EP3236074B1 - Rotationspumpe mit schmiernut im dichtsteg - Google Patents

Rotationspumpe mit schmiernut im dichtsteg Download PDF

Info

Publication number
EP3236074B1
EP3236074B1 EP17167286.8A EP17167286A EP3236074B1 EP 3236074 B1 EP3236074 B1 EP 3236074B1 EP 17167286 A EP17167286 A EP 17167286A EP 3236074 B1 EP3236074 B1 EP 3236074B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
bearing
rotary
rotary pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17167286.8A
Other languages
English (en)
French (fr)
Other versions
EP3236074A1 (de
Inventor
Michael Ehringer
Sven Peters
Gerd Jäggle
Thomas Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3236074A1 publication Critical patent/EP3236074A1/de
Application granted granted Critical
Publication of EP3236074B1 publication Critical patent/EP3236074B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members

Definitions

  • the invention relates to a rotary pump with a housing that has a pump chamber with an inlet for a medium to be pumped into a low-pressure region of the pump chamber and an outlet for the medium to be pumped from a high-pressure region of the pump chamber.
  • the pump further includes at least one rotor and a bearing for the rotor.
  • the pump comprises a sealing web which faces the rotor axially and which separates the low-pressure region from the high-pressure region in the direction of rotation of the rotor, and a lubricant supply which supplies a lubricant from the pump chamber to the bearing.
  • the lubricant supply is formed in the sealing web, in particular in an area of greatest tooth engagement of the rotor.
  • the bearing of a pump is supplied with lubricant via the high pressure area or an external pressure reservoir.
  • the bearing lubrication is generally dependent on the direction of rotation of the pump, so that when the direction of rotation is reversed, the bearing is connected to the low-pressure area of the pump and is therefore no longer supplied with lubricant.
  • US 2005/064976 A1 a rotary pump in which a bearing of the driven rotor is supplied with lubricating fluid via a channel directly from the high-pressure side of the pump outside the delivery chamber.
  • Supplying a rotor bearing of a rotary pump via a supply line outside the delivery chamber is also possible CN 203 570 583 U known.
  • they show US 3,904,333 and the US 4,927,343 A Rotary pumps that use pressurized fluid to press pressure plates axially against the end faces of the rotor to seal the delivery chamber.
  • a rotary pump with a direction-independent and targeted lubricant supply for a bearing of the rotor should be provided.
  • One aspect of the invention relates to a rotary pump with a switchable direction of rotation, with a housing that has a pump chamber with an inlet for a medium to be pumped into a low-pressure region of the pump chamber and an outlet for the medium to be pumped from a high-pressure region of the pump chamber, at least one rotor, at least one plain bearing, for the at least one rotor, at least one sealing web facing the rotor axially, which separates the low-pressure region from the high-pressure region in the direction of rotation of the rotor, and a lubricant supply which is independent of the direction of rotation and which supplies a lubricant from the pump chamber to at least the bearing, the lubricant supply being in the sealing web , in particular in an area of greatest tooth engagement of the rotor.
  • the rotary pump is an internal axis pump, such as a rotary piston pump, a vane pump, an internal gear pump or another internal axis pump known in the art.
  • the housing may include one or more parts, for example one or more lids, to close openings. Parts of the housing can form part of the pump chamber, for example an axial cover for the pump chamber or a peripheral wall or a cup-shaped structure for receiving the at least one rotor.
  • the rotor may be connected or coupled to a drive, such as an electric motor or a shaft driven by an internal combustion engine, which generates the driving energy for the rotor.
  • the rotor is preferably connected to an electric motor and is intended in particular for use in a motor vehicle. If the motor vehicle has an internal combustion engine as a drive, the rotary pump can be driven by the electric motor, preferably independently of the internal combustion engine, for example when the internal combustion engine is at a standstill.
  • the rotary pump advantageously has the electric motor.
  • the rotary pump is preferably designed as an electric rotary pump.
  • the rotary pump is preferably designed as an auxiliary pump and/or an additional pump to support and/or at least partially replace a main or primary pump in a lubricant and/or coolant system of the motor vehicle. “Provided” is intended to mean, in particular, specifically designed, designed, executed, arranged and/or programmed.
  • the direction of rotation of the rotary pump can be switched so that the pump can be used flexibly.
  • the outlet of the pump that rotates in the first direction of rotation becomes the inlet for the same pump that now rotates in the second direction of rotation.
  • the inlet of the pump which after a change in the direction of rotation of the pump outlet becomes.
  • the inlet opens into a low-pressure area and the outlet opens into a high-pressure area of the pump. Switching the direction of rotation of the pump thus changes the flow direction of the medium to be pumped through the pump, which in other words is a reversible rotary pump.
  • the medium to be pumped can in particular be a lubricant and/or coolant, such as a lubricating and/or cooling oil, which is supplied to one or more units from the high-pressure side of the pump via hoses, channels or lines to the units to lubricate and/or cool.
  • a lubricant and/or coolant such as a lubricating and/or cooling oil
  • it can also be a medium for another purpose, for example heating oil, heavy oil or diesel, which is also used to lubricate the rotor bearing.
  • the low-pressure side of the pump can be fluidly connected to a reservoir for the medium to be pumped.
  • the rotary pump preferably has at least two sealing webs facing axially towards the rotor, each of which separates the low-pressure region from the high-pressure region in the direction of rotation of the rotor.
  • the sealing webs are arranged between the inlet and the outlet, viewed along the direction of rotation.
  • the sealing webs are preferably arranged opposite each other.
  • One of the sealing webs is formed in the area of greatest tooth engagement of the rotor and is also referred to as the drive web.
  • the other sealing web is formed in an area of the smallest tooth meshing of the rotor or in an area of a missing tooth meshing of the rotor.
  • the lubricant supply is preferably formed in the so-called drive web and thus in the sealing web in the area of greatest tooth engagement of the rotor.
  • the lubricant supply is additionally or alternatively formed in the sealing web in the area of the smallest tooth meshing of the rotor or in the area of the missing tooth meshing of the rotor.
  • the sealing webs each have an extension directed in the direction of rotation, which are preferably different from one another.
  • the sealing web in the area of the greatest tooth engagement of the rotor has an extent directed in the direction of rotation, which is preferably smaller than the extent of the sealing web in the area of the smallest tooth engagement of the rotor or in the area of the missing tooth engagement of the rotor.
  • the lubricant supply is preferably suitable for reliably supplying the bearing of the rotor with lubricant regardless of the direction of rotation of the pump.
  • the lubricant supply feeds the medium to be pumped preferably from at least one closed working chamber, which is delimited in the direction of rotation by the at least one rotor, to the bearing.
  • the medium to be pumped is passed through the Rotation of the at least one rotor is transported from the low pressure area to the high pressure area.
  • the volume of the working chamber changes with the rotation of at least one rotor.
  • the working chambers are limited and/or closed in the direction of rotation by the teeth of the rotors.
  • the lubricant supply feeds a medium squeezed by the reduction in the size of the working chamber or a medium to be pumped under squeezing pressure from the closed working chamber to the bearing.
  • the lubricant supply in gear pumps is arranged in the area of tooth engagement in which squeezing pressures can occur that are independent of the direction of rotation. Squeezing pressures arise in particular because the closed working chambers for the medium on the pressure side formed by the rotating rotor are closed again before they are completely emptied through the outlet. The remaining medium is then further compacted.
  • the medium to be pumped under squeezing pressure can be diverted via the lubricant supply, so that the provision of the relief bores is no longer necessary.
  • the squeezing pressures occurring in the pump can advantageously be used to guide the lubricant under squeezing pressure specifically to the bearing and use it there to lubricate the bearing. Eliminating the need for holes to return the medium from the squeezing area can contribute to lower manufacturing costs.
  • the inlet and the outlet can be arranged symmetrically or asymmetrically to one another. Due to the symmetrical arrangement of the inlet and outlet, the geometry of the pump is identical in both directions of rotation in relation to the inlets and outlets.
  • the inlet and outlet are at least substantially the same shape.
  • the lubricant supply is arranged centrally in the sealing web. When arranged centrally, the lubricant supply is at least substantially the same distance from a nearest edge of the mutually facing ends of the outlet and the inlet. Due to the central or central arrangement, the geometry of the pump is identical in both directions of rotation in relation to the lubricant supply.
  • the inlet and the outlet are kidney-shaped.
  • the lubricant supply is arranged off-center in the sealing web. This can make sense if the rotary pump has a preferred first and a less preferred second direction of rotation.
  • the off-center lubricant supply is preferably arranged closer to the outlet for the medium to be pumped provided for the preferred direction of rotation.
  • the off-center arrangement of the lubricant supply is advantageous because, in main operation in the preferred direction of rotation, a distance between the lubricant supply and the outlet is smaller than in the central arrangement, which, with additional security, prevents the lubricant supply from being short-circuited with the inlet .
  • the lubricant supply is a groove in the sealing web.
  • the groove or channel can be rectangular, U- or V-shaped or of any design in a section transverse to its longitudinal axis.
  • a width and a length of the groove or channel can be adapted to the rotary pump.
  • the groove or channel can be funnel-shaped at its end facing the bearing and/or away from the bearing.
  • the long sides of the groove or channel can run parallel to one another or can be inclined towards or away from each other in the direction of the bearing, so that a width of the groove or channel changes continuously over the length.
  • the same can apply to the depth of the groove or channel.
  • the shape such as length, width and depth of the groove or channel is not fixed, but can be freely chosen by the expert.
  • the groove or channel advantageously has a width, i.e. an extension oriented in the direction of rotation, of at least 0.5 mm and particularly advantageously of at least 1 mm.
  • the groove or channel preferably has a width, i.e. an extent oriented in the direction of rotation, between 0.5 mm and 3 mm and particularly advantageously between 1 mm and 1.5 mm.
  • a groove or a channel can also divide in a delta manner, so that the groove or the channel comprises several arms at at least one of its ends.
  • the groove or channel does not have to form a straight line, but can be curved, for example.
  • the groove or channel can have at least one throttle path, in particular arranged centrally with respect to a main extent of the groove or channel, which is characterized in particular by a smaller flow cross section compared to the start and end of the groove or the start of the channel and the end of the channel.
  • the lubricant supply can comprise a pocket in the sealing web.
  • the pocket can end directly on the bearing or be connected to the bearing via a groove or channel.
  • the bag can be round, oval, rectangular, funnel-shaped or any shape in length, width and depth.
  • the lubricant supply cannot be short-circuited in any position of the rotor with the inlet into or the outlet from the pump room. This avoids that when the lubricant supply is directly connected to the outlet or high-pressure area of the pump, too much lubricant is pressed into the lubricant supply and that, despite the lubricant supply, squeezing pressures occur in the area of greatest tooth engagement of the pump.
  • a short circuit to the inlet or suction side of the pump can reduce, stop or even reverse flow of lubricant through the lubricant supply to the bearing, which could result in an undersupply of lubricant to the bearing. The result could be damage or even destruction of the rotary pump.
  • An imaginary extension of the groove or channel or an axial central axis (longitudinal axis) of the groove or channel can intersect a rotation axis of the rotor or a straight line that runs parallel to the rotation axis of the pump.
  • the imaginary extension of the groove or channel can impinge perpendicularly on a circumferential outer surface of the bearing at least at one point or at an angle that can be specified in the design.
  • the imaginary extension of the groove or channel viewed in a cross section of the rotary pump that is orthogonal to the axis of rotation of the at least one rotor, is oriented parallel to an eccentric line.
  • the imaginary extension or the central axis of the groove or channel in the cross section lies particularly advantageously on the eccentric line, in particular if the inlet and the outlet are arranged or designed asymmetrically to one another.
  • An “eccentric line” is to be understood in particular as a straight line which, viewed in the cross section of the rotary pump, connects a center point of the rotor and a center point of the pump chamber or which connects the axis of rotation of an inner rotor and the axis of rotation of an outer rotor of the rotary pump.
  • the lubricant supply extends from the bearing to between the inlet and the outlet.
  • the lubricant supply preferably extends radially from the bearing at least up to a root circle diameter of one of the gears, for example at least up to a root circle diameter furthest radially from the bearing.
