EP3236710B1 - Method and device for thermal processing of solids - Google Patents

Method and device for thermal processing of solids Download PDF

Info

Publication number
EP3236710B1
EP3236710B1 EP17167431.0A EP17167431A EP3236710B1 EP 3236710 B1 EP3236710 B1 EP 3236710B1 EP 17167431 A EP17167431 A EP 17167431A EP 3236710 B1 EP3236710 B1 EP 3236710B1
Authority
EP
European Patent Office
Prior art keywords
electrode arrangement
solid
electrodes
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17167431.0A
Other languages
German (de)
French (fr)
Other versions
EP3236710A1 (en
EP3236710B8 (en
Inventor
Ulf Roland
Markus Kraus
Ulf Trommler
Frank Holzer
Christian Hoyer
Frank-Dieter Kopinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3236710A1 publication Critical patent/EP3236710A1/en
Publication of EP3236710B1 publication Critical patent/EP3236710B1/en
Application granted granted Critical
Publication of EP3236710B8 publication Critical patent/EP3236710B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/54Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/60Arrangements for continuous movement of material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications

Definitions

  • the invention relates to a method and an apparatus for the thermal treatment of solids.
  • the present invention relates to a method and a device for the efficient, directly volume-related thermal treatment of solids by means of radio-frequency energy and controlled with regard to their temperature distribution. This can a. for chemical-free wood protection, drying or decontamination of solids.
  • the application potential of the invention focuses on the treatment of more or less extensive flat materials made of solids which are only accessible from one side or which would be accessible from both sides only with great effort. Material thicknesses of up to 10 cm are particularly preferred. Parquet and other wooden floors, wall paneling and other wall cladding or screed floors may be mentioned here as examples.
  • a need for refurbishment can often be limited to these building structures, so that there is a need for adequate processes for treating relatively thin, extensively expanded solid structures that make it possible, for example wood pests combat thermally or remove water and chemicals from these materials.
  • the aim of the present invention is to provide a corresponding method based on direct dielectric heating using high-frequency energy.
  • the device allows a non-invasive treatment, which in particular also enables use options in the area of monument protection and use on art objects.
  • the state of the art there are a number of methods which enable the material volume to be heated by heat conduction from the surface. Mentioned here are the hot air process, in which the surface is heated by a sweeping air stream, the use of heating plates or heated blankets, or the infrared process, in which the primary energy absorption is also practically limited to the surface.
  • the heat conduction into the interior of the structure to be treated is determined by the parameter specific thermal conductivity, which is often low, especially for dry materials, which leads to long heating times. Basically, the heat flow is stronger, the higher the temperature gradient, i. H. the temperature change per distance, and thus the higher the surface temperature set with the above-mentioned processes.
  • direct heating methods such as the use of microwaves (MW) [ EP 1 374 676 B1 ] or radio waves (RW) [ DE 20 2010 001 410 U1 ], for which heat generation in the volume of the solid is characteristic.
  • MW microwaves
  • RW radio waves
  • the warming is based on the interaction of the electromagnetic waves used with frequencies mostly in the GHz (for MW) or MHz range (for RW) with polar structures in the solid.
  • the arrangement of electrodes on both sides with regard to the material to be heated leads to restrictions in the applicability of the method, particularly in the case of structures which are only accessible from one side, as described at the beginning .
  • Further advantages of using RW compared to MW in the context described are the greater flexibility with regard to the materials to be heated and their moisture content as well as the higher energy efficiency through the use of an electronic adaptation network.
  • the aspects mentioned predestine the RW method for use on flat, not too thick structures for the purpose of chemical-free wood protection, drying or decontamination, if the energy can be coupled into the corresponding materials with one-sided accessibility.
  • the remaining technological gap, especially with regard to an adequately realizable electrode arrangement is to be concluded by the present invention.
  • the disadvantages of the prior art are to be overcome and an operational device is to be provided which allows the RW method to be used successfully for the applications mentioned.
  • the device according to the invention comprises a binary electrode arrangement which can be arranged on a surface of a solid, each having at least two electrodes (electrode structure) which are electrically insulated from one another, the electrodes preferably being located in a planar plane parallel to the surface of the solid to be treated and the electrode arrangement being at least partially electrically conductive shield is surrounded.
  • the electrode structure is electrically conductively connected to a high-frequency voltage source, which is designed to apply a high-frequency voltage with a frequency between 100 kHz and 50 MHz to the electrode arrangement.
  • the device according to the invention is designed such that a high-frequency electric field is established within a structure (solid) arranged under the device.
  • the device according to the invention comprises a holding device which is designed to enable a translatory movement of the electrode arrangement along the surface of a solid.
  • the electrodes are designed as interdigitated comb-like structures, each of the structures having a large number of individual electrodes (fingers) which are connected to one another via a common web.
  • the longitudinal axes of the individual electrodes run parallel or essentially parallel to one another. It is further preferred that the longitudinal axes of the webs run parallel or essentially parallel to one another.
  • Such a binary electrode arrangement is to be understood as a two-part arrangement of individual electrodes to form two electrode groups.
  • the electrodes of the individual groups are each electrically conductively connected to one another, but the two electrode groups of the binary electrode arrangement are electrically insulated from one another.
  • a common main axis can be defined by the mutual position of the individual electrodes of the electrode arrangement. This main axis particularly preferably extends along the longest axis of symmetry of the electrode arrangement.
  • the present invention can include a binary, essentially two-dimensional electrode structure that is electrically conductively connected to a high-frequency generator that provides a high-frequency voltage with a frequency in the range between 100 kHz and 50 MHz.
  • a frequency range from 1 MHz to 30 MHz is preferred.
  • Frequencies which are approved for industrial, scientific and medical applications (ISM frequencies) are very particularly preferred.
  • the electrode structure is designed in such a way that the electromagnetic waves are coupled into the structure to be treated in such a way that, compared to conventional methods based solely on heat conduction, a more homogeneous dielectric heating can be recorded, since the heating takes place directly in the volume.
  • the device preferably contains an electronic matching network which is connected between the HF generator and the electrode system in order to minimize or completely eliminate the HF power reflected to the generator.
  • Electromagnetic shielding which significantly reduces the radiation of electromagnetic waves from the electrode structure into the room, is also part of preferred embodiments of the device according to the invention.
  • preferred implementations of this device advantageously contain one or more temperature sensors and / or devices for automatic system control via a computer system and / or devices for automatic movement of the device the surface to be treated and / or devices for automatic temperature regulation of the surface.
  • the idea of the present invention is to achieve temperature profiles by using the device according to the invention with only one-sided accessibility of the solid to be treated, which are more homogeneous in comparison to other methods and thus lead faster to the achievement of the objectives.
  • the binary electrode system is advantageously designed in such a way that electrode parts that are grounded in an area of the device (so-called “cold” electrodes) and live electrode parts (so-called “hot” electrodes) alternate (interdigital structure) and thus a high-frequency electromagnetic in the underlying material Field is generated. If the distance between the electrodes is of the same order of magnitude as the width of the electrodes, an electromagnetic field is generated, the distribution of which particularly satisfies the requirements of a sufficiently uniform heating.
  • a particularly preferred and structurally robust embodiment of this binary electrode system is an intermeshing comb structure (double comb structure). The electrode arrangement therefore comprises two intermeshing comb structures.
  • a comb structure is understood to mean a structure in which the individual electrodes of the electrode arrangement are arranged in a comb-like manner as prongs or teeth next to one another along an electrically conductive web.
  • the web can be aligned parallel to the main axis of the electrode arrangement.
  • the comb structure can be formed on one or two sides, i. H. along the web, the individual electrodes can point along a single web either only in a single direction or in two independent directions. In the two-sided design of the comb, the two directions are preferably within a common plane.
  • An intermeshing comb structure is to be understood as any mutual arrangement of two such comb structures, in which the individual tines of both combs are interlocked with one another without electrical contact.
  • the field strength maxima at the edges of the electrodes can be reduced by using beveled or rounded electrodes.
  • This change means that the overheating at the edges of the electrodes is significantly reduced without the Effect of coupling into the material is significantly limited. Bending radii or bevels of a few millimeters are sufficient to achieve the desired change.
  • semicircular electrodes or electrode parts formed towards the surface are less suitable because the energy coupling would be concentrated too much on the center of the electrode (along the line of contact).
  • the electrode arrangement therefore preferably comprises a surface which can be arranged on the surface of the solid, the edges of the surface facing the surface of the solid being rounded or beveled.
  • said surface can be the surface which can be arranged on the surface of the solid so that a maximum large surface of the solid is covered by the electrode arrangement.
  • this surface has edges which can be rounded or beveled.
  • a high-frequency voltage is applied to the electrode arrangement, an alternating electromagnetic field is generated, the field lines of which usually end perpendicular to the individual surfaces of the contacts. A concentration of the field lines usually occurs at the top. Rounding or chamfering the edges enables a more homogeneous distribution of the field lines in the solid body, since the field strength maxima at the edges of the electrodes can be reduced and at the same time an improved and more homogeneous penetration of the area between the contacts can be achieved. It is further preferred that all edges of the electrodes facing the surface to be treated are rounded or beveled.
  • the electrodes can be perforated to ensure unhindered removal in the event of drying or chemical discharge from the heated structure and thus to prevent recondensation.
  • the electrode arrangement is therefore preferably perforated at least in partial areas. Individual electrodes of the electrode arrangement can be fully or partially perforated.
  • the perforation can preferably be circular, square, rectangular or hexagonal. Mixed forms are also possible, as are a number of perforation passages of different sizes. In areas of high field line density, a variation in the perforation density and / or type can increase the transportability in favor of a more homogeneous field line distribution.
  • a suitable adsorbent can also be located directly on the electrodes, which can bind water or pollutants and thus support the discharge. For organic pollutants, activated carbon beds or activated carbon fleeces can be used, which in an advantageous embodiment are connected directly to the electrodes.
  • the electrode arrangement according to the invention can be applied to the surface of a solid in order to carry out the method according to the invention and can be moved in translation along the surface of the solid to be treated. This application can take place as a direct contact between the respectively opposite surfaces. A small distance between the respective surfaces is also possible; preferably less than 1 mm, less than 2 mm, less than 5 mm or less than 10 mm.
  • a protective layer can be made, at least in particularly stressed areas, for example from a plastic polymer such as PTFE or PE or also from a textile layer such as felt , be upset.
  • the electrode arrangement therefore preferably comprises a surface which can be arranged on the surface of the solid, the surface being at least partially protected by a protective layer. It is further preferred that the surfaces of the electrodes facing the surface to be treated are coated in such a way that damage to the surface during movement during the treatment is prevented or substantially reduced.
  • the binary electrode system can preferably be completely or partially enclosed by an electromagnetic shield above the surface to be treated.
  • Solid metal sheets, gauzes or metal-coated plastic foils, for example, are suitable as shielding materials.
  • the electrode arrangement is at least partially surrounded by an electrically conductive shield. It is preferred that the electrodes are surrounded by a shield consisting of an electrically conductive material such as solid sheet metal, gauze or metal-coated foil, so that electromagnetic radiation into the room is significantly reduced or eliminated.
  • the device In addition to the spatial characteristics of the electromagnetic field in the material to be heated, a continuous or quasi-continuous translational movement of the electrode arrangement is a possibility from a process engineering point of view to homogenize the heating profiles. This can be done, for example, by a corresponding manual movement of the device along the surface of the solid.
  • the device preferably comprises a means for automated translatory movement of the electrode arrangement. This means can be provided, for example, by an appropriately mounted actuator platform. Appropriate control or pre-programming of the movement of at least the electrode arrangement enables homogeneous heating of the solid.
  • the device preferably has a means for translational movement of the electrode arrangement with the periphery, such as shielding over the treated area.
  • the structure of the electrodes is advantageous to align the structure of the electrodes in such a way that during continuous movement for heating a larger area, if possible, no longer positioning of an edge at one point of the surface to be treated occurs.
  • This procedure will be explained for better illustration of a parquet floor in a rectangular room.
  • the electrode structure is surrounded by a cuboid shield, which is moved parallel to the wall, it would be advantageous to arrange the binary electrode structure at an angle of 45 ° to the limits of the shield and thus to the direction of movement.
  • the electrodes are therefore preferably arranged neither parallel nor perpendicular in relation to the preferred direction of movement, an arrangement of the electrodes at an angle of 45 ° being preferred.
  • the electrodes of the electrode arrangement are preferably arranged perpendicular to the main axis, the length of the electrodes varying along the electrode arrangement. It is particularly preferred that the length of the electrodes varies linearly along the electrode arrangement.
  • a device is preferred which has a maximum electrode length in the middle of the electrode arrangement and in which the length of the electrodes adjoining it on both sides decreases linearly towards the outer ends of the electrode arrangement.
  • the shielding of the electrode arrangement has a square base area, into which the aforementioned embodiment with the electrode length decreasing on both sides can be arranged such that the main axis of the enclosed electrode structure runs through two opposite corner points. Such a device is preferably moved along the sides of the square shield, so that there is an arrangement at an angle of 45 ° to the edges of the shield.
  • Continuous measurement of heating is advantageous for an automated and time-efficient treatment process. Since it is generally not possible to insert sensors into the structure to be treated in the application context, the contactless measurement of the surface temperature between the electrodes by means of optical sensors should be used for control purposes.
  • pyrometric sensors can preferably be integrated into the device.
  • a computer system which regulates the RF power and / or the speed of movement of the device over the structure to be treated on the basis of the measured temperature or a plurality of measured temperatures, in order to avoid overheating of the surface and at the same time by ensuring a minimum temperature to ensure the success of the treatment.
  • the device according to the invention enables the volume to be heated, the depth of penetration of the heating can also be controlled by the design of the electrode structure. This is a great advantage for cases in which the subsurface under the wood structure to be treated is unknown and heating of this part of the building structure is to be minimized.
  • the device according to the invention preferably comprises a regulating device for regulating the surface temperature of the solid.
  • the control device can comprise a means for determining the surface temperature of the solid. This can be at least one, preferably electronic or optical, sensor that detects the surface temperature.
  • the control device can comprise a means for determining the surface temperature of the solid.
  • the control device can comprise a means for determining the electrical field strength. This can be at least one sensor that detects the electric field strength.
  • the control device can include a means for evaluation and control. This can be, for example, a Act computer system, which is designed to evaluate the measurement signals of the individual means for determining and controlling the entire device.
  • the means or means for determining the surface temperature and / or the means or means for determining the electric field strength can be connected to the means for evaluation and control for evaluation.
  • the means for translational movement and / or the high-frequency voltage source can be connected to the means for evaluation and control for control purposes.
  • the means for evaluation and control can thus be used to adapt the RF power applied to the arrangement and / or the translational movement profile in dependence on certain variables such that a largely homogeneous processing of the solid is made possible.
  • the means for evaluation and control in combination with sensors can enable control and regulation of the thermal treatment of solids.
  • the RF power applied to the electrodes can be regulated as a function of the measured surface temperature.
  • the device comprises at least one means for cooling the surface of the solid which enables cooling of the surface of the dielectrically heated solid.
  • These means for cooling the surface of the solid can also be regulated via the means for evaluation and control.
  • the means for cooling the surface can preferably be a device for air guidance.
  • the device for air guidance can be, for example, an active system in which air is supplied to individual partial areas of the electrode arrangement.
  • the supplied air can be generated locally as an air flow by a large number of fans or can be supplied to the individual partial areas by a corresponding air flow control.
  • the air flow can preferably be generated by a single main fan.
  • the air supplied can also be cooled by a cooling device.
  • a perforation in the electrode structure can also be used to guide the air flow for cooling.
  • An electronic matching network for reducing the high-frequency power reflected back from the electrode arrangement to the high-frequency voltage source is preferably connected in the electrically conductive connection between the electrode arrangement and the high-frequency voltage source.
  • an electronic matching network a so-called matchbox, can be connected between the RF voltage source and the electrode arrangement in such a way that the RF power reflected to the generator is reduced or eliminated.
  • the method presented for the thermal treatment of solids comprises, as process steps, the provision of a binary electrode arrangement with at least two electrodes which are electrically insulated from one another, the electrode arrangement being arranged on a surface of a solid, and the application of a high-frequency voltage to the electrode arrangement, an electrical one Alternating field is generated in a solid and the solid heats up in volume by this alternating field.
  • the volume is heated without the surface overheating.
  • the method according to the invention is suitable for enabling a controlled and direct heating of the structure to be treated and thereby reliably preventing unwanted overheating of parts of the surface and the volume.
  • the electrode arrangement becomes generally translational, i.e., translucent, along the surface of the solid during use of the device according to the invention. in any direction along said surface. More preferably, however, a translatory movement occurs exclusively in directions that are not parallel to the edges of the electrode arrangement.
  • a translatory movement can preferably be carried out manually by a user of the device or by means of a corresponding means for translatory movement of the electrode arrangement.
  • the surface temperature of the solid can be controlled by a control device and adjusted as required.
  • the control device can cool the surface of the solid at least in sections.
  • the electrode arrangement is preferably moved in a manual or automated translatory manner along the surface of the solid.
  • the surface is cooled by means of an air stream which is guided through perforations in the electrode system.
  • water and / or pollutants are bound in a substance provided which is suitable for the absorption of these substances.
  • drying agents and / or hydrophobic adsorbents such as activated carbon, for example in granular or nonwoven form, are involved.
  • Figure 1 shows a schematic representation of a device 100 according to the invention for the thermal treatment of solids 10.
  • the device 100 is shown lying on the surface A of the solid 10, the lateral extent generally being significantly larger than in FIG Fig. 1 specified.
  • part of the surface A of the solid 10 shown is in direct contact with the underside surface B of the electrode arrangement 20.
  • such a direct contact between the electrode arrangement 20 and the surface A of the solid 10 is not absolutely necessary, according to the invention it is sufficient , if the field line course starting from the electrode arrangement 20 leads to a corresponding penetration of the solid 10.
  • the electrode arrangement 20 is surrounded at the top and on the sides by a shield 40.
  • a holding device 42 is shown above the shield 40 as an example. In the present case, this serves to make it easier for a user of the device 100 to handle the device 100 manually.
  • the holding device 42 can be designed, for example, as a clamp holder, wrap-around holder or as a screw or plug-in holder for fastening a telescopic rod head.
  • the holding device 42 can also have a possibility for fixing the electrode arrangement 20 to a means for translatory movement of the electrode arrangement 20. With the aid of a corresponding holding device 42, the electrode arrangement can be moved translationally along the surface A of the solid 10.
  • a high-frequency alternating electromagnetic field is coupled into the volume of the solid 10.
  • This RF field is preferably generated by a high-frequency voltage source 30.
  • This can be connected to the electrode arrangement 20 via an electrically conductive connection.
  • An electronic matching network 50 is preferably connected to the electrically conductive connection between the electrode arrangement 20 and the high-frequency voltage source 30 in order to reduce the high-frequency power reflected back from the electrode arrangement 20 to the high-frequency voltage source 30.
  • the electrode arrangement 20 shown is two interdigitated comb structures.
  • the teeth of the comb and the connecting crosspiece form the individual electrodes.
  • the first web 26 and the second web 28 also provide conductive electrical connections between the individual ones Teeth of a comb.
  • the high-frequency voltage generated by the high-frequency voltage source 30 is applied to the webs 26, 28 and is therefore also connected to the individual electrodes of the respective comb. According to the invention, a strong electromagnetic alternating field is thus formed between the double combs, the field line course generated thereby preferably penetrating deep into the volume of the solid 10 and leading to heating of the material.
  • FIG. 2 shows a schematic representation of an exemplary electrode arrangement 20 according to the invention Fig. 1 .
  • the electrodes 22a-22f belonging to the first comb are connected to one another in an electrically conductive manner via the first web 26, the web also acting as an electrode.
  • the electrodes 24a-24f belonging to the second comb are connected to one another in an electrically conductive manner via the second web 28. This also acts as an electrode.
  • Both combs are completely electrically insulated from one another and have no electrically conductive connection to one another. An indirect connection only takes place during operation of the device 100 by connecting both combs to the high-frequency voltage source.
  • the individual electrodes 22, 24 extend along a common main axis X of the electrode arrangement 20, the first web 26 and the second web 28 likewise running parallel to the main axis X of the electrode arrangement 20 in the illustration shown.
  • the webs 26, 28 can also be oriented in any other way to the main axis X of the electrode arrangement 20, in particular the electrodes 22, 24 can also be electrically connected to one another without a fixed web structure.
  • the electrodes that belong together can also be connected by means of individual cable connections or soldering.
  • the webs 26 and 28 lie in one plane with the electrodes 22a-22f and 24a-24f. However, it is also possible for these webs to be largely above the plane of the electrodes 22a-22f and 24a-24f. In this case, the webs practically do not themselves act as HF electrodes with respect to the material 10 to be treated.
  • An essential feature of the present invention is the provision of a device for the most homogeneous thermal treatment of solids.
  • a corresponding degree of homogeneity and uniformity is therefore also particularly preferred when designing an electrode arrangement 20 according to the invention.
  • the respective geometric distances, dimensions and angles between the individual electrodes 22, 24 should be uniform.
  • the left-hand and right-hand distance of each individual electrode 22, 24 from its two closest neighbors are each the same.
  • the pulse duty factor between the width of the electrodes 22, 24 and the distance between the individual electrodes 22, 24 can be chosen freely.
  • a duty cycle is also preferred here, which ensures that the inventive idea of the method is implemented as optimally as possible depending on the high-frequency voltage applied to the electrode arrangement 20 and the respective electrode shape.
  • FIG. 3 shows a schematic representation of the essential components of a further device 100 according to the invention for the thermal treatment of solids 10 in top view (top) and in side view (bottom).
  • An electrode arrangement 20 is shown with two intermeshing comb structures, which are comb structures on two sides, in which the electrodes 22, 24 are located on both sides (in the figure above and below) of the respective webs 26, 28.
  • the electrodes 22, 24 extend as shown along a common main axis X, the webs 26, 28 also running parallel to the main axis X in this embodiment as well.
  • the electrodes 22, 24 of the electrode structure 20 are arranged perpendicular to the main axis X, the length of the electrodes varying along the electrode structure. It should be emphasized that in the arrangement according to Fig.
  • the webs are arranged above the electrode structure and not in one plane with it. In this case, they practically do not act as electrodes with respect to the structure 10 to be heated.
  • the length of the electrodes 22, 24 along the electrode structure 20 varies linearly.
  • the electrode arrangement 20 has a maximum electrode length in the middle of the electrode structure 20.
  • the length of the electrodes 22, 24 adjoining on both sides decreases linearly towards the outer end of the electrode structure 20.
  • the shield 40 in the exemplary embodiment shown has a square cross section with respect to the plan view.
  • the electrode arrangement 20 is enclosed diagonally in the base of this square. The square generally follows the position of the shield 40.
  • a translational movement of the electrode arrangement 20 shown preferably takes place along the sides of the square shield 40, therefore in the exemplary embodiment shown there is an angle of 45 ° to the edges of the shield in the arrangement shown 40 before.
  • FIG. 4 shows a schematic representation of different configurations of the cross section of the electrodes 22, 24.
  • the individual electrodes 22, 24 of the electrode arrangement 20 each have an edge area on their underside, ie on the surface B facing the surface A of the solid 10, which is characterized by an edge K.
  • the shape of this edge region in particular that of the edges K, can be modified by rounding (right) or beveling (center), in distinction to a rectangular or angular configuration (left).
  • the contacts 22, 24 can also be provided with a protective layer 60.
  • the protective layer 60 can include, for example, the entire contact 22, 24, only individual contact points or only the surface B of the contacts 22, 24. The latter is shown for illustrative purposes in the illustrated embodiment of a contact 22, 24 with rounded edges K (right). All of these embodiments can also have a perforation which allows the removal of substances from the solid structure 10 to be treated and / or the ventilation of the surface A of the solid structure 10.
  • FIG. 5 The arrangement for a vertical treatment (for example a fragment of a wall paneling) is shown schematically in Fig. 5 shown.
  • Figure 5 shows schematic representations of an application of the device according to the invention with a surface-bound binary electrode arrangement using the example of a wall to be heated. It shows Fig. 5a the shielding with the underlying, invisible comb structure and Fig. 5b a section through the device according to the invention with a visible comb structure.
  • the gap between the electrodes is 5 mm.
  • the electrodes were each beveled 5 mm at an angle of 45 °, so that there was an effective electrode distance of 15 mm on the surface, which is also decisive for the field distribution in the material.
  • the temperature distributions for a 50 mm thick wooden component were determined after certain times of the dielectric energy input.
  • Figure 6 shows temperature profiles for four different treatment regimes using the solid wood as an example.
  • the four resulting temperature profiles are shown after 3 min, 6 min, 9 min and 15 min.
  • (a) shows the temperature profile with continuous HF heating
  • the surface temperature can be reduced compared to the target temperature to be achieved in the volume, for example in order not to damage sensitive coatings.
  • the degree of temperature reduction can be varied by the choice of the insulating surface covering or the setting of the heat removal from the surface, for example by a cooling air flow.
  • Conventional heating using a hot plate (analog results would be achieved with hot air and IR treatment), on the other hand, leads to a high surface temperature, a pronounced decrease in temperature with depth and to a significantly lower heating speed in volume. With a decrease in surface temperature to Protection of sensitive surfaces would further reduce the already slow heating rate of the volume.
  • a certain maximum temperature must not be exceeded, but a minimum temperature (e.g. the lethal temperature for pest control) must be reached.
  • Figure 7 shows a temperature depth profile for the four treatment regimes Fig. 6 .
  • the four methods already mentioned are compared for a situation in which the maximum temperature is limited to 100 ° C.
  • the time is shown at which the limit temperature of 100 ° C was reached for the first time at one location. Since the target temperature according to the process was 60 ° C, the penetration depths up to which this temperature was reached are also marked.
  • a wooden plate with a thickness of 20 mm was used using the in Fig. 8 shown double comb structure heated. Construction elements made of steel were used for the electrodes 22, 24 and the webs 26, 28 in these orienting experiments. The distance between the electrodes 22, 24 was between 20 mm and 25 mm.
  • An RF generator (working frequency 13.56 MHz, maximum power 3 kW) and an electronic matching network (maximum RF voltage 4 kV) were used.
  • the surface temperature was measured using an IR camera.
  • Fiber optic temperature sensors were positioned at a depth of 10 mm below the wood surface to enable continuous temperature measurement during the RW treatment.
  • the positions of the sensors relative to the electrode structure are also Fig. 8 refer to.
  • Figure 9 shows the time course of the temperatures at a depth of 10 mm when using the in Fig. 8 shown device according to the invention and using the method according to the invention. These are the results of a typical heating test using the arrangement according to the invention. It could be demonstrated that a preselected minimum temperature of 60 ° C was reached everywhere in the wood plate at a depth of 10 cm. A maximum temperature of 100 ° C was not exceeded. The surface temperatures were significantly lower, as shown by pictures with an IR camera. Here an average temperature of approx. 75 ° C with a maximum surface temperature of 82 ° C was observed.
  • the special test regimes represent the method according to the invention, which, thanks to its flexibility, allows successful treatment of very different practical situations.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur thermischen Behandlung von Feststoffen. Insbesondere betrifft die vorliegende Erfindung ein Verfahren und eine Vorrichtung zur effizienten, direkt volumenbezogenen und hinsichtlich ihrer Temperaturverteilung gesteuerten thermischen Behandlung von Feststoffen mittels Hochfrequenzenergie. Dies kann u. a. für einen chemikalienfreien Holzschutz, die Trocknung oder die Dekontamination von Feststoffen eingesetzt werden.The invention relates to a method and an apparatus for the thermal treatment of solids. In particular, the present invention relates to a method and a device for the efficient, directly volume-related thermal treatment of solids by means of radio-frequency energy and controlled with regard to their temperature distribution. This can a. for chemical-free wood protection, drying or decontamination of solids.

