EP3243923A1 - Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus et son procédé de fabrication - Google Patents

Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus et son procédé de fabrication Download PDF

Info

Publication number
EP3243923A1
EP3243923A1 EP15877109.7A EP15877109A EP3243923A1 EP 3243923 A1 EP3243923 A1 EP 3243923A1 EP 15877109 A EP15877109 A EP 15877109A EP 3243923 A1 EP3243923 A1 EP 3243923A1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
less
plated steel
excluding
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15877109.7A
Other languages
German (de)
English (en)
Other versions
EP3243923A4 (fr
EP3243923B1 (fr
Inventor
Kyoo-Young Lee
Joo-Hyun Ryu
Sim-Kun MIN
Se-Don CHOO
Dong-Seoug Sin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of EP3243923A4 publication Critical patent/EP3243923A4/fr
Publication of EP3243923A1 publication Critical patent/EP3243923A1/fr
Application granted granted Critical
Publication of EP3243923B1 publication Critical patent/EP3243923B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present disclosure relates to a plated steel sheet having ultra-high strength and used in vehicles and the like, and more particularly, to a plated steel sheet having ultra-high strength and a tensile strength of 1300 MPa or more, and a method of manufacturing the same.
  • martensite steel having a tensile strength of 1300 MPa or more has been developed and used as an ultra-high strength plated steel sheet, and plating products having enhanced corrosion resistance have also been being developed.
  • steel sheet coils commonly produced in steel mills are slit and coiled to be formed as coils having a relatively narrow width, and then, are formed as components by applying a roll forming method or a simple forming method thereto.
  • An aspect of the present disclosure is to provide a plated steel sheet having ultra-high strength, in which the occurrence and propagation of cracking in edges thereof in a width direction may be prevented, even when a slitting and coiling process is performed on a plated steel sheet having ultra-high strength, and a method of manufacturing the same.
  • a plated steel sheet having ultra-high strength and a tensile strength of 1300 MPa or more is characterized in that an amount of hydrogen in the plated steel sheet is 0.000015 wt% or less.
  • a method of manufacturing a plated steel sheet having ultra-high strength includes preparing a steel sheet having a tensile strength of 1300 MPa or more, plating the steel sheet to produce a plated steel sheet, and performing a heat treatment on the plated steel sheet.
  • the heat treatment is performed such that an amount of hydrogen in the plated steel sheet is 0.000015 wt% or less.
  • a plated steel sheet having ultra-high strength in which the occurrence of cracking in an edge portion in a width direction, after a slitting and coiling process, may be prevented, may be provided.
  • FIG. 1 illustrates a result of observing whether or not cracking occurs after slitting heat-treated and untreated plated sheets having ultra-high strength.
  • the present inventors have found that cracking in a width direction edge portion after slitting and coiling a plated steel sheet having ultra-high strength is related to an amount of hydrogen, and thus, a plated steel sheet having ultra-high strength and a reduced amount of hydrogen, and a method for effectively reducing an amount of hydrogen, may be provided.
  • a plated steel sheet having ultra-high strength, and having an amount of hydrogen of 0.000015 wt% or less and a tensile strength of 1300 MPa or more, may be provided.
  • the plated steel sheet having ultra-high strength may include 0.12 wt% to 0.2 wt% of carbon (C), 0.5 wt% or less of silicon (Si) (excluding 0wt%), 2.6 wt% to 4.0 wt% of manganese (Mn), 0.03 wt% or less of phosphorus (P) (excluding 0 wt%), 0.015 wt% or less of sulfur (S) (excluding 0 wt%), 0.1 wt% or less of aluminum (Al) (excluding 0 w%), 1 wt% or less of chromium (Cr) (excluding 0 wt%), 48/14*[N] to 0.1 wt% of titanium (Ti), 0.1 wt% or less of niobium (Nb) (excluding 0 wt%), 0.005 wt% or less of boron (B) (excluding 0 wt%), 0.01 wt% or less of nitrogen
  • Carbon (C) is an element essentially added to secure strength of a steel. In order to obtain the above-mentioned effect, carbon (C) may be added in an amount of 0.12% or more. However, if the content thereof is relatively high, exceeding 0.20%, a problem in which weldability is deteriorated may occur, which may be problematic.
  • the content of C may be limited to 0.12% to 0.20%.
  • Silicon (Si) is a ferrite stabilizing element and may have a disadvantage in that strength may be reduced by accelerating generation of ferrite at the time of slow cooling after annealing in a continuous annealing type hop-dip heat treatment furnace of the related art in which a slow cooling section is present.
  • an upper limit of Si may be determined. In detail, the content of Si may be limited to 0.5% or less.