  • the lubricant supply preferably extends radially from the bearing at least to a root diameter of an external gear and thus at least to the root diameter furthest radially from the bearing.
  • the end of the lubricant supply facing the bearing can be open, the end of the groove-shaped lubricant supply without a pocket facing away from the bearing can be closed.
  • the lubricant supply can open into the bearing at its end facing the bearing, so that lubricant from the lubricant supply reaches the bearing directly.
  • the bearing can in particular be an annular gap extending around a drive shaft of the at least one rotor.
  • the lubricant supply can extend from the bearing to close to the point of deepest tooth engagement, whereby the medium to be pumped under squeezing pressure can be supplied to the bearing essentially completely via the lubricant supply.
  • the sealing web can be wider than in comparable rotary pumps in the prior art, which can increase the lubricating pressure and/or improve the seal compared to the inlet into and/or outlet from the pump chamber.
  • the pump chamber is usually delimited at its axial ends by a cover and a base.
  • the inlet, the outlet, the sealing web and the lubricant supply can optionally be formed in the cover or in the bottom of the pump room or both in the cover and in the bottom of the pump room.
  • the rotary pump can have two inlets into the low-pressure area of the pump room, two outlets from the high-pressure area of the pump room, two sealing webs facing the rotor axially, in particular drive webs, which separate the low-pressure area from the high-pressure area in the direction of rotation of the rotor, and one in each of the two sealing webs Lubricant supply, especially in the area of greatest tooth engagement of the rotor.
  • the two axially opposite lubricant feeds and thus the lubricant feed introduced in the base and the lubricant feed introduced in the cover can differ in shape, depth, length, width and / or the like. Furthermore, the two axially opposite lubricant feeds can be oriented offset and/or twisted relative to one another with respect to the direction of rotation. In principle, it is conceivable that one of the lubricant feeds is arranged off-center and closer to the outlet for the medium to be pumped, which is provided for the preferred direction of rotation, and the axially opposite lubricant feed is arranged off-center and closer to the inlet for the medium to be pumped, which is provided for the preferred direction of rotation is arranged.
  • the axially opposite lubricant feeds can differ from one another, for example in the size of their groove or channel.
  • the rotary pump or the lubricant and/or coolant system having the rotary pump has at least one check valve which is located between the pump chamber and a lubricant and/or coolant reservoir from which the rotary pump sucks in a lubricant and/or coolant in at least one operating state. is arranged.
  • the check valve advantageously blocks a flow from the pump room into the lubricant and/or coolant reservoir and allows a flow from the lubricant and/or coolant reservoir into the pump room.
  • the rotary pump or the lubricant and/or coolant system has at least one branch which is arranged between the pump chamber and the lubricant and/or coolant reservoir. It is advantageous if the check valve is arranged between the branch and the lubricant and/or coolant reservoir.
  • the rotary pump is advantageously at least partially immersed in the lubricant and/or coolant in the lubricant and/or coolant reservoir and/or is at least partially arranged below a lubricant and/or coolant level.
  • the rotary pump can be arranged above the lubricant and/or coolant level and is not immersed in the lubricant and/or coolant.
  • the rotary pump or the lubricant and/or coolant system having the rotary pump has the check valve in order to prevent the pump chamber from running empty.
  • the check valve can ensure that the pump chamber is always filled with the lubricant and/or coolant and that the lubricant supply is ensured via the lubricant supply, especially when the rotary pump is arranged above the lubricant and/or coolant level.
  • the check valve is preferably designed as a check valve.
  • the rotary pump additionally has a lubricant drain that drains a lubricant from the bearing.
  • the lubricant drain can connect the bearing to the inlet or outlet.
  • the lubricant discharge has at least one groove or channel which runs from the bearing to the inlet or outlet.
  • the lubricant discharge is advantageously formed in the base and/or the lid.
  • the lubricant discharge has, at least in a partial section, a compared to the Lubricant supply has a smaller flow cross section and/or includes a throttle point, for example in the form of a constriction.
  • the Figure 1 shows a rotary pump 1 of a motor vehicle.
  • the rotary pump 1 is designed as an internal gear, internal gear ring or gerotor pump.
  • the rotary pump 1 can be switched in its conveying direction or direction of rotation D during operation.
  • the rotary pump 1 has a rotor set which has a rotor 10 designed as an external gear and a rotor 11 designed as an internal gear, which are arranged eccentrically to one another.
  • the rotor 10 can serve as a stator in which the rotor 11 is arranged eccentrically.
  • the rotor 10 can also rotate, for example be rotated by the rotor 11.
  • the designations rotor 10 and rotor 11 are therefore retained for the description.
  • the two rotors 10 and 11 together form a pump chamber 7, which is filled with a medium to be pumped and in which the medium is compressed on the way from the inlet to the outlet.
  • the rotors 10, 11 delimit or form, viewed in the direction of rotation D, several working chambers in which the medium to be pumped is transported.
  • the rotors 10, 11 divide the pump chamber 7 into several working chambers, the volume of which changes when the rotors 10, 11 rotate.
  • the rotary pump 1 For driving, the rotary pump 1 has an electric motor, not shown, which is connected to the rotor 11 in terms of drive technology.
  • the electric motor is intended to drive the rotor 11 in both directions of rotation D.
  • the rotary pump is designed as an auxiliary pump and/or an additional pump to support and/or at least partially replace a main or primary pump of the motor vehicle.
  • the rotary pump 1 is arranged in a lubricant and/or coolant system of the motor vehicle.
  • the rotary pump 1 has one in the Figure 1 housing 2, not shown, which can form a bottom of the pump room 7, with an inlet or outlet 4, an outlet or inlet 3, a bearing 5 for the rotor 11 and two between the inlet or outlet 4 and sealing webs 8 and 9 formed at the outlet and inlet 3 (see also Fig. 2 ).
  • the inlets and outlets 3, 4 change their function.
  • the inlet or outlet 4 is designed as an inlet and the outlet or inlet 3 is designed as an outlet.
  • the inlet or outlet 4 is designed as an outlet and the outlet or inlet 3 is designed as an inlet.
  • the inlet or outlet 4 is referred to below as inlet 4 and the outlet or inlet 3 as outlet 3.
  • the inlet 4 and the outlet 3 are designed symmetrically to one another.
  • a lubricating groove is introduced in the sealing web 9, which forms a lubricant supply 6 with which squeeze oil is passed as lubricant from the pump chamber 7 to the bearing 5 of the rotor 11.
  • the lubricant supply 6 supplies squeeze oil from one of the working chambers to the bearing 5 of the rotor 11.
  • the lubricant supply 6 and thus the lubricating groove is formed in the area of greatest tooth engagement of the rotors 10, 11, that is to say in the area in which a tooth of the rotor 11 essentially completely engages in an area between two teeth of the rotor 10.
  • the lubricant supply 6 is fed with a residual medium that has not been displaced through the outlet 3 and is subjected to a squeezing pressure as the rotor 11 continues to rotate. Since the medium under squeezing pressure can negatively influence the performance of the rotary pump 1 and accelerate wear of the rotary pump 1, an attempt is made to avoid the occurrence of such squeezing pressures by draining the remaining medium in pumps from the prior art, for example via bores in the rotor 10, 11 is displaced back into the pump room 7 or the inlet 4. In the exemplary embodiment of the invention, this advantageous discharge of the medium under squeezing pressure takes place via the lubricant supply 6 and the medium is used to lubricate the bearing 5 of the rotor 11.
  • the lubricant supply 6 is arranged centrally in the sealing web 9, that is, a distance from the lubricant supply 6 to the outlet 3, which connects a high-pressure side of the rotary pump 1 with, for example, lines, and a distance from the inlet 4, which is the low-pressure side of the rotary pump 1 is assigned are identical or essentially identical.
  • the lubricant supply 6 has no fluidic connection to either the outlet 3 or the inlet 4.
  • the central arrangement of the lubricant supply 6 in the sealing web 9 has the advantage that regardless of the direction of rotation of the rotary pump 1 and thus the rotors 10, 11, the lubricant supply 6 is reliably supplied with lubricant from the pump chamber 7.
  • sealing web 9 is wider than in pumps of the prior art, that is, a distance between the edges of the inlet 4 and the outlet 3 that face one another and define a minimum width of the sealing web 9 is chosen to be larger than in comparable pumps without the lubricant supply 6.
  • the lubricant supply 6 is open at its ends assigned to the bearing 5 and opens on an outer surface of the bearing 5. From there it extends radially outwards into the sealing web 9 and ends in an area of the sealing web 9 which is between the inlet 4 and the Outlet 3 is located.
  • the lubricant supply 6 is formed as a depression in the bottom of the pump chamber 7.
  • the further sealing web 8 also has the same function, namely to prevent a direct fluidic connection between the inlet 4 and outlet 3, whereby in the area of the sealing web 8, in contrast to the sealing web 9, there is no or minimal tooth engagement between the internal gear 11 and the external gear 10 is.
  • the medium to be pumped can be, for example, an oil, a heavy oil, diesel or another medium that has sufficient lubricating properties to reliably lubricate the bearing 5 of the rotor 10.
  • This exemplary embodiment is lubricating oil for lubricating and/or cooling motor vehicle components.
  • the rotor 11 can be rotationally driven and can only be rotated relative to the housing 2 and optionally adjusted linearly along the axis of rotation R. That means, the axis of rotation R of the rotary pump 1 of the exemplary embodiment does not change its position relative to the housing 2.
  • the rotary pump 1 also has a bearing for supporting the rotor 10.
  • the lubricant supply 6 can supply the bearing of the rotor 10 with the squeeze oil for lubrication as an alternative or in addition to supplying the bearing 5 with lubricating oil.
  • the lubrication groove can be extended radially outwards and supply both bearings with squeeze oil.
  • an additional, in particular parallel, lubrication groove can be introduced, which supplies the bearing of the rotor 10 with squeeze oil.
  • the lubrication grooves can remove the squeeze oil from the same working chamber or from two different working chambers.
  • FIG. 3 a rotary pump 1 of a second exemplary embodiment is shown, wherein the Figure 3 a look into a housing 2 of the rotary pump 1 shows.
  • the housing 2 has an inner side wall which can form a bottom of a pump chamber 7, with an inlet 4, an outlet 3, a bearing 5 for a rotor 11 and two sealing webs 8 and 9 formed between the inlet 4 and the outlet 3.
  • a lubricating groove is introduced into the sealing web 9, which forms a lubricant supply 6 with which squeeze oil is passed as lubricant from the pump chamber 7 to the bearing 5 of the rotor 11.
  • the inlet 4 and the outlet 3 are designed asymmetrically.
  • the lubricant supply 6 is arranged off-center in the sealing web 9, that is, a distance between the lubricant supply 6 and the outlet 3 provided for a preferred direction of rotation D bev , which connects a high-pressure side of the rotary pump 1 with, for example, lines, is smaller than a distance to the inlet 4 provided for the preferred direction of rotation D bev , which is assigned to the low-pressure side of the rotary pump 1.
  • the off-center arrangement of the lubricant supply 6 in the sealing web 9 is particularly advantageous if the rotary pump 1 has a preferred direction of rotation D bev .
  • the arrangement of the lubricant supply 6 increases the area of the sealing web 9, which seals the lubricant supply 6 from the low-pressure side or the inlet 4, so that it is reliably avoided that the lubricant flows out through a fluidic connection between the lubricant supply 6 and the inlet 4 the lubricant guide 6 is sucked out again.
  • the axial longitudinal axis L of the lubricant supply 6 lies on a straight eccentric line, which connects a rotation axis of the rotor 10 and a rotation axis of the rotor 11 to one another in a cross section of the rotary pump 1.
  • the longitudinal axis L of the lubricant supply 6 corresponds to the eccentric straight line
  • the longitudinal axis L of the lubricant supply 6 can, in modifications, also extend at a distance parallel to the eccentric straight line.
  • the longitudinal axis L can, in further modifications, be extended at an acute angle of preferably less than 20° to the eccentric straight line and intersect the axis of rotation of the rotor 10 and/or the axis of rotation of the rotor 11 or cross them at a distance.
  • the lubricant supply 6 can also be different than in the Figures 3, 4 , 5 shown, be arranged off-center and closer to the inlet 4 provided for the preferred direction of rotation D bev in the sealing web 9 in order to reliably prevent a fluidic connection of the outlet 3 provided for the preferred direction of rotation D bev with the lubricant supply 6.
  • This can be advantageous, for example, in rotary pumps 1 with a high outlet pressure, in order to reliably prevent the high-pressure medium from being pressed into the lubricant supply 6 before the outlet 3 of the rotary pump 1 is completely closed.
  • the area of the sealing web 9 is also shown in an enlarged view.
  • a rotary pump 1 is shown in a third exemplary embodiment.
  • the inlet 4 and the outlet 3 are designed asymmetrically.
  • the lubricant supply 6 is arranged centrally in the sealing web 9, so it has essentially identical distances from the inlet 4 and the outlet 3.
  • the rotary pump 1 therefore has inlets and outlets 3, 4 which are asymmetrically designed with respect to one another, but a centrally arranged lubricant supply 6.