Technologischer Hintergrund der ErfindungTechnological background of the invention

Der Ablauf vieler technischer Prozesse kann durch die Temperatur wesentlich beeinflusst werden, da eine Vielzahl von physikalischen und chemischen Parametern mehr oder weniger stark temperaturabhängig sind. Im Kontext des Bauwesens und der Bausanierung betrifft dies unter anderem die Trockenlegung von Gebäuden, den Austrag von Chemikalien aus Baustoffen oder die thermische Bekämpfung von Holzschädlingen. Im letzteren Fall ist das Erreichen einer Letaltemperatur von ca. 55 °C eine Alternative zum Einsatz von toxischen Chemikalien als Holzschutzmittel [ C. Hoyer et al., Chem. Ing. Technik 86 (2014) 1187 ]. In Wohn- und Nutzräumen wird der Qualität der Raumluft eine zunehmende Bedeutung beigemessen. Hier ist der Einsatz von Chemikalien oft kritisch zu sehen, wodurch thermische Behandlungsmethoden an Bedeutung gewinnen.The course of many technical processes can be significantly influenced by temperature, since a large number of physical and chemical parameters are more or less temperature-dependent. In the context of construction and renovation, this affects, among other things, the draining of buildings, the discharge of chemicals from building materials or the thermal control of wood pests. In the latter case, reaching a lethal temperature of approx. 55 ° C is an alternative to using toxic chemicals as wood preservatives [ C. Hoyer et al., Chem. Ing. Technik 86 (2014) 1187 ]. The quality of indoor air is becoming increasingly important in living and utility rooms. The use of chemicals is often critical here, making thermal treatment methods more important.

Aus der Vielzahl von Problemstellungen im Bauwesen, bei der Bausanierung und in anderen Anwendungsbereichen konzentriert sich das Anwendungspotenzial der Erfindung auf die Behandlung von mehr oder weniger ausgedehnten flächigen Materialien aus Feststoffen, die nur einseitig zugänglich sind oder die nur mit großem Aufwand beidseitig zugänglich wären. Besonders bevorzugt sind dabei Materialdicken von bis zu 10cm. Exemplarisch seien hier Parkett- und andere Holzfußböden, Wandtäfelungen und andere Wandverkleidungen oder Estrichböden genannt. Oft lässt sich ein Sanierungsbedarf auf diese Baustrukturen begrenzen, so dass ein Bedarf an adäquaten Verfahren zur Behandlung von relativ dünnen, flächig ausgedehnten Feststoffstrukturen besteht, die es ermöglichen, beispielsweise Holzschädlinge thermisch zu bekämpfen oder Wasser und Chemikalien aus diesen Materialien zu entfernen. Für eine effiziente und schonende Behandlung ist es dabei notwendig, einerseits schnell möglichst homogene Temperaturverteilungen zu erzielen und andererseits die Erwärmung genau zu kontrollieren, um Materialschädigungen durch lokale Überhitzung zu vermeiden. Für sensible Oberflächenbeschichtungen wie Lacke oder Furniere ist es oft wünschenswert, die Oberflächentemperatur niedrig, gegebenenfalls sogar niedriger als die Volumentemperatur in der Feststoffmatrix zu halten. Die vorliegende Erfindung hat das Ziel, ein entsprechendes Verfahren auf Basis der direkten dielektrischen Erwärmung unter Nutzung von Hochfrequenz-Energie zur Verfügung zu stellen. Die Vorrichtung erlaubt eine nicht-invasive Behandlung, was besonders auch Einsatzoptionen im Bereich des Denkmalschutzes und die Anwendung an Kunstgegenständen ermöglicht.From the multitude of problems in construction, in building renovation and in other areas of application, the application potential of the invention focuses on the treatment of more or less extensive flat materials made of solids which are only accessible from one side or which would be accessible from both sides only with great effort. Material thicknesses of up to 10 cm are particularly preferred. Parquet and other wooden floors, wall paneling and other wall cladding or screed floors may be mentioned here as examples. A need for refurbishment can often be limited to these building structures, so that there is a need for adequate processes for treating relatively thin, extensively expanded solid structures that make it possible, for example wood pests combat thermally or remove water and chemicals from these materials. For an efficient and gentle treatment, it is necessary on the one hand to quickly achieve the most homogeneous possible temperature distributions and on the other hand to control the heating precisely in order to avoid material damage due to local overheating. For sensitive surface coatings such as lacquers or veneers, it is often desirable to keep the surface temperature low, possibly even lower than the volume temperature in the solid matrix. The aim of the present invention is to provide a corresponding method based on direct dielectric heating using high-frequency energy. The device allows a non-invasive treatment, which in particular also enables use options in the area of monument protection and use on art objects.

