017-12-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 関節推定及び制御におけるファントム自由度
KR102328291B1 (ko) 2012-08-15 2021-11-19 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 암의 수동식 운동에 의해 제어되는 이동가능한 수술용 장착 플랫폼
EP4082468A1 (fr) 2012-09-17 2022-11-02 Intuitive Surgical Operations, Inc. Procédés et systèmes d'attribution des dispositifs d'entrée à des fonctions télécommandées de l'instrument chirurgical
EP3932628A1 (fr) 2012-12-10 2022-01-05 Intuitive Surgical Operations, Inc. Évitement de collision au cours d'un mouvement commandé de dispositif de capture d'images et de bras mobiles de dispositif manipulable
EP2938273B1 (fr) 2012-12-31 2024-04-24 Intuitive Surgical Operations, Inc. Cartouche d'agrafe chirurgicale avec dégagement de lame amélioré
US9675354B2 (en) 2013-01-14 2017-06-13 Intuitive Surgical Operations, Inc. Torque compensation
US10277097B2 (en) 2013-01-14 2019-04-30 Intuitive Surgical Operations, Inc. Motor assembly
CN108280239B (zh) 2013-02-15 2023-01-17 直观外科手术操作公司 同步机器人系统节点的系统和方法
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US9839481B2 (en) 2013-03-07 2017-12-12 Intuitive Surgical Operations, Inc. Hybrid manual and robotic interventional instruments and methods of use
US9948852B2 (en) 2013-03-15 2018-04-17 Intuitive Surgical Operations, Inc. Intelligent manual adjustment of an image control element
CN105050531B (zh) 2013-03-15 2018-02-13 直观外科手术操作公司 具有操控界面的外科患者侧手推车
CN109171977A (zh) * 2013-03-15 2019-01-11 Sri国际公司 超灵巧型手术系统
WO2014186405A2 (fr) 2013-05-15 2014-11-20 Intuitive Surgical Operations, Inc. Chariot de salle d'opération avec système de suspension
WO2014186412A2 (fr) 2013-05-15 2014-11-20 Intuitive Surgical Operations, Inc. Mécanisme de transmission de force pour instrument chirurgical téléopéré
JP6164964B2 (ja) * 2013-07-26 2017-07-19 オリンパス株式会社 医療用システムおよびその制御方法
EP3030190B1 (fr) 2013-08-09 2024-04-03 Intuitive Surgical Operations, Inc. Système médical robotisé comportant un dispositif de commande de courant à distance destiné à commander une pluralité de moteurs logés de manière distale
KR102313240B1 (ko) 2013-08-15 2021-10-18 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 기구 피동 요소
US10271911B2 (en) 2013-08-15 2019-04-30 Intuitive Surgical Operations, Inc. Instrument sterile adapter drive features
KR102266639B1 (ko) 2013-08-16 2021-06-21 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 이종 장치들간 기록 및 리플레이 시스템 및 방법
US9446517B2 (en) 2013-10-17 2016-09-20 Intuitive Surgical Operations, Inc. Fault reaction, fault isolation, and graceful degradation in a robotic system
US10510267B2 (en) 2013-12-20 2019-12-17 Intuitive Surgical Operations, Inc. Simulator system for medical procedure training
CN113729963A (zh) 2014-02-21 2021-12-03 直观外科手术操作公司 具有受约束运动的可铰接构件以及相关设备和方法
CN106028995B (zh) 2014-02-21 2020-06-30 直观外科手术操作公司 机械接头以及相关的系统和方法
JP6603235B2 (ja) 2014-03-17 2019-11-06 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術カニューレ用マウント並びに関連するシステム及び方法
WO2015142789A1 (fr) 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Alignement et accouplement pour instruments chirurgicaux actionnés et commandés à distance
KR102469169B1 (ko) 2014-03-17 2022-11-23 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 원격조정 의료 장치를 위한 안내 설정
US9918800B2 (en) 2014-03-17 2018-03-20 Intuitive Surgical Operations, Inc. Surgical system with obstacle indication system
CN106456258B (zh) 2014-03-17 2019-05-10 直观外科手术操作公司 远程操作医疗系统中的具有预建立的臂位置的自动化结构
JP2017516507A (ja) 2014-03-17 2017-06-22 インテュイティブ サージカル オペレーションズ, インコーポレイテッド イメージング器具の向きの制御のためのシステム及び方法
JP6530422B2 (ja) 2014-03-17 2019-06-12 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 能動的な付勢を伴う定荷重ばね
CN106102636B (zh) 2014-03-17 2020-04-07 直观外科手术操作公司 在模式转变中抑制振动的命令整形
CN106232049A (zh) 2014-03-17 2016-12-14 直观外科手术操作公司 手术帷帘和包括手术帷帘和附接传感器的系统
US10071488B2 (en) 2014-03-17 2018-09-11 Intuitive Surgical Operations, Inc. Wheeled cart with vibration reduction device, and related systems and methods
KR102364743B1 (ko) 2014-03-17 2022-02-18 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 중간 과정 재시작 동안의 기기 제어 입력 위치/배향의 복구
WO2015143067A1 (fr) 2014-03-19 2015-09-24 Intuitive Surgical Operations, Inc. Dispositifs médicaux, systèmes et procédés utilisant le suivi du regard
EP3119343A4 (fr) 2014-03-19 2017-12-20 Intuitive Surgical Operations, Inc. Dispositifs médicaux, systèmes et procédés d'intégration d'un suivi du regard de l'oeil pour une visionneuse stéréoscopique
EP3193768A4 (fr) 2014-09-17 2018-05-09 Intuitive Surgical Operations, Inc. Systèmes et procédés pour l'utilisation de jacobien augmenté afin de commander un mouvement d'articulation de manipulateur
US10813685B2 (en) * 2014-09-25 2020-10-27 Covidien Lp Single-handed operable surgical instrument including loop electrode with integrated pad electrode
WO2016077543A1 (fr) 2014-11-13 2016-05-19 Intuitive Surgical Operations, Inc. Commande d'interface utilisateur à l'aide d'un dispositif de commande maître
