EP3250717A1 - Procede de preparation d'une farine de microalgues broyees riches en lipides - Google Patents

Procede de preparation d'une farine de microalgues broyees riches en lipides

Info

Publication number
EP3250717A1
EP3250717A1 EP16705808.0A EP16705808A EP3250717A1 EP 3250717 A1 EP3250717 A1 EP 3250717A1 EP 16705808 A EP16705808 A EP 16705808A EP 3250717 A1 EP3250717 A1 EP 3250717A1
Authority
EP
European Patent Office
Prior art keywords
microalgae
biomass
lysate
flour
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16705808.0A
Other languages
German (de)
English (en)
Inventor
Damien Passe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corbion Biotech Inc
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP3250717A1 publication Critical patent/EP3250717A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/198Dry unshaped finely divided cereal products, not provided for in groups A23L7/117 - A23L7/196 and A23L29/00, e.g. meal, flour, powder, dried cereal creams or extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/60Edible seaweed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/195Proteins from microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/101Addition of antibiotics, vitamins, amino-acids, or minerals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a process for preparing a flour of microalgae crushed high in lipids, microalgae of the genus Chlorella, more particularly Chlorella protothecoides, from a biomass with high dry matter.
  • microalgae of the genus Chlorella are a potential source of food because they are rich in proteins and other essential nutrients.
  • Chlorella biomass oil fraction which consists mainly of monounsaturated oils, provides nutritional and health benefits over saturated, hydrogenated and polyunsaturated oils often found in conventional food products.
  • Chlorella are therefore used for food or feed:
  • Microalgae flour also provides other benefits, such as micronutrients, dietary fiber (soluble and insoluble carbohydrates), phospholipids, glycoproteins, phytosterols, tocopherols, tocotrienols, and selenium.
  • the biomass is harvested from the culture medium (culture carried out by light autotrophy in photobioreactors, or heterotrophy, in the dark in the presence of a carbon source assimilable by the Chlorella). Chlorella growth heterotrophically is preferred (so-called fermental route).
  • the biomass At the time of harvesting the biomass of microalgae from the fermentation medium, the biomass comprises intact cells essentially suspended in an aqueous culture medium.
  • a solid-liquid separation step is then carried out, by frontal or tangential filtration, or by centrifugation, by any means known to those skilled in the art.
  • microalgae biomass thus isolated can be directly processed to produce vacuum-packed cakes, seaweed flakes, algae homogenates, intact algae flour, ground algae meal, or seaweed oil.
  • the intact intact microalgae biomass is also dried to facilitate the subsequent treatment or for use of the biomass in its various applications, particularly food applications.
  • the biomass of microalgae is mainly valorized in the form of a flour of microalgae rich in lipids, in the form of a crushed of dried cells.
  • the flour of microalgae rich in lipids is prepared from a biomass having of the order of 20 to 25% of dry matter, as follows:
  • the first step of collecting the cells is carried out by implementing one or more solid / liquid separation steps.
  • Biomass is usually collected by sedimentation, centrifugation or filtration, and sometimes an additional flocculation step is required.
  • the choice of the method depends in particular on the nature of the cell wall of the microalga to be broken.
  • microalgae flour rich in lipids is then prepared from a biomass of microalgae conventionally having at most 25% of dry matter, which has been mechanically lysed and homogenized, the homogenate then being atomized or flash-dried.
  • a pressure disruptor can be used, for example, to pump a suspension containing the microalgae cells through a restricted orifice to lyse the cells.
  • High pressure up to 1500 bar
  • instantaneous expansion through a nozzle.
  • the lysis (or grinding) of the cells can be carried out by three different mechanisms: encroachment on the valve, high shear of the liquid in the orifice, and sudden drop in pressure at the outlet, causing an explosion of the cell.
  • a NIRO Homogenizer Niro homogenizer (GEA NIRO SOAVI) or other high pressure homogenizer can be used to treat cells having a size mainly between 0.2 and 5 microns.
  • This treatment of algal biomass under high pressure generally lyse more than 90% of the cells and reduces the size to less than 5 microns.
  • a ball mill is used instead to obtain the microalgae lysate.
  • the cells are agitated in suspension with small spherical particles.
  • the breaking of the cells is caused by shear forces, grinding between the balls, and collisions with beads.
  • a suspension of particles of smaller size than the original cells is then obtained, the said suspension being in the form of an "oil-in-water” emulsion.
  • This emulsion is then atomized and the water is removed, leaving a dry powder containing cell debris, intracellular fluid and oil.
  • pH adjustment is then performed to stabilize the cell extract obtained.
  • the pasteurization of the fourth step consists of a heat treatment conventionally conducted at high temperature for a short time (High Temperature Short Time process or HTST or Ultra High Temperature or UHT), for example at 140 ° C for 6 seconds.
  • HTST High Temperature Short Time process
  • UHT Ultra High Temperature
  • the last stage of the downstream treatment consists of the dehydration of said suspension (lysed cells).
  • lysed cells Several methods have been used to dry microalgae of the genus Chlorella, Scenedesmus and Spirulina. The most common are atomization, drying on a drying drum, lyophilization preferably in the presence of antioxidants. Atomization is the method most often used on an industrial scale.
  • this conventional method since the microalgae biomass contains oil at a content of 50% by weight or more, it is necessary to limit the dry matter content of the microalgae biomass which will then be lysed.