Nach dem Stand der Technik gibt es eine Reihe von Verfahren, die eine Erwärmung des Materialvolumens durch Wärmeleitung von der Oberfläche her ermöglichen. Genannt seien hier das Heißluftverfahren, bei dem die Oberfläche durch einen darüberstreichenden Luftstrom erwärmt wird, die Anwendung von Heizplatten oder Heizdecken oder das Infrarotverfahren, bei dem die primäre Energieabsorption praktisch ebenfalls auf die Oberfläche beschränkt ist. Die Wärmeleitung ins Innere der zu behandelnden Struktur wird vom Parameter spezifische Wärmeleitfähigkeit bestimmt, welche gerade für trockene Materialien oft gering ist, was zu langen Erwärmungszeiten führt. Grundsätzlich ist der Wärmefluss umso stärker, desto höher der Temperaturgradient, d. h. die Temperaturänderung pro Abstand, und damit desto höher die mit den genannten Verfahren eingestellte Oberflächentemperatur ist. Der Überhitzung an der Oberfläche sind jedoch aus materialtechnischen Gründen Grenzen gesetzt, zumal eine thermische Schädigung gerade dieser Sichtflächen besonders kritisch wäre. Für ausgedehnte Flächen wie beispielsweise Parkettfußböden in repräsentativen Räumen ist für die meisten Behandlungsmethoden eine sukzessive Behandlung notwendig. Dies bedeutet, dass Behandlungseinrichtungen wie Heizplatten oder IR-Strahler nach bestimmten Zeitregimes verschoben werden müssen, um die gesamte Fläche abzudecken. Eine Heißluftbehandlung der gesamten Fläche und der Räume hat hingegen den Nachteil, dass hohe Temperaturen für oft dort vorhandene andere Gegenstände (z. B. Gemälde) schädlich sind.According to the state of the art, there are a number of methods which enable the material volume to be heated by heat conduction from the surface. Mentioned here are the hot air process, in which the surface is heated by a sweeping air stream, the use of heating plates or heated blankets, or the infrared process, in which the primary energy absorption is also practically limited to the surface. The heat conduction into the interior of the structure to be treated is determined by the parameter specific thermal conductivity, which is often low, especially for dry materials, which leads to long heating times. Basically, the heat flow is stronger, the higher the temperature gradient, i. H. the temperature change per distance, and thus the higher the surface temperature set with the above-mentioned processes. Overheating on the surface is, however, limited for technical reasons, especially since thermal damage to these visible surfaces would be particularly critical. For extensive areas such as parquet floors in representative rooms, most treatment methods require successive treatment. This means that treatment facilities such as heating plates or IR emitters have to be moved according to certain time regimes to cover the entire area. A hot air treatment of the entire area and the rooms, on the other hand, has the disadvantage that high temperatures are harmful to other objects (e.g. paintings) that are often present there.

Um die Nachteile einer inhomogenen Temperaturverteilung, einer Überhitzung der Oberfläche und einer langsamen passiven Erwärmung des Inneren über die Wärmeleitfähigkeit zu umgehen, werden seit einiger Zeit direkte Heizverfahren wie die Anwendung von Mikrowellen (MW) [ EP 1 374 676 B1 ] oder Radiowellen (RW) [ DE 20 2010 001 410 U1 ] untersucht, für die eine Wärmeerzeugung im Volumen des Feststoffes charakteristisch ist. Die Erwärmung beruht auf der Wechselwirkung der eingesetzten elektromagnetischen Wellen mit Frequenzen meist im GHz- (für MW) bzw. MHz-Bereich (für RW) mit polaren Strukturen im Feststoff.In order to avoid the disadvantages of inhomogeneous temperature distribution, overheating of the surface and slow passive heating of the interior via thermal conductivity, direct heating methods such as the use of microwaves (MW) [ EP 1 374 676 B1 ] or radio waves (RW) [ DE 20 2010 001 410 U1 ], for which heat generation in the volume of the solid is characteristic. The warming is based on the interaction of the electromagnetic waves used with frequencies mostly in the GHz (for MW) or MHz range (for RW) with polar structures in the solid.

Für die Mikrowellen-Erwärmung ist bei den meisten Anwendungen die Umorientierung des Wassermoleküls, das einen elektrischen Dipol darstellt, das dominierende Wirkprinzip. Durch die Interaktion des sich umorientierenden Wassermoleküls mit seiner Umgebung, die als innere Reibung beschrieben werden kann, entsteht Wärme. Aus diesem Grund lassen sich feuchte Materialien in der Regel gut mittels MW erwärmen. Für trockene Materialien ist die Methode hingegen häufig weniger geeignet. Die Temperaturprofile sind für die MW-Erwärmung meist sehr inhomogen, wodurch lokale Überhitzungen auftreten. Dies ist einerseits auf die geringen Eindringtiefen der MW und andererseits auf Interferenzerscheinungen oder die Abstrahlungscharakteristiken der eingesetzten Hornantennen zurückzuführen. In der Konsequenz ist eine zwar im Vergleich zu den konventionellen Verfahren geringere, aber dennoch signifikante und oft kritische Überhitzung an verschiedenen Oberflächenpositionen zu konstatieren.For microwave heating, the reorientation of the water molecule, which is an electrical dipole, is the dominant principle of action in most applications. The interaction of the reorienting water molecule with its environment, which can be described as internal friction, creates heat. For this reason, moist materials can usually be heated well using MW. However, the method is often less suitable for dry materials. The temperature profiles are usually very inhomogeneous for MW heating, which causes local overheating. This is due on the one hand to the low penetration depths of the MW and on the other hand to interference phenomena or the radiation characteristics of the horn antennas used. As a consequence, overheating at various surface positions, which is lower than in conventional methods, is nevertheless significant and often critical.

Das RW-Verfahren nach dem beschriebenen Stand der Technik führt zwar zu wesentlich homogeneren Temperaturprofilen, die beidseitige Anordnung von Elektroden im Hinblick auf das zu erwärmende Material führt jedoch zu Einschränkungen in der Anwendbarkeit der Methode besonders bei nur einseitig zugänglichen Strukturen, wie sie eingangs beschrieben wurden. Weitere Vorteile der Anwendung von RW gegenüber MW im beschriebenen Kontext sind die höhere Flexibilität hinsichtlich der zu erwärmenden Materialien und deren Feuchtegehalten sowie die höhere energetische Effizienz durch die Einsetzbarkeit eines elektronischen Anpassnetzwerkes. Die genannten Aspekte prädestinieren die RW-Methode für den Einsatz an flächigen, nicht zu dicken Strukturen zum Zwecke des chemikalienfreien Holzschutzes, der Trocknung oder der Dekontamination, wenn es gelingt, die Energieeinkopplung in die entsprechenden Materialien bei einseitiger Zugänglichkeit zu realisieren.Although the RW method according to the prior art described leads to significantly more homogeneous temperature profiles, the arrangement of electrodes on both sides with regard to the material to be heated leads to restrictions in the applicability of the method, particularly in the case of structures which are only accessible from one side, as described at the beginning . Further advantages of using RW compared to MW in the context described are the greater flexibility with regard to the materials to be heated and their moisture content as well as the higher energy efficiency through the use of an electronic adaptation network. The aspects mentioned predestine the RW method for use on flat, not too thick structures for the purpose of chemical-free wood protection, drying or decontamination, if the energy can be coupled into the corresponding materials with one-sided accessibility.

Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur effizienten, direkt volumenbezogenen und hinsichtlich ihrer Temperaturverteilung gesteuerten thermischen Behandlung von Feststoffen mittels Hochfrequenzenergie zur Verfügung zu stellen, welche die die genannten Vorteile der Radiofrequenz-Erwärmung aufgreifen und dabei die beschriebenen Nachteile des Standes der Technik überwinden und eine einsatzfähige Vorrichtung bereitzustellen, die es erlaubt, die RW-Methode für die genannten Anwendungsfälle erfolgreich einzusetzen. Die noch vorhandene technologische Lücke, insbesondere hinsichtlich einer adäquat realisierbaren Elektrodenanordnung, soll durch die vorliegende Erfindung geschlossen werden. Die Nachteile des Standes der Technik sollen überwunden und eine einsatzfähige Vorrichtung bereitgestellt werden, die es erlaubt, die RW-Methode für die genannten Anwendungsfälle erfolgreich einzusetzen.It is therefore an object of the present invention to provide a method and a device for the efficient, directly volume-related thermal treatment of solids by means of radio-frequency energy and controlled in terms of their temperature distribution, which take up the advantages of radio-frequency heating and the disadvantages described overcome the prior art and provide an operational device that allows the RW method to be used successfully for the applications mentioned. The remaining technological gap, especially with regard to an adequately realizable electrode arrangement is to be concluded by the present invention. The disadvantages of the prior art are to be overcome and an operational device is to be provided which allows the RW method to be used successfully for the applications mentioned.

Aus der WO 2016/102972 A2 ist eine ebenfalls auf dem Trocknungseffekt von Radiowellen basierende Vorrichtung zum Kräuseln oder Wellen von Haaren bekannt. Zum Behandeln bzw. Trocknen müssen jedoch auch bei dieser Vorrichtung die Elektroden von zwei Seiten um das Haar herum angeordnet werden. Das Dokument US2015/089829 A1 offenbart eine Vorrichtung gemäß des Oberbegriffs von Anspruch 1.From the WO 2016/102972 A2 a device for curling or waving hair, which is also based on the drying effect of radio waves, is known. For treatment or drying, however, the electrodes must also be arranged around the hair from two sides in this device. The document US2015 / 089829 A1 discloses an apparatus according to the preamble of claim 1.

Zusammenfassung der ErfindungSummary of the invention

Diese Aufgaben werden erfindungsgemäß durch die unabhängigen Patentansprüche gelöst. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen enthalten.According to the invention, these objects are achieved by the independent claims. Preferred embodiments of the invention are contained in the subclaims.

Die erfindungsgemäße Vorrichtung umfasst eine auf einer Oberfläche eines Feststoffs anordenbare binäre Elektrodenanordnung mit jeweils mindestens zwei elektrisch voneinander isolierten Elektroden (Elektrodenstruktur), wobei sich die Elektroden bevorzugt in einer planaren Ebene parallel zur Oberfläche des zu behandelnden Feststoffes befinden und die Elektrodenanordnung zumindest teilweise von einer elektrisch leitfähigen Abschirmung umgeben ist. Die Elektrodenstruktur ist elektrisch leitend mit einer Hochfrequenz-Spannungsquelle verbunden, die dazu ausgebildet ist, an die Elektrodenanordnung eine Hochfrequenz-Spannung mit einer Frequenz zwischen 100 kHz und 50 MHz anzulegen. Die erfindungsgemäße Vorrichtung ist so ausgebildet, dass innerhalb einer unter der Vorrichtung angeordneten Struktur (Feststoff) ein hochfrequentes elektrisches Feld etabliert wird. Die erfindungsgemäße Vorrichtung umfasst eine Haltevorrichtung, welche dazu ausgebildet ist, eine translatorische Bewegung der Elektrodenanordnung entlang der Oberfläche eines Feststoffs zu ermöglichen.The device according to the invention comprises a binary electrode arrangement which can be arranged on a surface of a solid, each having at least two electrodes (electrode structure) which are electrically insulated from one another, the electrodes preferably being located in a planar plane parallel to the surface of the solid to be treated and the electrode arrangement being at least partially electrically conductive shield is surrounded. The electrode structure is electrically conductively connected to a high-frequency voltage source, which is designed to apply a high-frequency voltage with a frequency between 100 kHz and 50 MHz to the electrode arrangement. The device according to the invention is designed such that a high-frequency electric field is established within a structure (solid) arranged under the device. The device according to the invention comprises a holding device which is designed to enable a translatory movement of the electrode arrangement along the surface of a solid.

Weiterhin ist es bevorzugt, dass die Elektroden als ineinandergreifende kammartige Strukturen ausgebildet sind, wobei jede der Strukturen eine Vielzahl von Einzelelektroden (Finger) aufweist, die über einen gemeinsamen Steg miteinander verbunden sind. In diesem Fall ist es bevorzugt, dass die Längsachsen der Einzelelektroden parallel oder im Wesentlichen parallel zueinander verlaufen. Weiter ist es bevorzugt, dass die Längsachsen der Stege parallel oder im Wesentlichen parallel zueinander verlaufen.It is further preferred that the electrodes are designed as interdigitated comb-like structures, each of the structures having a large number of individual electrodes (fingers) which are connected to one another via a common web. In this case, it is preferred that the longitudinal axes of the individual electrodes run parallel or essentially parallel to one another. It is further preferred that the longitudinal axes of the webs run parallel or essentially parallel to one another.

Es handelt sich um eine Vorrichtung zur effizienten thermischen Behandlung im Volumen durch eine auf der Oberfläche der zu erwärmenden Struktur angeordnete binäre Elektrodenstruktur zur Einspeisung von Hochfrequenz-Energie in vorwiegend flächig ausgedehnte Festkörper, welche mit einer Hochfrequenz-Spannungsquelle, die Spannungen mit einer Frequenz im Bereich zwischen 100 kHz und 50 MHz erzeugt, elektrisch leitend verbunden ist, und die ein dreidimensionales elektrisches Feld außerhalb der Elektrodenebene im zu behandelnden Festkörper erzeugt, das zu einer Erwärmung im Volumen führt. Elektroden einer Polarität können auch zu Gruppen verbunden werden, wobei dann zwischen den Einzelelektroden eine Kontaktierung erfolgt.It is a device for efficient thermal treatment in volume by means of a binary electrode structure arranged on the surface of the structure to be heated, for feeding high-frequency energy into predominantly extensive solid bodies, which have a high-frequency voltage source and the voltages with a frequency in the range generated between 100 kHz and 50 MHz, is electrically conductively connected, and which generates a three-dimensional electric field outside the electrode plane in the solid to be treated, which leads to heating in the volume. Electrodes of one polarity can also be connected in groups, contacting then taking place between the individual electrodes.

Unter einer solchen binären Elektrodenanordnung ist dabei eine zweiteilige Anordnung von einzelnen Elektroden zu zwei Elektrodengruppen zu verstehen. Die Elektroden der einzelnen Gruppen sind dabei jeweils elektrisch leitend miteinander verbunden, die beiden Elektrodengruppen der binären Elektrodenanordnung sind jedoch elektrisch voneinander isoliert. Durch die gegenseitige Lage der einzelnen Elektroden der Elektrodenanordnung kann eine gemeinsame Hauptachse definiert werden. Besonders bevorzugt erstreckt sich diese Hauptachse entlang der längsten Symmetrieachse der Elektrodenanordnung.Such a binary electrode arrangement is to be understood as a two-part arrangement of individual electrodes to form two electrode groups. The electrodes of the individual groups are each electrically conductively connected to one another, but the two electrode groups of the binary electrode arrangement are electrically insulated from one another. A common main axis can be defined by the mutual position of the individual electrodes of the electrode arrangement. This main axis particularly preferably extends along the longest axis of symmetry of the electrode arrangement.

Die vorliegende Erfindung kann insbesondere eine binäre, im Wesentlichen zweidimensional ausgelegte Elektrodenstruktur beinhalten, die elektrisch leitend mit einem HochfrequenzGenerator, der eine hochfrequente Spannung mit einer Frequenz im Bereich zwischen 100 kHz und 50 MHz bereitstellt, verbunden ist. Bevorzugt ist dabei ein Frequenzbereich von 1 MHz bis 30 MHz. Ganz besonders bevorzugt sind Frequenzen, die für industrielle, wissenschaftliche und medizinische Anwendungen freigegeben sind (ISM-Frequenzen). Die Elektrodenstruktur ist so ausgelegt, dass die Einkopplung der elektromagnetischen Wellen in die zu behandelnde Struktur derart erfolgt, dass im Vergleich zu konventionellen, ausschließlich auf Wärmeleitung beruhenden Methoden eine homogenere dielektrische Erwärmung zu verzeichnen ist, da die Erwärmung direkt im Volumen erfolgt. Vorzugsweise enthält die Vorrichtung darüber hinaus ein elektronisches Anpassnetzwerk, das zwischen HF-Generator und Elektrodensystem geschaltet ist, um die zum Generator reflektierte HF-Leistung zu minimieren bzw. ganz zu eliminieren. Eine elektromagnetische Abschirmung, die die Abstrahlung von elektromagnetischen Wellen von der Elektrodenstruktur in den Raum signifikant reduziert, ist ebenfalls Bestandteil von bevorzugten Ausführungsformen der erfindungsgemäßen Vorrichtung. Neben diesen Grundkomponenten enthalten bevorzugte Realisierungen dieser Vorrichtung vorteilhafterweise einen oder mehrere Temperatursensoren und/oder Vorrichtungen zur automatischen Anlagensteuerung über ein Computersystem und/oder Vorrichtungen zur automatischen Bewegung der Vorrichtung über die zu behandelnde Fläche und/oder Vorrichtungen zur automatischen Temperaturregulierung der Oberfläche.In particular, the present invention can include a binary, essentially two-dimensional electrode structure that is electrically conductively connected to a high-frequency generator that provides a high-frequency voltage with a frequency in the range between 100 kHz and 50 MHz. A frequency range from 1 MHz to 30 MHz is preferred. Frequencies which are approved for industrial, scientific and medical applications (ISM frequencies) are very particularly preferred. The electrode structure is designed in such a way that the electromagnetic waves are coupled into the structure to be treated in such a way that, compared to conventional methods based solely on heat conduction, a more homogeneous dielectric heating can be recorded, since the heating takes place directly in the volume. In addition, the device preferably contains an electronic matching network which is connected between the HF generator and the electrode system in order to minimize or completely eliminate the HF power reflected to the generator. Electromagnetic shielding, which significantly reduces the radiation of electromagnetic waves from the electrode structure into the room, is also part of preferred embodiments of the device according to the invention. In addition to these basic components, preferred implementations of this device advantageously contain one or more temperature sensors and / or devices for automatic system control via a computer system and / or devices for automatic movement of the device the surface to be treated and / or devices for automatic temperature regulation of the surface.