  • Manganese (Mn) is well known as an element inhibiting the formation of ferrite and facilitating the formation of austenite.
  • Mn Manganese
  • a content of Mn is less than 2.6%, ferrite may be easily formed during slow cooling, while if the content of Mn exceeds 4.0%, band formation due to slabs, and segregation caused in a hot rolling process, may be excessive, and a problem in which a cost of alloy iron is increased due to an excessive amount of alloying input when a convertor is operated.
  • the content of Mn may be limited to 2.6% to 4.0%.
  • Phosphorus (P) may be an impurity element in steel. If the content thereof exceeds 0.03%, weldability may be decreased, a risk of brittleness of steel may be increased, and a possibility of the occurrence of dent defects may increase. Thus, the content of P may be limited to 0.03% or less.
  • S may be an impurity element in steel as well as P, and if the content thereof exceeds 0.015%, a possibility of deterioration of ductility and weldability of steel may increase. Thus, the content of S may be limited to 0.015% or less.
  • Aluminum (Al) is an element for expanding a ferrite region.
  • a general continuous annealing type hop-dip heat treatment furnace having a slow cooling section there may be a disadvantage in that ferrite formation is promoted, and the possibility of causing deteriorations in high temperature heat hot-rolling characteristics due to the formation of AlN may increase.
  • the content of Al may be limited to 0.1% or less.
  • Chromium (Cr) is an element suppressing ferrite transformation and facilitating low-temperature transformation.
  • a general continuous annealing type hop-dip heat treatment furnace having a slow cooling section there may be an advantage in that ferrite formation is suppressed.
  • the content thereof exceeds 1%, a problem in which a cost of alloying iron is increased due to an excessive amount of alloying may occur.
  • the content thereof may be limited to 1% or less.
  • Titanium (Ti) is an element for forming a nitride, and may serve to precipitate N in steel as TiN to scavenge N therein. To this end, Ti may be required to be added at a chemical equivalent of 48/14 * [N] or more. On the other hand, if Ti is not added, a problem in which cracks may occur during continuous casting by AlN formation may be caused. However, if the content thereof exceeds 0.1%, a problem in which the strength of martensite is reduced due to precipitation of additional carbides in addition to the removal of solid solution N, may be caused.
  • Niobium is an element segregated at an austenite grain boundary to suppress coarsening of austenite grains during an annealing heat treatment, and thus, may be added. However, if the content thereof exceeds 0.1%, a problem in which a cost of alloy iron is increased due to an excessive amount of added alloy may occur. Thus, the content of Nb may be limited 0.1% or less.
  • B Boron (B) is an element inhibiting ferrite formation.
  • B has an advantage of inhibiting the formation of ferrite at the time of cooling after annealing, and thus, may be added.
  • the content thereof exceeds 0.005%, since a problem in which ferrite formation is promoted by precipitation of Fe 23 (C,B) 6 may occur, the content thereof may be limited to 0.005% or less.
  • Nitrogen (N) is an element reacting with Al to be precipitated into AlN nitride, and the formed AlN may have a problem in that it is a cause of occurrence of cracking during continuous casting.
  • the content of Al may be limited to 0.01% or less, and thus, the formation of AlN may be suppressed.
  • Fe and unavoidable impurities may be included as a remainder.
  • the impurities may include molybdenum (Mo), vanadium (V), nickel (Ni), rare earth metals (REM), and the like.
  • a steel sheet used to obtain a plated steel sheet having ultra-high strength may have a microstructure comprised of 90% or more of martensite and 10% or less of ferrite and bainite in a volume fraction, while satisfying the above-mentioned compositional composition.
  • a microstructure comprised of 90% or more of martensite and 10% or less of ferrite and bainite in a volume fraction, while satisfying the above-mentioned compositional composition.
  • As effective characteristics according to the configuration of the microstructure as martensite of a hard phase has a microstructure, a main phase, securing ultra-high strength may be facilitated.
  • the plated steel sheet having ultra-high strength, ultimately obtained by heat-treating the steel sheet as described above, according to an exemplary embodiment may also have the same microstructure as above, and when an additional tempering heat treatment thereto is performed, martensite may be converted into tempered martensite.
  • volume fraction may not be easy to actually measure a volume fraction, a three-dimensional concept, and thus, measurement of the volume fraction may be replaced with area fraction measurement through a cross-sectional observation normally used in observation of a microstructure.