  • the emulsion "oil in water” thus obtained is then unstable and can not be effectively dried because leads to the formation of a sticky "butter" texture.
  • the term "high in lipids" means containing more than 50% of lipids
  • stable emulsion means the absence of phase shift of the oil and water phases.
  • the microalgae in question are preferably microalgae of the Chlorella genus, more particularly Chlorella protothecoides, more particularly Chlorella deprived of chlorophyllian pigments, by any method known per se. those skilled in the art (either in that the culture is carried out in the dark under certain operating conditions well known to those skilled in the art, or because the strain has been mutated so as to no longer produce these pigments) .
  • the biomass of microalgae is a biomass more preferably prepared by fermentation in heterotrophic conditions and in the absence of light of a microalgae of the genus Chlorella, preferably Chlorella protothecoides.
  • the fermentation conditions are well known to those skilled in the art. Suitable cultivation conditions to be used are described in the article by Ikuro Shihira-lshikawa and Eiji Hase, "Nutritional Control of Cell Pigmentation in Chlorella protothecoids with special reference to the degeneration of chloroplast induced by glucose," Plant and Cell Physiology , 5, 1964.
  • Solid and liquid growth media are generally available in the literature, and recommendations for the preparation of particular media suitable for a wide variety of microorganism strains can be found, for example, online at www.utex.org/, a site maintained by the University of Texas at Austin for its algae culture collection (UTEX).
  • Biomass production is carried out in fermenters (or bioreactors).
  • specific examples of bioreactors, culture conditions, and heterotrophic growth and propagation methods can be combined in any suitable manner to improve the efficiency of microbial growth and lipids.
  • the fermentation is carried out in fed-batch mode with a glucose flow rate adjusted so as to maintain a residual glucose concentration of 3 to 10 g / l.
  • the nitrogen content in the culture medium is preferably limited to allow the accumulation of lipids at 30, 40, 50 or 60%.
  • the fermentation temperature is maintained at a suitable temperature, preferably ente 25 and 35 ' ⁇ , particularly q 28 C.
  • Dissolved oxygen is preferably maintained at a minimum of 30% by controlling the aeration, and pressure against agitation of the fermenter.
  • the biomass obtained and therefore useful for the present invention has a solids content of at least 20%, preferably between 20% and 40% and with a lipid content of more than 50% by dry weight.
  • the biomass used in the process that is the subject of the present invention has a solids content of at least 20%, preferably between 20% and 40% and with a lipid content of more than 50% by dry weight.
  • step (b) the cells of the biomass used for the production of microalgae flour are lysed to release their oil or lipids.
  • the cell walls and intracellular components are crushed or reduced, for example by a ball mill, into non-agglomerated particles or cellular debris.
  • the cells are agitated in suspension with small beads.
  • the breaking of the cells is caused by shear forces, grinding between the balls, and collisions with beads. In fact, these beads break the cells to release the cell contents.
  • the description of a suitable ball mill is for example made in US Patent 5,330,913.
  • antioxidants are added to the biomass prior to lysis.
  • a microalgae lysate is thus obtained in the form of a suspension of particles in the form of an "oil-in-water" emulsion.
  • the lysate is concentrated so as to obtain a lysate having a dry matter content of more than 25% by weight, preferably between 35% and 50% by weight. in weight.
  • This concentration is preferably carried out by evaporation of the water at high temperature, and not by centrifugation.
  • an evaporator is used:
  • - inlet temperature of the flash between 60 and 75 ° C, preferably 68 ⁇ C.
  • recirculation flow rate between 25 and 45 m 3 / h, preferably 40 m 3 / h.
  • step (d) the concentrated lysate is heat-treated.
  • This heat treatment notably allows deoxygenation / deodorization of the high dry matter lysate.
  • step (d) is conducted at a high temperature for a short time (high temperature short time process or HTST or Ultra High Temperature or UHT), for example at 140 ° C for 6 seconds.
  • a high temperature short time process or HTST or Ultra High Temperature or UHT for example at 140 ° C for 6 seconds.
  • step (e) consists in homogenizing the lysate obtained at the end of step (d), so as to generate a stable oil-in-water emulsion, despite the high dry matter of said lysate.
  • This homogenization is preferably carried out in a two-stage device, for example a GAULIN homogenizer sold by the company APV, with a pressure:
  • the last step (step f) consists of drying the emulsion to obtain the microalgae flour.
  • the drying is preferably carried out by atomization.
  • a dry powder containing cell debris and lipids is obtained.
  • the water content or the moisture content of the powder is generally less than 10%, preferably less than 5%.
  • an adjustment of the pH of the lysate before the heat treatment step can be performed.
  • the method that is the subject of the present invention advantageously makes it possible to obtain a flour of ground microalgae that is rich in lipids from a biomass of microalgae, in particular chlorella, having more than 50% of lipids and having a solids content of at least 20%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention est relative à un procédé de préparation d'une farine de microalgues riches en lipides, qui comprend les étapes suivantes : (a) fournir une biomasse de microalgues comprenant plus de 50 % de lipides en poids sec de biomasse; (b) lyser les microalgues, (c) concentrer le lysat de microalgues à un taux de matière sèche de plus de 25 % en poids, de préférence à une matière sèche comprise entre 35 % et 50 % en poids, (d) appliquer un traitement thermique au lysat ainsi concentré, (e) homogénéiser à haute pression le lysat obtenu à l'étape (d), de manière à obtenir une émulsion stable, (f) sécher ladite émulsion pour obtenir la farine de microalgues.