Description

  • Die Erfindung betrifft eine Rotationspumpe mit einem Gehäuse, das einen Pumpenraum mit einem Einlass für ein zu pumpendes Medium in einen Niederdruckbereich des Pumpenraums und einem Auslass für das zu pumpende Medium aus einem Hochdruckbereich des Pumpenraums aufweist. Die Pumpe umfasst weiterhin wenigstens einen Rotor und ein Lager für den Rotor. Ferner umfasst die Pumpe einen dem Rotor axial zugewandten Dichtsteg, der den Niederdruckbereich in Drehrichtung des Rotors vom Hochdruckbereich trennt, und eine Schmiermittelzuführung, die ein Schmiermittel aus dem Pumpenraum dem Lager zuführt. Die Schmiermittelzuführung ist im Dichtsteg, insbesondere in einem Bereich eines größten Zahneingriffs des Rotors, gebildet.
  • Bei Rotationspumpen ist es wichtig, dass das Lager des Rotors jederzeit gut geschmiert ist, um einer Beschädigung oder gar einem Fressen der Pumpe vorzubeugen, die Leichtgängigkeit der Pumpe zu erhalten und den Verschleiß am Lager und/oder am Rotor zu vermeiden oder zumindest zu verlangsamen.
  • In bekannten Anwendungen wird das Lager einer Pumpe über den Hochdruckbereich oder ein externes Druckreservoir mit Schmiermittel versorgt. Die Lagerschmierung ist dabei in der Regel abhängig von einer Drehrichtung der Pumpe, so dass bei einer Drehrichtungsumkehr das Lager mit dem Niederdruckbereich der Pumpe verbunden ist und somit nicht mehr mit Schmiermittel versorgt wird. So beschreibt beispielswese die US 2005/064976 A1 eine Rotationspumpe, bei der ein Lager des angetriebenen Rotors über einen Kanal direkt von der Hochdruckseite der Pumpe außerhalb des Förderraums mit Schmierfluid versorgt wird. Ein Versorgung eines Rotorlagers einer Rotationspumpe über eine Zuleitung außerhalb des Förderraums ist auch aus der CN 203 570 583 U bekannt. Ferner zeigen die US 3 904 333 und die US 4 927 343 A Rotationspumpen die Druckfluid nutzen, um zur Abdichtung des Förderraums Druckplatten axial gegen Stirnseiten des Rotors zu drücken.
  • Es ist daher eine Aufgabe der Erfindung, eine Rotationspumpe bereitzustellen, bei der ein Schmiermittel einem Lager im Betrieb der Pumpe allzeit zuverlässig zugeführt wird. Insbesondere soll eine Rotationspumpe mit einer drehrichtungsunabhängigen und gezielten Schmiermittelzuführung für ein Lager des Rotors bereitgestellt werden.
  • Diese Aufgabe wird durch die Rotationspumpe mit den Merkmalen des Anspruchs 1 gelöst. Die weiteren Ansprüche betreffen Merkmale, die allein oder in Kombination die Rotationspumpe gemäß dem Anspruch 1 vorteilhaft weiterbilden können.
  • Ein Aspekt der Erfindung betrifft eine Rotationspumpe mit umschaltbarer Drehrichtung, mit einem Gehäuse, das einen Pumpenraum mit einem Einlass für ein zu pumpendes Medium in einen Niederdruckbereich des Pumpenraums und einem Auslass für das zu pumpende Medium aus einem Hochdruckbereich des Pumpenraums aufweist, wenigstens einem Rotor, wenigstens einem Gleitlager, für den wenigstens einen Rotor, wenigstens einem dem Rotor axial zugewandten Dichtsteg, der den Niederdruckbereich in Drehrichtung des Rotors vom Hochdruckbereich trennt, und einer drehrichtungsunabhängigen Schmiermittelzuführung, die ein Schmiermittel aus dem Pumpenraum zumindest dem Lager zuführt, wobei die Schmiermittelzuführung im Dichtsteg, insbesondere in einem Bereich eines größten Zahneingriffs des Rotors, gebildet ist. Bei der Rotationspumpe handelt es sich um eine innenachsige Pumpe, wie etwa eine Rotationskolbenpumpe, eine Flügelzellenpumpe, eine Innenzahnradpumpe oder eine andere im Stand der Technik bekannte innenachsige Pumpe.
  • Das Gehäuse kann eines oder mehrere Teile umfassen, zum Beispiel einen oder mehrere Deckel, um Öffnungen zu verschließen. Teile des Gehäuses können einen Teil des Pumpenraums bilden, zum Beispiel einen axialen Deckel für den Pumpenraum oder eine Umfangswand oder eine topfförmige Struktur zur Aufnahme des wenigstens einen Rotors. Der Rotor kann mit einem Antrieb, wie zum Beispiel einem Elektromotor oder einer von einem Verbrennungsmotor angetriebenen Welle verbunden oder gekuppelt sein, der die Antriebsenergie für den Rotor erzeugt. Bevorzugt ist der Rotor mit einem Elektromotor verbunden und insbesondere für den Einsatz in einem Kraftfahrzeug vorgesehen. Weist das Kraftfahrzeug als Antrieb einen Verbrennungsmotor auf, so ist die Rotationspumpe durch den Elektromotor, vorzugsweise unabhängig von dem Verbrennungsmotor, beispielsweise bei Stillstand des Verbrennungsmotors, antreibbar. Die Rotationspumpe weist vorteilhaft den Elektromotor auf. Die Rotationspumpe ist vorzugsweise als eine elektrische Rotationspumpe ausgebildet. Die Rotationspumpe ist vorzugsweise als eine Hilfspumpe und/oder eine Zusatzpumpe zur Unterstützung und/oder zum zumindest teilweisen Ersatz einer Haupt- oder Primärpumpe in einem Schmier- und/oder Kühlmittelsystem des Kraftfahrzeugs ausgebildet. Unter "vorgesehen" soll insbesondere speziell ausgebildet, ausgelegt, ausgeführt, angeordnet und/oder programmiert verstanden werden.
  • Die Drehrichtung der Rotationspumpe kann umgeschaltet werden, so dass die Pumpe flexibel eingesetzt werden kann. Beim Wechsel von einer ersten Drehrichtung in eine zweite Drehrichtung wird der Auslass der Pumpe, die sich in die erste Drehrichtung dreht, zum Einlass für dieselbe Pumpe, die sich jetzt in die zweite Drehrichtung dreht. Entsprechendes gilt für den Einlass der Pumpe, der nach einer Drehrichtungsänderung der Pumpe zum Auslass wird. In beiden Drehrichtungen münden der Einlass in einen Niederdruckbereich und der Auslass in einen Hochdruckbereich der Pumpe. Das Umschalten der Drehrichtung der Pumpe ändert somit die Förderstromrichtung des zu fördernden Mediums durch die Pumpe, bei der es sich mit anderen Worten um eine umsteuerbare Rotationspumpe handelt.
  • Bei dem zu pumpenden Medium kann es sich insbesondere um ein Schmier- und/oder Kühlmittel, wie ein Schmier- und/oder Kühlöl handeln, das einem oder mehreren Aggregaten von der Hochdruckseite der Pumpe über Schläuche, Kanäle oder Leitungen zugeführt wird, um die Aggregate zu schmieren und/oder zu kühlen. Es kann sich aber auch um ein Medium für einen anderen Zweck handeln, zum Beispiel um Heizöl, Schweröl oder Diesel, das gleichzeitig zur Schmierung des Rotorlagers verwendet wird. Die Niederdruckseite der Pumpe kann mit einem Reservoir für das zu pumpende Medium fluidisch verbunden sein.
  • Die Rotationspumpe weist vorzugsweise mindestens zwei dem Rotor axial zugewandte Dichtstege auf, die jeweils den Niederdruckbereich in Drehrichtung des Rotors vom Hochdruckbereich trennen. Die Dichtstege sind entlang der Drehrichtung betrachtet jeweils zwischen dem Einlass und dem Auslass angeordnet. Die Dichtstege sind vorzugsweise gegenüberliegend angeordnet. Einer der Dichtstege ist in dem Bereich des größten Zahneingriffs des Rotors gebildet und wird auch als Triebsteg bezeichnet. Der andere Dichtsteg ist in einem Bereich eines kleinsten Zahneingriffs des Rotors oder in einem Bereich eines fehlenden Zahneingriffs des Rotors gebildet. Die Schmiermittelzuführung ist bevorzugt in dem sogenannten Triebsteg gebildet und damit in dem Dichtsteg in dem Bereich des größten Zahneingriffs des Rotors. Grundsätzlich ist es denkbar, dass die Schmiermittelzuführung zusätzlich oder alternativ in dem Dichtsteg in dem Bereich des kleinsten Zahneingriffs des Rotors oder in dem Bereich des fehlenden Zahneingriffs des Rotors gebildet ist. Die Dichtstege weisen jeweils eine in die Drehrichtung gerichtete Ausdehnung auf, die vorzugsweise voneinander unterschiedlich sind. Der Dichtsteg im Bereich des größten Zahneingriffs des Rotors weist eine in die Drehrichtung gerichtete Ausdehnung auf, die vorzugsweise kleiner ist als die Ausdehnung des Dichtstegs in dem Bereich des kleinsten Zahneingriffs des Rotors oder in dem Bereich des fehlenden Zahneingriffs des Rotors.
  • Die Schmiermittelzuführung ist bevorzugt dazu geeignet, das Lager des Rotors unabhängig von der Drehrichtung der Pumpe zuverlässig mit dem Schmiermittel zu versorgen. Die Schmiermittelzuführung führt das zu pumpende Medium vorzugsweise aus zumindest einer abgeschlossenen Arbeitskammer, die in Drehrichtung durch den zumindest einen Rotor begrenzt ist, dem Lager zu. In der Arbeitskammer wird das zu pumpende Medium durch die Rotation des zumindest einen Rotors von dem Niederdruckbereich zu dem Hochdruckbereich transportiert. Dabei ändert sich das Volumen der Arbeitskammer mit der Drehung des zumindest einen Rotors. Bei einer Zahnradpumpe sind die Arbeitskammern in Drehrichtung durch die Zähne der Rotoren begrenzt und/oder abgeschlossen.