Die Idee der vorliegenden Erfindung besteht darin, durch Anwendung der erfindungsgemäßen Vorrichtung bei nur einseitiger Zugänglichkeit des zu behandelnden Feststoffes Temperaturprofile zu erzielen, die im Vergleich zu anderen Verfahren homogener sind und somit schneller zum Erreichen der Zielvorgaben führen. Dies bedeutet in der Regel, dass bereits der primäre Energieeintrag in den meisten Materialien eine Eindringtiefe von einigen Zentimetern hat. Es gelingt sogar, die Oberflächentemperatur niedriger zu halten als die Temperatur unterhalb der Oberfläche im Volumen des Festkörpers.The idea of the present invention is to achieve temperature profiles by using the device according to the invention with only one-sided accessibility of the solid to be treated, which are more homogeneous in comparison to other methods and thus lead faster to the achievement of the objectives. This usually means that the primary energy input in most materials has a penetration depth of a few centimeters. It is even possible to keep the surface temperature lower than the temperature below the surface in the volume of the solid.

Das binäre Elektrodensystem ist vorteilhafterweise so ausgelegt, dass sich in einem Bereich der Vorrichtung geerdete Elektrodenteile (so genannte "kalte" Elektroden) und spannungsführende Elektrodenteile (so genannte "heiße" Elektroden) abwechseln (Interdigitalstruktur) und dadurch in dem darunter liegenden Material ein hochfrequentes elektromagnetisches Feld erzeugt wird. Wenn der Abstand zwischen den Elektroden in derselben Größenordnung wie die Breite der Elektroden ist, so wird ein elektromagnetisches Feld erzeugt, dessen Verteilung den Anforderungen einer hinreichend gleichmäßigen Erwärmung besonders gut genügt. Eine besonders bevorzugte und konstruktiv robuste Ausführung dieses binären Elektrodensystems stellt eine ineinander greifende Kammstruktur (Doppelkammstruktur) dar. Die Elektrodenanordnung umfasst daher zwei ineinandergreifende Kammstrukturen. Unter einer Kammstruktur ist dabei eine Struktur zu verstehen, bei der die einzelnen Elektroden der Elektrodenanordnung kammartig als Zinken oder Zähne nebeneinander entlang eines elektrisch leitenden Steges angeordnet sind. Insbesondere kann dabei der Steg parallel zur Hauptachse der Elektrodenanordnung ausgerichtet sein. Die Kammstruktur kann dabei ein- oder zweiseitig ausgebildet sein, d. h. entlang des Steges können die einzelnen Elektroden entlang eines einzelnen Steges entweder nur in eine einzige Richtung oder in zwei voneinander unabhängige Richtungen zeigen. Bevorzugt liegen bei der zweiseitigen Ausbildung des Kammes die beiden Richtungen innerhalb einer gemeinsamen Ebene. Unter einer ineinandergreifenden Kammstruktur ist jede gegenseitige Anordnung zweier solcher Kammstrukturen zu verstehen, bei der die einzelnen Zinken beider Kämme ohne elektrischen Kontakt zueinander miteinander verzahnt sind.The binary electrode system is advantageously designed in such a way that electrode parts that are grounded in an area of the device (so-called "cold" electrodes) and live electrode parts (so-called "hot" electrodes) alternate (interdigital structure) and thus a high-frequency electromagnetic in the underlying material Field is generated. If the distance between the electrodes is of the same order of magnitude as the width of the electrodes, an electromagnetic field is generated, the distribution of which particularly satisfies the requirements of a sufficiently uniform heating. A particularly preferred and structurally robust embodiment of this binary electrode system is an intermeshing comb structure (double comb structure). The electrode arrangement therefore comprises two intermeshing comb structures. A comb structure is understood to mean a structure in which the individual electrodes of the electrode arrangement are arranged in a comb-like manner as prongs or teeth next to one another along an electrically conductive web. In particular, the web can be aligned parallel to the main axis of the electrode arrangement. The comb structure can be formed on one or two sides, i. H. along the web, the individual electrodes can point along a single web either only in a single direction or in two independent directions. In the two-sided design of the comb, the two directions are preferably within a common plane. An intermeshing comb structure is to be understood as any mutual arrangement of two such comb structures, in which the individual tines of both combs are interlocked with one another without electrical contact.

Die Feldstärkemaxima an den Kanten der Elektroden können dadurch reduziert werden, dass abgeschrägte oder abgerundete Elektroden verwendet werden. Diese Veränderung führt dazu, dass sich die Überhitzung an den Kanten der Elektroden deutlich verringert, ohne dass der Effekt einer Einkopplung in das Material signifikant eingeschränkt wird. Zum Erreichen der gewünschten Veränderung sind bereits Biegeradien bzw. Abschrägungen von einigen Millimetern ausreichend. Halbrund gegenüber der Oberfläche ausgebildete Elektroden bzw. Elektrodenteile sind hingegen weniger geeignet, da die Energieeinkopplung zu stark auf die Mitte der Elektrode (entlang der Berührungslinie) konzentriert wäre. Vorzugsweise umfasst die Elektrodenanordnung daher eine Oberfläche, die auf der Oberfläche des Feststoffs anordenbar ist, wobei die der Oberfläche des Feststoffs zugewendeten Kanten der Oberfläche abgerundet oder abgeschrägt sind. Insbesondere kann es sich bei besagter Oberfläche um die Oberfläche handeln, welche auf der Oberfläche des Feststoffs so angeordnet werden kann, dass durch die Elektrodenanordnung eine maximal große Oberfläche des Feststoffs abgedeckt wird. Diese Oberfläche weist im Bezug zu angrenzenden Oberflächen der Elektrodenanordnung Kanten auf, welche abgerundet oder abgeschrägt sein können. Beim Anlegen einer Hochfrequenz-Spannung an die Elektrodenanordnung wird ein elektromagnetisches Wechselfeld erzeugt, dessen Feldlinien meist senkrecht an den einzelnen Oberflächen der Kontakte enden. An Spitzen tritt in der Regel eine Konzentration der Feldlinien ein. Durch ein Abrunden oder Abschrägen der Kanten kann eine homogenere Verteilung der Feldlinien im Festkörper erreicht werden, da so die Feldstärkemaxima an den Kanten der Elektroden verringert werden können und zugleich eine verbesserte und homogenere Durchdringung des Bereich zwischen den Kontakten erreicht werden kann. Bevorzugt ist weiterhin, dass alle der zu behandelnden Oberfläche zugewandten Kanten der Elektroden abgerundet oder abgeschrägt sind.The field strength maxima at the edges of the electrodes can be reduced by using beveled or rounded electrodes. This change means that the overheating at the edges of the electrodes is significantly reduced without the Effect of coupling into the material is significantly limited. Bending radii or bevels of a few millimeters are sufficient to achieve the desired change. In contrast, semicircular electrodes or electrode parts formed towards the surface are less suitable because the energy coupling would be concentrated too much on the center of the electrode (along the line of contact). The electrode arrangement therefore preferably comprises a surface which can be arranged on the surface of the solid, the edges of the surface facing the surface of the solid being rounded or beveled. In particular, said surface can be the surface which can be arranged on the surface of the solid so that a maximum large surface of the solid is covered by the electrode arrangement. In relation to adjacent surfaces of the electrode arrangement, this surface has edges which can be rounded or beveled. When a high-frequency voltage is applied to the electrode arrangement, an alternating electromagnetic field is generated, the field lines of which usually end perpendicular to the individual surfaces of the contacts. A concentration of the field lines usually occurs at the top. Rounding or chamfering the edges enables a more homogeneous distribution of the field lines in the solid body, since the field strength maxima at the edges of the electrodes can be reduced and at the same time an improved and more homogeneous penetration of the area between the contacts can be achieved. It is further preferred that all edges of the electrodes facing the surface to be treated are rounded or beveled.

Die Elektroden können perforiert sein, um für die Fälle einer Trocknung oder eines Chemikalienaustrages aus der erwärmten Struktur einen ungehinderten Abtransport zu gewährleisten und damit eine Rekondensation zu verhindern. Vorzugsweise ist die Elektrodenanordnung also zumindest in Teilbereichen perforiert. Hierbei können einzelne Elektroden der Elektrodenanordnung ganz oder teilweise perforiert sein. Die Perforation kann bevorzugt zirkular, quadratisch, rechteckig oder sechseckig ausgeführt sein. Ebenfalls möglich sind Mischformen daraus sowie eine Anzahl unterschiedlich großer Perforationsdurchlässe. In Bereichen hoher Feldliniendichte kann durch eine Variation der Perforationsdichte und/oder -art eine Erhöhung der Transportfähigkeit zugunsten einer homogeneren Feldlinienverteilung erwirkt werden. Bei Bedarf kann sich unmittelbar an den Elektroden auch ein geeignetes Adsorptionsmittel befinden, das Wasser oder Schadstoffe binden und so den Austrag unterstützen kann. Für organische Schadstoffe können bevorzugt Aktivkohleschüttungen oder Aktivkohlevliese eingesetzt werden, die in einer vorteilhaften Ausgestaltung direkt mit den Elektroden verbunden sind.The electrodes can be perforated to ensure unhindered removal in the event of drying or chemical discharge from the heated structure and thus to prevent recondensation. The electrode arrangement is therefore preferably perforated at least in partial areas. Individual electrodes of the electrode arrangement can be fully or partially perforated. The perforation can preferably be circular, square, rectangular or hexagonal. Mixed forms are also possible, as are a number of perforation passages of different sizes. In areas of high field line density, a variation in the perforation density and / or type can increase the transportability in favor of a more homogeneous field line distribution. If necessary, a suitable adsorbent can also be located directly on the electrodes, which can bind water or pollutants and thus support the discharge. For organic pollutants, activated carbon beds or activated carbon fleeces can be used, which in an advantageous embodiment are connected directly to the electrodes.

Die erfindungsgemäße Elektrodenanordnung kann zur Ausführung des erfindungsgemäßen Verfahrens auf die Oberfläche eines Feststoffs aufgebracht und entlang der Oberfläche des zu behandelnden Feststoffs translatorisch bewegt werden. Dieses Aufbringen kann als direkter Kontakt zwischen den jeweils einander gegenüber liegenden Oberflächen erfolgen. Ebenfalls möglich ist ein geringer Abstand zwischen den jeweiligen Oberflächen; vorzugsweise kleiner 1 mm, kleiner 2 mm, kleiner 5 mm oder kleiner 10 mm. Um bei einer translatorischen Bewegung der Elektrodenanordnung die Kontakte und die Oberfläche des zu behandelnden Materials vor Verschmutzung und/oder Beschädigung zu schützen, kann zumindest in besonders beanspruchten Bereichen eine Schutzschicht, beispielsweise aus einem Kunststoffpolymer wie PTFE oder PE oder auch aus einer textilen Schicht wie Filz, aufgebracht sein. Vorzugsweise umfasst die Elektrodenanordnung daher eine Oberfläche, die auf der Oberfläche des Feststoffs anordenbar ist, wobei die Oberfläche zumindest teilweise durch eine Schutzschicht geschützt ist. Bevorzugt ist weiterhin, dass die der zu behandelnden Oberfläche zugewandten Flächen der Elektroden derart beschichtet sind, dass eine Schädigung der Oberfläche bei der Bewegung während der Behandlung verhindert oder wesentlich vermindert wird.The electrode arrangement according to the invention can be applied to the surface of a solid in order to carry out the method according to the invention and can be moved in translation along the surface of the solid to be treated. This application can take place as a direct contact between the respectively opposite surfaces. A small distance between the respective surfaces is also possible; preferably less than 1 mm, less than 2 mm, less than 5 mm or less than 10 mm. In order to protect the contacts and the surface of the material to be treated from soiling and / or damage during a translational movement of the electrode arrangement, a protective layer can be made, at least in particularly stressed areas, for example from a plastic polymer such as PTFE or PE or also from a textile layer such as felt , be upset. The electrode arrangement therefore preferably comprises a surface which can be arranged on the surface of the solid, the surface being at least partially protected by a protective layer. It is further preferred that the surfaces of the electrodes facing the surface to be treated are coated in such a way that damage to the surface during movement during the treatment is prevented or substantially reduced.

Um die elektromagnetische Verträglichkeit der Anordnung zu gewährleisten, kann das binäre Elektrodensystem vorzugsweise von einer elektromagnetischen Abschirmung oberhalb der zu behandelnden Fläche ganz oder teilweise umschlossen sein. Als Schirmungsmaterialien sind beispielsweise massive Metallbleche, Gazen oder metallbeschichtete Kunststofffolien geeignet. Die Elektrodenanordnung ist zumindest teilweise von einer elektrisch leitfähigen Abschirmung umgeben. Bevorzugt ist, dass die Elektroden von einer Schirmung bestehend aus einem elektrisch leitfähigen Material wie beispielsweise massivem Blech, Gaze oder metallbeschichteter Folie umgeben sind, so dass eine elektromagnetische Abstrahlung in den Raum signifikant verringert bzw. eliminiert wird.In order to ensure the electromagnetic compatibility of the arrangement, the binary electrode system can preferably be completely or partially enclosed by an electromagnetic shield above the surface to be treated. Solid metal sheets, gauzes or metal-coated plastic foils, for example, are suitable as shielding materials. The electrode arrangement is at least partially surrounded by an electrically conductive shield. It is preferred that the electrodes are surrounded by a shield consisting of an electrically conductive material such as solid sheet metal, gauze or metal-coated foil, so that electromagnetic radiation into the room is significantly reduced or eliminated.

Neben der räumlichen Ausprägung des elektromagnetischen Feldes in dem zu erwärmenden Material ist aus verfahrenstechnischer Sicht eine kontinuierliche oder quasi-kontinuierliche translatorische Bewegung der Elektrodenanordnung eine Möglichkeit, die Erwärmungsprofile zu homogenisieren. Dies kann beispielsweise durch eine entsprechende manuelle Bewegung der Vorrichtung entlang der Oberfläche des Festkörpers erfolgen. Vorzugsweise umfasst die Vorrichtung jedoch ein Mittel zur automatisierten translatorischen Bewegung der Elektrodenanordnung. Dieses Mittel kann beispielsweise durch eine entsprechend gelagerte Aktuatorplattform bereitgestellt werden. Durch eine entsprechende Ansteuerung bzw. Vorprogrammierung der Bewegung mindestens der Elektrodenanordnung kann eine homogene Erwärmung des Feststoffs erreicht werden. Vorzugsweise verfügt die Vorrichtung über ein Mittel zur translatorischen Bewegung der Elektrodenanordnung mit der Peripherie wie Abschirmung über die behandelte Fläche.In addition to the spatial characteristics of the electromagnetic field in the material to be heated, a continuous or quasi-continuous translational movement of the electrode arrangement is a possibility from a process engineering point of view to homogenize the heating profiles. This can be done, for example, by a corresponding manual movement of the device along the surface of the solid. However, the device preferably comprises a means for automated translatory movement of the electrode arrangement. This means can be provided, for example, by an appropriately mounted actuator platform. Appropriate control or pre-programming of the movement of at least the electrode arrangement enables homogeneous heating of the solid. The device preferably has a means for translational movement of the electrode arrangement with the periphery, such as shielding over the treated area.