Description

PROCEDE DE PREPARATION D'UNE FARINE DE MICROALGUES BROYEES
RICHES EN LIPIDES
La présente invention concerne un procédé de préparation d'une farine de microalgues broyées riches en lipides, microalgues du genre Chlorella, plus particulièrement Chlorella protothecoides, à partir d'une biomasse à haute matière sèche.
Il est bien connu de l'homme du métier que les microalgues du genre Chlorella sont une source potentielle de nourriture, car elles sont riches en protéines et autres nutriments essentiels.
En moyenne, elles renferment 45% de protéines, 20% de matières grasses, 20% de glucides, 5% de fibres et 10% de minéraux et de vitamines.
La fraction huile de la biomasse de Chlorella, qui se compose essentiellement d'huiles monoinsaturées, fournit ainsi des avantages nutritionnel et santé par rapport aux huiles saturées, hydrogénées et polyinsaturées souvent trouvées dans les produits alimentaires conventionnels.
Les chlorelles sont donc exploitées en alimentation humaine ou animale :
- soit sous la forme de biomasse entière,
- soit sous la forme de farine, obtenue par séchage de la biomasse de chlorelles dont la paroi cellulaire a été rompue par des moyens notamment mécaniques.
La farine de microalgues fournit également d'autres bénéfices, comme des micronutriments, des fibres alimentaires (glucides solubles et insolubles), des phospholipides, des glycoprotéines, des phytostérols, tocophérols, tocotriénols, et du sélénium.
Pour préparer la biomasse qui entrera dans la composition des aliments, la biomasse est récoltée à partir du milieu de culture (culture réalisée par autotrophie à la lumière en photobioréacteurs, ou en hétérotrophie, à l'obscurité en présence d'une source carbonée assimilable par les Chlorelles). La croissance des Chlorelles par voie hétérotrophique est préférée (voie dite fermentaire).
Au moment de la récolte de la biomasse de microalgues du milieu de fermentation, la biomasse comprend des cellules intactes pour l'essentiel en suspension dans un milieu de culture aqueux.
Pour isoler la biomasse, on procède alors à une étape de séparation solide- liquide, par filtration frontale ou tangentielle, ou par centrifugation, par tout moyen connu par ailleurs de l'homme du métier.
La biomasse de microalgues ainsi isolée peut être directement traitée afin de produire des gâteaux emballés sous vide, des paillettes d'algues, des homogénats d'algues, de la farine d'algues intactes, de la farine d'algues broyées, ou de l'huile d'algues.
On procède également au séchage de la biomasse de microalgues intactes, entières pour faciliter le traitement ultérieur ou pour une utilisation de la biomasse dans ses différentes applications, notamment alimentaires.
La biomasse de microalgues est surtout valorisée sous la forme d'une farine de microalgues riches en lipides, sous la forme d'un broyât de cellules séchées.
Classiquement, la farine de microalgues riches en lipides est préparée, à partir d'une biomasse présentant de l'ordre de 20 à 25 % de matière sèche, de la manière suivante :
- collecte des microalgues séparées de leur milieu de croissance,
- cassage des cellules afin d'en libérer les molécules d'intérêt,
- ajustement du pH à une valeur comprise entre 6,5 et 7,5,
- pasteurisation et lavage,
- séchage.
La première étape de collecte des cellules est réalisée par la mise en œuvre d'une ou plusieurs étapes de séparation solide/liquide.
La biomasse est habituellement collectée par sédimentation, centrifugation ou filtration, et quelque fois une étape de floculation supplémentaire est nécessaire.
Dans la seconde étape de cassage cellulaire, plusieurs voies sont possibles : mécaniques (homogénéisateurs, broyage à billes ou ultrasons), ou non mécaniques (voie alcaline, cycles de congélation/décongélation, solvants organiques ou chocs osmotiques).
Le choix de la méthode est notamment fonction de la nature de la paroi cellulaire de la microalgue à rompre.
La farine de microalgues riche en lipides est alors préparée à partir d'une biomasse de microalgues présentant classiquement au plus 25 % de matière sèche, qui a été mécaniquement lysée et homogénéisée, l'homogénat étant ensuite atomisé ou flash-séché.