  • the steel sheet having the component system and the microstructure as described above may be plated and heat-treated, and an amount of hydrogen after heat treatment may be 0.000015 wt% or less, as compared with the case before the heat treatment.
  • the target ratio of a yield strength and a tensile strength of the plated steel sheet having ultra-high strength according to an exemplary embodiment may be 0.75 or more.
  • a steel sheet including 0.12 wt% to 0.2 wt% of carbon (C), 0.5 wt% or less of silicon (Si) (excluding 0wt%), 2.6 wt% to 4.0 wt% of manganese (Mn), 0.03 wt% or less of phosphorus (P) (excluding 0 wt%), 0.015 wt% or less of sulfur (S) (excluding 0 wt%), 0.1 wt% or less of aluminum (Al) (excluding 0 wt%), 1 wt% or less of chromium (Cr) (excluding 0 wt%), 48/14*[N] to 0.1 wt% of titanium (Ti), 0.1 wt% or less of niobium (Nb) (excluding 0 wt%), 0.005 wt% or less of boron (B) (excluding 0 wt%), 0.01 wt% or less of nitrogen (N) (excluding 0 wt%
  • the steel sheet may be plated to produce a plated steel sheet, and the plated steel sheet may be subjected to a heat treatment.
  • a plating process is not particularly limited, and for example, a process such as hot-dip galvanizing, hot-dip aluminum plating, electro-galvanizing, or the like may be performed.
  • a heat treatment after plating may be performed such that an amount of hydrogen in the plated steel sheet may be 0.000015 wt% or less.
  • an amount of hydrogen in the plated steel sheet may be 0.000015 wt% or less.
  • the heat treatment temperature and time may be set in consideration of a tensile strength level required by a customer.
  • a plated steel sheet having ultra-high strength is generally manufactured as a coil having a constant width through a slitting and coiling process, and the slitting process is a process of adding relatively high stress to an edge portion of a steel sheet.
  • the slitting process is a process of adding relatively high stress to an edge portion of a steel sheet.
  • a disadvantage in that the quality of a cut surface of an edge portion may be deteriorated due to a plating layer may be present. Hydrogen in steel tends to segregate under a relatively high stress state.
  • hydrogen in steel may segregate on a relatively highly stressed portion of an edge portion of the plated steel sheet after the slitting, whereby cracks may start to occur in the edge portion of the plated steel sheet having ultra-high strength and the propagation of cracks may occur in a width direction.
  • an amount of hydrogen of the plated steel sheet having ultra-high strength may be reduced to 0.000015 wt% or less, and thus, cracking of an edge portion over time during coiling, after slitting, may be effectively suppressed.
  • a plated steel sheet having ultra-high strength, an initial yield strength of 1149 MPa, and an initial tensile strength of 1556 MPa was evaluated for changes in an amount of hydrogen before a heat treatment and after a heat treatment under conditions provided in Table 1 below. Evaluation results are provided as illustrated in Table 1.
  • a steel material having a component system consisting of 0.18% of C, 0.1% of Si, 3.6% of Mn, 0.011% of P, 0.11% of Cr, 0.021% of Ti, 0.038% of Nb, 0.0017% of B, 0.003% of S, 0.025% of Al, and 0.004% of N was prepared as a specimen having a size of thickness*12mm*100mm, and was heated to a temperature from 25°C to 250°C at a heating rate of 100°C per hour. An amount of hydrogen was measured using gas chromatography, simultaneously with performing a heat treatment.
  • the cold rolled steel sheet had no hydrogen, 0 wt% of hydrogen, while the plated steel sheet had a relatively high content, 0.000022 wt% of hydrogen.
  • the amount of hydrogen may be further reduced.
  • a plated steel sheet (A) not subjected to heat treatment a plated steel sheet (B) having been subjected to heat treatment at 150°C for 24 hours in a 100% of hydrogen atmosphere, and a plated steel sheet (C) having been subjected to heat treatment at 200°C for 24 hours in a 7% of hydrogen atmosphere were slit, whether or not cracks occurred as time passed was observed, and the results thereof are provided in FIG. 1 .
  • a plated steel sheet having ultra-high strength and having a yield strength ratio of 0.75 or more with respect to a tensile strength by tempering heat treatment of an ultra-high strength plated steel sheet having martensite as a main phase, may be provided.
  • a decrease in tensile strength may increase.
  • setting heat treatment temperature and time according to a tensile strength level required by a customer may be required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
EP15877109.7A 2015-01-07 2015-01-07 Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus Active EP3243923B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/000136 WO2016111388A1 (fr) 2015-01-07 2015-01-07 Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus et son procédé de fabrication