CN114052918A (zh) 2015-02-19 2022-02-18 柯惠Lp公司 机器人手术系统的输入装置的重定位方法
CN107530138B (zh) 2015-03-17 2020-11-27 直观外科手术操作公司 用于在远程操作医疗系统中呈现器械的屏幕识别的系统和方法
US10033308B2 (en) 2015-03-17 2018-07-24 Intuitive Surgical Operations, Inc. Systems and methods for motor torque compensation
WO2016201123A1 (fr) 2015-06-09 2016-12-15 Intuitive Surgical Operations, Inc. Configuration de système chirurgical avec un atlas de procédures chirurgicales
CN113397709A (zh) 2015-06-10 2021-09-17 直观外科手术操作公司 当错开时的主从取向映射
JP6854243B2 (ja) 2015-06-11 2021-04-07 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 器具係合のためのシステム及び方法
WO2017083768A1 (fr) 2015-11-12 2017-05-18 Jarc Anthony Michael Système chirurgical avec fonctions d'apprentissage ou d'assistance
US10898189B2 (en) 2015-11-13 2021-01-26 Intuitive Surgical Operations, Inc. Push-pull stapler with two degree of freedom wrist
WO2017083125A1 (fr) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Agrafeuse avec cardan et vis d'entraînement composites
US9949798B2 (en) 2016-01-06 2018-04-24 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling movement of a robotic surgical system
CN113576559B (zh) 2016-01-29 2023-10-31 直观外科手术操作公司 用于可变速外科手术器械的系统和方法
CN113456224A (zh) 2016-03-17 2021-10-01 直观外科手术操作公司 用于器械插入控制的系统和方法
KR102438357B1 (ko) 2016-07-01 2022-09-01 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 컴퓨터 보조 의료 시스템 및 방법
CN115363770A (zh) 2016-07-14 2022-11-22 直观外科手术操作公司 用于控制外科器械的系统和方法
KR102533374B1 (ko) 2016-07-14 2023-05-26 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 드레이핑을 위한 자동적인 매니퓰레이터 어셈블리 전개
KR20240058956A (ko) 2016-09-09 2024-05-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 가요성 인장 부재를 이용한 푸시-풀 수술 기기 엔드 이펙터 작동
KR102662094B1 (ko) 2016-09-09 2024-05-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 리스트 구조
WO2018049198A1 (fr) 2016-09-09 2018-03-15 Intuitive Surgical Operations, Inc. Architecture d'élément coulisseau d'agrafeuse
WO2018052810A1 (fr) 2016-09-15 2018-03-22 Intuitive Surgical Operations, Inc. Système de commande d'un dispositif médical
CN109310473B (zh) 2016-09-19 2023-02-17 直观外科手术操作公司 用于可控臂的基部定位系统以及相关方法
WO2018052796A1 (fr) 2016-09-19 2018-03-22 Intuitive Surgical Operations, Inc. Système indicateur de positionnement pour un bras pouvant être commandé à distance et procédés associés
US11291513B2 (en) 2016-10-03 2022-04-05 Intuitive Surgical Operations, Inc. Surgical instrument with retaining feature for cutting element
EP3525688B1 (fr) 2016-10-11 2023-09-06 Intuitive Surgical Operations, Inc. Cartouche d'agrafeuse avec couteau intégré
WO2018071763A1 (fr) 2016-10-14 2018-04-19 Intuitive Surgical Operations, Inc. Systèmes pour appliquer une tension de précharge pour des instruments chirurgicaux et procédés associés
EP3534819B1 (fr) 2016-11-02 2024-01-03 Intuitive Surgical Operations, Inc. Ensemble agrafeuse chirurgicale robotique conçue pour utiliser un recharge d'agrafeuse
US11241274B2 (en) 2016-11-04 2022-02-08 Intuitive Surgical Operations, Inc. Electrically insulative electrode spacers, and related devices, systems, and methods
US11040189B2 (en) 2016-11-04 2021-06-22 Intuitive Surgical Operations, Inc. Electrode assemblies with electrically insulative electrode spacers, and related devices, systems, and methods
WO2018094191A1 (fr) 2016-11-21 2018-05-24 Intuitive Surgical Operations, Inc. Instrument médical à conservation de longueur de câble
US11154373B2 (en) 2017-02-08 2021-10-26 Intuitive Surgical Operations, Inc. Control of computer-assisted tele-operated systems
US10357321B2 (en) 2017-02-24 2019-07-23 Intuitive Surgical Operations, Inc. Splayed cable guide for a medical instrument
EP4241720A3 (fr) 2017-07-27 2023-11-08 Intuitive Surgical Operations, Inc. Systèmes d'association pour manipulateurs
US11173597B2 (en) 2017-11-10 2021-11-16 Intuitive Surgical Operations, Inc. Systems and methods for controlling a robotic manipulator or associated tool
WO2019094794A2 (fr) 2017-11-10 2019-05-16 Intuitive Surgical Operations, Inc. Systèmes et procédés de commande d'un manipulateur robotique ou d'un outil associé
US11161243B2 (en) 2017-11-10 2021-11-02 Intuitive Surgical Operations, Inc. Systems and methods for controlling a robotic manipulator or associated tool
US11191596B2 (en) 2017-11-15 2021-12-07 Intuitive Surgical Operations, Inc. Foot controller
US11471229B2 (en) * 2019-03-15 2022-10-18 Cilag Gmbh International Robotic surgical systems with selectively lockable end effectors
US11751959B2 (en) * 2019-07-16 2023-09-12 Asensus Surgical Us, Inc. Dynamic scaling for a robotic surgical system
JP2023500053A (ja) * 2019-11-05 2023-01-04 ビケリアス サージカル インク. 外科手術仮想現実ユーザインターフェース
US20230110248A1 (en) * 2021-09-24 2023-04-13 True Digital Surgery Stereoscopic visualization camera and integrated robotics platform with force/torque sensor non-linearity correction
US20230126506A1 (en) * 2021-10-21 2023-04-27 Auris Health, Inc. Drift detection of a haptic input device in a robotic surgical system