Pour obtenir ce lysat de microalgues par voie mécanique, un disrupteur à pression peut être par exemple utilisé pour pomper une suspension contenant les cellules de microalgues à travers un orifice restreint pour lyser les cellules.
Une pression élevée (jusqu'à 1500 bar) est appliquée, suivie d'une expansion instantanée à travers une buse. La lyse (ou broyage) des cellules peut être réalisée par trois mécanismes différents : empiétement sur la vanne, cisaillement élevé du liquide dans l'orifice, et chute de pression soudaine en sortie, provoquant une explosion de la cellule.
Un homogénéisateur NIRO Homogenizer Niro (GEA NIRO SOAVI) ou tout autre homogénéisateur haute pression peut être utilisé pour traiter des cellules présentant une taille majoritairement comprise entre 0,2 et 5 microns.
Ce traitement de la biomasse algale sous haute pression (plusieurs passes d'environ 1000 bar) lyse généralement plus de 90 % des cellules et réduit la taille à moins de 5 microns.
De manière alternative, un broyeur à billes est plutôt utilisé pour obtenir le lysat de microalgues.
Dans un broyeur à billes, les cellules sont agitées en suspension avec de petites particules sphériques. Le cassage des cellules est provoqué par les forces de cisaillement, le broyage entre les billes, et les collisions avec des billes.
Ces billes cassent les cellules pour en libérer le contenu cellulaire. La description d'un broyeur à billes approprié est par exemple faite dans le brevet US 5.330.913.
On obtient alors une suspension de particules de plus petite taille que les cellules d'origine, la dite suspension étant sous la forme d'une émulsion « huile dans eau ».
Cette émulsion est ensuite atomisée et l'eau est éliminée, laissant une poudre sèche contenant les débris cellulaires, du liquide intracellulaire et de l'huile.
En troisième étape, un ajustement du pH est ensuite réalisé pour stabiliser l'extrait cellulaire obtenu.
La pasteurisation de la quatrième étape consiste en un traitement thermique conduit classiquement à haute température pendant un temps court (procédé dit « High Température Short Time » ou HTST ou Ultra Haute Température ou UHT), par exemple à 140°C pendant 6 secondes.
Quant au lavage, il permet d'éliminer les impuretés solubles.
La dernière étape du traitement aval consiste en la déshydratation de ladite suspension (cellules lysées). Plusieurs méthodes ont été employées pour sécher les microalgues du genre Chlorella, Scenedesmus et Spirulina. Les plus classiques sont l'atomisation, le séchage sur tambour sécheur, la lyophilisation de préférence en présence d'antioxydants. L'atomisation est la méthode la plus souvent utilisée à l'échelle industrielle. Cependant selon ce procédé classique, comme la biomasse de microalgues renferme de l'huile à une teneur de 50 % en poids ou plus, il est nécessaire de limiter la teneur en matière sèche de la biomasse de microalgues qui sera ensuite lysée.
En effet, produite à partir d'une biomasse riche en lipides (huile) à haute matière sèche, la suspension de cellules lysées aura une tendance naturelle à déphaser.
Il est même difficile d'obtenir une farine de microalgues riches en lipides si l'on utilise comme matériel de départ une biomasse présentant plus de 25% et notamment plus de 28 % de matière sèche, voire même impossible si la matière sèche de la biomasse dépasse les 35 %.
On déplore en effet, à plus de 35 % de matière sèche, la formation d'une coalescence de gouttelettes d'huile sur les dispositifs d'évaporation mis en œuvre avant l'étape d'atomisation, pour la fabrication des farines (dispositif de type Rotavapor®) dès que l'on manipule un broyât de biomasse de microalgues riches en lipides.
L'émulsion « huile dans eau » ainsi obtenue est alors instable et ne peut donc pas être efficacement séchée car conduit à la formation d'une texture « beurre » collante.
Il apparaîtrait pourtant plus économique, en regard des volumes à travailler au niveau industriel, d'utiliser un procédé de préparation de farine de microalgues à partir d'une biomasse présentant une matière sèche de plus de 25 %.
Objet de l'invention
Il existe donc encore un besoin non satisfait de disposer d'un procédé de préparation d'une farine de microalgues riches en lipides ne nécessitant pas de travailler à basse teneur en matière sèche.
