EP3240101B1 - Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes - Google Patents

Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes Download PDF

Info

Publication number
EP3240101B1
EP3240101B1 EP16166973.4A EP16166973A EP3240101B1 EP 3240101 B1 EP3240101 B1 EP 3240101B1 EP 16166973 A EP16166973 A EP 16166973A EP 3240101 B1 EP3240101 B1 EP 3240101B1
Authority
EP
European Patent Office
Prior art keywords
pcb
layer
coupling pad
waveguide
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16166973.4A
Other languages
German (de)
English (en)
Other versions
EP3240101A1 (fr
Inventor
Christoph SPRANGER
Titos Kokkinos
Ajay Babu Guntupalli
Fabio Morgia
Bruno BISCONTINI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to EP16166973.4A priority Critical patent/EP3240101B1/fr
Priority to CN201780025627.4A priority patent/CN109075420B/zh
Priority to PCT/CN2017/081886 priority patent/WO2017186099A1/fr
Publication of EP3240101A1 publication Critical patent/EP3240101A1/fr
Application granted granted Critical
Publication of EP3240101B1 publication Critical patent/EP3240101B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention is directed to a system comprising a waveguide and a printed circuit board (PCB) and the printed circuit board itself.
  • PCB printed circuit board
  • Rectangular waveguides are frequently used in high frequency/millimeter wave (mmW) applications to transmit or filter mmW signals with minimal power losses and/or signal distortion.
  • rectangular waveguide-based transmission lines/filters are commonly built from aluminum blocks by milling rectangular cavities in the aluminum. Therefore, they are bulky, heavy and mechanically incompatible with other components of a complete radio system, such as an RF transceiver or antenna, which are frequently developed on printed circuit boards (PCBs). Therefore, carefully designed signal transitions from/to rectangular waveguides to/from PCB-based transmission lines (e.g. microstrip lines, strip lines etc.) are required for the integration of PCB- based radio frequency components with waveguide-based components. For example, in the context of 5G mmW massive MIMO systems, in which multiple transceivers are integrated and coherently operated within a single radio unit, such transitions should be as compact as possible and preferably implement more than one function.
  • US 2011/267153 A1 discloses a waveguide-microstrip line converter that can be used for a circuit such a as a microwave circuit or a millimeter wave circuit.
  • US 6 958 662 B1 discloses a device for guiding electromagnetic waves from a multi-band wave guide, to a micro strip line, arranged at one end of the wave guide.
  • US 5 793 263 A discloses a microstrip transmission line structure adapted for coupling to an open end of a waveguide.
  • US 2003/0042993 A1 discloses a waveguide-microstrip line converter comprising a PCB and associated via holes that are configured to receive screws for fixing the PCB to the waveguide.
  • a system comprising a waveguide having a body with a first end having an opening, and a PCB having a bottom side and an opposed top side, wherein the PCB comprises a ground layer, a dielectric material layer and a signal layer arranged in a layer stack from the bottom side to the top side of the PCB, wherein the dielectric layer is arranged between the ground layer and the signal layer, wherein the signal layer comprises a coupling pad and a first and a second output transmission lines both connected to the coupling pad, further comprising a non-conducting slot in the ground layer; further comprising an electric wall galvanically connecting the coupling pad through the dielectric layer to the ground layer, wherein the first end of the waveguide is arranged on the bottom side and is galvanically connected with the ground layer, wherein the opening, the non-conducting slot and the coupling pad are aligned such that in a stacking direction of the layer stack the opening, the slot and the coupling pad at least partially overlap.
  • each of the layers of the PCB is provided with a through-hole configured for accepting a screw for screwing the PCB to the waveguide and the through-holes of each layer are aligned such that in the stack direction the through-holes coincide, thereby forming a hole extending from the top side of the PCB to the bottom side of the PCB, wherein the hole extending from the top side of the PCB to the bottom side of the PCB does not overlap with the opening in the waveguide, the non-conducting slot and the coupling pad, wherein the through-holes are metallized (plated) and form a part of the electric wall.
  • the through-hole is further arranged in close proximity to the coupling pad, so that a distance between a center axis of the through-hole of the signal layer to a center point of the opening of the wave guide is between 60% to 300% of a width of the opening of the waveguide, preferably between 100% to 250% of the width of the opening of the waveguide.