  • Vorzugsweise führt die Schmiermittelzuführung ein durch die Verkleinerung der Arbeitskammer gequetschtes Medium bzw. ein unter Quetschdruck stehendes zu pumpendes Medium aus der abgeschlossenen Arbeitskammer dem Lager zu. Die Schmiermittelzuführung bei Zahnradpumpen ist in dem Bereich des Zahneingriffes angeordnet, in dem Quetschdrücke auftreten können, die drehrichtungsunabhängig sind. Quetschdrücke entstehen insbesondere dadurch, dass die von dem sich drehenden Rotor gebildeten abgeschlossenen Arbeitskammern für das Medium auf der Druckseite bereits vor der vollständigen Entleerung durch den Auslass wieder verschlossen werden. Das Restmedium wird dann weiter verdichtet. Dies kann zu Energieverlusten der Pumpe oder einem harten Gang des Rotors führen und dadurch vermieden werden, dass das Medium über Bohrungen zurück in den Pumpenraum geleitet wird, um die Belastung des Rotors durch den Quetschdruck zu verringern. Gemäß der vorliegenden Erfindung kann das unter Quetschdruck stehende zu pumpende Medium über die Schmiermittelzuführung abgeleitet werden, so dass das Vorsehen der Entlastungsbohrungen nicht mehr notwendig ist. Das heißt, die in der Pumpe auftretenden Quetschdrücke können vorteilhafterweise genutzt werden, das unter Quetschdruck stehende Schmiermittel gezielt zum Lager zu führen und dort zur Schmierung des Lagers zu nutzen. Das Wegfallen der Bohrungen zur Rückführung des Mediums aus dem Quetschbereich kann zu niedrigeren Herstellungskosten beitragen.
  • Der Einlass und der Auslass können symmetrisch oder asymmetrisch zueinander angeordnet sein. Durch die symmetrische Anordnung des Einlasses und des Auslasses ist die Geometrie der Pumpe bezogen auf die Ein- und Auslässe in beiden Drehrichtungen identisch. Der Einlass und der Auslass sind zumindest im Wesentlichen gleich geformt. Insbesondere bei einer symmetrischen Anordnung des Einlasses und des Auslasses ist die Schmiermittelzuführung in dem Dichtsteg mittig angeordnet. Bei mittiger Anordnung weist die Schmiermittelzuführung einen zumindest im Wesentlichen gleichen Abstand zu einem nächstgelegenen Rand der einander zugewandten Enden des Auslasses und des Einlasses auf. Durch die mittige oder zentrale Anordnung ist die Geometrie der Pumpe bezogen auf die Schmiermittelzuführung in beiden Drehrichtungen identisch. Vorzugsweise sind der Einlass und der Auslass nierenförmig ausgebildet.
  • Insbesondere bei einer asymmetrischen Anordnung des Einlasses und des Auslasses ist die Schmiermittelzuführung in dem Dichtsteg außermittig angeordnet. Dies kann dann sinnvoll sein, wenn die Rotationspumpe eine bevorzugte erste und eine weniger bevorzugte zweite Drehrichtung hat. Dabei ist die außermittig angeordnete Schmiermittelzuführung bevorzugt näher an dem für die bevorzugte Drehrichtung vorgesehenen Auslass für das zu pumpende Medium angeordnet. In diesem Fall ist die außermittige Anordnung der Schmiermittelzuführung vorteilhaft, da im Hauptbetrieb in die bevorzugte Drehrichtung ein Abstand der Schmiermittelzuführung zum Auslass kleiner ist, als bei der mittigen Anordnung, wodurch mit einer zusätzlichen Sicherheit vermieden wird, dass die Schmiermittelführung mit dem Einlass kurzgeschlossen werden kann.
  • Die Schmiermittelzuführung ist eine Nut in dem Dichtsteg. Die Nut oder der Kanal kann in einem Schnitt quer zu ihrer Längsachse rechteckig, U- oder V-förmig oder beliebig ausgebildet sein. Eine Breite und eine Länge der Nut oder des Kanals können an die Rotationspumpe angepasst sein. Die Nut oder der Kanal kann an ihrem dem Lager zugewandten und/oder dem Lager abgewandten Ende trichterförmig sein. Die Längsseiten der Nut oder des Kanals können parallel zueinander verlaufen oder in Richtung des Lagers aufeinander zu oder voneinander weg geneigt sein, so dass sich eine Breite der Nut oder des Kanals über die Länge kontinuierlich verändert. Gleiches kann für die Tiefe der Nut oder des Kanals gelten. Grundsätzlich ist die Form wie Länge, Breite und Tiefe der Nut oder des Kanals nicht festgelegt, sondern kann vom Fachmann frei gewählt werden. Vorteilhaft weist die Nut oder der Kanal eine Breite, d.h. eine in Drehrichtung orientierte Erstreckung von mindestens 0,5 mm und besonders vorteilhaft von mindestens 1 mm auf. Vorzugsweise weist die Nut oder der Kanal eine Breite, d.h. eine in Drehrichtung orientierte Erstreckung zwischen 0,5 mm und 3 mm und besonders vorteilhaft zwischen 1 mm und 1,5 mm auf. Eine Nut oder ein Kanal kann sich auch deltamäßig aufteilen, so dass die Nut oder der Kanal an zumindest einem ihrer Enden mehrere Arme umfasst. Schließlich muss die Nut oder der Kanal nicht eine Gerade bilden, sondern kann zum Beispiel gebogen sein. Ferner kann die Nut oder der Kanal zumindest einen, insbesondere bezüglich einer Haupterstreckung der Nut oder des Kanals mittig angeordneten, Drosselweg aufweisen, der sich insbesondere durch einen im Vergleich zum Nutanfang und Nutende bzw. Kanalanfang und Kanalende verkleinerten Strömungsquerschnitt auszeichnet.
  • Die Schmiermittelzuführung kann eine Tasche in dem Dichtsteg umfassen. Die Tasche kann direkt an dem Lager enden oder über eine Nut oder einen Kanal mit dem Lager verbunden sein. Die Tasche kann rund, oval, rechteckig, trichterförmig oder beliebig in Länge, Breite und Tiefe geformt sein.
  • Die Schmiermittelzuführung kann in keiner Position des Rotors mit dem Einlass in oder dem Auslass aus dem Pumpenraum kurzgeschlossen sein. Dadurch wird vermieden, dass bei einer direkten Verbindung der Schmiermittelzuführung mit dem Auslass oder Hochdruckbereich der Pumpe zu viel Schmiermittel in die Schmiermittelzuführung gedrückt wird und es trotz der Schmiermittelzuführung zu einem Auftreten von Quetschdrücken im Bereich des größten Zahneingriffs der Pumpe kommt. Ein Kurzschluss mit dem Einlass oder der Saugseite der Pumpe kann einen Fluss des Schmiermittels über die Schmiermittelzuführung zum Lager verringern, unterbinden oder sogar umkehren, was zu einer Unterversorgung des Lagers mit Schmiermittel führen könnte. Das Ergebnis könnte ein Schaden bis hin zu einer Zerstörung der Rotationspumpe sein.
  • Eine gedachte Verlängerung der Nut oder des Kanals respektive einer axialen Mittelachse (Längsachse) der Nut oder des Kanals kann eine Rotationsachse des Rotors oder eine Gerade, die parallel zur Rotationsachse der Pumpe verläuft, schneiden. Das heißt, die gedachte Verlängerung der Nut oder des Kanals kann zumindest in einem Punkt auf eine Umfangsaußenfläche des Lagers senkrecht auftreffen oder in einem Winkel, der konstruktionsseitig vorgegeben werden kann. Vorzugsweise ist die gedachte Verlängerung der Nut oder des Kanals, in einem zur Rotationsachse des wenigstens einen Rotors orthogonalen Querschnitt der Rotationspumpe betrachtet, parallel zu einer Exzenterlinie orientiert. Besonders vorteilhaft liegt die gedachte Verlängerung oder die Mittelachse der Nut oder des Kanals in dem Querschnitt auf der Exzenterlinie, insbesondere wenn der Einlass und der Auslass asymmetrisch zueinander angeordnet oder ausgebildet sind. Unter einer "Exzenterlinie" soll insbesondere eine gerade Linie verstanden werden, die in dem Querschnitt der Rotationspumpe betrachtet einen Mittelpunkt des Rotors und einen Mittelpunkt des Pumpenraums miteinander verbindet oder die die Rotationsachse eines Innenrotors und die Rotationsachse eines Außenrotors der Rotationspumpe miteinander verbindet.
  • In dem Dichtsteg, der in Drehrichtung des Rotors zwischen dem Einlass und dem Auslass gebildet ist, erstreckt sich die Schmiermittelzuführung von dem Lager bis zwischen den Einlass und den Auslass. Insbesondere bei einer als Zahnradpumpe ausgebildeten Rotationspumpe erstreckt sich die Schmiermittelzuführung radial vorzugsweise von dem Lager zumindest bis zu einem Fußkreisdurchmesser eines der Zahnräder, beispielsweise zumindest bis zu einem radial von dem Lager entferntesten Fußkreisdurchmesser.
  • Insbesondere bei einer als Innenzahnradpumpe ausgebildeten Rotationspumpe erstreckt sich die Schmiermittelzuführung radial vorzugsweise von dem Lager zumindest bis zu einem Fußkreisdurchmesser eines Außenzahnrads und damit zumindest bis zu dem radial von dem Lager entferntesten Fußkreisdurchmesser. Dabei kann bei der nutförmigen Schmiermittelzuführung das dem Lager zugewandte Ende der Schmiermittelzuführung offen sein, das dem Lager abgewandte Ende der nutförmigen Schmiermittelzuführung ohne Tasche kann geschlossen sein. Die Schmiermittelzuführung kann an ihrem dem Lager zugewandten Ende in das Lager münden, so dass Schmiermittel aus der Schmiermittelzuführung direkt zum Lager gelangt. Das Lager kann insbesondere ein um eine Antriebswelle des wenigstens einen Rotors erstreckter Ringspalt sein. Die Schmiermittelzuführung kann von dem Lager bis nahe an den Punkt des tiefsten Zahneingriffs erstrecken, wodurch das unter Quetschdruck stehende zu pumpende Medium im Wesentlichen vollständig über die Schmiermittelzuführung dem Lager zugeführt werden kann. Dazu kann der Dichtsteg breiter als bei vergleichbaren Rotationspumpen im Stand der Technik sein, was eine Erhöhung des Schmierdrucks und/oder Verbesserung der Abdichtung gegenüber dem Einlass in den und/oder Auslass aus dem Pumpenraum bewirken kann.