Après de nombreuses recherches, la société Demanderesse a trouvé que ce besoin pouvait être satisfait en proposant un procédé de préparation de la farine de microalgues riches en lipides, qui comprend les étapes suivantes :
(a) fournir une biomasse de microalgues comprenant plus de 50 % de lipides en poids sec de biomasse;
(b) lyser les microalgues,
(c) concentrer le lysat de microalgues à un taux de matière sèche de plus de 25 % en poids, de préférence à un taux de matière sèche compris entre 35 % et 50 % en poids,
(d) appliquer un traitement thermique au lysat de microalgues ainsi concentré, O
(e) homogénéiser à haute pression le lysat concentré ainsi obtenu de manière à obtenir une émulsion stable,
(f) sécher ladite émulsion pour obtenir la farine de microalgues.
Au sens de la présente invention, le terme « riche en lipides » signifie contenant plus de 50 % de lipides
Au sens de la présente invention le terme « émulsion stable » signifie l'absence de déphasage des phases huile et eau.
Conformément à l'invention, pour l'étape (a), les microalgues dont il est question sont de préférence des microalgues du genre Chlorella, plus particulièrement Chlorella protothecoides, plus particulièrement encore des Chlorella privées de pigments chlorophylliens, par toute méthode connue en soi de l'homme du métier (soit par le fait que la culture est réalisée à l'obscurité dans certaines conditions opératoires bien connues de l'homme du métier, soit parce que la souche a été mutée de manière à ne plus produire ces pigments).
La biomasse de microalgues est une biomasse plus préférentiellement préparée par fermentation en conditions hétérotrophiques et en absence de lumière d'une microalgue du genre Chlorella, de préférence Chlorella protothecoides.
Les conditions de fermentation sont bien connues de l'homme du métier. Les conditions appropriées de culture à utiliser sont notamment décrites dans l'article d'Ikuro Shihira-lshikawa et Eiji Hase, « Nutritional Control of Cell Pigmentation in Chlorella protothecoides with spécial référence to the degeneration of chloroplast induced by glucose », Plant and Cell Physiology, 5, 1964.
D'autres articles, tel que celui de Han Xu, Xiaoling Miao, Qingyu Wu , « High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters », Journal of Biotechnoloy, 126, (2006), 499-507 décrivent que des conditions de culture hétérotrophiques, c'est-à-dire en absence de lumière permettent d'obtenir une biomasse élevée avec une teneur élevée en lipides dans les cellules de microalgues.
Les milieux de croissance solides et liquides sont généralement disponibles dans la littérature, et les recommandations pour la préparation des milieux particuliers qui conviennent à une grande variété de souches de microorganismes peuvent être trouvées, par exemple, en ligne à www.utex.org/, un site maintenu par l'Université du Texas à Austin pour sa collection de culture d'algues (UTEX).
Au vu de ses connaissances générales et de l'état de l'art précité, l'homme du métier chargé de cultiver les cellules de microalgues sera tout à fait capable d'adapter les conditions de culture afin d'obtenir une biomasse adaptée, de préférence riche en lipides. La production de biomasse est réalisée en fermenteurs (ou bioréacteurs). Les exemples spécifiques de bioréacteurs, les conditions de culture, et la croissance hétérotrophe et les méthodes de propagation peuvent être combinés de toute manière appropriée pour améliorer l'efficacité de la croissance microbienne et des lipides.
Dans un mode de réalisation particulier, la fermentation est réalisée en mode alimentation discontinue (en anglais « fed-batch ») avec un débit de glucose ajusté de sorte à maintenir une concentration de glucose résiduel de 3 à 10 g/l.
Pendant la phase d'alimentation en glucose, la teneur en azote dans le milieu de culture est de préférence limitée pour permettre l'accumulation de lipides à hauteur de 30, 40, 50 ou 60 %. La température de fermentation est maintenue à une température adaptée, de préférence ente 25 et 35 'Ό, en particulier 28qC. L'oxygène dissous est de préférence maintenu à un minimum de 30 % en contrôlant l'aération, la contre pression et l'agitation du fermenteur.