Publications (3)

Publication Number Publication Date
EP3243923A4 EP3243923A4 (fr) 2017-11-15
EP3243923A1 true EP3243923A1 (fr) 2017-11-15
EP3243923B1 EP3243923B1 (fr) 2019-10-23

Family

ID=56356070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15877109.7A Active EP3243923B1 (fr) 2015-01-07 2015-01-07 Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus

Country Status (3)

Country Link
EP (1) EP3243923B1 (fr)
CN (1) CN107148488B (fr)
WO (1) WO2016111388A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6525114B1 (ja) * 2017-11-29 2019-06-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法
WO2019106894A1 (fr) * 2017-11-29 2019-06-06 Jfeスチール株式会社 Tôle d'acier galvanisée à résistance élevée et son procédé de fabrication
EP3754043A4 (fr) * 2018-03-30 2020-12-23 JFE Steel Corporation Tôle en acier galvanisé à haute résistance, élément à haute résistance et leurs procédés de fabrication
EP3757243A4 (fr) * 2018-03-30 2020-12-30 JFE Steel Corporation Tôle d'acier galvanisée à résistance élevée, élément à résistance élevée et leurs procédés de fabrication
EP3741878A4 (fr) * 2018-01-17 2021-01-06 JFE Steel Corporation Tôle d'acier plaquée de zinc électrolytique allié hautement résistante et son procédé de fabrication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930144B1 (ja) * 2014-10-17 2016-06-08 新日鐵住金株式会社 絞り缶用鋼板及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365216B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板とその製造方法
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5136609B2 (ja) * 2010-07-29 2013-02-06 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101220619B1 (ko) * 2010-11-09 2013-01-10 주식회사 포스코 초고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP5821260B2 (ja) * 2011-04-26 2015-11-24 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
RU2566131C1 (ru) * 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Гальванизированный горячим способом стальной лист и способ его изготовления
EP2762579B2 (fr) * 2011-09-30 2021-03-03 Nippon Steel Corporation Feuille d'acier galvanisée par immersion à chaud à haute résistance et son procédé de fabrication
CN103827335B (zh) * 2011-09-30 2015-10-21 新日铁住金株式会社 镀锌钢板及其制造方法
TWI467027B (zh) * 2011-09-30 2015-01-01 Nippon Steel & Sumitomo Metal Corp High strength galvanized steel sheet
KR20130056052A (ko) * 2011-11-21 2013-05-29 주식회사 포스코 합금화 특성이 우수한 초고강도 합금화 용융아연도금강판 및 그 제조방법
KR20130056051A (ko) * 2011-11-21 2013-05-29 주식회사 포스코 슬라브 코너크랙이 없는 초고강도 강판 및 그 제조방법
JP5811020B2 (ja) * 2012-04-25 2015-11-11 新日鐵住金株式会社 高い靱性と高い加工性および成形性とを有し水素脆化起因による遅れ破壊特性に優れた高強度鋼板

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719156A4 (fr) * 2017-11-29 2020-12-02 JFE Steel Corporation Tôle d'acier galvanisée à résistance élevée et son procédé de fabrication
JP6525114B1 (ja) * 2017-11-29 2019-06-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法
WO2019106895A1 (fr) * 2017-11-29 2019-06-06 Jfeスチール株式会社 Tôle d'acier galvanisée à résistance élevée et son procédé de fabrication
JP2019099922A (ja) * 2017-11-29 2019-06-24 Jfeスチール株式会社 高強度亜鉛めっき鋼板
JP6544494B1 (ja) * 2017-11-29 2019-07-17 Jfeスチール株式会社 高強度亜鉛めっき鋼板およびその製造方法
EP3719157A4 (fr) * 2017-11-29 2020-12-02 JFE Steel Corporation Tôle d'acier galvanisée à résistance élevée et son procédé de fabrication
WO2019106894A1 (fr) * 2017-11-29 2019-06-06 Jfeスチール株式会社 Tôle d'acier galvanisée à résistance élevée et son procédé de fabrication
US11427880B2 (en) 2017-11-29 2022-08-30 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing same
US11408059B2 (en) 2017-11-29 2022-08-09 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing same
EP3741878A4 (fr) * 2018-01-17 2021-01-06 JFE Steel Corporation Tôle d'acier plaquée de zinc électrolytique allié hautement résistante et son procédé de fabrication
EP3757243A4 (fr) * 2018-03-30 2020-12-30 JFE Steel Corporation Tôle d'acier galvanisée à résistance élevée, élément à résistance élevée et leurs procédés de fabrication
EP3754043A4 (fr) * 2018-03-30 2020-12-23 JFE Steel Corporation Tôle en acier galvanisé à haute résistance, élément à haute résistance et leurs procédés de fabrication
US11530463B2 (en) 2018-03-30 2022-12-20 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
US11795531B2 (en) 2018-03-30 2023-10-24 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same