  • Der Pumpenraum wird an seinen axialen Enden im Regelfall durch einen Deckel und einen Boden begrenzt. Der Einlass, der Auslass, der Dichtsteg und die Schmiermittelzuführung können wahlweise im Deckel oder im Boden des Pumpenraums oder sowohl im Deckel als auch im Boden des Pumpenraums gebildet sein. Das heißt, die Rotationspumpe kann zwei Einlässe in den Niederdruckbereich des Pumpenraums, zwei Auslässe aus dem Hochdruckbereich des Pumpenraums, zwei dem Rotor axial zugewandte Dichtstege, insbesondere Triebstege, die in Drehrichtung des Rotors den Niederdruckbereich vom Hochdruckbereich trennen, und in jedem der zwei Dichtstege eine Schmiermittelzuführung, insbesondere im Bereich des größten Zahneingriffs des Rotors, umfassen. Die zwei sich axial gegenüberliegenden Schmiermittelzuführungen und damit die im Boden eingebrachte Schmiermittelführung und die im Deckel eingebrachte Schmiermittelzuführung können sich in der Gestalt, der Tiefe, der Länge, der Breite und/oder dergleichen unterscheiden. Ferner können die zwei sich axial gegenüberliegenden Schmiermittelzuführungen bezogen auf die Drehrichtung versetzt und/oder verdreht zueinander orientiert sein. Grundsätzlich ist es denkbar, dass eine der Schmiermittelzuführungen außermittig und näher an dem für die bevorzugte Drehrichtung vorgesehenen Auslass für das zu pumpende Medium angeordnet ist und die axial gegenüberliegende Schmiermittelzuführung außermittig und näher an dem für die bevorzugte Drehrichtung vorgesehenen Einlass für das zu pumpende Medium angeordnet ist. Dabei können sich die axial gegenüberliegenden Schmiermittelzuführungen voneinander unterscheiden, beispielsweise in der Größe ihrer Nut oder ihres Kanals.
  • Vorzugsweise weist die Rotationspumpe oder das die Rotationspumpe aufweisende Schmier- und/oder Kühlmittelsystem zumindest ein Sperrventil auf, das zwischen dem Pumpenraum und einem Schmier- und/oder Kühlmittelreservoir, aus dem die Rotationspumpe in zumindest einem Betriebszustand ein Schmier- und/oder Kühlmittel ansaugt, angeordnet ist. Vorteilhaft sperrt das Sperrventil eine Strömung aus dem Pumpenraum in das Schmier- und/oder Kühlmittelreservoir und erlaubt eine Strömung von dem Schmier- und/oder Kühlmittelreservoir in den Pumpenraum. Des Weiteren ist es vorteilhaft, wenn die Rotationspumpe oder das Schmier- und/oder Kühlmittelsystem zumindest eine Abzweigung aufweist, die zwischen dem Pumpenraum und dem Schmier- und/oder Kühlmittelreservoir angeordnet ist. Dabei ist es vorteilhaft, wenn das Sperrventil zwischen der Abzweigung und dem Schmier- und/oder Kühlmittelreservoir angeordnet ist.
  • Die Rotationspumpe taucht vorteilhaft zumindest teilweise in das Schmier- und/oder Kühlmittel in dem Schmier- und/oder Kühlmittelreservoir ein und/oder ist zumindest teilweise unterhalb eines Schmier- und/oder Kühlmittelspiegels angeordnet. Alternativ kann die Rotationspumpe oberhalb des Schmier- und/oder Kühlmittelspiegels angeordnet sein und taucht nicht in das Schmier- und/oder Kühlmittel ein. Insbesondere dann, wenn die Rotationspumpe oberhalb des Schmier- und/oder Kühlmittelspiegels angeordnet ist, weist die Rotationspumpe oder das die Rotationspumpe aufweisende Schmier- und/oder Kühlmittelsystem das Sperrventil auf, um zu verhindern, dass der Pumpenraum leerläuft. Durch das Sperrventil kann sichergestellt werden, dass der Pumpenraum stets mit dem Schmier- und/oder Kühlmittel gefüllt ist und die Schmiermittelversorgung über die Schmiermittelzuführung sichergestellt ist, insbesondere dann, wenn die Rotationspumpe oberhalb des Schmier- und/oder Kühlmittelspiegels angeordnet ist. Das Sperrventil ist vorzugsweise als ein Rückschlagventil ausgebildet.
  • Ferner ist es grundsätzlich denkbar, dass die Rotationspumpe zusätzlich eine Schmiermittelabführung aufweist, die ein Schmiermittel aus dem Lager abführt. Die Schmiermittelabführung kann das Lager mit dem Einlass bzw. Auslass verbinden. Vorzugsweise weist die Schmiermittelabführung zumindest eine Nut oder einen Kanal auf, die oder der von dem Lager zu dem Einlass bzw. Auslass verläuft. Vorteilhaft ist die Schmiermittelabführung in dem Boden und/oder dem Deckel gebildet. Vorzugsweise weist die Schmiermittelabführung zumindest in einem Teilabschnitt einen im Vergleich zu der Schmiermittelzuführung kleineren Strömungsquerschnitt auf und/oder umfasst eine Drosselstelle, beispielsweise in Form einer Verengung.
  • Im Folgenden wird die Erfindung anhand von Figuren näher erläutert. Die Figuren zeigen Ausführungsbeispiele einer Rotationspumpe, ohne dass dadurch die Erfindung auf die in den Figuren gezeigten Ausführungen beschränkt wird. Erfindungswesentliche Merkmale, die nur den Figuren entnommen werden können, können einzeln oder in Kombination die Rotationspumpe der Erfindung vorteilhaft weiterbilden. Die Figuren zeigen im Einzelnen:
  • Figur 1:
    Rotorsatz einer Rotationspumpe, mit einem als Innenzahnrad ausgebildeten Rotor und einem als Außenzahnrad ausgebildeten Rotor,
    Figur 2:
    schematisch einen Einlass, einen Auslass und einen Dichtsteg mit mittig angeordneter Schmiermittelzuführung der Rotationspumpe aus Figur 1,
    Figur 3:
    geöffnetes Pumpengehäuse mit Blick auf eine axiale Innenseite einer Pumpe plus Detailansicht,
    Figur 4:
    Skizze Pumpeneinlass und -auslass sowie Dichtsteg mit außermittig angeordneter Schmiermittelzuführung der Rotationspumpe aus Figur 3,
    Figur 5:
    Skizze der Figur 4 mit Pumpenraum und Rotor,
    Figur 6:
    Skizze Pumpeneinlass und -auslass sowie Dichtsteg mit mittig angeordneter Schmiermittelzuführung,
    Figur 7:
    Skizze der Figur 6 mit Pumpenraum und Rotor.
  • Die Figur 1 zeigt eine Rotationspumpe 1 eines Kraftfahrzeugs. Die Rotationspumpe 1 ist als eine Innenzahnrad-, Innenzahnring- oder Gerotorpumpe ausgebildet. Die Rotationspumpe 1 ist in ihrer Förderrichtung oder Drehrichtung D im Betrieb umschaltbar. Die Rotationspumpe 1 weist einen Rotorsatz auf, der einen als Außenzahnrad ausgebildeten Rotor 10 und einen als Innenzahnrad ausgebildeten Rotor 11 aufweist, die exzentrisch zueinander angeordnet sind. Der Rotor 10 kann als Stator dienen, in dem der Rotor 11 exzentrisch angeordnet ist. Der Rotor 10 kann sich aber auch drehen, zum Beispiel von dem Rotor 11 mit gedreht werden. Für die Beschreibung wird daher die Bezeichnung Rotor 10 und Rotor 11 beibehalten. Die beiden Rotoren 10 und 11 bilden zusammen einen Pumpenraum 7 aus, der mit einem zu pumpenden Medium gefüllt und in dem das Medium auf dem Weg vom Einlass zum Auslass verdichtet wird. Die Rotoren 10, 11 begrenzen bzw. bilden in Drehrichtung D betrachtet mehrere Arbeitskammern, in denen das zu pumpende Medium transportiert wird. Die Rotoren 10, 11 teilen den Pumpenraum 7 in mehrere Arbeitskammern auf, die sich bei Rotation der Rotoren 10, 11 in ihrem Volumen verändern.
  • Zum Antrieb weist die Rotationspumpe 1 einen nicht dargestellten Elektromotor auf, der antriebstechnisch an den Rotor 11 angebunden ist. Der Elektromotor ist dazu vorgesehen, den Rotor 11 in beide Drehrichtungen D anzutreiben. Die Rotationspumpe ist als eine Hilfspumpe und/oder eine Zusatzpumpe zur Unterstützung und/oder zum zumindest teilweisen Ersatz einer Haupt- oder Primärpumpe des Kraftfahrzeugs ausgebildet. Die Rotationspumpe 1 ist in einem Schmier- und/oder Kühlmittelsystem des Kraftfahrzeugs angeordnet.
  • Ferner weist die Rotationspumpe 1 ein in der Figur 1 nicht dargestelltes Gehäuse 2 auf, das einen Boden des Pumpenraums 7 bilden kann, mit einem Ein- bzw. Auslass 4, einem Aus- bzw. Einlass 3, einem Lager 5 für den Rotor 11 und zwei zwischen dem Ein- bzw. Auslass 4 und dem Aus- bzw. Einlass 3 gebildeten Dichtstegen 8 und 9 (vgl. auch Fig. 2). Durch eine Drehrichtungsumkehr wechseln die Ein- bzw. Auslässe 3, 4 ihre Funktion. Bei einer Drehrichtung D im Uhrzeigersinn ist der Ein- bzw. Auslass 4 als ein Einlass und der Aus- bzw. Einlass 3 als ein Auslass ausgebildet. Bei einer Drehrichtung D gegen den Uhrzeigersinn ist der Ein- bzw. Auslass 4 als ein Auslass und der Aus- bzw. Einlass 3 als ein Einlass ausgebildet. Im Folgenden wird der Einfachheit halber der Ein- bzw. Auslass 4 als Einlass 4 und der Aus- bzw. Einlass 3 als Auslass 3 bezeichnet. Der Einlass 4 und der Auslass 3 sind symmetrisch zueinander ausgebildet.