De préférence, la biomasse obtenue et donc utile à la présente invention a un taux de matière sèche d'au moins 20 %, de préférence compris entre 20% et 40% et avec une teneur en lipides de plus de 50 % en poids sec.
Par exemple, la biomasse utilisée dans le procédé objet de la présente invention a un taux de matière sèche d'au moins 20 %, de préférence compris entre 20% et 40% et avec une teneur en lipides de plus de 50 % en poids sec une teneur en fibres de 10% à 50% en poids sec, une teneur en protéines de 2% à 15 % en poids sec, et une teneur en sucres inférieure à 10% en poids.
Conformément à l'invention, dans l'étape (b), les cellules de la biomasse utilisées pour la production de farine de microalgues sont lysées pour libérer leur huile ou lipides.
Les parois cellulaires et les composants intracellulaires sont broyés ou réduits, par exemple grâce à un broyeur à billes, en particules ou débris cellulaires non agglomérés.
Dans le broyeur, les cellules sont agitées en suspension avec de petites billes. Le cassage des cellules est provoqué par les forces de cisaillement, le broyage entre les billes, et les collisions avec des billes. En fait, ces billes cassent les cellules pour en libérer le contenu cellulaire. La description d'un broyeur à billes approprié est par exemple faite dans le brevet US 5.330.913.
De manière préférée des antioxydants sont ajoutés à la biomasse avant de procéder à la lyse.
On obtient ainsi un lysat de microalgues sous la forme d'une suspension de particules sous la forme d'une émulsion « huile dans eau ». Conformément à l'invention, dans l'étape (c), on procède à la concentration du lysat de manière à obtenir un lysat présentant un taux de matière sèche de plus de 25 % en poids, de préférence compris entre 35 % et 50 % en poids.
Cette concentration est de préférence réalisée par évaporation de l'eau à haute température, et non pas par centrifugation.
De préférence on utilise un évaporateur :
- à film tombant pour une biomasse présentant une matière sèche d'au plus 33%,
- à flux forcé pour une biomasse présentant une matière sèche comprise entre 20 et 45 %,
dans les conditions suivantes :
- température d'entrée du flash : comprise entre 60 et 75 °C, de préférence 68 <C
- température dans le flash : comprise entre 35 et 60 'C, de préférence 40 <C
- débit de recirculation : comprise entre 25 et 45 m3/h, de préférence 40 m3/h.
Conformément à l'invention, dans l'étape (d) le lysat concentré est traité thermiquement. Ce traitement thermique permet notamment la désoxygénation / désodorisation du lysat à haute matière sèche.
De préférence, l'étape (d) est conduite à haute température pendant un temps court (procédé dit « High Température Short Time » ou HTST ou Ultra Haute Température ou UHT), par exemple à 140°C pendant 6 secondes.
Conformément à l'invention, l'étape (e) consiste à homogénéiser le lysat obtenu à l'issue de l'étape (d), de manière à générer une émulsion huile dans eau stable, malgré la haute matière sèche dudit lysat.
Cette homogénéisation est conduite de préférence dans un dispositif à deux étages, par exemple un homogénéisateur GAULIN commercialisé par la société APV, avec une pression :
- comprise entre 150 et 170 bar, de préférence 160 bar au niveau du premier étage, et
- comprise entre 35 et 45 bar, de préférence 40 bar au niveau du second étage.
Conformément à l'invention, la dernière étape (étape f) consiste à sécher l'émulsion pour obtenir la farine de microalgues. Le séchage est de préférence réalisé par atomisation. A l'issue de cette étape au cours de laquelle l'eau est éliminée, une poudre sèche contenant les débris cellulaires et les lipides est obtenue.
Après séchage, la teneur en eau ou l'humidité de la poudre est généralement inférieure à 10 %, préférentiellement inférieure à 5%.
De manière optionnelle, un ajustement du pH du lysat avant l'étape de traitement thermique pourra être réalisé.
Grâce notamment au traitement thermique suivi de l'homogénéisation à haute pression du lysat, le procédé objet de la présente invention permet avantageusement d'obtenir une farine de microalgues broyées riches en lipides à partir d'une biomasse de microalgues, notamment de chlorelles, présentant plus de 50 % de lipides et présentant un taux de matière sèche d'au moins 20 %.