Also Published As

Publication number Publication date
CN107148488A (zh) 2017-09-08
EP3243923A4 (fr) 2017-11-15
WO2016111388A8 (fr) 2016-12-15
CN107148488B (zh) 2020-02-07
EP3243923B1 (fr) 2019-10-23
WO2016111388A1 (fr) 2016-07-14

Similar Documents

Publication Publication Date Title
EP2617853B1 (fr) Tôle d'acier laminée à chaud à haute résistance présentant des propriétés supérieures de résistance à la fatigue et son procédé de production
EP2617852B1 (fr) Feuille d'acier laminée à chaud à haute résistance possédant une excellente aptitude au cintrage et procédé de production
EP2290111B1 (fr) Feuille d'acier double phase et son procédé de fabrication
EP3243923B1 (fr) Feuille d'acier plaquée à très haute résistance ayant une résistance à la traction de 1 300 mpa ou plus
KR101485237B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조 방법
EP3020843B1 (fr) Tôle d'acier à haute teneur en carbone, laminée à chaud, et son procédé de production
WO2013146815A1 (fr) Feuille d'acier inoxydable ferritique laminée à froid résistante à la chaleur, feuille d'acier inoxydable ferritique laminée à chaud pour une matière de départ de laminage à froid et leurs procédés de fabrication
EP2792762B1 (fr) Tôle d'acier laminée à froid de haute résistance avec un rapport d'élasticité élevé et procédé de fabrication de l'acier
EP2801636B1 (fr) Tôle d'acier laminée à chaud à forte teneur en carbone et son procédé de production
RU2691436C1 (ru) Формуемая легковесная сталь с улучшенными механическими свойствами и способ производства полуфабрикатов из указанной стали
EP3450586B1 (fr) Tôle d'acier à très haute résistance et à haute ductilité ayant un excellent rapport d'élasticité et son procédé de fabrication
EP3591084B1 (fr) Tôle d'acier inoxydable ferritique, bobine chaude et élément de bride pour système d'échappement de véhicule à moteur
EP3190202B1 (fr) Tôle d'acier laminée à chaud à teneur élevée en carbone et procédé de production de cette dernière
EP3561111A1 (fr) Tôle d'acier épaisse ayant une excellente résistance à l'impact cryogénique et son procédé de fabrication
EP2781615A1 (fr) Tôle d'acier mince et procédé de production de cette dernière
EP3591083B1 (fr) Tôle d'acier inoxydable ferritique, bobine chaude et élément de bride pour système d'échappement de véhicule à moteur
KR101467052B1 (ko) 초고강도 냉연강판 및 그 제조 방법
EP3561114B1 (fr) Acier revêtu par immersion à chaud présentant une excellente aptitude au traitement et son procédé de fabrication
EP2993245B1 (fr) Plaque en acier de haute résistance, de faible densité spécifique ayant d'excellentes propriétés de soudage par points
EP3730652B1 (fr) Tôle d'acier laminée à froid à ultra-haute résistance et son procédé de fabrication
EP3699312A1 (fr) Acier inoxydable à base de ferrite à excellente ténacité à l'impact, et son procédé de production
EP3708689B1 (fr) Tôle d'acier
KR20220024957A (ko) 고강도 강판, 고강도 부재 및 그것들의 제조 방법
KR101758563B1 (ko) 연신율이 우수한 초고강도 강판 및 이의 제조방법
KR101528041B1 (ko) 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170628

A4 Supplementary search report drawn up and despatched

Effective date: 20170922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015040527

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1193698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015040527

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1193698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200123

26N No opposition filed

Effective date: 20200724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015040527

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG-SI, KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015040527

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG- SI, KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015040527

Country of ref document: DE

Owner name: POSCO HOLDINGS INC., KR

Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015040527

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG-SI, KR

Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015040527

Country of ref document: DE

Owner name: POSCO CO., LTD, POHANG- SI, KR

Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 10