  • the electric wall is arranged on and contacts at least one edge portion of the coupling pad.
  • the coupling pad together with the first and second output transmission lines is point-symmetric with respect to a symmetry point of the coupling pad.
  • the coupling pad together with the first and second output transmission lines is mirror-symmetric with respect to an axis extending through a symmetry point of the coupling pad perpendicularly to a main extension direction of the coupling pad, wherein the main extension direction of the coupling pad is the direction, in which the coupling pad has its largest extension.
  • the electric wall is formed at least by a plurality of conducting vias extending at least between the signal layer and the ground layer through the dielectric material layer.
  • conducting (plated) vias Due to the arrangement of conducting (plated) vias, a very easy implementation form of the electric wall is provided, since conducting vias can be easily manufactured in a manufacturing process. Due to the arrangement of the vias and since these vias extend at least between the signal layer and the ground layer through the dielectric material layer, a galvanic contact between the signal layer and the ground layer is possible in a simple way.
  • the electric wall includes a first and second electric wall portion, which are separated.
  • the output transmission lines can be directed away from the coupling pad at the shortest way possible and, for example, do not have to circumvent the whole coupling pad, but can penetrate through the coupling pad within the opening defined by the first and second electric wall portions. Therefore, an effective way of leading the first and second output transmission lines away from the coupling pad is possible.
  • a first impedance matching portion and a second impedance matching portion are provided in the signal layer, wherein the first output transmission line is connected to the coupling pad by the first impedance matching portion and wherein the second output transmission line is connected to the coupling pad by the second impedance matching portion.
  • the layer stack further comprises a further dielectric material layer and a further ground layer, wherein the further dielectric material layer is arranged above the signal layer and wherein the further ground layer is arranged above the further dielectric material layer.
  • the coupling pad cannot only be coupled to the ground layer but also to the further ground layer, so that the coupling pad couples via the electric wall to both, the ground layer and the further ground layer.
  • the electric wall further galvanically connects the further ground layer to the coupling pad and the ground layer.
  • the system further comprises a waveguide-based stepped-impedance transformer attached to the open end of the waveguide between the first end of the waveguide and the bottom side of the PCB.
  • a printed circuit board having a bottom side and an opposed top side, wherein the PCB comprises a ground layer, a dielectric material layer and a signal layer arranged in a layer stack from the bottom side to the top side of the PCB, wherein the dielectric material layer is arranged between the ground layer and the signal layer, wherein the signal layer comprises a coupling pad and a first and second output transmission line, both connected to the coupling pad, further comprising a non-conducting slot in the ground layer, further comprising an electric wall galvanically connecting the coupling pad through the dielectric material layer to the ground layer, wherein the non-conducting slot and the coupling pad are aligned, such that in a stack direction of the layer stack the non-conducting slot and the coupling pad at least partially overlap.
  • each of the layers of the PCB is provided with a through-hole configured for accepting a screw for screwing the PCB to the waveguide and the through-holes of each layer are aligned such that in the stack direction the through-holes coincide, thereby forming a hole extending from the top side of the PCB to the bottom side of the PCB, wherein the hole extending from the top side of the PCB to the bottom side of the PCB does not overlap with the opening in the waveguide, the non-conducting slot and the coupling pad, wherein the through-holes are metallized (plated) and form a part of the electric wall.
  • the through-hole is further arranged in close proximity to the coupling pad, so that a distance between a center axis of the through-hole of the signal layer to a center point of the opening of the wave guide is between 60% to 300% of a width of the opening of the waveguide, preferably between 100% to 250% of the width of the opening of the waveguide.