Da die höchsten Feldstärken und damit die größten Aufheizraten an den Kanten der binären Elektrodenstruktur auftreten, ist es vorteilhaft, die Struktur der Elektroden so auszurichten, dass bei der kontinuierlichen Bewegung für die Erwärmung einer größeren Fläche nach Möglichkeit keine längere Positionierung einer Kante an einer Stelle des zu behandelnden Untergrundes auftritt. Diese Verfahrensweise soll zur besseren Veranschaulichung für einen Parkettfußboden in einem rechteckigen Raum erläutert werden. Um die gesamte Fläche zu behandeln, ist es sinnvoll, eine rechteckig ausgelegte Behandlungsvorrichtung parallel zu zwei gegenüber liegenden Wänden zu bewegen. Wenn die Elektrodenstruktur von einer quaderförmigen Abschirmung umgeben ist, welche parallel zur Wand bewegt wird, so wäre es vorteilhaft, die binäre Elektrodenstruktur in einem Winkel von 45° zu den Begrenzungen der Abschirmung und damit zur Bewegungsrichtung anzuordnen. Vorzugsweise werden die Elektroden daher weder parallel noch senkrecht in Relation zur bevorzugten Bewegungsrichtung angeordnet, wobei eine Anordnung der Elektroden im Winkel von 45° bevorzugt ist.Since the highest field strengths and thus the highest heating rates occur at the edges of the binary electrode structure, it is advantageous to align the structure of the electrodes in such a way that during continuous movement for heating a larger area, if possible, no longer positioning of an edge at one point of the surface to be treated occurs. This procedure will be explained for better illustration of a parquet floor in a rectangular room. In order to treat the entire surface, it makes sense to move a rectangular treatment device parallel to two opposite walls. If the electrode structure is surrounded by a cuboid shield, which is moved parallel to the wall, it would be advantageous to arrange the binary electrode structure at an angle of 45 ° to the limits of the shield and thus to the direction of movement. The electrodes are therefore preferably arranged neither parallel nor perpendicular in relation to the preferred direction of movement, an arrangement of the electrodes at an angle of 45 ° being preferred.

Vorzugsweise sind die Elektroden der Elektrodenanordnung senkrecht zur Hauptachse angeordnet, wobei die Länge der Elektroden entlang der Elektrodenanordnung variiert. Besonders bevorzugt ist dabei, dass die Länge der Elektroden entlang der Elektrodenanordnung linear variiert. Insbesondere ist eine Vorrichtung bevorzugt, die eine maximale Elektrodenlänge in der Mitte der Elektrodenanordnung aufweist und bei der sich die Länge der daran beiderseits angrenzenden Elektroden zu den äußeren Enden der Elektrodenanordnung hin linear verringert. Weiterhin bevorzugt ist, dass die Abschirmung der Elektrodenanordnung eine quadratische Grundfläche aufweist, in die die vorgenannte Ausführungsform mit beidseitig abfallender Elektrodenlänge derart angeordnet werden kann, dass die Hauptachse der eingeschlossenen Elektrodenstruktur durch zwei gegenüberliegende Eckpunkte verläuft. Eine solche Vorrichtung wird bevorzugt entlang der Seiten der quadratischen Abschirmung bewegt, so dass hierbei eine Anordnung im Winkel von 45° zu den Kanten der Abschirmung vorliegt.The electrodes of the electrode arrangement are preferably arranged perpendicular to the main axis, the length of the electrodes varying along the electrode arrangement. It is particularly preferred that the length of the electrodes varies linearly along the electrode arrangement. In particular, a device is preferred which has a maximum electrode length in the middle of the electrode arrangement and in which the length of the electrodes adjoining it on both sides decreases linearly towards the outer ends of the electrode arrangement. It is further preferred that the shielding of the electrode arrangement has a square base area, into which the aforementioned embodiment with the electrode length decreasing on both sides can be arranged such that the main axis of the enclosed electrode structure runs through two opposite corner points. Such a device is preferably moved along the sides of the square shield, so that there is an arrangement at an angle of 45 ° to the edges of the shield.

Eine solche Auslegung führt dazu, dass bei einer kontinuierlichen Bewegung der Anordnung parallel zur Wand jede Position auf der zu behandelnden Oberfläche nur kurzzeitig von einer Kante überstrichen wird. Dies wäre bei einer parallelen oder rechtwinkligen Anordnung einer Kammstruktur relativ zur Bewegungsrichtung und zum Rahmen nicht der Fall. Natürlich sind auch andere Geometrien der erfindungsgemäßen Anordnung unter Berücksichtigung der genannten Randbedingungen möglich. All diesen Anordnungen ist gemeinsam, dass durch eine im Wesentlichen zweidimensionale, flächige Elektrodenanordnung ein dreidimensionales elektrisches Feld in der zu behandelnden Struktur etabliert wird, das durch die Energieabsorption eine dielektrische Erwärmung im Volumen ermöglicht. Die Bewegung der Elektrodenanordnung und die immanente Wärmeleitung im Feststoff tragen zu einer Homogenisierung des Temperaturprofils bei, was bei der Wahl der Behandlungszeit und Behandlungsintensität (Leistungseintragsdichte) berücksichtigt werden sollte. Auch ein gepulster Energieeintrag mit der Ausnutzung der Wärmeleitung in den Phasen ohne Radiowellen-Anwendung ist eine verfahrenstechnische Option zur Homogenisierung der Temperaturverteilungen im Feststoff.Such a design means that with a continuous movement of the arrangement parallel to the wall, each position on the surface to be treated is only briefly covered by an edge. This would not be the case with a parallel or right-angled arrangement of a comb structure relative to the direction of movement and to the frame. Of course, other geometries of the arrangement according to the invention are also possible, taking into account the boundary conditions mentioned. All of these arrangements have in common that by a essentially two-dimensional, flat electrode arrangement, a three-dimensional electric field is established in the structure to be treated, which enables dielectric heating in the volume through the absorption of energy. The movement of the electrode arrangement and the inherent heat conduction in the solid contribute to a homogenization of the temperature profile, which should be taken into account when choosing the treatment time and intensity (power input density). A pulsed energy input with the utilization of heat conduction in the phases without radio wave application is also a procedural option for homogenizing the temperature distributions in the solid.

Für einen automatisierten und zeiteffizienten Behandlungsablauf ist die kontinuierliche Messung der Erwärmung von Vorteil. Da im Anwendungskontext das Einbringen von Sensoren in die zu behandelnde Struktur selbst in der Regel nicht möglich ist, sollte die berührungslose Messung der Oberflächentemperatur zwischen den Elektroden mittels optischer Sensoren zu Steuerung genutzt werden. Hierfür können vorzugsweise pyrometrische Sensoren in die Vorrichtung integriert werden. Besonders bevorzugt ist die zusätzliche Integration eines Computersystems, das auf der Basis der gemessenen Temperatur oder mehrerer gemessener Temperaturen die HF-Leistung und/oder die Bewegungsgeschwindigkeit der Vorrichtung über die zu behandelnde Struktur regelt, um eine Überhitzung der Oberfläche zu vermeiden und gleichzeitig durch die Sicherstellung einer Mindesttemperatur den Behandlungserfolg zu gewährleisten.Continuous measurement of heating is advantageous for an automated and time-efficient treatment process. Since it is generally not possible to insert sensors into the structure to be treated in the application context, the contactless measurement of the surface temperature between the electrodes by means of optical sensors should be used for control purposes. For this purpose, pyrometric sensors can preferably be integrated into the device. Particularly preferred is the additional integration of a computer system, which regulates the RF power and / or the speed of movement of the device over the structure to be treated on the basis of the measured temperature or a plurality of measured temperatures, in order to avoid overheating of the surface and at the same time by ensuring a minimum temperature to ensure the success of the treatment.

Obwohl die erfindungsgemäße Vorrichtung eine Erwärmung des Volumens ermöglicht, kann die Eindringtiefe der Erwärmung jedoch auch durch die Gestaltung der Elektrodenstruktur kontrolliert werden. Dies ist für Fälle ein großer Vorteil, bei denen der Untergrund unter der zu behandelnden Holzstruktur unbekannt ist und eine Erwärmung dieses Teils der Baustruktur minimiert werden soll.Although the device according to the invention enables the volume to be heated, the depth of penetration of the heating can also be controlled by the design of the electrode structure. This is a great advantage for cases in which the subsurface under the wood structure to be treated is unknown and heating of this part of the building structure is to be minimized.

Vorzugsweise umfasst die erfindungsgemäße Vorrichtung eine Regelungseinrichtung zur Regelung der Oberflächentemperatur des Feststoffes. Die Regelungseinrichtung kann ein Mittel zur Bestimmung der Oberflächentemperatur des Festkörpers umfassen. Hierbei kann es sich um mindestens einen, vorzugsweise elektronischen oder optischen, Sensor handeln, der die Oberflächentemperatur erfasst. Die Regelungseinrichtung kann ein Mittel zur Bestimmung der Oberflächentemperatur des Festkörpers umfassen. Die Regelungseinrichtung kann ein Mittel zur Bestimmung der elektrischen Feldstärke umfassen. Hierbei kann es sich um mindestens einen Sensor handeln, der die elektrische Feldstärke erfasst. Die Regelungseinrichtung kann ein Mittel zur Auswertung und Steuerung umfassen. Hierbei kann es sich beispielsweise um ein Computersystem handeln, welches zur Auswertung der Messsignale der einzelnen Mittel zur Bestimmung und zur Steuerung der gesamten Vorrichtung ausgebildet ist. Insbesondere können zur Auswertung das oder die Mittel zur Bestimmung der Oberflächentemperatur und/oder das oder die Mittel zur Bestimmung der elektrischen Feldstärke mit dem Mittel zur Auswertung und Steuerung verbunden sein. Weiterhin können zur Steuerung das Mittel zur translatorischen Bewegung und/oder die Hochfrequenz-Spannungsquelle mit dem Mittel zur Auswertung und Steuerung verbunden sein. Durch das Mittel zur Auswertung und Steuerung können somit in Abhängigkeit von bestimmten Größen die an die Anordnung angelegte HF-Leistung und/oder das translatorische Bewegungsprofil derart angepasst werden, dass eine weitgehend homogene Bearbeitung des Feststoffs ermöglicht wird. Insofern kann das Mittel zur Auswertung und Steuerung in Kombination mit Sensoren eine Steuerung und Regelung der thermischen Behandlung von Feststoffen ermöglichen. Insbesondere kann die an die Elektroden angelegte HF-Leistung in Abhängigkeit von der gemessenen Oberflächentemperatur geregelt werden.The device according to the invention preferably comprises a regulating device for regulating the surface temperature of the solid. The control device can comprise a means for determining the surface temperature of the solid. This can be at least one, preferably electronic or optical, sensor that detects the surface temperature. The control device can comprise a means for determining the surface temperature of the solid. The control device can comprise a means for determining the electrical field strength. This can be at least one sensor that detects the electric field strength. The control device can include a means for evaluation and control. This can be, for example, a Act computer system, which is designed to evaluate the measurement signals of the individual means for determining and controlling the entire device. In particular, the means or means for determining the surface temperature and / or the means or means for determining the electric field strength can be connected to the means for evaluation and control for evaluation. Furthermore, the means for translational movement and / or the high-frequency voltage source can be connected to the means for evaluation and control for control purposes. The means for evaluation and control can thus be used to adapt the RF power applied to the arrangement and / or the translational movement profile in dependence on certain variables such that a largely homogeneous processing of the solid is made possible. In this respect, the means for evaluation and control in combination with sensors can enable control and regulation of the thermal treatment of solids. In particular, the RF power applied to the electrodes can be regulated as a function of the measured surface temperature.

Weiterhin bevorzugt ist, dass die Vorrichtung mindestens ein Mittel zur Kühlung der Oberfläche des Feststoffs umfasst, welches eine Kühlung der Oberfläche des dielektrisch erwärmten Feststoffs ermöglicht. Diese Mittel zur Kühlung der Oberfläche des Feststoffs kann ebenfalls über das Mittel zur Auswertung und Steuerung geregelt sein. Vorzugsweise kann es sich bei dem Mittel zur Kühlung der Oberfläche um eine Einrichtung zur Luftführung handeln. Bei der Einrichtung zur Luftführung kann es sich beispielsweise um ein aktives System handeln, bei dem einzelnen Teilbereiche der Elektrodenanordnung Luft zugeführt wird. Die zugeführte Luft kann als Luftströmung von einer Vielzahl von Lüftern lokal erzeugt oder durch eine entsprechende Luftstromsteuerung den einzelnen Teilbereichen zugeführt werden. Der Luftstrom kann vorzugsweise über einen einzelnen Hauptlüfter erzeugt werden. Die zugeführte Luft kann zusätzlich über eine Kühleinrichtung gekühlt werden. Für die Führung des Luftstromes zur Kühlung kann auch eine Perforation in der Elektrodenstruktur genutzt werden.It is further preferred that the device comprises at least one means for cooling the surface of the solid which enables cooling of the surface of the dielectrically heated solid. These means for cooling the surface of the solid can also be regulated via the means for evaluation and control. The means for cooling the surface can preferably be a device for air guidance. The device for air guidance can be, for example, an active system in which air is supplied to individual partial areas of the electrode arrangement. The supplied air can be generated locally as an air flow by a large number of fans or can be supplied to the individual partial areas by a corresponding air flow control. The air flow can preferably be generated by a single main fan. The air supplied can also be cooled by a cooling device. A perforation in the electrode structure can also be used to guide the air flow for cooling.

Vorzugsweise ist in die elektrisch leitende Verbindung zwischen der Elektrodenanordnung und der Hochfrequenz-Spannungsquelle ein elektronisches Anpassnetzwerk zur Verringerung der von der Elektrodenanordnung zur Hochfrequenz-Spannungsquelle zurückreflektierten Hochfrequenz-Leistung geschaltet. Insbesondere kann ein elektronisches Anpassnetzwerk, eine so genannte Matchbox, zwischen HF-Spannungsquelle und Elektrodenanordnung derart geschaltet sein, dass die zum Generator reflektierte HF-Leistung verringert bzw. eliminiert wird.An electronic matching network for reducing the high-frequency power reflected back from the electrode arrangement to the high-frequency voltage source is preferably connected in the electrically conductive connection between the electrode arrangement and the high-frequency voltage source. In particular, an electronic matching network, a so-called matchbox, can be connected between the RF voltage source and the electrode arrangement in such a way that the RF power reflected to the generator is reduced or eliminated.

Das erfindungsgemäße Verfahren basiert auf der Anwendung der vorab beschriebenen Vorrichtung und nutzt die sich daraus ergebenden Vorteile bei der thermischen Behandlung von Feststoffen. Insbesondere umfasst das vorgestellte Verfahren zur thermischen Behandlung von Feststoffen als Verfahrensschritte das Bereitstellen einer binäre Elektrodenanordnung mit mindestens zwei elektrisch voneinander isolierten Elektroden, wobei die Elektrodenanordnung auf eine Oberfläche eines Feststoffs angeordnet wird, und das Anlegen einer Hochfrequenz-Spannung an die Elektrodenanordnung, wobei ein elektrisches Wechselfeld in einem Feststoff erzeugt wird und durch dieses Wechselfeld eine Erwärmung des Feststoffes im Volumen erfolgt. In einer vorteilhaften Ausgestaltung des Verfahrens wird eine Erwärmung im Volumen erreicht, ohne dass eine Überhitzung der Oberfläche stattfindet. Das erfindungsgemäße Verfahren ist geeignet, eine kontrollierte und direkte Erwärmung der zu behandelnden Struktur zu ermöglichen und dabei ungewollte Überhitzungen an Teilen der Oberfläche und des Volumens sicher auszuschließen.The method according to the invention is based on the use of the device described above and uses the resulting advantages in the thermal treatment of solids. In particular, the method presented for the thermal treatment of solids comprises, as process steps, the provision of a binary electrode arrangement with at least two electrodes which are electrically insulated from one another, the electrode arrangement being arranged on a surface of a solid, and the application of a high-frequency voltage to the electrode arrangement, an electrical one Alternating field is generated in a solid and the solid heats up in volume by this alternating field. In an advantageous embodiment of the method, the volume is heated without the surface overheating. The method according to the invention is suitable for enabling a controlled and direct heating of the structure to be treated and thereby reliably preventing unwanted overheating of parts of the surface and the volume.