Also Published As

Publication number Publication date
US11925429B2 (en) 2024-03-12
JP2020142104A (ja) 2020-09-10
CN107249498B (zh) 2024-04-23
JP2018505739A (ja) 2018-03-01
US20190374299A1 (en) 2019-12-12
AU2020227038B2 (en) 2021-10-14
EP3258874A1 (fr) 2017-12-27
JP6902139B2 (ja) 2021-07-14
US20180014897A1 (en) 2018-01-18
CA2975907C (fr) 2023-10-10
CA2975907A1 (fr) 2016-08-25
WO2016133633A1 (fr) 2016-08-25
JP6718463B2 (ja) 2020-07-08
CN114052918A (zh) 2022-02-18
AU2020201796A1 (en) 2020-04-02
AU2020201796B2 (en) 2020-09-10
CN107249498A (zh) 2017-10-13
US11331158B2 (en) 2022-05-17
AU2016220501A1 (en) 2017-08-17
AU2020227038A1 (en) 2020-09-17
AU2016220501B2 (en) 2020-02-13
US20220273385A1 (en) 2022-09-01
EP3258874A4 (fr) 2018-11-14
US10695142B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
US11925429B2 (en) Repositioning method of input device for robotic surgical system
US20170224428A1 (en) Dynamic input scaling for controls of robotic surgical system
US11583358B2 (en) Boundary scaling of surgical robots
CN110177517B (zh) 具有包含修整和翻转算法的横滚、俯仰和偏转重新对准的机器人手术系统
US20230064265A1 (en) Moveable display system
US11717363B2 (en) High precision instrument control mode for robotic surgical systems
US20220296323A1 (en) Moveable display unit on track

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20181015

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 34/00 20160101ALI20181009BHEP

Ipc: A61B 34/30 20160101AFI20181009BHEP

Ipc: A61B 34/35 20160101ALI20181009BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016085362

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 9

Ref country code: GB

Payment date: 20240221

Year of fee payment: 9

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1650040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240117