Claims

REVENDICATIONS
1 . Procédé de préparation d'une farine de microalgues riches en lipides, qui comprend les étapes suivantes :
(a) fournir une biomasse de microalgues comprenant plus de 50 % de lipides en poids sec de biomasse;
(b) lyser les microalgues,
(c) concentrer le lysat de microalgues à un taux de matière sèche de plus de 25 % en poids, de préférence à un taux de matière sèche compris entre 35 % et 50 % en poids,
(d) appliquer un traitement thermique au lysat ainsi concentré,
(e) homogénéiser à haute pression le lysat obtenu à l'étape (d), de manière à obtenir une émulsion stable,
(f) sécher ladite émulsion pour obtenir la farine de microalgues.
2. Procédé selon la revendication 1 , caractérisée en ce que la microalgue est du genre Chlorella, plus particulièrement Chlorella protothecoides.
3. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que la concentration du lysat de microalgues est réalisée par évaporation.
4. Procédé selon la revendication 3, caractérisé en ce que à la concentration du lysat est réalisée à haute température dans un évaporateur dans les conditions suivantes :
- température d'entrée du flash : comprise entre 60 et 75 °C, de préférence 68 <
- température dans le flash : comprise entre 35 et ôO'C, de préférence 40 <
- débit de recirculation : comprise entre 25 et 45 m3/h, de préférence 40 m3/h.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'homogénéisation à haute pression est conduite dans un dispositif à deux étages, avec une pression :
- comprise entre 150 et 170 bar, de préférence 160 bar au niveau du premier étage, - comprise entre 35 et 45 bar, de préférence 40 bar au niveau du second étage.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le séchage de l'émulsion est réalisé par atomisation.
EP16705808.0A 2015-01-26 2016-01-22 Procede de preparation d'une farine de microalgues broyees riches en lipides Withdrawn EP3250717A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550584 2015-01-26
PCT/FR2016/050127 WO2016120546A1 (fr) 2015-01-26 2016-01-22 Procede de preparation d'une farine de microalgues broyees riches en lipides

Publications (1)

Publication Number Publication Date
EP3250717A1 true EP3250717A1 (fr) 2017-12-06

Family

ID=55405364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16705808.0A Withdrawn EP3250717A1 (fr) 2015-01-26 2016-01-22 Procede de preparation d'une farine de microalgues broyees riches en lipides

Country Status (8)

Country Link
US (1) US20180000137A1 (fr)
EP (1) EP3250717A1 (fr)
JP (1) JP2018502593A (fr)
KR (1) KR20170105498A (fr)
CN (1) CN107208033A (fr)
BR (1) BR112017015709A8 (fr)
MX (1) MX2017009646A (fr)
WO (1) WO2016120546A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226071B2 (en) * 2016-08-17 2019-03-12 William Leland Nagel Apparatus for securing to the top of a bottle or canister for providing a smoking assembly
WO2019183377A1 (fr) 2018-03-21 2019-09-26 Cargill, Incorporated Poudre à base d'algues
ES2728088B2 (es) * 2018-04-19 2021-03-02 Neoalgae Micro Seaweeds Products S L Procedimiento de microencapsulacion de aceites en microorganismos, producto obtenido por ese procedimiento y usos del mismo
US11898036B2 (en) 2018-04-27 2024-02-13 Algix, Llc Elastomer composite including algae biomass filler
BR112022004774A2 (pt) 2019-09-16 2022-06-07 Cargill Inc Composição à base de algas marinhas, e, produto alimentar, bebida, produto nutricional, suplemento dietético, produto de ração, produto de cuidados pessoais, produto farmacêutico ou produto industrial
EP3935958A1 (fr) * 2020-07-08 2022-01-12 Neoalgae Micro Seaweeds Products, S.L. Huile encapsulée