Vorzugsweise wird die Elektrodenanordnung während einer verfahrensgemäßen Verwendung der erfindungsgemäßen Vorrichtung entlang der Oberfläche des Feststoffs allgemein translatorisch, d.h. in beliebiger Richtung entlang besagter Oberfläche, bewegt. Bevorzugter erfolgt eine translatorische Bewegung jedoch ausschließlich in Richtungen die nicht parallel zu Kanten der Elektrodenanordnung verlaufen. Eine translatorische Bewegung kann vorzugsweise manuell durch einen Benutzer der Vorrichtung oder mittels eines entsprechenden Mittels zur translatorischen Bewegung der Elektrodenanordnung erfolgen.Preferably, the electrode arrangement becomes generally translational, i.e., translucent, along the surface of the solid during use of the device according to the invention. in any direction along said surface. More preferably, however, a translatory movement occurs exclusively in directions that are not parallel to the edges of the electrode arrangement. A translatory movement can preferably be carried out manually by a user of the device or by means of a corresponding means for translatory movement of the electrode arrangement.

Beim erfindungsgemäßen Verfahren kann durch eine Regelungseinrichtung die Oberflächentemperatur des Feststoffes kontrolliert und nach Bedarf eingestellt werden. Vorzugsweise kann dabei durch die Regelungseinrichtung eine zumindest abschnittsweise Kühlung der Oberfläche des Feststoffes erfolgen. Vorzugsweise wird die Elektrodenanordnung entlang der Oberfläche des Feststoffs manuell oder automatisiert translatorisch bewegt. In einer bevorzugten Ausgestaltung des Verfahrens wird die Kühlung der Oberfläche über einen Luftstrom realisiert, der über Perforationen in dem Elektrodensystem geführt wird. In einer weiteren bevorzugten Ausgestaltung des Verfahrens werden Wasser und/oder Schadstoffe in einer bereitgestellten Substanz gebunden, die für die Aufnahme dieser Substanzen geeignet ist. In bevorzugten Ausgestaltungen des Verfahrens handelt es sich um Trockenmittel und/oder hydrophobe Adsorbenzien wie Aktivkohle beispielsweise in granularer oder Vliesform.In the method according to the invention, the surface temperature of the solid can be controlled by a control device and adjusted as required. Preferably, the control device can cool the surface of the solid at least in sections. The electrode arrangement is preferably moved in a manual or automated translatory manner along the surface of the solid. In a preferred embodiment of the method, the surface is cooled by means of an air stream which is guided through perforations in the electrode system. In a further preferred embodiment of the method, water and / or pollutants are bound in a substance provided which is suitable for the absorption of these substances. In preferred embodiments of the method, drying agents and / or hydrophobic adsorbents such as activated carbon, for example in granular or nonwoven form, are involved.

Kurzbeschreibung der FigurenBrief description of the figures

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:

Figur 1
eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur thermischen Behandlung von flächig ausgedehnten Feststoffen;
Figur 2
eine schematische Darstellung einer bevorzugten erfindungsgemäßen Elektrodenanordnung nach Fig. 1;
Figur 3
schematische Darstellungen einer weiteren bevorzugten erfindungsgemäßen Vorrichtung zur thermischen Behandlung von flächig ausgedehnten Feststoffen in Aufsicht und in Seitenansicht;
Figur 4
schematische Darstellungen von unterschiedlichen Ausgestaltungen des Querschnitts der Elektroden;
Figuren 5a, 5b
schematische Darstellungen einer Anwendung der erfindungsgemäßen Vorrichtung;
Figur 6
Temperaturprofile für vier unterschiedliche Behandlungsregimes am Beispiel des Feststoffs Holz;
Figur 7
ein Temperaturtiefenprofil für die vier Behandlungsregimes nach Figur 6 mit Angabe der Reichweite für das Erreichen einer Letaltemperatur von 60 °C;
Figur 8
schematische Darstellung einer weiteren erfindungsgemäßen Elektrodenanordnung mit Angabe der Positionen der faseroptischen Temperatursensoren; und
Figur 9
den zeitlichen Verlauf der Temperaturen in 10 mm Tiefe sowie die zeitlichen Verläufe von HF-Leistung und HF-Spannung bei Verwendung der in Figur 8 gezeigten erfindungsgemäßen Vorrichtung.
The invention is explained below in exemplary embodiments with reference to the accompanying drawings. Show it:
Figure 1
a schematic representation of a device according to the invention for the thermal treatment of solid materials extended over a large area;
Figure 2
a schematic representation of a preferred electrode arrangement according to the invention Fig. 1 ;
Figure 3
schematic representations of a further preferred device according to the invention for the thermal treatment of solidly expanded solids in supervision and in side view;
Figure 4
schematic representations of different configurations of the cross section of the electrodes;
Figures 5a, 5b
schematic representations of an application of the device according to the invention;
Figure 6
Temperature profiles for four different treatment regimes using the solid wood as an example;
Figure 7
a temperature depth profile for the four treatment regimes Figure 6 with indication of the range for reaching a lethal temperature of 60 ° C;
Figure 8
schematic representation of a further electrode arrangement according to the invention with details of the positions of the fiber optic temperature sensors; and
Figure 9
the time course of the temperatures at a depth of 10 mm as well as the time courses of RF power and RF voltage when using the in Figure 8 shown device according to the invention.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Figur 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Vorrichtung 100 zur thermischen Behandlung von Feststoffen 10. Die Vorrichtung 100 ist dabei aufliegend auf der Oberfläche A des Feststoffs 10 dargestellt, wobei die laterale Ausdehnung in der Regel deutlich größer ist als in der Fig. 1 angegeben. Insbesondere befindet sich hierbei ein Teil der dargestellten Oberfläche A des Feststoffs 10 in direktem Kontakt mit der unterseitigen Oberfläche B der Elektrodenanordnung 20. Ein solcher direkter Kontakt zwischen der Elektrodenanordnung 20 und der Oberfläche A des Feststoffs 10 ist jedoch nicht zwingend erforderlich, erfindungsgemäß ist es ausreichend, wenn der von der Elektrodenanordnung 20 ausgehende Feldlinienverlauf zu einer entsprechenden Durchdringung des Feststoffs 10 führt. Die Elektrodenanordnung 20 ist nach oben und zu den Seiten hin von einer Abschirmung 40 umgeben. Diese dient dazu, den Feldlinienverlauf auf das Volumen des Feststoffs 10 zu fokussieren und die parasitäre Abstrahlung in die Umgebung, d.h. außerhalb des Feststoffs 10, signifikant zu reduzieren. Oberhalb der Abschirmung 40 ist beispielhaft eine Haltevorrichtung 42 dargestellt. Vorliegend dient diese dazu, einem Benutzer der Vorrichtung 100 die manuelle Handhabung der Vorrichtung 100 zu erleichtern. Die Haltevorrichtung 42 kann dabei beispielsweise als Klemmhalterung, Umgriffhalterung oder als Schraub- bzw. Steckhalterung zur Befestigung eines Teleskopstangenkopfes ausgeführt sein. Ebenfalls kann die Haltevorrichtung 42 eine Möglichkeit zur Fixierung der Elektrodenanordnung 20 an ein Mittel zur translatorischen Bewegung der Elektrodenanordnung 20 aufweisen. Mithilfe einer entsprechenden Haltevorrichtung 42 kann die Elektrodenanordnung translatorisch entlang der Oberfläche A des Feststoffs 10 bewegt werden. Insbesondere ist erfindungsgemäß eine möglichst vollständige sukzessive Abdeckung einer zusammenhängenden Oberfläche A des Feststoffs 10 besonders bevorzugt. Hierbei kann das entsprechende Bewegungsprofil frei gewählt werden, insbesondere bei manueller Bewegung ist jedoch ein vollständig die Oberfläche A des Feststoffs 10 abdeckendes Zick-Zack-Profil bei der translatorischen Bewegung besonders bevorzugt. Erfindungsgemäß wird ein hochfrequentes elektromagnetisches Wechselfeld in das Volumen des Feststoffs 10 eingekoppelt. Dieses HF-Feld wird vorzugsweise durch eine Hochfrequenz-Spannungsquelle 30 erzeugt. Dies kann über eine elektrisch leitende Verbindung mit der Elektrodenanordnung 20 verbunden sein. Vorzugsweise ist in die elektrische leitende Verbindung zwischen der Elektrodenanordnung 20 und der Hochfrequenz-Spannungsquelle 30 ein elektronisches Anpassnetzwerk 50 zur Verringerung der von der Elektrodenanordnung 20 zur Hochfrequenz-Spannungsquelle 30 rückreflektierten Hochfrequenz-Leistung geschaltet. Bei der dargestellten Elektrodenanordnung 20 handelt es sich um zwei ineinander greifenden Kammstrukturen. Die Zähne des Kamms und der verbindende Quersteg bilden dabei die einzelnen Elektroden aus. Der erste Steg 26 und der zweite Steg 28 stellen dabei auch leitfähige elektrische Verbindungen zwischen den einzelnen Zähnen eines Kamms dar. Die von der Hochfrequenz-Spannungsquelle 30 erzeugte Hochfrequenzspannung liegt an den Stegen 26, 28 an und ist somit auch mit den einzelnen Elektroden des jeweiligen Kamms verbunden. Erfindungsgemäß bildet sich somit zwischen den Doppelkämmen ein starkes elektromagnetisches Wechselfeld aus, wobei der dabei erzeugte Feldlinienverlauf vorzugsweise tief in das Volumen des Feststoffs 10 eindringt und zu einer Aufheizung des Materials führt. Figure 1 shows a schematic representation of a device 100 according to the invention for the thermal treatment of solids 10. The device 100 is shown lying on the surface A of the solid 10, the lateral extent generally being significantly larger than in FIG Fig. 1 specified. In particular, part of the surface A of the solid 10 shown is in direct contact with the underside surface B of the electrode arrangement 20. However, such a direct contact between the electrode arrangement 20 and the surface A of the solid 10 is not absolutely necessary, according to the invention it is sufficient , if the field line course starting from the electrode arrangement 20 leads to a corresponding penetration of the solid 10. The electrode arrangement 20 is surrounded at the top and on the sides by a shield 40. This serves to focus the field line course on the volume of the solid 10 and to significantly reduce the parasitic radiation into the surroundings, ie outside the solid 10. A holding device 42 is shown above the shield 40 as an example. In the present case, this serves to make it easier for a user of the device 100 to handle the device 100 manually. The holding device 42 can be designed, for example, as a clamp holder, wrap-around holder or as a screw or plug-in holder for fastening a telescopic rod head. The holding device 42 can also have a possibility for fixing the electrode arrangement 20 to a means for translatory movement of the electrode arrangement 20. With the aid of a corresponding holding device 42, the electrode arrangement can be moved translationally along the surface A of the solid 10. In particular, the most complete possible successive covering of a coherent surface A of the solid 10 is particularly preferred according to the invention. The corresponding movement profile can be chosen freely, but in the case of manual movement in particular, a zigzag profile completely covering the surface A of the solid 10 is particularly preferred for the translatory movement. According to the invention, a high-frequency alternating electromagnetic field is coupled into the volume of the solid 10. This RF field is preferably generated by a high-frequency voltage source 30. This can be connected to the electrode arrangement 20 via an electrically conductive connection. An electronic matching network 50 is preferably connected to the electrically conductive connection between the electrode arrangement 20 and the high-frequency voltage source 30 in order to reduce the high-frequency power reflected back from the electrode arrangement 20 to the high-frequency voltage source 30. The electrode arrangement 20 shown is two interdigitated comb structures. The teeth of the comb and the connecting crosspiece form the individual electrodes. The first web 26 and the second web 28 also provide conductive electrical connections between the individual ones Teeth of a comb. The high-frequency voltage generated by the high-frequency voltage source 30 is applied to the webs 26, 28 and is therefore also connected to the individual electrodes of the respective comb. According to the invention, a strong electromagnetic alternating field is thus formed between the double combs, the field line course generated thereby preferably penetrating deep into the volume of the solid 10 and leading to heating of the material.

Figur 2 zeigt eine schematische Darstellung einer beispielhaften erfindungsgemäßen Elektrodenanordnung 20 nach Fig. 1. Hierbei wird insbesondere die miteinander verzahnte kammartige Anordnung der ersten Elektroden 22 und der zweiten Elektroden 24 als Interdigitalstruktur deutlich. Die zum ersten Kamm gehörenden Elektroden 22a - 22f sind elektrisch leitend über den ersten Steg 26 miteinander verbunden, wobei der Steg ebenfalls als Elektrode wirkt. Die zum zweiten Kamm gehörenden Elektroden 24a - 24f sind elektrisch leitend über den zweiten Steg 28 miteinander verbunden. Auch dieser wirkt gleichzeitig als Elektrode. Beide Kämme sind elektrisch vollständig gegeneinander isoliert und weisen keine elektrisch leitende Verbindung untereinander auf. Eine indirekte Verbindung erfolgt lediglich im Betrieb der Vorrichtung 100 durch den Anschluss beider Kämme an die Hochfrequenz-Spannungsquelle. Die einzelnen Elektroden 22, 24 erstrecken sich entlang einer gemeinsamen Hauptachse X der Elektrodenanordnung 20, wobei in der gezeigten Darstellung der erste Steg 26 und der zweite Steg 28 ebenfalls parallel zur Hauptachse X der Elektrodenanordnung 20 verlaufen. Die Stege 26, 28 können jedoch auch beliebig anders zur Hauptachse X der Elektrodenanordnung 20 orientiert sein, insbesondere können die Elektroden 22, 24 auch ohne eine feste Stegstruktur elektrisch miteinander verbunden sein. Beispielsweise kann eine Verbindung der jeweils zusammengehörigen Elektroden auch mittels individueller Kabelverbindung oder Lötung erfolgen. Im beispielhaft dargestellten Fall liegen die Stege 26 und 28 in einer Ebene mit den Elektroden 22a - 22f und 24a - 24f. Es ist jedoch auch möglich, dass sich diese Stege weitgehend oberhalb der Ebene der Elektroden 22a - 22f und 24a - 24f befinden. In diesem Fall wirken die Stege praktisch nicht selbst als HF-Elektroden bezüglich des zu behandelnden Materials 10. Figure 2 shows a schematic representation of an exemplary electrode arrangement 20 according to the invention Fig. 1 . In particular, the interdigitated comb-like arrangement of the first electrodes 22 and the second electrodes 24 as an interdigital structure becomes clear. The electrodes 22a-22f belonging to the first comb are connected to one another in an electrically conductive manner via the first web 26, the web also acting as an electrode. The electrodes 24a-24f belonging to the second comb are connected to one another in an electrically conductive manner via the second web 28. This also acts as an electrode. Both combs are completely electrically insulated from one another and have no electrically conductive connection to one another. An indirect connection only takes place during operation of the device 100 by connecting both combs to the high-frequency voltage source. The individual electrodes 22, 24 extend along a common main axis X of the electrode arrangement 20, the first web 26 and the second web 28 likewise running parallel to the main axis X of the electrode arrangement 20 in the illustration shown. However, the webs 26, 28 can also be oriented in any other way to the main axis X of the electrode arrangement 20, in particular the electrodes 22, 24 can also be electrically connected to one another without a fixed web structure. For example, the electrodes that belong together can also be connected by means of individual cable connections or soldering. In the case illustrated by way of example, the webs 26 and 28 lie in one plane with the electrodes 22a-22f and 24a-24f. However, it is also possible for these webs to be largely above the plane of the electrodes 22a-22f and 24a-24f. In this case, the webs practically do not themselves act as HF electrodes with respect to the material 10 to be treated.

Ein wesentliches Merkmal der vorliegenden Erfindung ist die Bereitstellung einer Vorrichtung zur möglichst homogenen thermischen Behandlung von Feststoffen. Daher ist auch bei der Auslegung einer erfindungsgemäßen Elektrodenanordnung 20 ein entsprechendes Maß an Homogenität und Einheitlichkeit besonders bevorzugt. Insbesondere sollten die jeweiligen geometrischen Abstände, Maße und Winkel zwischen den einzelnen Elektroden 22, 24 einheitlich sein. In der Darstellung der Fig. 2 wird dies dadurch deutlich, dass hier zwei identische Kammstrukturen derart ineinandergreifen, dass die Elektrodenstege jeweils im gleichen Abstand parallel zueinander angeordnet sind. Insbesondere sind der linkseitige und rechtsseitige Abstand jeder einzelnen Elektrode 22, 24 zu ihren beiden nächsten Nachbarn jeweils gleich groß. Das Tastverhältnis zwischen der Breite der Elektroden 22, 24 und dem Abstand der einzelnen Elektroden 22, 24 kann frei gewählt werden. Bevorzugt ist jedoch auch hier ein Tastverhältnis, welches in Abhängigkeit der an die Elektrodenanordnung 20 angelegten Hochfrequenz-Spannung und der jeweiligen Elektrodenform eine möglichst optimale Umsetzung der erfinderischen Idee des Verfahrens sicherstellt.An essential feature of the present invention is the provision of a device for the most homogeneous thermal treatment of solids. A corresponding degree of homogeneity and uniformity is therefore also particularly preferred when designing an electrode arrangement 20 according to the invention. In particular, the respective geometric distances, dimensions and angles between the individual electrodes 22, 24 should be uniform. In the representation of the Fig. 2 this becomes clear from the fact that here two identical comb structures mesh in such a way that the electrode webs are arranged parallel to each other at the same distance. In particular, the left-hand and right-hand distance of each individual electrode 22, 24 from its two closest neighbors are each the same. The pulse duty factor between the width of the electrodes 22, 24 and the distance between the individual electrodes 22, 24 can be chosen freely. However, a duty cycle is also preferred here, which ensures that the inventive idea of the method is implemented as optimally as possible depending on the high-frequency voltage applied to the electrode arrangement 20 and the respective electrode shape.