  • a very compact PCB board can be provided, which can be used for providing a system of a waveguide and the PCB board, wherein this system does not need any waveguide back short.
  • FIG. 1 a system comprising a waveguide 100 and a PCB 106 are shown.
  • waveguide 100 has a body having a first end 102 and an opening 104.
  • the opening 104 is shown in FIG. 1 as an elongated opening 104.
  • the length of opening 104 is defined as the extension of opening 104 in the main extension direction of the opening 104, wherein the main extension direction is the direction in which the opening 104 has its largest extension.
  • a width of the opening 104 is perpendicular to the length of the opening 104.
  • PCB 106 comprises a ground layer 108, a dielectric material layer 110 and a signal layer 112 in the stack direction.
  • the further dielectric material layer 110' and the further ground layer 108', above signal layer 112 and therefore above coupling pad 114, as can be seen in FIG. 1 are just optional features and not absolutely necessary for enabling the present invention. Therefore, the essential elements are the ground layer 108, the dielectric material layer 110 together with electric wall 122a, 122b and signal layer 112 in the stack direction starting from the bottom side 106b of PCB 106.
  • the signal layer 112 comprises a coupling pad 114 and a first output transmission line 116 and a second output transmission line 118.
  • the first output transmission line 116 and the second output transmission line 118 can be separately connected to the coupling pad 114 via a first impedance matching section 115a and a second impedance matching section 115b, respectively.
  • the structure comprising the first and second output transmission lines 116 and 118 together with the coupling pad 114 can be point-symmetric with respect to a symmetry point of the coupling pad 114 being a center point of the coupling pad 114.
  • the first and second output transmission lines 116 and 118 can be microstrip lines in one example.
  • ground layer 108 dielectric material layer 110
  • electric wall extends through dielectric material layer 110 so that coupling pad 114 is galvanically connected to ground layer 108 through the dielectric material layer 110.
  • the electric wall consists of a first electric wall portion 122a and a second electric wall portion 122b, both arranged within dielectric material layer 110, so as to cover at least an edge portion 124 of coupling pad 114.
  • electric wall 122a, 122b can be implemented by vias instead of providing the elongated portions 122a, 122b as can be seen in FIG. 1 .
  • ground layer 108 comprises a non conducting slot 120. In the embodiment of FIG.
  • non-conducting slot 120 is arranged so that in the stack direction non-conducting slot 120 overlaps with elongated opening 104. Furthermore, ground layer 108 is galvanically connected to waveguide 100 and opening 104 of waveguide 100 at least partially overlaps with non-conducting slot 120 and coupling pad 114.
  • waveguide 100 and/or ground layers 108, 108' and/or the signal layer 112 and/or electric wall 122 can be made of an electrically conductive material, e.g. copper or aluminium.
  • non conducting slot 120 is needed to couple the fields from the waveguide 100 to the first and second output transmission lines 116 and 118 via electric wall 122a, 122b.
  • an additional further dielectric material layer 110' can be arranged above signal layer 112. Above further dielectric material layer 110' the further ground layer 108' can be provided in the stack direction.
  • electric wall 122a, 122b is extended also into the further dielectric material layer 110 in the same position as within dielectric material layer 110 and preferably having also the same dimensions as within dielectric material layer 110.
  • the signal layer 112 is galvanically coupled to the ground layer 108 and to the further ground layer 108' at the same time via electric wall 122 provided respectively on dielectric material layer 110 and further dielectric material layer 110.
  • dielectric wall 122a, 122b is shaped so as to ensure proper field distribution.
  • a stepped impedance transformer can be attached and on an opposed second end of the stepped impedance transformer the bottom side 106b of the PCB 106 can be attached.
  • a small footprint of the opposed end of the stepped impedance transformer can be achieved on the bottom surface of the bottom side 106b of PCB 106.
  • an incoming signal from the waveguide is split into two separate signals by the coupling pad 114 provided within the PCB 106, wherein those signals preferably have equal amplitudes and are out-of-phase by 180°.
  • the area required on the PCB for the transition and the power division function is particularly small, and no waveguide back short is required on the top side 106a of the PCB 106.
  • the dimensions of the coupling pad 114 can also be made much smaller as in state of the art solutions.
  • FIG. 2 shows a schematic cross-sectional view of a system according to an embodiment of the present invention.
  • waveguide 100 is galvanically connected to the ground layers 108, 108' of PCB 106.
  • the system of the waveguide 100 together with the PCB 106 is fixed by screws 202.
  • the screws 202 extend from the top side 106a of the PCB 106 beyond the bottom side 106b of the PCB 106 for fixing and galvanically connecting the ground plane of the PCB 106 to waveguide 100.
  • the screws 202 are separated from non-conducting slot 120 in the stack direction, so that screws 202 and the non-conducting slot 120 together with opening 104 do not overlap. Further in the stack direction above ground layer 108 dielectric material layer 110 is provided.
  • signal layer 112 is provided followed by further (optional) dielectric material layer 110'.
  • further dielectric material layer 110' Above the further dielectric material layer 110' the further (optional) ground layer 108' is provided.
  • Screws 202 extend respectively through a through hole extending from the top side 106a of the PCB 106 to the bottom side 106b of PCB 106. Screws 202 enable good galvanic contact between waveguide 100, ground layer 108, coupling pad 114 in signal layer 112 and the further ground layer 108' and a tight fixation of the elements of the system.
  • FIG. 3 shows another schematic cross-sectional view of another embodiment of the present invention.
  • PCB 106 is attached to waveguide 100.
  • the ground layer 108, dielectric material layer 110, signal layer 112, further dielectric material layer 110 and further ground layer 108 can be provided.
  • Figure 4 shows another schematic cross-sectional view of another embodiment of the present invention.
  • the first end 102 of waveguide 100 is attached on the bottom side 106b of PCB 106 .
  • the bottom layer 108, the dielectric material layer 110, the signal layer 112, the further dielectric material layer 110', the further signal layer 112', a further dielectric material layer 110" and a further ground layer 108' can be provided.
  • Fig. 5 shows a top view on a signal layer of a PCB according to a further embodiment of the present invention.
  • electric wall is separated into two electric wall portions, namely the first electric wall portion 122a and the second electric wall portion 122b. These two electric wall portions 122a and 122b are separated from each other, thereby forming a first opening 502 and a second opening 504 through which at least partially first output transmission line 116 and second output transmission line 118 respectively can extend. Furthermore, both, the first electric wall portion 122a and the second electric wall portion 122b, respectively, contact the edge portion 124 of coupling pad 114.
  • Both, the first electric wall portion 122a and the second electric wall portion 122b extend through dielectric material layer 110 and contact ground layer 108, so that coupling pad 114 is galvanically coupled to ground layer 108.
  • opening 104 of the waveguide 100, the non-conducting slot 120 and coupling pad 114 are aligned in the stack direction, so that opening 104, non-conducting slot 120 and coupling pad 114 at least partially overlap, which can also be seen in FIG. 5 .
  • Coupling pad 114 together with first and second output transmission lines 116 and 118 are point symmetric with respect to a center point of the coupling pad 114.
  • first and second electric wall portions 122a and 122b are shown in FIG. 5 as elongated portions and therefore consuming much of the volume of dielectric material layer 110. However, it is typically sufficient that electric wall 122a, 122b contacts the edge portion 124 of coupling pad 114 and therefore the dimensions of the electric wall 122a, 122b can be made much smaller than shown in Fig. 5 . In particular the first and second electric wall portions 122a and 122b can be made as small as a portion of each electric wall portions 122a and 122b overlaps with an edge portion 124 of coupling pad 114.
  • the first and second electric wall portions 122a and 122b can consist of or comprise series of vias at least extending from the coupling pad to ground layer 108 through dielectric material layer 110.
  • the distance between the vias is chosen such that for a lowest frequency of signals transmitted using the system the vias form an electric wall.
  • FIG. 6 shows another embodiment of the present invention showing on the left side the signal layer 112 of PCB 106 and on the right side the ground layer 108 of PCB 106.
  • the dark grey structures indicate copper material
  • the bright grey structures indicate holes and vias.
  • the black structures show copper free areas.
  • On the left side showing signal layer 112 three separate coupling pads 114 are provided in sequence from the top of the left side figure to the bottom of the left side figure. Each of these coupling pads 114 together with first and second output transmission lines 116 and 118 is point-symmetric with respect to a center point of coupling pad 114.
  • first and second electric wall portions 122a and 122b are provided next to each coupling pad 114 by arranging a plurality of vias 602 in a series, so that each of the electric wall portions 122a and 122b consists of a plurality of vias 602.
  • screw openings (through holes) 202' are provided in close proximity to coupling pad 114.
  • the distance between the center of the screw openings 202' and the center of the waveguide opening 104 can be minimum 0.6 times the width of the waveguide opening. In a preferred implementation, this distance should be between 100%-250% of the width of the waveguide opening, also depending on the diameter of the used screws and the corresponding though hole.
  • the off-centered feeding of the coupling pad is advantageous for a close placing of the screws to the coupling pad 114. Therefore, it is possible to arrange screws 202 as close as possible to each coupling pad 114, thereby ensuring a tight mechanical fixing of each coupling pad 114 in the arrangement and mechanical stress is exerted on each coupling pad 114 as high as possible. Furthermore, in particular due to the point-symmetric arrangement of coupling pad 114, a very dense arrangement of the coupling pads 114 together with screws 202 is possible.
  • the right half of FIG. 6 shows the ground layer 108 of the PCB 106 with non-conducting slots 120, the vias 602 and the screw openings 202'.
  • FIG. 7 shows another embodiment of the present invention in a perspective view on signal layer 112, wherein coupling pad 114 is mirror-symmetric with respect to an axis extending through a symmetry point of coupling pad 114 perpendicular to a main extension direction of the coupling pad 114, wherein the main extension direction is the direction of the largest extension of the coupling pad 114.
  • electric wall is made up of four electric wall portions, 122 a, b, c, and d, which at least partially contact respectively coupling pad 114 on a respective edge portions 124.
  • FIG. 8 shows a PCB of the present invention together with first radiators 811a, second radiators 811b, third radiators 812a and fourth radiators 812b.
  • the first, second, third and fourth radiators 811a, 811b, 812a and 812b are arranged in columns, wherein each column can contain one first radiator 811a, one second radiator 811b, one third radiator 812a and one fourth radiator 812b. However, each column can also contain more than four radiators.
  • the coupling pad 114 together with first and second output transmission lines 116 and 118 are provided in the point symmetric arrangement. Further, the first output transmission line 116 is connected to the first and second radiators 811a and 811b.
  • the third and fourth radiators 812a and 812b are connected to the second output transmission line 118. Further first and second electric wall portions 122a and 122b are implemented by a plurality of vias 602. Further in a direction perpendicular to the columns, screws 202 are provided as close as possible to coupling pad 114 for ensuring a tight fixing of the coupling pad 114.
  • the first and second radiators 811a and 811b resemble a first subarray and the third and fourth radiators 812a and 812b resemble a second subarray, wherein the two subarrays are fed with 180° phase difference. Due to the compact arrangement of the coupling pad 114 together with vias 602 the distance between the two sub-arrays can also be minimized and the column width can be minimized. This leads to a better performance regarding side lobes for large tilt angles.
  • FIG. 9 shows a graph indicating the S-parameter (in dB) on the y-axis and the corresponding frequency (in GHz) on the x-axis and shows simulated S-parameters of the present invention.
  • the return loss is better than 15 dB within a relative bandwidth of around 15% and better than 10 dB within a relative bandwidth of around 20%.
  • FIG. 10 shows a simulated phase difference between the first and second output transmission lines 116 and 118 of the PCB 106, wherein there one can clearly see that the phase difference is very stable at 180° for the entire simulated frequency range.
  • the phase jump shown in the figure can be ignored, as this is caused in by phase wrapping in the simulation program. Therefore the waveguide transition has at the same time the functionality of a balun.

Claims (10)

  1. Système comprenant :
    un guide d'ondes (100) ayant un corps avec une première extrémité (102) ayant une ouverture (104), et
    une carte de circuit imprimé, PCB, (106) ayant un côté inférieur (106b) et un côté supérieur opposé (106a), la PCB (106) comprenant une couche de masse (108), une couche de matériau diélectrique (110) et une couche de signal (112) agencées en une pile de couches allant du côté inférieur (106b) au côté supérieur (106a) de la PCB (106), la couche de matériau diélectrique (110) étant agencée entre la couche de masse (108) et la couche de signal (112), la couche de signal (112) comprenant un plot de couplage (114) et une première et une deuxième ligne de transmission de sortie (116, 118) toutes deux connectées au plot de couplage (114) ;
    la PCB comprenant en outre une fente non conductrice (120) dans la couche de masse (108) ;
    la PCB comprenant en outre une paroi électrique connectant de façon galvanique le plot de couplage (114), à travers la couche de matériau diélectrique (110), à la couche de masse (108) ;
    la première extrémité (102) du guide d'ondes (100) étant agencée sur le côté inférieur (106b) de la PCB (106) et étant connectée de façon galvanique à la couche de masse (108) ;
    l'ouverture (104), la fente non conductrice (120) et le plot de couplage (114) étant alignés de telle sorte que dans une direction d'empilement de la pile de couches, l'ouverture (104), la fente non conductrice (120) et le plot de couplage (114) se chevauchent au moins partiellement ;
    chacune des couches de la PCB (106) étant pourvue d'un trou traversant configuré pour recevoir une vis (202) pour visser la PCB (106) au guide d'ondes (100) et les trous traversants de chaque couche étant alignés de telle sorte que dans la direction d'empilement, les trous traversants coïncident, formant ainsi un trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106), le trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106) ne chevauchant pas l'ouverture (104) dans le guide d'ondes (100), la fente non conductrice (120) et le plot de couplage (114) ;
    les trous traversants étant métallisés et formant une partie de la paroi électrique ;
    le trou traversant de la couche de signal (112), et donc le trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106), étant agencé à proximité immédiate du plot de couplage (114), de sorte qu'une distance entre un axe central du trou traversant de la couche de signal (112) et le point de symétrie de l'ouverture du guide d'ondes (104) est comprise entre 60 % et 300 % d'une largeur de l'ouverture (104) du guide d'ondes (100), de préférence entre 100 % et 250 % de la largeur de l'ouverture (104) du guide d'ondes (100) ;
    le système comprenant en outre un transformateur d'impédance échelonnée fixé à la première extrémité (102) du guide d'ondes (100) entre la première extrémité (102) du guide d'ondes (100) et le côté inférieur (106b) de la PCB (106).
  2. Système selon la revendication 1,
    la paroi électrique (122) étant agencée sur et entrant en contact avec au moins une partie de bord (124) du plot de couplage (114).
  3. Système selon l'une quelconque des revendications précédentes,
    le plot de couplage (114) ainsi que les première et deuxième lignes de transmission de sortie (116, 118) étant symétriques en un point par rapport à un point de symétrie du plot de couplage (114).
  4. Système selon la revendication 1 ou 2,
    le plot de couplage (114) ainsi que les première et deuxième lignes de transmission de sortie (116, 118) étant symétriques en miroir par rapport à un axe passant par un point de symétrie du plot de couplage (114) perpendiculairement à une direction d'extension principale du plot de couplage (114), la direction d'extension principale du plot de couplage (114) étant la direction dans laquelle le plot de couplage (114) a sa plus grande extension.
  5. Système selon l'une quelconque des revendications précédentes,
    la paroi électrique étant formée au moins par une pluralité de trous d'interconnexion conducteurs (602) s'étendant au moins entre la couche de signal (112) et la couche de masse (108) à travers la couche de matériau diélectrique (110).
  6. Système selon l'une quelconque des revendications précédentes,
    la paroi électrique comprenant une première et une deuxième partie de paroi électrique (122a, 122b), qui sont séparées, formant ainsi au moins deux ouvertures (502, 504) à travers lesquelles s'étendent les première et deuxième lignes de transmission de sortie (116, 118).