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143636B2 (ja) 1991-09-11 2001-03-07 株式会社サン・クロレラ 細胞破裂によるクロレラ細胞壁の破砕方法
CN101449827A (zh) * 2008-12-29 2009-06-10 江西品生源生物工程有限责任公司 绿藻口服液生产方法
BRPI1013431B1 (pt) * 2009-04-14 2020-10-20 Terravia Holdings, Inc. produto alimentício
US9127288B2 (en) * 2010-06-28 2015-09-08 Commonwealth Scientific And Industrial Research Organisation Methods of producing lipids
CA3026436A1 (fr) * 2011-02-11 2012-08-16 E. I. Du Pont De Nemours And Company Procede d'obtention de composition contenant des lipides a partir de biomasse microbienne
EP2777400A1 (fr) * 2013-03-15 2014-09-17 Roquette Freres Granules à base de farine de micro-algues et leurs procédés de préparation
FR3008581B1 (fr) * 2013-07-19 2016-11-04 Roquette Freres Farine de microalgues riches en lipides et procede de preparation

Also Published As

Publication number Publication date
KR20170105498A (ko) 2017-09-19
BR112017015709A8 (pt) 2018-07-31
CN107208033A (zh) 2017-09-26
WO2016120546A1 (fr) 2016-08-04
BR112017015709A2 (pt) 2018-03-20
US20180000137A1 (en) 2018-01-04
JP2018502593A (ja) 2018-02-01
MX2017009646A (es) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2016120546A1 (fr) Procede de preparation d&#39;une farine de microalgues broyees riches en lipides
EP3169696B1 (fr) Procede d&#39;extraction des proteines solubles de biomasses de microalgues
EP3022289B1 (fr) Procédé optimise de rupture des parois de chlorelles par homogénéisation a très haute pression
CA2794613C (fr) Procede de fabrication de proteines vegetales solubles et fonctionnelles, produits obtenus et utilisations
EP3024923B1 (fr) Procede d&#39;optimisation du rendement de production, de la qualite organoleptique et de la stabilite dans le temps d&#39;une biomasse de microalgues riches en proteines
CA2874710C (fr) Procede continu d&#39;enrichissement en esters ethyliques de dha d&#39;une huile produite par des microalgues
EP3019032B1 (fr) Procede de production de biomasse de microalgues de qualite sensorielle optimisee
EP3691472B1 (fr) Composition de protéines de pois a qualité nutritionnelle améliorée
CA2777738A1 (fr) Procede d&#39;extraction enzymatique en milieu aqueux d&#39;huiles et de proteines a partir de matiere vegetale
EP3119872A1 (fr) Procédé de perméabilisation thermique d&#39;une biomasse de microalgues
EP3027053B1 (fr) Farine de microalgues riches en lipides et procede de preparation
EP3169695B1 (fr) Procede d&#39;extraction des proteines solubles de biomasses de microalgues
EP3638052A1 (fr) Procédé d&#39;obtention d&#39;une boisson alimentaire stabilisée à base de jus de fruits comprenant des extraits de microalgues et/ou des cyanobactéries
EP3638054A1 (fr) Procédé d&#39;extraction de composés hydrosolubles à partir de microalgues et/ou de cyanobactéries
WO2019008147A1 (fr) Procédé de préparation d&#39;émulsions sèches à partir de particules biosourcées
EP3250704A1 (fr) Procede de fractionnement des composants d&#39;une biomasse de microalgues riches en proteines
EP3057443B1 (fr) Procede de texturation d&#39;une biomasse de microalgues
WO2018065531A1 (fr) Aliment ou boisson a base d&#39;une microalgue marine
WO2021260087A1 (fr) Procédé de culture de microorganismes pour l&#39;accumulation de lipides
FR3134290A1 (fr) Extraction non destructive de composés d’intérêt alimentaire issus d’algues vivantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CORBION BIOTECH, INC.

17Q First examination report despatched

Effective date: 20180704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191219