  • Zur drehrichtungsunabhängigen Schmierung des Lagers 5 ist im Dichtsteg 9 eine Schmiernut eingebracht, die eine Schmiermittelzuführung 6 bildet, mit der Quetschöl als Schmiermittel aus dem Pumpenraum 7 zu dem Lager 5 des Rotors 11 geleitet wird. Die Schmiermittelzuführung 6 führt Quetschöl aus einer der Arbeitskammern dem Lager 5 des Rotors 11 zu. Die Schmiermittelzuführung 6 und damit die Schmiernut ist im Bereich eines größten Zahneingriffs der Rotoren 10, 11 gebildet, das heißt in dem Bereich, in dem ein Zahn des Rotors 11 im Wesentlichen vollständig in einen Bereich zwischen zwei Zähnen des Rotors 10 eingreift. Die Schmiermittelzuführung 6 wird mit einem Restmedium gespeist, das nicht durch den Auslass 3 verdrängt wurde und durch das Weiterdrehen des Rotors 11 mit einem Quetschdruck beaufschlagt wird. Da das Medium unter Quetschdruck eine Leistung der Rotationspumpe 1 negativ beeinflussen und einen Verschleiß der Rotationspumpe 1 beschleunigen kann, wird versucht, das Auftreten solcher Quetschdrücke zu vermeiden, indem das Restmedium bei Pumpen aus dem Stand der Technik zum Beispiel über Bohrungen im Rotor 10, 11 zurück in den Pumpenraum 7 oder den Einlass 4 verdrängt wird. Dieses vorteilhafte Ableiten des Mediums unter Quetschdruck erfolgt in dem Ausführungsbeispiel der Erfindung über die Schmiermittelzuführung 6 und das Medium wird dazu verwendet, das Lager 5 des Rotors 11 zu schmieren.
  • Im gezeigten Ausführungsbeispiel ist die Schmiermittelzuführung 6 in dem Dichtsteg 9 mittig angeordnet, das heißt, ein Abstand der Schmiermittelzuführung 6 zum Auslass 3, der eine Hochdruckseite der Rotationspumpe 1 mit zum Beispiel Leitungen verbindet, und ein Abstand zum Einlass 4, der der Niederdruckseite der Rotationspumpe 1 zugeordnet ist, sind identisch oder im Wesentlichen identisch. Die Schmiermittelzuführung 6 hat weder zum Auslass 3 noch zum Einlass 4 eine fluidische Verbindung. Die mittige Anordnung der Schmiermittelzuführung 6 im Dichtsteg 9 hat den Vorteil, dass unabhängig von einer Drehrichtung der Rotationspumpe 1 und damit der Rotoren 10, 11, die Schmiermittelzuführung 6 zuverlässig mit Schmiermittel aus dem Pumpenraum 7 versorgt wird. Es kann von Vorteil sein, wenn der Dichtsteg 9 breiter ist als bei Pumpen des Stands der Technik, das heißt, ein Abstand zwischen den einander zugewandten und eine minimale Breite des Dichtstegs 9 definierenden Kanten des Einlasses 4 und des Auslasses 3 größer gewählt wird als bei vergleichbaren Pumpen ohne die Schmiermittelzuführung 6.
  • Die Schmiermittelzuführung 6 ist an ihrem dem Lager 5 zugeordneten Enden offen und mündet an einer Außenoberfläche des Lagers 5. Von dort aus erstreckt sie sich radial nach außen in den Dichtsteg 9 und endet in einem Bereich des Dichtstegs 9, der zwischen dem Einlass 4 und dem Auslass 3 liegt. Die Schmiermittelzuführung 6 ist als Vertiefung in dem Boden des Pumpenraums 7 gebildet. Der Dichtsteg 9 trennt gemeinsam mit den Rotoren 10, 11 den Niederdruckbereich des Pumpenraums 7 von dem Hochdruckbereich des Pumpenraums 7 und verhindert, dass ein zu pumpendes Medium direkt vom Einlass 4 in den Auslass 3 strömen kann. Die gleiche Funktion, nämlich eine direkte fluidische Verbindung von Einlass 4 und Auslass 3 zu verhindern, hat auch der weitere Dichtsteg 8, wobei im Bereich des Dichtstegs 8 im Unterschied zum Dichtsteg 9 ein Zahneingriff zwischen dem Innenzahnrad 11 und dem Außenzahnrad 10 fehlt oder am geringsten ist.
  • Bei dem zu pumpenden Medium kann es sich beispielsweise um ein Öl, ein Schweröl, Diesel oder ein anderes Medium handeln, das ausreichende Schmiereigenschaften hat, um das Lager 5 des Rotors 10 zuverlässig zu schmieren. In diesem Ausführungsbeispiel handelt es sich um Schmieröl zur Schmierung und/oder Kühlung von Kraftfahrzeugbauteilen.
  • Die Schmiermittelzuführung 6, respektive eine Verlängerung einer axialen Längsachse L der Schmiermittelzuführung 6, die in der Figur 2 eingezeichnet ist, schneidet die Rotationsachse R des Rotors 11. Der Rotor 11 kann drehangetrieben sein und kann relativ zu dem Gehäuse 2 nur gedreht und optional entlang der Rotationsachse R linear verstellt werden. Das heißt, die Rotationsachse R der Rotationspumpe 1 des Ausführungsbeispiels ändert seine Lage relativ zum Gehäuse 2 nicht.
  • Zur Lagerung des Rotors 10 weist die Rotationspumpe 1 ebenfalls ein Lager auf. Grundsätzlich kann die Schmiermittelzuführung 6 alternativ oder zusätzlich zur Schmierölversorgung des Lagers 5 das Lager des Rotors 10 zur Schmierung mit dem Quetschöl versorgen. Beispielsweise kann die Schmiernut radial nach außen verlängert sein und beide Lager mit Quetschöl versorgen. Alternativ oder zusätzlich kann eine zusätzliche, insbesondere parallele, Schmiernut eingebracht sein, die das Lager des Rotors 10 mit Quetschöl versorgt. Dabei können die Schmiernuten das Quetschöl aus derselben Arbeitskammer oder aus zwei verschiedenen Arbeitskammern entnehmen.
  • In den Figuren 3, 4, 5 ist eine Rotationspumpe 1 eines zweiten Ausführungsbeispiels dargestellt, wobei die Figur 3 einen Blick in ein Gehäuse 2 der Rotationspumpe 1 zeigt. Das Gehäuse 2 weist eine Innenseitenwand auf, die einen Boden eines Pumpenraums 7 bilden kann, mit einem Einlass 4, einem Auslass 3, einem Lager 5 für einen Rotor 11 und zwei zwischen dem Einlass 4 und dem Auslass 3 gebildeten Dichtstegen 8 und 9. Im Dichtsteg 9 ist eine Schmiernut eingebracht, die eine Schmiermittelzuführung 6 bildet, mit der Quetschöl als Schmiermittel aus dem Pumpenraum 7 zu dem Lager 5 des Rotors 11 geleitet wird.
  • Im zweiten Ausführungsbeispiel sind der Einlass 4 und der Auslass 3 asymmetrisch ausgebildet. Dabei ist die Schmiermittelzuführung 6 in dem Dichtsteg 9 außermittig angeordnet, das heißt, ein Abstand der Schmiermittelzuführung 6 zu dem für eine bevorzugte Drehrichtung Dbev vorgesehenen Auslass 3, der eine Hochdruckseite der Rotationspumpe 1 mit zum Beispiel Leitungen verbindet, ist kleiner als ein Abstand zu dem für die bevorzugte Drehrichtung Dbev vorgesehenen Einlass 4, der der Niederdruckseite der Rotationspumpe 1 zugeordnet ist. Die außermittige Anordnung der Schmiermittelzuführung 6 im Dichtsteg 9 ist insbesondere vorteilhaft, wenn die Rotationspumpe 1 eine bevorzugte Drehrichtung Dbev hat. In diesem Fall wird durch die Anordnung der Schmiermittelzuführung 6 der Bereich des Dichtstegs 9 vergrößert, der die Schmiermittelzuführung 6 gegenüber der Niederdruckseite oder dem Einlass 4 abdichtet, so dass zuverlässig vermieden wird, dass das Schmiermittel durch eine fluidische Verbindung von Schmiermittelzuführung 6 und Einlass 4 aus der Schmiermittelführung 6 wieder herausgesaugt wird. Die axiale Längsachse L der Schmiermittelzuführung 6 liegt auf einer geraden Exzenterlinie, die in einem Querschnitt der Rotationspumpe 1 eine Rotationsachse des Rotors 10 und eine Rotationsachse des Rotors 11 miteinander verbindet. Obgleich es bevorzugt wird, wenn die Längsachse L der Schmiermittelzuführung 6 mit der Exzentergeraden, die die Rotationsachse des Rotors 10 und die Rotationsachse des Rotors 11 verbindet, deckungsgleich ist, kann sich die Längsachse L der Schmiermittelzuführung 6 in Abwandlungen stattdessen aber auch in einem Abstand parallel zur Exzentergeraden erstrecken. Grundsätzlich kann die Längsachse L in weiteren Abwandlungen in einem spitzen Winkel von vorzugsweise weniger als 20° zur Exzentergeraden erstreckt sein und die Rotationsachse des Rotors 10 und/oder die Rotationsachse des Rotors 11 schneiden oder in einem Abstand kreuzen.
  • Die Schmiermittelzuführung 6 kann auch anders als in den Figuren 3, 4, 5 gezeigt, außermittig und näher an dem für die bevorzugte Drehrichtung Dbev vorgesehenen Einlass 4 in dem Dichtsteg 9 angeordnet sein, um zuverlässig eine fluidische Verbindung des für die bevorzugte Drehrichtung Dbev vorgesehenen Auslasses 3 mit der Schmiermittelzuführung 6 zu verhindern. Dies kann zum Beispiel bei Rotationspumpen 1 mit einem hohen Auslassdruck von Vorteil sein, um zuverlässig zu verhindern, dass das unter hohem Druck stehende Medium in die Schmiermittelzuführung 6 gedrückt wird, bevor der Auslass 3 der Rotationspumpe 1 vollständig geschlossen ist. Der Bereich des Dichtstegs 9 ist zusätzlich in einer vergrößerten Darstellung gezeigt.
  • In den Figuren 6 und 7 ist eine Rotationspumpe 1 in einem dritten Ausführungsbeispiel dargestellt. Anders als im Ausführungsbeispiel der Figuren 1 und 2 sind der Einlass 4 und der Auslass 3 asymmetrisch ausgebildet. Anders als im Ausführungsbeispiel der Figuren 3, 4, 5 ist die Schmiermittelzuführung 6 im Dichtsteg 9 mittig angeordnet, hat also zum Einlass 4 und zum Auslass 3 im Wesentlichen identische Abstände. Die Rotationspumpe 1 weist damit asymmetrisch zueinander ausgebildete Ein- und Auslässe 3, 4, aber eine mittig angeordnete Schmiermittelzuführung 6 auf.
  • Bezugszeichenliste:
  • 1
    Rotationspumpe
    2
    Gehäuse
    3
    Auslass
    4
    Einlass
    5
    Lager
    6
    Schmiermittelzuführung
    7
    Pumpenraum
    8
    Dichtsteg
    9
    Dichtsteg
    10
    Rotor
    11
    Rotor
    D
    Drehrichtung
    Dbev
    bevorzugte Drehrichtung
    R
    Rotationsachse Rotor
    L
    Längsmittelachse Schmiermittelzuführung