Figur 3 zeigt eine schematische Darstellung der wesentlichen Komponenten einer weiteren erfindungsgemäßen Vorrichtung 100 zur thermischen Behandlung von Feststoffen 10 in Aufsicht (oben) und in Seitenansicht (unten). Dargestellt ist eine Elektrodenanordnung 20 mit zwei ineinander greifenden Kammstrukturen, wobei es sich um zweiseitig ausgeführte Kammstrukturen handelt, bei denen die Elektroden 22, 24 sich an beiden Seiten (in der Figur oberhalb und unterhalb) der jeweiligen Stege 26, 28 befinden. Die Elektroden 22, 24 erstrecken sich wie dargestellt entlang einer gemeinsamen Hauptachse X, wobei auch bei dieser Ausführungsform die Stege 26, 28 jeweils parallel zu der Hauptachse X verlaufen. Die Elektroden 22, 24 der Elektrodenstruktur 20 sind senkrecht zur Hauptachse X angeordnet, wobei die Länge der Elektroden entlang der Elektrodenstruktur variiert. Es ist hervorzuheben, dass bei der Anordnung nach Fig. 3 die Stege oberhalb der Elektrodenstruktur und nicht in einer Ebene mit dieser angeordnet sind. Sie wirken in diesem Fall praktisch nicht als Elektroden bezüglich der zu erwärmenden Struktur 10. Die Länge der Elektroden 22, 24 entlang der Elektrodenstruktur 20 variiert linear. Insbesondere weist die Elektrodenanordnung 20 eine maximale Elektrodenlänge in der Mitte der Elektrodenstruktur 20 auf. Die Länge der daran beiderseits angrenzenden Elektroden 22, 24 verringert sich zu den äußeren Ende der Elektrodenstruktur 20 hin linear. Der Aufsicht ist zu entnehmen, dass die Abschirmung 40 im gezeigten Ausführungsbeispiel einen quadratischen Querschnitt bezüglich der Draufsicht aufweist. Die Elektrodenanordnung 20 ist dabei diagonal in die Grundfläche dieses Quadrates eingefasst. Das Quadrat folgt in der Regel der Lage der Abschirmung 40. Eine erfindungsgemäße translatorische Bewegung der gezeigten Elektrodenanordnung 20 erfolgt bevorzugt entlang der Seiten der quadratischen Abschirmung 40, daher liegt in dem gezeigten Ausführungsbeispiel in der gezeigten Anordnung ein Winkel von 45° zu den Kanten der Abschirmung 40 vor. Figure 3 shows a schematic representation of the essential components of a further device 100 according to the invention for the thermal treatment of solids 10 in top view (top) and in side view (bottom). An electrode arrangement 20 is shown with two intermeshing comb structures, which are comb structures on two sides, in which the electrodes 22, 24 are located on both sides (in the figure above and below) of the respective webs 26, 28. The electrodes 22, 24 extend as shown along a common main axis X, the webs 26, 28 also running parallel to the main axis X in this embodiment as well. The electrodes 22, 24 of the electrode structure 20 are arranged perpendicular to the main axis X, the length of the electrodes varying along the electrode structure. It should be emphasized that in the arrangement according to Fig. 3 the webs are arranged above the electrode structure and not in one plane with it. In this case, they practically do not act as electrodes with respect to the structure 10 to be heated. The length of the electrodes 22, 24 along the electrode structure 20 varies linearly. In particular, the electrode arrangement 20 has a maximum electrode length in the middle of the electrode structure 20. The length of the electrodes 22, 24 adjoining on both sides decreases linearly towards the outer end of the electrode structure 20. It can be seen from the top view that the shield 40 in the exemplary embodiment shown has a square cross section with respect to the plan view. The electrode arrangement 20 is enclosed diagonally in the base of this square. The square generally follows the position of the shield 40. A translational movement of the electrode arrangement 20 shown preferably takes place along the sides of the square shield 40, therefore in the exemplary embodiment shown there is an angle of 45 ° to the edges of the shield in the arrangement shown 40 before.

Figur 4 zeigt eine schematische Darstellung von unterschiedlichen Ausgestaltungen des Querschnitts der Elektroden 22, 24. Die einzelnen Elektroden 22, 24 der Elektrodenanordnung 20 weisen an ihrer Unterseite, d.h. an der der Oberfläche A des Feststoffs 10 zugewendeten Oberfläche B, jeweils einen Randbereich auf, welcher durch eine Kanten K gekennzeichnet ist. Zur Beeinflussung des Feldlinienverlaufs im Betrieb der erfindungsgemäßen Vorrichtung 100 kann die Form dieses Randbereichs, insbesondere die der Kanten K, im Unterscheid zu einer rechtwinkligen oder eckigen Ausgestaltung (Links), durch Abrunden (Rechts) oder Abschrägen (Mitte) modifiziert werden. Zum Schutz zumindest der Oberfläche B der Kontakte 22, 24 und/oder der Oberfläche A der zu behandelnden Struktur 10 können die Kontakte 22, 24 auch mit einer Schutzschicht 60 versehen sein. Die Schutzschicht 60 kann dabei beispielsweise den gesamten Kontakt 22, 24, lediglich einzelne Kontaktstellen oder nur die Oberfläche B der Kontakte 22, 24 umfassen. Letzteres ist zu illustrativen Zwecken bei der dargestellten Ausführungsform eines Kontaktes 22, 24 mit abgerundeten Kanten K (Rechts) dargestellt. All diese Ausführungsformen können auch eine Perforation aufweisen, die die Abführung von Substanzen von der zu behandelnden Festkörperstruktur 10 und/oder die Belüftung der Oberfläche A der Festkörperstruktur 10 gestattet. Figure 4 shows a schematic representation of different configurations of the cross section of the electrodes 22, 24. The individual electrodes 22, 24 of the electrode arrangement 20 each have an edge area on their underside, ie on the surface B facing the surface A of the solid 10, which is characterized by an edge K. In order to influence the course of the field line during operation of the device 100 according to the invention, the shape of this edge region, in particular that of the edges K, can be modified by rounding (right) or beveling (center), in distinction to a rectangular or angular configuration (left). To protect at least the surface B of the contacts 22, 24 and / or the surface A of the structure 10 to be treated, the contacts 22, 24 can also be provided with a protective layer 60. The protective layer 60 can include, for example, the entire contact 22, 24, only individual contact points or only the surface B of the contacts 22, 24. The latter is shown for illustrative purposes in the illustrated embodiment of a contact 22, 24 with rounded edges K (right). All of these embodiments can also have a perforation which allows the removal of substances from the solid structure 10 to be treated and / or the ventilation of the surface A of the solid structure 10.

Ausführungsbeispiel 1:Example 1: Modellierung der räumlichen Verteilung der Energieeinkopplung in die behandelte StrukturModeling the spatial distribution of the energy coupling into the treated structure

Unter den vielfältigen Variationsmöglichkeiten bei der Anwendung sei ein Beispiel veranschaulicht, bei dem parallele Elektroden bzw. Elektrodenteile mit wechselnder Polarität ("heiße", d. h. spannungsführende, und "kalte", d. h. geerdete, Elektroden) zur Erwärmung genutzt werden. Über den Elektroden ist eine Schirmung angeordnet, die sich auch über die angrenzende Oberfläche erstreckt. Die "kalten" Elektroden sind mit der geerdeten Schirmung und dem Matchboxgehäuse elektrisch leitend verbunden, während die "heißen" Elektroden spannungsführend über ein Kupferband mit dem elektronischen Anpassnetzwerk bzw. mit der Spannungsquelle zur Kontaktierung verbunden sind. Die Anordnung für eine vertikale Behandlung (beispielsweise eines Fragments einer Wandvertäfelung) ist schematisch in Fig. 5 dargestellt.Among the many possible variations in use, an example is illustrated in which parallel electrodes or electrode parts with alternating polarity ("hot", ie live, and "cold", ie earthed, electrodes) are used for heating. A shield is arranged above the electrodes, which also extends over the adjacent surface. The "cold" electrodes are electrically conductively connected to the grounded shield and the matchbox housing, while the "hot" electrodes are electrically connected to the electronic matching network or to the voltage source for contacting via a copper strip. The arrangement for a vertical treatment (for example a fragment of a wall paneling) is shown schematically in Fig. 5 shown.

Figur 5 zeigt schematische Darstellungen einer Anwendung der erfindungsgemäßen Vorrichtung mit einer oberflächengebundenen binären Elektrodenanordnung am Beispiel einer zu erwärmenden Mauer. Dabei zeigt Fig. 5a die Schirmung mit darunterliegender, nicht sichtbarer Kammstruktur und Fig. 5b einen Schnitt durch die erfindungsgemäße Vorrichtung mit sichtbarer Kammstruktur. Figure 5 shows schematic representations of an application of the device according to the invention with a surface-bound binary electrode arrangement using the example of a wall to be heated. It shows Fig. 5a the shielding with the underlying, invisible comb structure and Fig. 5b a section through the device according to the invention with a visible comb structure.

Legt man für eine Simulation zugrunde, dass die Elektroden eine Breite von 20 mm besitzen und der Abstand der Elektrodenmitten jeweils 25 mm beträgt, so ergibt sich eine Spaltbreite zwischen den Elektroden von 5 mm. In Richtung zur Maueroberfläche wurden die Elektroden jeweils 5 mm im Winkel von 45° abgeschrägt, so dass auf der Oberfläche ein effektiver Elektrodenabstand von 15 mm vorlag, der auch für die Feldverteilung im Material maßgebend ist. Unter Verwendung von realistischen Annahmen für die Wärmeausbreitung im Material, den Wärmeübergang zwischen Materialoberfläche und Luft sowie unter Nutzung der dielektrischen und physikalischen Parameter für das Material Holz wurden die Temperaturverteilungen für ein 50 mm dickes Holzbauteil nach bestimmten Zeiten des dielektrischen Energieeintrages ermittelt.If a simulation is based on the fact that the electrodes have a width of 20 mm and the distance between the center of the electrodes is 25 mm, the gap between the electrodes is 5 mm. In the direction of the wall surface, the electrodes were each beveled 5 mm at an angle of 45 °, so that there was an effective electrode distance of 15 mm on the surface, which is also decisive for the field distribution in the material. Using realistic assumptions for the heat propagation in the material, the heat transfer between the material surface and air and using the dielectric and physical parameters for the material wood, the temperature distributions for a 50 mm thick wooden component were determined after certain times of the dielectric energy input.

Dabei wurden vier unterschiedliche Szenarien verglichen: eine konventionelle Erwärmung mit einer Heizplatte, eine dielektrische Erwärmung unter Nutzung der erfindungsgemäßen Vorrichtung mittels Radiowellen-Energie sowie die Nutzung beider Verfahren im Impulsbetrieb (1 min Heizung, 2 min Pause). In allen Fällen wurde eine Leistung von 1 kW eingesetzt.Four different scenarios were compared: conventional heating with a heating plate, dielectric heating using the device according to the invention using radio wave energy, and the use of both methods in pulse mode (1 min heating, 2 min break). A power of 1 kW was used in all cases.

Figur 6 zeigt Temperaturprofile für vier unterschiedliche Behandlungsregimes am Beispiel des Feststoffs Holz. Dargestellt sind die vier sich ergebenden Temperaturprofile nach jeweils 3 min, 6 min, 9 min und 15 min. Dabei zeigt (a) das Temperaturprofil bei einer kontinuierlichen HF-Erwärmung, (b) das Temperaturprofil bei kontinuierlicher konventioneller HF-Erwärmung, (c) das Temperaturprofil bei Radiowellen-Erwärmung im Impulsbetrieb (1 min Leistung eingeschaltet, danach jeweils 2 min Pause) und (d) das Temperaturprofil bei konventioneller Erwärmung im Impulsbetrieb (Zeiten wie vorher). Figure 6 shows temperature profiles for four different treatment regimes using the solid wood as an example. The four resulting temperature profiles are shown after 3 min, 6 min, 9 min and 15 min. Thereby (a) shows the temperature profile with continuous HF heating, (b) the temperature profile with continuous conventional HF heating, (c) the temperature profile with radio wave heating in pulse mode (1 min power on, then 2 min break) and (d) the temperature profile for conventional heating in pulse mode (times as before).

Es wird deutlich, dass das Maximum der Erwärmung sowie der Energieeintrag insgesamt für den Fall der Radiowellen-Methode deutlich hinein in das Volumen des Materials verschoben sind. Für eine nicht thermisch isolierte Oberfläche kann die Oberflächentemperatur gegenüber der im Volumen zu erreichenden Zieltemperatur abgesenkt werden, beispielsweise, um sensible Beschichtungen nicht zu schädigen. Der Grad der Temperaturabsenkung kann durch die Wahl der isolierenden Oberflächenbedeckung bzw. die Einstellung des Wärmeabtransports von der Oberfläche beispielsweise durch einen kühlenden Luftstrom variiert werden. Die konventionelle Erwärmung mittels Heizplatte (analoge Resultate würden mit der Heißluft- und der IR-Behandlung erzielt) führt hingegen zu einer hohen Oberflächentemperatur, zu einer ausgeprägten Temperaturabnahme mit der Tiefe und zu einer deutlich geringeren Aufheizgeschwindigkeit im Volumen. Bei einer Verringerung der Oberflächentemperatur zum Schutz sensibler Oberflächen würde sich die ohnehin schon geringere Erwärmungsgeschwindigkeit des Volumens nochmals verringern.It becomes clear that the maximum of the heating and the total energy input for the case of the radio wave method are clearly shifted into the volume of the material. For a non-thermally insulated surface, the surface temperature can be reduced compared to the target temperature to be achieved in the volume, for example in order not to damage sensitive coatings. The degree of temperature reduction can be varied by the choice of the insulating surface covering or the setting of the heat removal from the surface, for example by a cooling air flow. Conventional heating using a hot plate (analog results would be achieved with hot air and IR treatment), on the other hand, leads to a high surface temperature, a pronounced decrease in temperature with depth and to a significantly lower heating speed in volume. With a decrease in surface temperature to Protection of sensitive surfaces would further reduce the already slow heating rate of the volume.

Für die praktische Anwendung ergibt sich meist die Situation, dass eine bestimmte Maximaltemperatur nicht überschritten werden darf, jedoch eine Mindesttemperatur (z. B. die Letaltemperatur für die Schädlingsbekämpfung) erreicht werden muss.For practical use, the situation usually arises that a certain maximum temperature must not be exceeded, but a minimum temperature (e.g. the lethal temperature for pest control) must be reached.

Figur 7 zeigt ein Temperaturtiefenprofil für die vier Behandlungsregimes nach Fig. 6. Es werden die vier bereits genannten Verfahren für eine Situation gegenübergestellt, bei der die Maximaltemperatur auf 100 °C begrenzt ist. Dargestellt ist jeweils der Zeitpunkt, zu dem erstmalig an einem Ort die Grenztemperatur von 100 °C erreicht wurde. Da die verfahrensgemäße Zieltemperatur 60 °C betrug, sind zudem die Eindringtiefen markiert, bis zu denen diese Temperatur erreicht wurde. Figure 7 shows a temperature depth profile for the four treatment regimes Fig. 6 . The four methods already mentioned are compared for a situation in which the maximum temperature is limited to 100 ° C. The time is shown at which the limit temperature of 100 ° C was reached for the first time at one location. Since the target temperature according to the process was 60 ° C, the penetration depths up to which this temperature was reached are also marked.