  7. Système selon l'une quelconque des revendications 1 à 6,
    la PCB comprenant en outre une première partie d'adaptation d'impédance (115a) et une deuxième partie d'impédance (115b) dans la couche de signal (112) ;
    la première ligne de transmission de sortie (116) étant connectée au plot de couplage (114) par la première partie d'adaptation d'impédance (115a) ; et
    la deuxième ligne de transmission de sortie (118) étant connectée au plot de couplage (114) par la deuxième partie d'adaptation d'impédance (115b).
  8. Système selon l'une quelconque des revendications précédentes, la pile de couches comprenant en outre une couche de matériau diélectrique supplémentaire (110') et une couche de masse supplémentaire (108') ;
    la couche de matériau diélectrique supplémentaire (110') étant agencée au-dessus de
    la couche de signal (112) ; et
    la couche de masse supplémentaire (108') étant agencée au-dessus de la couche diélectrique supplémentaire (110).
  9. Système selon la revendication 8,
    la paroi électrique (122) connectant en outre de façon galvanique la couche de masse supplémentaire (108) au plot de couplage (114) et à la couche de masse (108).
  10. Carte de circuit imprimé, PCB, (106) ayant un côté inférieur (106b) et un côté supérieur opposé (106a), la PCB (106) comprenant une couche de masse (108), une couche de matériau diélectrique (110) et une couche de signal (112) agencées en une pile de couches allant du côté inférieur (106b) au côté supérieur (106a) de la PCB (106), la couche de matériau diélectrique (110) étant agencée entre la couche de masse (108) et la couche de signal (112), la couche de signal (112) comprenant un plot de couplage (114) et une première et une deuxième ligne de transmission de sortie (116, 118) toutes deux connectées au plot de couplage (114) ;
    comprenant en outre une fente non conductrice (120) dans la couche de masse (108) ; comprenant en outre une paroi électrique (122) connectant de façon galvanique le plot de couplage (114) à travers la couche de matériau diélectrique (110) à la couche de masse (108) ;
    la fente non conductrice (120) et le plot de couplage (114) étant alignés de telle sorte que dans une direction d'empilement de la pile de couches, la fente non conductrice (120) et le plot de couplage (114) se chevauchent au moins partiellement ; chacune des couches de la PCB (106) étant pourvue d'un trou traversant configuré pour recevoir une vis (202) pour visser la PCB (106) à un guide d'ondes (100) et les trous traversants de chaque couche étant alignés de telle sorte que dans la direction d'empilement, les trous traversants coïncident, formant ainsi un trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106), le trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106) ne chevauchant pas l'ouverture (104) dans le guide d'ondes (100), la fente non conductrice (120) et le plot de couplage (114) ;
    les trous traversants étant métallisés et formant une partie de la paroi électrique ;
    le trou traversant de la couche de signal (112), et donc le trou s'étendant du côté supérieur (106a) de la PCB (106) au côté inférieur (106b) de la PCB (106), étant agencé à proximité immédiate du plot de couplage (114), de sorte qu'une distance entre un axe central du trou traversant de la couche de signal (112) et le point de symétrie de l'ouverture de guide d'ondes (104) est comprise entre 60 % et 300 % d'une largeur de l'ouverture (104) du guide d'ondes (100), de préférence entre 100 % et 250 % de la largeur de l'ouverture (104) du guide d'ondes (100) ;
    la PCB comprenant en outre un transformateur à impédance échelonnée, sur lequel le côté inférieur (106b) de la PCB (106) est fixé.
EP16166973.4A 2016-04-26 2016-04-26 Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes Active EP3240101B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16166973.4A EP3240101B1 (fr) 2016-04-26 2016-04-26 Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes
CN201780025627.4A CN109075420B (zh) 2016-04-26 2017-04-25 印刷电路板和波导之间的射频互连
PCT/CN2017/081886 WO2017186099A1 (fr) 2016-04-26 2017-04-25 Interconnexion radiofréquence entre une carte de circuit imprimé et un guide d'ondes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16166973.4A EP3240101B1 (fr) 2016-04-26 2016-04-26 Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes

Publications (2)

Publication Number Publication Date
EP3240101A1 EP3240101A1 (fr) 2017-11-01
EP3240101B1 true EP3240101B1 (fr) 2020-07-29

Family

ID=55809028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166973.4A Active EP3240101B1 (fr) 2016-04-26 2016-04-26 Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes

Country Status (3)

Country Link
EP (1) EP3240101B1 (fr)
CN (1) CN109075420B (fr)
WO (1) WO2017186099A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6881675B2 (ja) * 2018-03-27 2021-06-02 株式会社村田製作所 アンテナモジュール
NL2022186B1 (en) * 2018-12-12 2020-07-02 Ampleon Netherlands Bv Power divider
JP7241960B2 (ja) * 2020-03-06 2023-03-17 三菱電機株式会社 導波管マイクロストリップ線路変換器
CN112467326B (zh) * 2020-12-07 2021-10-01 之江实验室 一种宽带矩形波导-微带转换器
CN112563708B (zh) * 2021-02-22 2021-06-04 成都天锐星通科技有限公司 一种传输线转换结构与天线驻波测试系统
CN113224488B (zh) * 2021-05-13 2022-02-18 上海航天电子通讯设备研究所 一种宽阻带基片集成波导滤波功分器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042993A1 (en) * 2001-09-04 2003-03-06 Kazuya Sayanagi High-frequency line transducer, component, module and communication apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669776B1 (fr) * 1990-11-23 1993-01-22 Thomson Csf Antenne hyperfrequence a fente a structure de faible epaisseur.
US5793263A (en) * 1996-05-17 1998-08-11 University Of Massachusetts Waveguide-microstrip transmission line transition structure having an integral slot and antenna coupling arrangement
DE60009962T2 (de) * 2000-10-18 2004-09-02 Nokia Corp. Hohlleiter-streifenleiter-übergang
EP1367668A1 (fr) * 2002-05-30 2003-12-03 Siemens Information and Communication Networks S.p.A. Système de transition entre microruban et guide d'ondes à large bande sur une carte de circuits imprimés multicouche
JP4384620B2 (ja) * 2005-06-10 2009-12-16 東光株式会社 誘電体導波管帯域阻止フィルタ
JP5123154B2 (ja) * 2008-12-12 2013-01-16 東光株式会社 誘電体導波管‐マイクロストリップ変換構造
US8723616B2 (en) * 2009-02-27 2014-05-13 Mitsubishi Electric Corporation Waveguide-microstrip line converter having connection conductors spaced apart by different distances
KR100907271B1 (ko) * 2009-03-27 2009-07-13 삼성탈레스 주식회사 도파관-마이크로스트립 선로 변환장치
CN203119074U (zh) * 2013-01-06 2013-08-07 中国电子科技集团公司第十研究所 三端口矩形波导微带线变换器
KR101621480B1 (ko) * 2014-10-16 2016-05-16 현대모비스 주식회사 도파관 대 유전체 도파관의 천이 구조

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042993A1 (en) * 2001-09-04 2003-03-06 Kazuya Sayanagi High-frequency line transducer, component, module and communication apparatus

Also Published As

Publication number Publication date
EP3240101A1 (fr) 2017-11-01
WO2017186099A1 (fr) 2017-11-02
CN109075420A (zh) 2018-12-21
CN109075420B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
EP3240101B1 (fr) Interconnexion de radiofréquence entre une carte de circuit imprimé et un guide d'ondes
CN113169457B (zh) 脊间隙波导以及包括其的多层天线阵列
JP7264884B2 (ja) フェーズドアレイアンテナ
CN100344028C (zh) 电介质波导管的输入输出结合结构
EP3430685B1 (fr) Structure d'adaptateur avec canaux de guide d'ondes
EP2979323B1 (fr) Agencement d'antenne siw
US11303003B2 (en) Waveguide microstrip line converter
EP2945222A1 (fr) Partie RF de four à micro-ondes ou d'ondes millimétriques utilisant des technologies de matrice de broches (PGA) et/ou de grille matricielle à billes (BGA)
EP0318311A2 (fr) Transition entre deux lignes à bandes
EP2449621B1 (fr) Antenne hybride inclinée à ouverture unique
JP2004327641A (ja) 電子部品モジュール
EP3867970B1 (fr) Transition de microruban sans contact vers guide d'ondes
US20110037530A1 (en) Stripline to waveguide perpendicular transition
CN110168801A (zh) 波导组件
US11303004B2 (en) Microstrip-to-waveguide transition including a substrate integrated waveguide with a 90 degree bend section
US7289078B2 (en) Millimeter wave antenna
CN107004937B (zh) 射频连接装置
US11916298B2 (en) Patch antenna
CN115458892B (zh) 基于圆形siw谐振腔的四路同相不等功分器
EP3867976B1 (fr) Antenne à lentille commutable à structure sélective de fréquence intégrée
EP3217470A1 (fr) Agencement de couplage de conducteur pour le couplage de conducteurs
JP2001088097A (ja) ミリ波多層基板モジュール及びその製造方法
CN217507641U (zh) 一种平面微带转间隙波导天线
US11967764B1 (en) Single antenna with dual circular polarizations and quad feeds for millimeter wave applications
CN210006926U (zh) 贴片天线

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180403

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190828

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016040676

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1296867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016040676

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210426

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230302

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230307

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240307

Year of fee payment: 9