Claims (14)

  1. Rotationspumpe (1) mit umschaltbarer Drehrichtung, mit
    a) einem Gehäuse (2), das einen Pumpenraum (7) mit einem Einlass (4) für ein zu pumpendes Medium in einen Niederdruckbereich des Pumpenraums (7) und einem Auslass (3) für das zu pumpende Medium aus einem Hochdruckbereich des Pumpenraums (7) aufweist,
    b) wenigstens einem Rotor (10, 11),
    c) zumindest einem Lager (5) für den wenigstens einen Rotor (10, 11),
    d) zumindest einem dem Rotor (10, 11) axial zugewandten Dichtsteg (8, 9), der den Niederdruckbereich in Drehrichtung (D) des Rotors (10, 11) vom Hochdruckbereich trennt,
    e) und einer Schmiermittelzuführung (6), die ein Schmiermittel aus dem Pumpenraum (7) zumindest dem Lager (5) zuführt,
    f) wobei die Schmiermittelzuführung (6) im Dichtsteg (9) gebildet ist,
    g) wobei es sich bei der Rotationspumpe (1) um eine innenachsige Pumpe, wie etwa eine Rotationkolbenpumpe, eine Flügelzellenpumpe eine Innenzahnradpumpe oder eine andere innenachsige Pumpe handelt,
    h) wobei das zumindest eine Lager (5) ein Gleitlager ist, dadurch gekennzeichnet, dass
    i) die Schmiermittelzuführung (6) eine Nut in dem Dichtsteg ist, und
    j) der Dichtsteg (9) in Drehrichtung (D) des Rotors (10, 11) zwischen dem Einlass (4) und dem Auslass (3) gebildet ist und sich die Schmiermittelzuführung (6) von dem Lager (5) zumindest bis zwischen den Einlass (4) und den Auslass (3) erstreckt.
  2. Rotationspumpe nach Anspruch 1, wobei die Schmiermittelzuführung (6) das zu pumpende Medium aus zumindest einer abgeschlossenen Arbeitskammer, die in Drehrichtung (D) durch den zumindest einen Rotor (10, 11) begrenzt ist, zumindest dem Lager (5) zuführt.
  3. Rotationspumpe nach Anspruch 1, wobei die Schmiermittelzuführung (6) im Dichtsteg (9) bei Zahnradpumpen in einem Bereich eines größten Zahneingriffs des Rotors (10; 11) gebildet ist.
  4. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei der Einlass (4) und der Auslass (3) symmetrisch zueinander ausgebildet sind.
  5. Rotationspumpe nach einem der vorhergehenden Ansprüche, wobei die Schmiermittelzuführung (6) in dem Dichtsteg (9) mittig angeordnet ist.
  6. Rotationspumpe nach einem der Ansprüche 1 bis 4, wobei die Schmiermittelzuführung (6) in dem Dichtsteg (9) außermittig, bevorzugt näher an dem für eine bevorzugte Drehrichtung (Dbev) vorgesehenen Auslass (3) für das zu pumpende Medium, angeordnet ist.
  7. Rotationspumpe nach einem der vorgehenden Ansprüche, wobei die Schmiermittelzuführung (6) wenigstens eine Tasche in dem Dichtsteg (9) umfasst und die Tasche direkt oder über eine Nut oder einen Kanal mit dem Lager (5) verbunden ist.
  8. Rotationspumpe nach einem der vorgehenden Ansprüche, wobei die Schmiermittelzuführung (6) in keiner Position des Rotors (10, 11) mit dem Einlass (4) in oder dem Auslass (3) aus dem Pumpenraum (7) kurzgeschlossen ist.
  9. Rotationspumpe nach einem der Ansprüche 6 bis 8, wobei eine gedachte Verlängerung der Nut oder des Kanals eine Rotationsachse (R) oder eine Achse parallel zur Rotationsachse (R) der Pumpe (1) schneidet.
  10. Rotationspumpe nach einem der Ansprüche 6 bis 9, wobei eine gedachte Verlängerung der Nut oder des Kanals auf einer geraden Exzenterlinie, die einen Mittelpunkt des Pumpenraums (7) und die Rotationsachse (R) des zumindest einen Rotors (11) miteinander verbindet, angeordnet ist.
  11. Rotationspumpe nach einem der vorgehenden Ansprüche, gekennzeichnet durch eine Ausbildung als Zahnradpumpe, wobei sich die Schmiermittelzuführung (6) von dem Lager (5) zumindest bis zu einem Fußkreisdurchmesser eines der Zahnräder, vorzugsweise zumindest bis zu einem radial von dem Lager (5) entferntesten Fußkreisdurchmesser erstreckt.
  12. Rotationspumpe nach einem der vorgehenden Ansprüche, wobei der Pumpenraum (7) einen axialen Deckel und einen axialen Boden umfasst und der Einlass (4), der Auslass (3), der Dichtsteg (9) und die Schmiermittelzuführung (6) in dem axialen Deckel und/oder dem axialen Boden des Pumpenraums (7) gebildet sind.
  13. Rotationspumpe nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen zum Antrieb vorgesehenen Elektromotor.
  14. Rotationspumpe nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Ausbildung als eine Hilfspumpe und/oder als eine Zusatzpumpe zur Unterstützung und/oder zumindest teilweisen Ersatz einer Hauptpumpe in einem Schmier- und/oder Kühlmittelsystem eines Kraftfahrzeugs.
EP17167286.8A 2016-04-21 2017-04-20 Rotationspumpe mit schmiernut im dichtsteg Active EP3236074B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016107447.0A DE102016107447A1 (de) 2016-04-21 2016-04-21 Rotationspumpe mit Schmiernut im Dichtsteg