Auch hier zeigen sich wiederum die klaren Vorteile des Radiowellen-Verfahrens unter Verwendung der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens bei einer verwendeten Leistung von 1 kW (kontinuierlich oder in den Pulsen im Impulsbetrieb). Die Eindringtiefen für die Radiowellen-Erwärmung (13 mm bzw. 17 mm, bezogen auf das Erreichen der Letaltemperatur von 60 °C) waren deutlich höher als die, die bei einer konventionellen Erwärmung mittels Heizplatte (oder analog mit dem Heißluft- oder Infrarotverfahren) erreicht wurden (5 mm und 8 mm für den kontinuierlichen bzw. den Impulsbetrieb). Die dafür benötigten Behandlungszeiten waren vergleichbar. Dies bedeutet gleichzeitig, dass für gleiche Eindringtiefen wesentlich längere Behandlungszeiten für die konventionelle Erwärmung notwendig wären, wenn in einem bestimmten Volumen die Zieltemperatur durchgängig erreicht werden soll. Es sei angemerkt, dass in dem beschriebenen Fall keine Bewegung der Vorrichtung über die zu behandelnde Oberfläche erfolgte. Bei einer mobilen Anwendung müsste die effektive Verweilzeit des Systems an der Position berücksichtigt werden.Here, too, the clear advantages of the radio wave method using the device and the method according to the invention with a power of 1 kW used (continuously or in the pulses in pulse mode) can be seen. The penetration depths for the radio wave heating (13 mm or 17 mm, based on reaching the lethal temperature of 60 ° C) were significantly higher than those achieved with conventional heating using a heating plate (or analogously with the hot air or infrared method) (5 mm and 8 mm for continuous and pulse operation). The treatment times required for this were comparable. At the same time, this means that much longer treatment times for conventional heating would be necessary for the same penetration depths if the target temperature was to be consistently reached in a certain volume. It should be noted that in the case described, there was no movement of the device over the surface to be treated. In the case of a mobile application, the effective dwell time of the system at the position would have to be taken into account.

Ausführungsbeispiel 2:Example 2: Erwärmung einer Parkettfläche mit einer DoppelkammstrukturHeating of a parquet surface with a double comb structure

Für Demonstrationszwecke wurde eine Holzplatte mit einer Dicke von 20 mm unter Nutzung der in Fig. 8 dargestellten Doppelkammstruktur erwärmt. Für die Elektroden 22, 24 und die Stege 26, 28 wurden bei diesen orientierenden Versuchen Konstruktionselemente aus Stahl verwendet. Der Abstand zwischen den Elektroden 22, 24 betrug zwischen 20 mm und 25 mm.For demonstration purposes, a wooden plate with a thickness of 20 mm was used using the in Fig. 8 shown double comb structure heated. Construction elements made of steel were used for the electrodes 22, 24 and the webs 26, 28 in these orienting experiments. The distance between the electrodes 22, 24 was between 20 mm and 25 mm.

Es wurden ein HF-Generator (Arbeitsfrequenz 13,56 MHz, Maximalleistung 3 kW) und ein elektronisches Anpassnetzwerk (maximale HF-Spannung 4 kV) verwendet.An RF generator (working frequency 13.56 MHz, maximum power 3 kW) and an electronic matching network (maximum RF voltage 4 kV) were used.

Die Oberflächentemperatur wurde mittels einer IR-Kamera vermessen. In einer Tiefe von 10 mm unter der Holzoberfläche wurden faseroptische Temperatursensoren positioniert, um während der RW-Behandlung eine kontinuierliche Temperaturerfassung zu ermöglichen. Die Positionen der Sensoren relativ zur Elektrodenstruktur (mit x markiert) sind ebenfalls Fig. 8 zu entnehmen.The surface temperature was measured using an IR camera. Fiber optic temperature sensors were positioned at a depth of 10 mm below the wood surface to enable continuous temperature measurement during the RW treatment. The positions of the sensors relative to the electrode structure (marked with x) are also Fig. 8 refer to.

Figur 9 zeigt den zeitlichen Verlauf der Temperaturen in 10 mm Tiefe bei Verwendung der in Fig. 8 gezeigten erfindungsgemäßen Vorrichtung und unter Verwendung des erfindungsgemäßen Verfahrens. Es sind dies Resultate eines typischen Erwärmungsversuches unter Verwendung der erfindungsgemäßen Anordnung. Es konnte nachgewiesen werden, dass eine vorgewählte Mindesttemperatur von 60 °C in einer Tiefe von 10 cm in der Holzplatte überall erreicht wurde. Eine Höchsttemperatur von 100 °C wurde nicht überschritten. Die Oberflächentemperaturen waren deutlich niedriger, wie Aufnahmen mittels IR-Kamera zeigten. Hier war eine mittlere Temperatur von ca. 75 °C bei einer maximalen Oberflächentemperatur von 82 °C zu konstatieren. Figure 9 shows the time course of the temperatures at a depth of 10 mm when using the in Fig. 8 shown device according to the invention and using the method according to the invention. These are the results of a typical heating test using the arrangement according to the invention. It could be demonstrated that a preselected minimum temperature of 60 ° C was reached everywhere in the wood plate at a depth of 10 cm. A maximum temperature of 100 ° C was not exceeded. The surface temperatures were significantly lower, as shown by pictures with an IR camera. Here an average temperature of approx. 75 ° C with a maximum surface temperature of 82 ° C was observed.

Es ist davon auszugehen, dass durch eine Optimierung der Elektrodenstruktur und durch spezielle Versuchsregimes (vgl. Ausführungsbeispiel 1) eine noch bessere Homogenität der Temperaturverteilung erzielt werden kann.It can be assumed that an even better homogeneity of the temperature distribution can be achieved by optimizing the electrode structure and using special test regimes (cf. embodiment 1).

Die speziellen Versuchsregimes repräsentieren das erfindungsgemäße Verfahren, das durch seine Flexibilität eine erfolgreiche Behandlung sehr unterschiedlicher Praxissituationen erlaubt.The special test regimes represent the method according to the invention, which, thanks to its flexibility, allows successful treatment of very different practical situations.

BezugszeichenlisteReference list

1010th
FeststoffSolid
2020th
ElektrodenanordnungElectrode arrangement
22a, 22b, ...22a, 22b, ...
erste Elektrodenfirst electrodes
24a, 24b, ...24a, 24b, ...
zweite Elektrodensecond electrodes
2626
erster Stegfirst footbridge
2828
zweiter Stegsecond bridge
3030th
Hochfrequenz-SpannungsquelleHigh frequency voltage source
4040
Abschirmungshielding
4242
HaltevorrichtungHolding device
5050
AnpassnetzwerkFitting network
6060
SchutzschichtProtective layer
AA
Oberfläche des Feststoffs 10Solid surface 10
BB
Oberflächen der Elektrodenanordnung 20Surfaces of the electrode assembly 20
KK
Kanten der Elektroden 22, 24Edges of electrodes 22, 24
XX
Hauptachse der Elektrodenanordnung 20Major axis of the electrode arrangement 20

Claims (15)

  1. A device (100) for the thermal treatment of solids (10), comprising a binary electrode arrangement (20) which can be arranged on a surface (A) of a solid (10), each electrode arrangement having at least two electrodes (22, 24) electrically insulated from one another, the electrode arrangement (20) comprising two intermeshing comb structures, the electrode arrangement being at least partially surrounded by an electrically conductive shield, and the electrode arrangement (20) being electrically conductively connected to a high-frequency voltage source (30) which is configured to apply a high-frequency voltage having a frequency between 100 kHz and 50 MHz to the electrode arrangement (20),
    characterized in that
    a holding device (42) is provided, configured to enable a translatory movement of the electrode arrangement (20) along the surface (A) of a solid (10) .
  2. The device (100) according to claim 1, wherein the device (100) comprises a surface (B) which can be arranged on the surface (A) of the solid (10), wherein the edges (K) facing the surface (A) of the solid (10) the surface (B) are rounded or beveled and/or the surface (B) is at least partially protected by a protective layer (60).
  3. The device (100) according to any one of the preceding claims, wherein the electrode arrangement (20) is perforated at least in partial regions.
  4. The device (100) according to any one of the preceding claims, wherein each of the comb structures comprises a web (26, 28) via which the respective electrodes (22, 22a, 22b, 22c, 22d, 22e, 22f, 24, 24a, 24b, 24c, 24d, 24e, 24f) of the electrode arrangement (20) are electrically connected to one another, wherein the webs (26, 28) run parallel to a main axis (X) of the electrode arrangement (20) and wherein the electrodes (22, 22a, 22b, 22c, 22d, 22e, 22f, 24, 24a, 24b, 24c, 24d, 24e, 24f) are arranged perpendicular to the main axis (X) and the length of the electrodes (22, 24) varies along the electrode arrangement (20).
  5. The device (100) according to any one of the preceding claims, further comprising a means for translatory movement of the electrode arrangement (20).
  6. The device (100) according to any one of the preceding claims, further comprising a regulation device for regulating the surface temperature of the solid (10).
  7. The device (100) according to any one of the preceding claims, wherein the device (100) has an adsorbent for receiving the substances emerging from the solid.
  8. The device (100) according to claim 7, wherein the adsorbent directly contacts at least one of the electrodes (22, 24).
  9. The device (100) according to any one of the preceding claims, wherein the electrode arrangement (20) has at least one perforation which is configured to guide an air stream for cooling.
  10. A method for the thermal treatment of solids (10), comprising the following method steps:
    - providing a device (100) for the thermal treatment of solids (10) according to any one of claims 1 to 9, the electrode arrangement (20) being arranged on a surface (A) of a solid (10), and
    - applying a high-frequency voltage having a frequency between 100 kHz and 50 MHz to the electrode arrangement (20), an alternating electrical field being generated in the solid (10) and the solid (10) being heated by this alternating field.
  11. The method according to claim 10, wherein the surface temperature and/or the volume temperature of the solid (10) are regulated by a regulation device (70).
  12. The method according to claim 11, wherein the regulation device (70) cools the surface (A) of the solid (10) at least in sections by means of at least one means for cooling the surface (A) of the solid (10) .
  13. The method according to any one of the preceding claims 10 to 12, wherein the electrode arrangement (20) is moved generally translationally along the surface (A) of the solid (10) or the translational movement does not take place parallel to edges of the electrode arrangement (20).
  14. The method according to any one of the preceding claims 10 to 13, wherein the substances emerging from the treated structure of the solid (10) are bound to an adsorber material.
  15. The method according to any one of the preceding claims 10 to 14, wherein the surface of the solid is cooled via an air stream, wherein the air stream is preferably guided via perforations in the electrodes (22, 24) of the electrode arrangement (20).
EP17167431.0A 2016-04-22 2017-04-20 Method and device for thermal processing of solids Active EP3236710B8 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016107550.7A DE102016107550B4 (en) 2016-04-22 2016-04-22 Method and device for the thermal treatment of solids

Publications (3)

Publication Number Publication Date
EP3236710A1 EP3236710A1 (en) 2017-10-25
EP3236710B1 true EP3236710B1 (en) 2020-05-06
EP3236710B8 EP3236710B8 (en) 2020-08-12

Family

ID=58709753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167431.0A Active EP3236710B8 (en) 2016-04-22 2017-04-20 Method and device for thermal processing of solids

Country Status (2)

Country Link
EP (1) EP3236710B8 (en)
DE (1) DE102016107550B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100876U1 (en) 2022-02-16 2022-03-14 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for the controlled heating of shaped bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310616B (en) * 2019-06-28 2023-06-06 Oppo广东移动通信有限公司 Sound generating device, display device and terminal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150089829A1 (en) * 2013-10-02 2015-04-02 Whirlpool Corporation Method and apparatus for drying articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691038C (en) 1937-07-01 1940-05-15 Siemens Schuckertwerke Akt Ges Device for drying paper webs and similar material webs
DE3114251A1 (en) 1981-04-08 1982-11-04 Siemens AG, 1000 Berlin und 8000 München Device for capacitive drying of insulating-material boards
DE19544889A1 (en) 1995-12-01 1997-06-05 Detlef Steinbach Method and arrangement for drying buildings and / or stationary components
ATE334586T1 (en) 2002-06-17 2006-08-15 Silvia Hofmann ARRANGEMENT AND PROCEDURE FOR KILLING WOOD DESTROYING INSECTS AND FUNGI AND FOR TREATING MATERIALS CONTAINED WITH CONTAMINANTS
DE202010001410U1 (en) 2010-01-25 2010-05-27 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for drying and decontamination of masonry, concrete, wood and other solids
GB2533602B (en) * 2014-12-23 2020-11-11 Jemella Ltd Method and apparatus for manipulating the shape of hair

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150089829A1 (en) * 2013-10-02 2015-04-02 Whirlpool Corporation Method and apparatus for drying articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100876U1 (en) 2022-02-16 2022-03-14 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Device for the controlled heating of shaped bodies
EP4231780A1 (en) 2022-02-16 2023-08-23 Helmholtz-Zentrum für Umweltforschung GmbH-UFZ Device for the controlled heating of moulded bodies

Also Published As

Publication number Publication date
EP3236710A1 (en) 2017-10-25
DE102016107550B4 (en) 2021-09-16
EP3236710B8 (en) 2020-08-12
DE102016107550A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
DE69202978T2 (en) METHOD FOR PREVENTING AND FIGHTING MUSHROOM IN EXISTING BUILDINGS AND ELECTRODES FOR IMPLEMENTING THE METHOD.
EP2163143B1 (en) Device for the treatment of surfaces with a plasma generated by an electrode over a solid dielectric via a dielectric barrier gas discharge
EP3320759B1 (en) Electrode arrangement for forming a dielectric barrier plasma discharge
EP3051926B1 (en) Plasma generating device, plasma generating system, method of generating plasma and method for disinfecting surfaces
EP3236710B1 (en) Method and device for thermal processing of solids
DE102005052276B4 (en) Method and device for the selective dielectric heating of a solid bed by means of rod-shaped electrodes
EP3307018B1 (en) Method for controlling an induction hob and induction hob
DE202006016551U1 (en) induction heating
EP3685425B1 (en) Device for treating a product with microwaves
DE102016107547B3 (en) Method and apparatus for non-invasive dielectric heating of solids
EP2621246B1 (en) Arrangement and method for heating a medium by microwave radiation
EP2022429B1 (en) Device for creating high frequency currents for cosmetic and/or therapeutic treatment of tissue with electrodes
EP2906075B1 (en) Heating plate for a hair-styling iron
DE102016205821B4 (en) Plasma source for wound treatment
DE2502524C3 (en) Method and device for the thermal treatment of objects by means of a high-frequency electric field and press for the production of objects from laminated wood
EP2436331A1 (en) Electromedical device for the non-invasive reduction or removal of subcutaneous adipose tissue
EP1374676B1 (en) System and method for killing wood-destroying insects and mushrooms and for treating infected materials
EP3685424A1 (en) Device for treating a product with microwaves
DE102019128538B3 (en) Apparatus for forming physical plasma on a surface of an object
DE202022100876U1 (en) Device for the controlled heating of shaped bodies
EP4119190A1 (en) Device and infrared heating module for supplying heat
DE102012021026A1 (en) Apparatus for inductive heating of workpiece e.g. metal sheets, has induction coil comprising conductor whose radius of curvature along winding is set to predetermined value
EP2789436B1 (en) Method for treating a surface of a workpiece made of wood or wooden material
DE3026812A1 (en) DEVICE FOR HEAT TREATING ARTICLES WITH THE AID OF MICROWAVE GENERATORS
DE19804842A1 (en) System for applying HF power in imperfect dielectrics esp. for warming and drying of materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLZER, FRANK

Inventor name: KRAUS, MARKUS

Inventor name: HOYER, CHRISTIAN

Inventor name: ROLAND, ULF

Inventor name: TROMMLER, ULF

Inventor name: KOPINKE, FRANK-DIETER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180425

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROLAND, ULF

Inventor name: HOLZER, FRANK

Inventor name: TROMMLER, ULF

Inventor name: KRAUS, MARKUS

Inventor name: HOYER, CHRISTIAN

Inventor name: KOPINKE, FRANK-DIETER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1268925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005108

Country of ref document: DE

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RIN2 Information on inventor provided after grant (corrected)

Inventor name: ROLAND, ULF

Inventor name: HOYER, CHRISTIAN

Inventor name: TROMMLER, ULF

Inventor name: KRAUS, MARKUS

Inventor name: HOLZER, FRANK

Inventor name: KOPINKE, FRANK-DIETER

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005108

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170420

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230323

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506