EP3237646A1 - Intermetallic alloy based on titanium - Google Patents

Intermetallic alloy based on titanium

Info

Publication number
EP3237646A1
EP3237646A1 EP15823349.4A EP15823349A EP3237646A1 EP 3237646 A1 EP3237646 A1 EP 3237646A1 EP 15823349 A EP15823349 A EP 15823349A EP 3237646 A1 EP3237646 A1 EP 3237646A1
Authority
EP
European Patent Office
Prior art keywords
alloy
atomic percentage
titanium
resistance
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15823349.4A
Other languages
German (de)
French (fr)
Other versions
EP3237646B1 (en
Inventor
Jean-Yves Guedou
Jean-Michel Patrick Maurice Franchet
Jean-Loup Bernard Victor STRUDEL
Laurent GERMANN
Dipankar Banerjee
Vikas Kumar
Tapash NANDY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3237646A1 publication Critical patent/EP3237646A1/en
Application granted granted Critical
Publication of EP3237646B1 publication Critical patent/EP3237646B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Definitions

  • the invention relates to titanium-based intermetallic alloys.
  • Titanium-based titanium-based intermetallic alloys of the Ti 2 AINb type are known from application FR 9716057. Such alloys have a high yield strength up to 650 ° C., high creep resistance at 550 ° C. and good ductility. at room temperature. However, these alloys may have creep and high temperature oxidation resistance (650 ° C. and beyond) insufficient for certain applications in turbomachines, such as downstream discs or high pressure compressor wheels. These parts are the hottest rotating parts of the compressor and are usually made of nickel alloy density greater than 8 which can be detrimental to the weight of the machine.
  • the invention proposes, according to a first aspect, a titanium-based intermetallic alloy comprising, in atomic percentages, 16% to 26% of Al, 18% to 28% of Nb, 0% to 3% of titanium.
  • a metal M selected from Mo, W, Hf, and V, 0% to 0.8% Si or 0.1% to 2% Si, 0% to 2% Ta, 0% to 4% Zr with the condition Fe + Ni ⁇ 400 ppm, the remainder being Ti.
  • the alloy according to the invention advantageously has improved high temperature creep resistance.
  • Such an alloy may advantageously have a yield strength greater than 850 MPa at a temperature of 550 ° C., a high creep resistance between 550 ° C. and 650 ° C., and a ductility greater than 3.5% and a limit. of elasticity greater than 1000 MPa at room temperature.
  • ambient temperature it is necessary to understand the temperature of 20 ° C.
  • the alloy Unless otherwise stated, if several metals M selected from Mo, W, Hf and V are present in the alloy, it should be understood that the sum of the percent atomic percentages of each of the metals present is within the indicated range of values. For example, if Mo and W are present in the alloy, the sum of the atomic percentage content in Mo and the atomic percentage content in W is between 0% and 3%.
  • Tantalum present in atomic contents of between 0 and 2% advantageously makes it possible to reduce the kinetics of oxidation and to increase the creep resistance of the alloy.
  • the alloy can verify, in atomic percentage, the following condition: Fe + Ni ⁇ 350 ppm, for example Fe + Ni 300 300 ppm.
  • the alloy can verify, in atomic percentage, the following condition: Fe + Ni + Cr ⁇ 350 ppm, for example Fe + Ni + Cr ⁇ 300 ppm.
  • the alloy can verify, in atomic percentage, the following condition: Fe ⁇ 200 ppm, for example Fe ⁇ 150 ppm, for example Fe ⁇ 100 ppm.
  • the atomic percentage ratio Al / Nb may be between 1 and 1.3, for example between 1 and 1.2.
  • Such an Al / Nb ratio advantageously makes it possible to improve the resistance to hot oxidation of the alloy.
  • the atomic percentage ratio Al / Nb is between 1.05 and 1.15.
  • Such an Al / Nb ratio makes it possible to give the alloy optimum resistance to hot oxidation.
  • the alloy may comprise, in atomic percentage, 20% to 22% of Nb.
  • Nb contents advantageously make it possible to give the alloy improved oxidation resistance, ductility and mechanical strength.
  • the alloy may comprise, in atomic percentage, 22% to 25% of Al. Such contents advantageously make it possible to give the alloy creep resistance and improved oxidation.
  • the alloy may comprise, in atomic percentage, 23% to 24% of Al.
  • Such contents advantageously make it possible to confer on the alloy an improved ductility as well as creep resistance and improved oxidation.
  • the alloy may comprise, in atomic percentage, 0.1% to 2% Si, for example 0.1% to 0.8% Si.
  • the alloy may comprise, atomic percentage, 0.1% to 0.5% Si.
  • Such Si contents advantageously make it possible to improve the creep resistance of the alloy while giving it good resistance to oxidation.
  • the alloy may comprise, in atomic percentage, 0.8% to 3% of M.
  • the alloy may comprise, in atomic percentage, 0.8% to 2.5% of M preferably 1% to 2% of M.
  • Such metal contents M advantageously make it possible to improve the heat resistance of the alloy.
  • the alloy may comprise, in atomic percentage, 1% to 3% of Zr.
  • the alloy may comprise, in atomic percentage, from 1 to 2% of Zr.
  • Such Zr contents advantageously make it possible to improve the creep strength, the mechanical strength above 400 ° C and the oxidation resistance of the alloy.
  • the alloy may be such that the following condition is satisfied as an atomic percentage: M + Si + Zr + Ta ⁇ 0.4%, for example M + Si + Zr + Ta ⁇ 1%.
  • the alloy may be such that: the content, as an atomic percentage, of Al is between 20% and 25%, preferably between 21% and 24%; the content, in atomic percentage, of Nb is between 20% and 22%, preferably between 21% and 22%, the atomic percentage ratio Al / Nb being between 1 and 1.3, preferably between 1 and 1.2, more preferably between 1.05 and 1.15,
  • the content, in atomic percentage, in M is between 0.8% and 3%, preferably between 0.8% and 2.5%, more preferably between 1% and 2%, and
  • the alloy being optionally such that the content, in atomic percentage, of Si is between 0.1% and 2%, for example between 0.1% and 0.8%, preferably between 0.1% and 0%, 5%.
  • Table 1 gives the compositions of examples of alloys S1 to S12 according to the invention. All these compositions satisfy, as an atomic percentage, the following condition Fe + Ni ⁇ 400 ppm.
  • the invention also relates to a turbomachine equipped with a part comprising a particular formed of an alloy as defined above.
  • the part can, for example, be a housing or a rotating part.
  • the invention also relates to an engine comprising a turbomachine as defined above.
  • the invention also relates to an aircraft comprising a motor as defined above.
  • FIG. 1 represents the evolution of the creep resistance of various alloys at 650 ° C. under a stress of 310 MPa
  • FIG. 2 represents the influence of the Al / Nb ratio on the resistance to hot oxidation
  • FIGS. 3A to 3D illustrate the results obtained in terms of mechanical properties for a preferred alloy according to the invention. Examples
  • EXAMPLE 1 Manufacture of an Alloy According to the Invention From raw materials consisting of titanium sponges and master alloy granules, a mixture was produced to obtain the chemical composition S12 described in Table 1 above. This mixture of powders was then homogenized and compressed to form a compact constituting an electrode. This electrode was then remelted under vacuum by creating an electric arc between the consumable electrode and the bottom of the water-cooled crucible (vacuum arc remelting process or "VAR" for "Vacuum Arc Remelting”). ). The ingot obtained is then reduced to a bar by high speed deformation (by forging or extrusion) to reduce the grain size. The last step is an isothermal forging of slices cut in the bar at a temperature just below the ⁇ transus temperature and at a low rate of deformation (some 10 "3 ).
  • Such an alloy of composition S12 which contains 1.3% of zirconium has a very good resistance to hot oxidation. Indeed, this alloy does not peel after exposure of 1500 hours at 700 ° C in air, a thin layer of very adherent and therefore protective oxide, composed of alumina and zirconia being formed. Alloys containing no zirconium may have a lower resistance to hot oxidation.
  • Example 2 Improvement of the resistance to hot creep by implementing a limited Fe + Ni content
  • Table 2 These alloys comprise trace elements Fe and Ni which are present in the form of impurities, and result naturally from the manufacturing process.
  • Fe and Ni elements are impurities from the stainless steel container used to make titanium powders. It is thus preferable to use a high purity titanium powder taken from the center of the volume delimited by the container where the pollution coming from the walls is negligible in order to ensure that the Fe + Ni condition ⁇ 400 ppm is obtained.
  • FIG. 1 an improvement in the creep resistance at 650 ° C. under a stress of 310 MPa is observed when the trace element contents are reduced in order to satisfy the Fe + Ni ⁇ 400 ppm relationship.
  • creep reaches 1% after 250 hours with an alloy according to the invention (P3) whereas this creep value is reached only after 40 hours with an alloy according to the invention. prior art (PI).
  • composition S12 has both good results in tension and in creep. More particularly:
  • FIG. 3A shows, for different alloys, the evolution of the elastic limit (R 0 , 2 ) as a function of the temperature
  • FIG. 3B shows, for different alloys, the evolution of elongation at break (ductility) as a function of temperature
  • FIG. 3C compares the creep (time for creep 1%) of different alloys at temperatures of 600 and 650 ° C.
  • FIG. 3D compares the creep rupture time of different alloys at temperatures of 600 and 650 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to an intermetallic alloy based on titanium, comprising, in atomic percentages, between 16% and 26% of Al, between 18% and 28% of Nb, between 0% and 3% of a metal M selected from Mo, W, Hf, and V, between 0% and 0.8% of Si, between 0% and 2% of Ta, and between 1% and 4% of Zr, with the condition Fe+Ni < 400 ppm, the remainder being Ti, the alloy also having an Al/Nb ratio in atomic percent of between 1.05 and 1.15.

Description

Alliage intermétallique à base de titane  Titanium-based intermetallic alloy
Arrière-plan de l'invention Background of the invention
L'invention concerne des alliages intermétalliques à base de titane.  The invention relates to titanium-based intermetallic alloys.
Des alliages intermétalliques à base de titane du type Ti2AINb sont connus de la demande FR 9716057. De tels alliages possèdent une haute limite d'élasticité jusqu'à 650°C, une résistance élevée au fluage à 550°C et une bonne ductilité à température ambiante. Cependant, ces alliages peuvent présenter des tenues en fluage et en oxydation à température élevée (650°C et au-delà) insuffisantes pour certaines applications dans les turbomachines, telles que les disques aval ou les rouets de compresseurs haute pression. Ces pièces constituent les pièces tournantes les plus chaudes du compresseur et sont généralement fabriquées en alliage de nickel de densité supérieure à 8 ce qui peut être pénalisant pour la masse de la machine. Titanium-based titanium-based intermetallic alloys of the Ti 2 AINb type are known from application FR 9716057. Such alloys have a high yield strength up to 650 ° C., high creep resistance at 550 ° C. and good ductility. at room temperature. However, these alloys may have creep and high temperature oxidation resistance (650 ° C. and beyond) insufficient for certain applications in turbomachines, such as downstream discs or high pressure compressor wheels. These parts are the hottest rotating parts of the compressor and are usually made of nickel alloy density greater than 8 which can be detrimental to the weight of the machine.
Il existe, par conséquent, un besoin pour disposer de nouveaux alliages à base de titane de type Ti2AINb présentant une tenue au fluage à température élevée améliorée. There is, therefore, a need for novel titanium-based Ti 2 AINb-based alloys having improved high temperature creep resistance.
Il existe aussi un besoin pour disposer de nouveaux alliages à base de titane de type Ti2AINb présentant une résistance à l'oxydation à température élevée améliorée. There is also a need for new Ti 2 AINb titanium-based alloys having improved high temperature oxidation resistance.
Il existe encore un besoin pour disposer de nouveaux alliages à base de titane de type Ti2AINb. There is still a need for new alloys based on titanium Ti 2 AINb type.
Objet et résumé de l'invention Object and summary of the invention
A cet effet, l'invention propose, selon un premier aspect, un alliage intermétallique à base de titane comportant, en pourcentages atomiques, 16 % à 26% d'AI, 18 % à 28% de Nb, 0 % à 3% d'un métal M choisi entre Mo, W, Hf, et V, 0 % à 0,8% de Si ou 0,1% à 2% de Si, 0 % à 2% de Ta, 0 % à 4% de Zr, avec la condition Fe+Ni≤ 400 ppm, le reste étant Ti.  For this purpose, the invention proposes, according to a first aspect, a titanium-based intermetallic alloy comprising, in atomic percentages, 16% to 26% of Al, 18% to 28% of Nb, 0% to 3% of titanium. a metal M selected from Mo, W, Hf, and V, 0% to 0.8% Si or 0.1% to 2% Si, 0% to 2% Ta, 0% to 4% Zr with the condition Fe + Ni≤ 400 ppm, the remainder being Ti.
Du fait de la teneur réduite en éléments Fe et Ni, l'alliage selon l'invention présente avantageusement une tenue en fluage à haute température améliorée. Un tel alliage peut avantageusement présenter une limite d'élasticité supérieure à 850 MPa à une température de 550°C, une résistance au fluage élevée entre 550°C et 650°C ainsi qu'une ductilité supérieure à 3,5 % et une limite d'élasticité supérieure à 1000 MPa à température ambiante. Par « température ambiante », il faut comprendre la température de 20°C. Due to the reduced content of Fe and Ni elements, the alloy according to the invention advantageously has improved high temperature creep resistance. Such an alloy may advantageously have a yield strength greater than 850 MPa at a temperature of 550 ° C., a high creep resistance between 550 ° C. and 650 ° C., and a ductility greater than 3.5% and a limit. of elasticity greater than 1000 MPa at room temperature. By "ambient temperature" it is necessary to understand the temperature of 20 ° C.
Sauf mention contraire, si plusieurs métaux M choisis parmi Mo, W, Hf et V sont présents dans l'alliage, il faut comprendre que la somme des teneurs en pourcentages atomiques de chacun des métaux présents est comprise dans la plage de valeurs indiquée. Par exemple, si du Mo et du W sont présents dans l'alliage, la somme de la teneur en pourcentage atomique en Mo et de la teneur en pourcentage atomique en W est comprise entre 0 % et 3%.  Unless otherwise stated, if several metals M selected from Mo, W, Hf and V are present in the alloy, it should be understood that the sum of the percent atomic percentages of each of the metals present is within the indicated range of values. For example, if Mo and W are present in the alloy, the sum of the atomic percentage content in Mo and the atomic percentage content in W is between 0% and 3%.
Le tantale présent dans des teneurs atomiques comprises entre 0 et 2% permet avantageusement de réduire la cinétique d'oxydation et d'augmenter la résistance au fluage de l'alliage.  Tantalum present in atomic contents of between 0 and 2% advantageously makes it possible to reduce the kinetics of oxidation and to increase the creep resistance of the alloy.
Dans un exemple de réalisation, l'alliage peut vérifier, en pourcentage atomique, la condition suivante : Fe+Ni < 350 ppm, par exemple Fe+Ni≤ 300 ppm. Dans un exemple de réalisation, l'alliage peut vérifier, en pourcentage atomique, la condition suivante : Fe+Ni+Cr < 350 ppm, par exemple Fe+Ni+Cr ≤ 300 ppm. De préférence, l'alliage peut vérifier, en pourcentage atomique, la condition suivante : Fe≤ 200 ppm, par exemple Fe≤ 150 ppm, par exemple Fe≤ 100 ppm.  In an exemplary embodiment, the alloy can verify, in atomic percentage, the following condition: Fe + Ni <350 ppm, for example Fe + Ni 300 300 ppm. In an exemplary embodiment, the alloy can verify, in atomic percentage, the following condition: Fe + Ni + Cr <350 ppm, for example Fe + Ni + Cr ≤ 300 ppm. Preferably, the alloy can verify, in atomic percentage, the following condition: Fe ≤ 200 ppm, for example Fe ≤ 150 ppm, for example Fe ≤ 100 ppm.
De préférence, le rapport en pourcentage atomique Al/Nb peut être compris entre 1 et 1,3, par exemple entre 1 et 1,2.  Preferably, the atomic percentage ratio Al / Nb may be between 1 and 1.3, for example between 1 and 1.2.
Un tel rapport Al/Nb permet avantageusement d'améliorer la résistance à l'oxydation à chaud de l'alliage.  Such an Al / Nb ratio advantageously makes it possible to improve the resistance to hot oxidation of the alloy.
De préférence, le rapport en pourcentage atomique Al/Nb est compris entre 1,05 et 1,15.  Preferably, the atomic percentage ratio Al / Nb is between 1.05 and 1.15.
Un tel rapport Al/Nb permet de conférer à l'alliage une résistance à l'oxydation à chaud optimale.  Such an Al / Nb ratio makes it possible to give the alloy optimum resistance to hot oxidation.
De préférence, l'alliage peut comporter, en pourcentage atomique, 20 % à 22 % de Nb. De telles teneurs en Nb permettent avantageusement de conférer à l'alliage une tenue à l'oxydation, une ductilité ainsi qu'une résistance mécanique améliorées. Dans un exemple de réalisation, l'alliage peut comporter, en pourcentage atomique, 22% à 25 % d'AI. De telles teneurs permettent avantageusement de conférer à l'alliage une tenue en fluage et à l'oxydation améliorée. Preferably, the alloy may comprise, in atomic percentage, 20% to 22% of Nb. Such Nb contents advantageously make it possible to give the alloy improved oxidation resistance, ductility and mechanical strength. In an exemplary embodiment, the alloy may comprise, in atomic percentage, 22% to 25% of Al. Such contents advantageously make it possible to give the alloy creep resistance and improved oxidation.
De préférence, l'alliage peut comporter, en pourcentage atomique, 23 % à 24 % d'AI. De telles teneurs permettent avantageusement de conférer à l'alliage une ductilité améliorée ainsi qu'une tenue en fluage et à l'oxydation améliorée.  Preferably, the alloy may comprise, in atomic percentage, 23% to 24% of Al. Such contents advantageously make it possible to confer on the alloy an improved ductility as well as creep resistance and improved oxidation.
Dans un exemple de réalisation, l'alliage peut comporter, en pourcentage atomique, 0,1% à 2% de Si, par exemple 0,1% à 0,8% de Si. De préférence, l'alliage peut comporter, en pourcentage atomique, 0,1% à 0,5% de Si.  In an exemplary embodiment, the alloy may comprise, in atomic percentage, 0.1% to 2% Si, for example 0.1% to 0.8% Si. Preferably, the alloy may comprise, atomic percentage, 0.1% to 0.5% Si.
De telles teneurs en Si permettent avantageusement d'améliorer la tenue en fluage de l'alliage tout en lui conférant une bonne tenue à l'oxydation.  Such Si contents advantageously make it possible to improve the creep resistance of the alloy while giving it good resistance to oxidation.
Dans un exemple de réalisation, l'alliage peut comporter, en pourcentage atomique, 0,8% à 3% de M. De préférence, l'alliage peut comporter, en pourcentage atomique, 0,8 % à 2,5 % de M, de préférence 1% à 2% de M.  In an exemplary embodiment, the alloy may comprise, in atomic percentage, 0.8% to 3% of M. Preferably, the alloy may comprise, in atomic percentage, 0.8% to 2.5% of M preferably 1% to 2% of M.
De telles teneurs en métal M permettent avantageusement d'améliorer la résistance à chaud de l'alliage.  Such metal contents M advantageously make it possible to improve the heat resistance of the alloy.
Dans un exemple de réalisation, l'alliage peut comporter, en pourcentage atomique, 1% à 3% de Zr. De préférence, l'alliage peut comporter, en pourcentage atomique, de 1 à 2% de Zr.  In an exemplary embodiment, the alloy may comprise, in atomic percentage, 1% to 3% of Zr. Preferably, the alloy may comprise, in atomic percentage, from 1 to 2% of Zr.
De telles teneurs en Zr permettent avantageusement d'améliorer la tenue en fluage, la tenue mécanique au-delà de 400°C ainsi que la résistance à l'oxydation de l'alliage.  Such Zr contents advantageously make it possible to improve the creep strength, the mechanical strength above 400 ° C and the oxidation resistance of the alloy.
Dans un exemple de réalisation, l'alliage peut être tel que la condition suivante soit satisfaite en pourcentage atomique : M+Si+Zr+Ta ≥ 0,4%, par exemple M+Si+Zr+Ta≥ 1%.  In an exemplary embodiment, the alloy may be such that the following condition is satisfied as an atomic percentage: M + Si + Zr + Ta ≥ 0.4%, for example M + Si + Zr + Ta≥ 1%.
De telles teneurs permettent avantageusement d'améliorer la résistance mécanique à chaud de l'alliage.  Such contents advantageously make it possible to improve the hot strength of the alloy.
Dans un exemple de réalisation, l'alliage peut être tel que : - la teneur, en pourcentage atomique, en Al soit comprise entre 20% et 25%, de préférence entre 21 % et 24 %, - la teneur, en pourcentage atomique, en Nb soit comprise entre 20% et 22%, de préférence entre 21% et 22%, le rapport en pourcentage atomique Al/Nb étant compris entre 1 et 1,3, de préférence entre 1 et 1,2, de préférence encore entre 1,05 et 1,15, In one exemplary embodiment, the alloy may be such that: the content, as an atomic percentage, of Al is between 20% and 25%, preferably between 21% and 24%; the content, in atomic percentage, of Nb is between 20% and 22%, preferably between 21% and 22%, the atomic percentage ratio Al / Nb being between 1 and 1.3, preferably between 1 and 1.2, more preferably between 1.05 and 1.15,
- la teneur, en pourcentage atomique, en M soit comprise entre 0,8% et 3%, de préférence entre 0,8 % et 2,5 %, de préférence encore entre 1% et 2%, et  the content, in atomic percentage, in M is between 0.8% and 3%, preferably between 0.8% and 2.5%, more preferably between 1% and 2%, and
- la teneur, en pourcentage atomique, en Zr soit comprise entre 1% et 3%,  - the content, in atomic percentage, in Zr is between 1% and 3%,
l'alliage étant optionnellement tel que la teneur, en pourcentage atomique, en Si soit comprise entre 0,1 % et 2 %, par exemple entre 0,1 % et 0,8 %, de préférence entre 0,1 % et 0,5%.  the alloy being optionally such that the content, in atomic percentage, of Si is between 0.1% and 2%, for example between 0.1% and 0.8%, preferably between 0.1% and 0%, 5%.
Un tel alliage présente avantageusement :  Such an alloy advantageously has:
- une haute résistance mécanique à 650°C en traction (R = 1050MPa - R0,2 = 900MPa), a high mechanical strength at 650 ° C. in tension (R = 1050 MPa - R 0 , 2 = 900 MPa),
- une bonne tenue en fluage à température élevée (allongement de 1% en 150 heures à 650°C sous une contrainte de 500MPa),  good creep resistance at high temperature (elongation of 1% in 150 hours at 650 ° C. under a stress of 500 MPa),
- une bonne résistance à l'oxydation à chaud, et  good resistance to hot oxidation, and
- une bonne ductilité à température ambiante (> 3,5%).  good ductility at room temperature (> 3.5%).
On donne dans le tableau 1 ci-dessous les compositions d'exemples d'alliages SI à S12 selon l'invention. Toutes ces compositions vérifient, en pourcentage atomique, la condition suivante Fe + Ni≤ 400 ppm. Table 1 below gives the compositions of examples of alloys S1 to S12 according to the invention. All these compositions satisfy, as an atomic percentage, the following condition Fe + Ni≤ 400 ppm.
Alliage Al Nb Mo Si Zr Al/Nb densité (°C)Alloy Al Nb Mo Si Zr Al / Nb density (° C)
SI 22 25 0,88 5,29 1065SI 22 25 0.88 5.29 1065
S2 22 25 0,5 0,88 5,28 1058S2 22 25 0.5 0.88 5.28 1058
S3 22 25 1 0,88 5,34 1055S3 22 25 1 0.88 5.34 1055
S4 22 25 1 0,5 0,88 5,34 1065S4 22 25 1 0.5 0.88 5.34 1065
S5 24 25 0,96 5,29 1085S5 24 25 0.96 5.29 1085
S6 22 20 1,10 5,09 1055S6 22 20 1.10 5.09 1055
S7 22 23 1,5 0,2 0,95 5,39 1060S7 22 23 1.5 0.2 0.95 5.39 1060
58 20 25 1 0,80 5,41 102558 20 25 1 0.80 5.41 1025
S9 22 25 1,5 2 0,88 5,50 1025S9 22 25 1.5 2 0.88 5.50 1025
S10 20 23 2 2 0,87 5,43 1000S10 20 23 2 2 0.87 5.43 1000
SU 24,5 20 1,5 0,25 1,21 5,16 1105SU 24.5 20 1.5 0.25 1.21 5.16 1105
S12 23 21,5 1,5 0,25 1,3 1,07 5,30 1005 S12 23 21.5 1.5 0.25 1.3 1.07 5.30 1005
Tableau 1 Table 1
L'invention vise également une turbomachine équipée d'une pièce comportant un, notamment formée d'un, alliage tel que défini plus haut. La pièce peut, par exemple, être un carter ou une pièce tournante.  The invention also relates to a turbomachine equipped with a part comprising a particular formed of an alloy as defined above. The part can, for example, be a housing or a rotating part.
L'invention vise également un moteur comportant une turbomachine telle que définie plus haut.  The invention also relates to an engine comprising a turbomachine as defined above.
L'invention vise également un aéronef comportant un moteur tel que défini plus haut.  The invention also relates to an aircraft comprising a motor as defined above.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, en référence aux dessins annexés, sur lesquels :  Other characteristics and advantages of the invention will emerge from the following description, with reference to the appended drawings, in which:
- la figure 1 représente l'évolution de la tenue au fluage de différents alliages à 650°C sous une contrainte de 310 MPa,  FIG. 1 represents the evolution of the creep resistance of various alloys at 650 ° C. under a stress of 310 MPa,
- la figure 2 représente l'influence du rapport Al/Nb sur la tenue à l'oxydation à chaud,  FIG. 2 represents the influence of the Al / Nb ratio on the resistance to hot oxidation,
- les figures 3A à 3D illustrent les résultats obtenus en termes de propriétés mécaniques pour un alliage préféré selon l'invention. Exemples FIGS. 3A to 3D illustrate the results obtained in terms of mechanical properties for a preferred alloy according to the invention. Examples
Exemple 1 : fabrication d'un alliage selon l'invention A partir de matières premières constituées d'épongés de titane et de granulés d'alliages mères, un mélange a été réalisé pour obtenir la composition chimique S12 décrite au tableau 1 ci-dessus. Ce mélange de poudres a ensuite été homogénéisé puis comprimé pour constituer un compact constituant une électrode. Cette électrode a ensuite été refondue sous vide par création d'un arc électrique entre l'électrode qui est consommable et le fond du creuset refroidi à l'eau (procédé de refusion par arc sous vide ou « VAR » pour « Vacuum Arc Remelting »). Le lingot obtenu est ensuite réduit à une barre par déformation à grande vitesse (par forgeage au pilon ou extrusion) pour réduire la taille de grains. La dernière étape est un forgeage isotherme de lopins découpés dans la barre à une température juste au dessous de la température de transus β et à faible vitesse de déformation (quelques 10"3). EXAMPLE 1 Manufacture of an Alloy According to the Invention From raw materials consisting of titanium sponges and master alloy granules, a mixture was produced to obtain the chemical composition S12 described in Table 1 above. This mixture of powders was then homogenized and compressed to form a compact constituting an electrode. This electrode was then remelted under vacuum by creating an electric arc between the consumable electrode and the bottom of the water-cooled crucible (vacuum arc remelting process or "VAR" for "Vacuum Arc Remelting"). ). The ingot obtained is then reduced to a bar by high speed deformation (by forging or extrusion) to reduce the grain size. The last step is an isothermal forging of slices cut in the bar at a temperature just below the β transus temperature and at a low rate of deformation (some 10 "3 ).
Un tel alliage de composition S12 qui contient 1,3% de zirconium présente une très bonne résistance à l'oxydation à chaud. En effet, cet alliage ne présente pas d'écaillage après une exposition de 1500 heures à 700°C sous air, une couche d'oxyde fine et très adhérente, donc protectrice, composée d'alumine et de zircone étant formée. Des alliages ne contenant pas de zirconium peuvent présenter une moins bonne résistance à l'oxydation à chaud.  Such an alloy of composition S12 which contains 1.3% of zirconium has a very good resistance to hot oxidation. Indeed, this alloy does not peel after exposure of 1500 hours at 700 ° C in air, a thin layer of very adherent and therefore protective oxide, composed of alumina and zirconia being formed. Alloys containing no zirconium may have a lower resistance to hot oxidation.
Exemple 2 : amélioration de la tenue au fluage à chaud par mise en œuvre d'une teneur en Fe+Ni limitée Example 2: Improvement of the resistance to hot creep by implementing a limited Fe + Ni content
Les tenues au fluage des trois compositions d'alliage PI, P2 et P3 détaillées dans le tableau 2 ci-dessous ont été comparées.  The creep strengths of the three PI, P2 and P3 alloy compositions detailed in Table 2 below were compared.
Tableau 2 Ces alliages comportent des éléments traces Fe et Ni qui sont présents sous forme d'impuretés, et résultent naturellement du procédé de fabrication. Les éléments Fe et Ni sont des impuretés provenant du conteneur en acier inoxydable servant à l'élaboration des poudres de titane. Il est ainsi préférable d'utiliser une poudre de titane de grande pureté prélevée dans le centre du volume délimité par le conteneur où la pollution venant des parois est négligeable afin d'assurer l'obtention de la condition Fe+Ni ≤ 400 ppm. Comme représenté à la figure 1, une amélioration de la tenue au fluage à 650°C sous une contrainte de 310 MPa est observée lorsque les teneurs en éléments traces sont réduites afin de satisfaire à la relation Fe+Ni≤ 400 ppm. En effet, comme représenté à la figure 1, le fluage atteint 1% au bout de 250 heures avec un alliage selon l'invention (P3) alors que cette valeur de fluage est atteinte seulement au bout de 40 heures avec un alliage selon l'art antérieur (PI). Table 2 These alloys comprise trace elements Fe and Ni which are present in the form of impurities, and result naturally from the manufacturing process. Fe and Ni elements are impurities from the stainless steel container used to make titanium powders. It is thus preferable to use a high purity titanium powder taken from the center of the volume delimited by the container where the pollution coming from the walls is negligible in order to ensure that the Fe + Ni condition ≤ 400 ppm is obtained. As shown in FIG. 1, an improvement in the creep resistance at 650 ° C. under a stress of 310 MPa is observed when the trace element contents are reduced in order to satisfy the Fe + Ni≤400 ppm relationship. Indeed, as represented in FIG. 1, creep reaches 1% after 250 hours with an alloy according to the invention (P3) whereas this creep value is reached only after 40 hours with an alloy according to the invention. prior art (PI).
Exemple 3 : amélioration de la résistance à la corrosion à chaud par mise en œuvre d'un rapport en pourcentage atomique Al/Nb compris entre 1 et 1,3 Example 3 Improvement of the resistance to hot corrosion by implementing an atomic percentage ratio Al / Nb of between 1 and 1.3
On a comparé la résistance à la corrosion à chaud de divers alliages. Les résultats sont fournis à la figure 2. Les compositions des alliages S3, S5, S9 et SU sont données plus haut au tableau 1.  The resistance to hot corrosion of various alloys was compared. The results are given in FIG. 2. The compositions of alloys S3, S5, S9 and SU are given above in Table 1.
Dans cet essai, la variation de masse suite à l'écaillage de la surface de l'alliage est mesurée. Cet essai montre la tenue à l'oxydation des alliages à 800°C. On constate une perte de masse liée à la consommation du métal du fait de l'oxydation pour les alliages S3, S5 et S9 lesquels ne présentent pas un rapport Al/Nb compris entre 1 et 1,3. En revanche, cette perte de masse ne se produit pas pour l'alliage SU lequel présente un rapport Al/Nb compris entre 1 et 1,3. Exemple 4 : Comparaison des performances entre l'alliage fabriqué à l'exemple 1 et d'autres types d'alliages  In this test, the mass variation following the peeling of the surface of the alloy is measured. This test shows the resistance to oxidation of alloys at 800 ° C. There is a loss of mass related to the consumption of the metal due to oxidation for the alloys S3, S5 and S9 which do not have an Al / Nb ratio of between 1 and 1.3. On the other hand, this loss of mass does not occur for the alloy SU which has an Al / Nb ratio of between 1 and 1.3. Example 4 Comparison of Performance Between the Alloy Manufactured in Example 1 and Other Types of Alloys
Les résultats d'essais regroupés aux figures 3A à 3D montrent que la composition S12 présente à la fois de bons résultats en traction et en fluage. Plus particulièrement :  The results of tests grouped together in FIGS. 3A to 3D show that the composition S12 has both good results in tension and in creep. More particularly:
- la figure 3A montre, pour différents alliages, l'évolution de la limite d'élasticité (R0,2) en fonction de la température, - la figure 3B montre, pour différents alliages, l'évolution de l'allongement à la rupture (ductilité) en fonction de la température, FIG. 3A shows, for different alloys, the evolution of the elastic limit (R 0 , 2 ) as a function of the temperature, FIG. 3B shows, for different alloys, the evolution of elongation at break (ductility) as a function of temperature,
- la figure 3C compare le fluage (temps pour fluage 1%) de différents alliages à des températures de 600 et 650 °C, et  FIG. 3C compares the creep (time for creep 1%) of different alloys at temperatures of 600 and 650 ° C., and
- la figure 3D compare le temps de rupture en fluage de différents alliages à des températures de 600 et 650°C.  FIG. 3D compares the creep rupture time of different alloys at temperatures of 600 and 650 ° C.
L'expression « comportant un(e) » doit se comprendre comme « comportant au moins un(e) ». The expression "having one" must be understood as "containing at least one".
L'expression « compris(e) entre ... et ... » doit se comprendre comme incluant les bornes.  The expression "understood between ... and ..." must be understood as including boundaries.

Claims

REVENDICATIONS
1. Alliage intermétallique à base de titane comportant, en pourcentages atomiques, 16 % à 26% d'AI, 18 % à 28% de Nb, 0 % à 3% d'un métal M choisi entre Mo, W, Hf, et V, 0 % à 0,8% de Si, 0 % à 2% de Ta, 1 % à 4% de Zr, avec la condition Fe+Ni≤ 400 ppm, le reste étant Ti, l'alliage présentant en outre un rapport en pourcentage atomique Al/Nb compris entre 1,05 et 1,15. 2. Alliage intermétallique à base de titane comportant, en pourcentages atomiques, 16 % à 26% d'AI, 18 % à 28% de Nb, 0 % à 3% d'un métal M choisi entre Mo, W, Hf, et V, 0,1 % à 2% de Si, 0 % à 2% de Ta, 1 % à 4% de Zr, avec la condition Fe+Ni≤ 400 ppm, le reste étant Ti, l'alliage présentant en outre un rapport en pourcentage atomique Al/Nb compris entre 1,05 et 1,15. A titanium-based intermetallic alloy comprising, in atomic percentages, 16% to 26% of Al, 18% to 28% of Nb, 0% to 3% of a metal M selected from Mo, W, Hf, and V, 0% to 0.8% Si, 0% to 2% Ta, 1% to 4% Zr, with the Fe + Ni ≤ 400 ppm condition, the remainder being Ti, the alloy further having a Al / Nb atomic percentage ratio between 1.05 and 1.15. 2. titanium-based intermetallic alloy comprising, in atomic percentages, 16% to 26% of Al, 18% to 28% of Nb, 0% to 3% of a metal M selected from Mo, W, Hf, and V, 0.1% to 2% Si, 0% to 2% Ta, 1% to 4% Zr, with the Fe + Ni ≤ 400 ppm condition, the remainder being Ti, the alloy further having a Al / Nb atomic percentage ratio between 1.05 and 1.15.
3. Alliage selon la revendication 1 ou 2, caractérisé en ce qu'il comporte, en pourcentage atomique, 20 % à 22 % de Nb. 4. Alliage selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte, en pourcentage atomique, 23 % à 24 % d'AI. 3. Alloy according to claim 1 or 2, characterized in that it comprises, in atomic percentage, 20% to 22% of Nb. 4. Alloy according to any one of claims 1 to 3, characterized in that it comprises, in atomic percentage, 23% to 24% of AI.
5. Alliage selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comporte, en pourcentage atomique, 0,1% à 0,8% de Si. 5. An alloy according to any one of claims 1 to 4, characterized in that it comprises, in atomic percentage, 0.1% to 0.8% of Si.
6. Alliage selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte, en pourcentage atomique, 0,8% à 3% de M. 6. An alloy according to any one of claims 1 to 5, characterized in that it comprises, in atomic percentage, 0.8% to 3% of M.
7. Alliage selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte, en pourcentage atomique, 1% à 3% de Zr. 7. An alloy according to any one of claims 1 to 6, characterized in that it comprises, in atomic percentage, 1% to 3% of Zr.
8. Alliage intermétallique selon l'une quelconque des revendications 1 à 7, caractérisé en ce que : Intermetallic alloy according to one of Claims 1 to 7, characterized in that:
- la teneur, en pourcentage atomique, en Al est comprise entre 20% et 25%, - la teneur, en pourcentage atomique, en Nb est comprise entre 20% et 22%, the content, in atomic percentage, of Al is between 20% and 25%, - the atomic percentage content in Nb is between 20% and 22%,
- la teneur, en pourcentage atomique, en M est comprise entre 0,8% et 3%, et  - the content, in atomic percentage, in M is between 0,8% and 3%, and
- la teneur, en pourcentage atomique, en Zr est comprise entre 1% et 3%. the content, in atomic percentage, in Zr is between 1% and 3%.
9. Alliage selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la condition M+Si+Zr+Ta≥ 0,4% est en outre vérifiée. lO.Turbomachine équipée d'une pièce comportant un alliage selon l'une quelconque des revendications 1 à 9. 9. An alloy according to any one of claims 1 to 8, characterized in that the condition M + Si + Zr + Ta≥ 0.4% is further verified. 10.Turbomachine equipped with a part comprising an alloy according to any one of claims 1 to 9.
11. Moteur comportant une turbomachine selon la revendication 10. 12. Aéronef comportant un moteur selon la revendication 11. 11. Motor comprising a turbomachine according to claim 10. An aircraft comprising an engine according to claim 11.
EP15823349.4A 2014-12-22 2015-12-14 Intermetallic alloy based on titanium Active EP3237646B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463066A FR3030577B1 (en) 2014-12-22 2014-12-22 INTERMETALLIC ALLOY BASED ON TITANIUM
PCT/FR2015/053481 WO2016102806A1 (en) 2014-12-22 2015-12-14 Intermetallic alloy based on titanium

Publications (2)

Publication Number Publication Date
EP3237646A1 true EP3237646A1 (en) 2017-11-01
EP3237646B1 EP3237646B1 (en) 2018-10-10

Family

ID=53177566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15823349.4A Active EP3237646B1 (en) 2014-12-22 2015-12-14 Intermetallic alloy based on titanium

Country Status (9)

Country Link
US (1) US10119180B2 (en)
EP (1) EP3237646B1 (en)
JP (1) JP6805163B2 (en)
CN (1) CN107109540B (en)
BR (1) BR112017013328B1 (en)
CA (1) CA2971092C (en)
FR (1) FR3030577B1 (en)
RU (1) RU2730348C2 (en)
WO (1) WO2016102806A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331849B (en) * 2015-10-10 2017-04-26 中国航空工业集团公司北京航空材料研究院 Ti2AlNb base alloy
CN106854725B (en) * 2016-12-23 2019-03-19 西部超导材料科技股份有限公司 A kind of Ti2The preparation method of AlNb based alloy and its ingot casting
CN111394637B (en) * 2020-04-17 2021-06-01 中国航发北京航空材料研究院 Ti2AlNb alloy and preparation method of bar thereof
CN111647771B (en) * 2020-04-17 2021-10-15 中国航发北京航空材料研究院 Multi-element composite anti-oxidation Ti2AlNb alloy and preparation method thereof
CN113881871B (en) * 2021-09-30 2022-08-23 中国航发北京航空材料研究院 Ti-W-Nb intermediate alloy and preparation method thereof
CN113981297B (en) * 2021-12-28 2022-03-22 北京钢研高纳科技股份有限公司 Ti for casting2AlNb-based alloy, preparation method thereof and casting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4716020A (en) * 1982-09-27 1987-12-29 United Technologies Corporation Titanium aluminum alloys containing niobium, vanadium and molybdenum
JPH0730418B2 (en) * 1989-01-30 1995-04-05 住友軽金属工業株式会社 Forming method of Ti-Al intermetallic compound member
US5032357A (en) * 1989-03-20 1991-07-16 General Electric Company Tri-titanium aluminide alloys containing at least eighteen atom percent niobium
US5205984A (en) * 1991-10-21 1993-04-27 General Electric Company Orthorhombic titanium niobium aluminide with vanadium
FR2772790B1 (en) * 1997-12-18 2000-02-04 Snecma TITANIUM-BASED INTERMETALLIC ALLOYS OF THE Ti2AlNb TYPE WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CREEP
CN1322156C (en) * 2003-12-24 2007-06-20 中国科学院金属研究所 Titanium three-aluminum base alloy and method for preparing same
RU2405849C1 (en) * 2009-10-28 2010-12-10 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Intermetallic titanium-based alloy
CN103143709B (en) * 2013-03-26 2014-10-29 哈尔滨工业大学 Method for manufacturing TiAl intermetallic compound component based on Ti elemental powder and Al elemental powder
CN105695799B (en) * 2016-04-06 2017-12-15 中国航空工业集团公司北京航空材料研究院 A kind of Ti Al Nb series intermetallic compound high-temperature structural materials

Also Published As

Publication number Publication date
RU2017126060A3 (en) 2019-06-19
US10119180B2 (en) 2018-11-06
WO2016102806A1 (en) 2016-06-30
CA2971092C (en) 2023-01-03
RU2017126060A (en) 2019-01-24
CN107109540A (en) 2017-08-29
BR112017013328A2 (en) 2018-03-06
US20170342524A1 (en) 2017-11-30
CN107109540B (en) 2019-08-20
BR112017013328B1 (en) 2022-03-03
RU2730348C2 (en) 2020-08-21
FR3030577A1 (en) 2016-06-24
JP2018505316A (en) 2018-02-22
FR3030577B1 (en) 2019-08-23
CA2971092A1 (en) 2016-06-30
JP6805163B2 (en) 2020-12-23
EP3237646B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
EP3237646B1 (en) Intermetallic alloy based on titanium
EP1840232B1 (en) Nickel-based alloy
JP6460336B2 (en) Ni-based high-strength heat-resistant alloy member, method for producing the same, and gas turbine blade
FR2772790A1 (en) TITANIUM-BASED INTERMETAL ALLOYS OF THE Ti2AlNb TYPE WITH A HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CREEP
EP2516687B1 (en) Casting made from copper containing aluminium alloy with high mechanical strength and hot creep
WO2011089337A1 (en) Method for manufacturing 6xxx alloy materials for vacuum chambers
EP0863219A1 (en) Titanium aluminide usable at elevated temperatures
FR3018525A1 (en) NICKEL ALLOY HAVING A STRUCTURAL CURING, PIECE THEREOF AND METHOD OF MANUFACTURING THE SAME.
FR2645072A1 (en) COMPOSITE STRUCTURE HAVING HIGH MECHANICAL RESISTANCE AT HIGH TEMPERATURES
EP3684530B1 (en) Alloy turbine component comprising a max phase
WO2014112151A1 (en) Alloy and method for producing same
EP3575423B1 (en) Preform and method for producing tial-based turbine wheel
GB2467312A (en) An alpha-titanium alloy comprising aluminium, oxygen and carbon
WO2021152274A1 (en) Hot isostatic pressing heat treatment of bars made from titanium aluminide alloy for low-pressure turbine blades for a turbomachine
KR101923477B1 (en) Method for producing alloy comprising titanium nitride or titanium aluminide nitride
WO1996012827A1 (en) TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
WO2019123694A1 (en) Tial alloy material, production method therefor, and forging method for tial alloy material
JP2010280927A (en) INTERNAL COMBUSTION ENGINE COMPONENT MADE OF TiAl ALLOY
CH627788A5 (en) Nickel alloy with a high boron content
JP6268578B2 (en) Aluminum alloy and method for producing aluminum alloy
WO2023161576A1 (en) Alloy powder, method for manufacturing a part based on this alloy, and part thus obtained
FR3132913A1 (en) Alloy powder, process for manufacturing a part based on this alloy and part thus obtained.
JP2018141187A (en) Ni-BASE INTERMETALLIC COMPOUND ALLOY AND METHOD FOR PRODUCING THE SAME
BE569677A (en)
BE642105A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180518

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051331

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015018066

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1051331

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015018066

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 9

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9