Publications (2)

Publication Number Publication Date
EP3236074A1 EP3236074A1 (de) 2017-10-25
EP3236074B1 true EP3236074B1 (de) 2024-01-31

Family

ID=58632198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17167286.8A Active EP3236074B1 (de) 2016-04-21 2017-04-20 Rotationspumpe mit schmiernut im dichtsteg

Country Status (4)

Country Link
US (1) US10578101B2 (de)
EP (1) EP3236074B1 (de)
CN (1) CN107304765B (de)
DE (1) DE102016107447A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815991B2 (en) 2016-09-02 2020-10-27 Stackpole International Engineered Products, Ltd. Dual input pump and system
DE102017126900A1 (de) 2017-11-15 2019-05-16 Schwäbische Hüttenwerke Automotive GmbH Rückschlagventil
US10895257B2 (en) * 2018-02-13 2021-01-19 GM Global Technology Operations LLC Lubrication strategy for dry run pump system
DE102018105121A1 (de) * 2018-03-06 2019-09-12 Schwäbische Hüttenwerke Automotive GmbH Unterstützungstaschen
DE102018107695A1 (de) * 2018-03-29 2019-10-02 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe
DE102018123909B4 (de) * 2018-09-27 2020-06-10 Nidec Gpm Gmbh Kompakt-Gleitlager mit Dichtungsanordnung und Wasserpumpe mit demselben
DE102018133680A1 (de) * 2018-12-28 2020-07-02 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit axialer Kompensation, Auslassdichtung für eine Pumpe sowie vormontierte Pumpeneinheit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064976A1 (en) * 2003-09-22 2005-03-24 Aisin Aw Co. Ltd. Lubricating mechanism of oil pump
CN203570583U (zh) * 2013-11-06 2014-04-30 宁波布赫懋鑫液压技术有限公司 直线共轭内啮合齿轮泵的回油装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE232090C (de)
DE1941641B2 (de) * 1969-08-16 1975-11-27 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen Lagerschmierung einer Zahnradpumpe
US3904333A (en) 1974-05-22 1975-09-09 Weatherhead Co Pressure balancing system for gear pumps or motors
DD232090A1 (de) * 1984-11-28 1986-01-15 Karl Marx Stadt Ind Werke Hydrostatische zahnradmaschine
US4927343A (en) 1988-10-06 1990-05-22 Permco, Inc. Lubrication of gear pump trunnions
US6086344A (en) * 1998-02-02 2000-07-11 White Hydraulics, Inc. Hydraulic motor lubrication path
JP2004360677A (ja) * 2003-05-14 2004-12-24 Matsushita Electric Ind Co Ltd 冷媒ポンプ
JP2006152914A (ja) * 2004-11-29 2006-06-15 Hitachi Ltd オイルポンプ
FR2893092B1 (fr) * 2005-11-08 2008-10-10 Koyo Hpi Soc Par Actions Simpl Groupe electro-pompe, du type comprenant au moins une pompe hydraulique, notamment a engrenage, entrainee en rotation par un dispositif moteur
DE102009019418B4 (de) * 2009-04-29 2013-05-16 Schwäbische Hüttenwerke Automotive GmbH Umlaufverdrängerpumpe mit verbesserter Lagerschmierung
DE102013202917A1 (de) * 2013-02-22 2014-08-28 Robert Bosch Gmbh Zahnradmaschine mit erhöhter Partikelrobustheit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050064976A1 (en) * 2003-09-22 2005-03-24 Aisin Aw Co. Ltd. Lubricating mechanism of oil pump
CN203570583U (zh) * 2013-11-06 2014-04-30 宁波布赫懋鑫液压技术有限公司 直线共轭内啮合齿轮泵的回油装置

Also Published As

Publication number Publication date
US10578101B2 (en) 2020-03-03
US20170306950A1 (en) 2017-10-26
EP3236074A1 (de) 2017-10-25
CN107304765B (zh) 2020-09-22
CN107304765A (zh) 2017-10-31
DE102016107447A1 (de) 2017-11-09

Similar Documents

Publication Publication Date Title
EP3236074B1 (de) Rotationspumpe mit schmiernut im dichtsteg
DE10240409B4 (de) Variable Verdrängungspumpe
EP2683955B1 (de) Gleitlagerschale
EP1141551B1 (de) Pumpenanordnung mit zwei hydropumpen
DE1403890A1 (de) Rotationsschaufelpumpe
DE102016218909A1 (de) Rollenstößel für eine Kolbenpumpe, Kolbenpumpe
DE2826071A1 (de) Fluessigkeitspumpe der spiral-bauart
EP2743506A2 (de) Gaspumpe mit abdichtender Ölnut
DE202011052114U1 (de) Innenzahnradpumpe
DE19952167A1 (de) Pumpenanordnung mit zwei Hydropumpen
DE202013102506U1 (de) Innenzahnradmaschine mit Schrägbohrungen zur Verbindung hydrostatischer Lager für ein Hohlrad mit einem Druck-Hauptkanal
DE102015115841B4 (de) Pumpen-Motor-Einheit mit einer Kühlung eines die Pumpe antreibenden Elektromotors mittels Leckagefluid
DE102014212600B4 (de) Integrierte Schmierpumpe
EP2249039A2 (de) Außenzahnradpumpe mit verbesserter Lagerschmierung
EP2412979B1 (de) Verdrängerpumpe mit Absaugnut
DE10040711C2 (de) Flügelzellenpumpe
DE102017204145A1 (de) Ölmehrfachpumpe und Kraftfahrzeug mit einer solchen Ölmehrfachpumpe
EP3536956A1 (de) Unterstützungstaschen
DE102004021216A1 (de) Hochdruck-Innenzahnradmaschine mit mehrfacher hydrostatischer Lagerung pro Hohlrad
DE102019127388A1 (de) Fluidversorgung von Unterflügelkammern einer Flügelzellenpumpe
EP3827170A1 (de) Fluidfördereinrichtung
DE102010005072A1 (de) Innenzahnradpumpe mit druckentlastetem Wellendichtring
DE102012217484A1 (de) Innenzahnradpumpe, insbesondere für eine hydraulische Fahrzeugbremsanlage
DE1280056B (de) Drehkolbenmaschine mit zwei Zahnraedern im Inneneingriff
EP3546752A1 (de) Rotationspumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180423

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 15/00 20060101ALI20230801BHEP

Ipc: F04C 2/30 20060101ALI20230801BHEP

Ipc: F04C 2/10 20060101AFI20230801BHEP

INTG Intention to grant announced

Effective date: 20230906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN