EP3234079A2 - High-temperature lubricants - Google Patents
High-temperature lubricantsInfo
- Publication number
- EP3234079A2 EP3234079A2 EP15801328.4A EP15801328A EP3234079A2 EP 3234079 A2 EP3234079 A2 EP 3234079A2 EP 15801328 A EP15801328 A EP 15801328A EP 3234079 A2 EP3234079 A2 EP 3234079A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- group
- temperature
- mixture
- hydrogenated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000314 lubricant Substances 0.000 title claims abstract description 38
- 239000003921 oil Substances 0.000 claims abstract description 50
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 239000004519 grease Substances 0.000 claims abstract description 22
- 150000002790 naphthalenes Chemical class 0.000 claims abstract description 20
- 239000000654 additive Substances 0.000 claims abstract description 18
- 229920006007 hydrogenated polyisobutylene Polymers 0.000 claims abstract description 16
- -1 trimellitic acid ester Chemical class 0.000 claims abstract description 16
- 150000002149 estolides Chemical class 0.000 claims abstract description 15
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 12
- 239000002562 thickening agent Substances 0.000 claims abstract description 12
- 230000001050 lubricating effect Effects 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 13
- 150000002148 esters Chemical class 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 238000005260 corrosion Methods 0.000 claims description 11
- 238000005096 rolling process Methods 0.000 claims description 10
- 239000007866 anti-wear additive Substances 0.000 claims description 8
- 230000007797 corrosion Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 7
- 239000012963 UV stabilizer Substances 0.000 claims description 6
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 6
- 239000000194 fatty acid Substances 0.000 claims description 6
- 229930195729 fatty acid Natural products 0.000 claims description 6
- 239000000344 soap Substances 0.000 claims description 6
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 5
- 125000003158 alcohol group Chemical group 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000004711 α-olefin Substances 0.000 claims description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 3
- 238000011089 mechanical engineering Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000002480 mineral oil Substances 0.000 claims description 3
- 235000010446 mineral oil Nutrition 0.000 claims description 3
- 229920013639 polyalphaolefin Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229910002012 Aerosil® Inorganic materials 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 235000012216 bentonite Nutrition 0.000 claims description 2
- 150000004696 coordination complex Chemical class 0.000 claims description 2
- 238000005461 lubrication Methods 0.000 claims description 2
- 238000005007 materials handling Methods 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 150000004760 silicates Chemical class 0.000 claims description 2
- 150000003871 sulfonates Chemical class 0.000 claims description 2
- 125000005590 trimellitic acid group Chemical class 0.000 claims 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims 1
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 abstract description 7
- 235000019198 oils Nutrition 0.000 description 39
- 239000003925 fat Substances 0.000 description 27
- 229920002367 Polyisobutene Polymers 0.000 description 23
- 125000003118 aryl group Chemical group 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000002199 base oil Substances 0.000 description 6
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- DIOYAVUHUXAUPX-ZHACJKMWSA-N 2-[methyl-[(e)-octadec-9-enoyl]amino]acetic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)N(C)CC(O)=O DIOYAVUHUXAUPX-ZHACJKMWSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 108010077895 Sarcosine Proteins 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 235000014593 oils and fats Nutrition 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 125000005591 trimellitate group Chemical group 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- DHTAIMJOUCYGOL-UHFFFAOYSA-N 2-ethyl-n-(2-ethylhexyl)-n-[(4-methylbenzotriazol-1-yl)methyl]hexan-1-amine Chemical compound C1=CC=C2N(CN(CC(CC)CCCC)CC(CC)CCCC)N=NC2=C1C DHTAIMJOUCYGOL-UHFFFAOYSA-N 0.000 description 1
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100039496 Choline transporter-like protein 4 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical class FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101000889282 Homo sapiens Choline transporter-like protein 4 Proteins 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002894 chemical waste Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- IKXFIBBKEARMLL-UHFFFAOYSA-N triphenoxy(sulfanylidene)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=S)OC1=CC=CC=C1 IKXFIBBKEARMLL-UHFFFAOYSA-N 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/04—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/06—Well-defined hydrocarbons aromatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/36—Esters of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
- C10M107/08—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M109/00—Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/06—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a compound of the type covered by group C10M109/00
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/044—Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
- C10M2201/0626—Oxides; Hydroxides; Carbonates or bicarbonates used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
- C10M2201/1026—Silicates used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
- C10M2201/103—Clays; Mica; Zeolites
- C10M2201/1036—Clays; Mica; Zeolites used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/105—Silica
- C10M2201/1056—Silica used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
- C10M2203/065—Well-defined aromatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
- C10M2205/0265—Butene used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/127—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
- C10M2207/1276—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic used as thickening agent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/128—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
- C10M2207/1285—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/285—Esters of aromatic polycarboxylic acids
- C10M2207/2855—Esters of aromatic polycarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
- C10M2207/301—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2213/00—Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2213/06—Perfluoro polymers
- C10M2213/062—Polytetrafluoroethylene [PTFE]
- C10M2213/0626—Polytetrafluoroethylene [PTFE] used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/10—Amides of carbonic or haloformic acids
- C10M2215/102—Ureas; Semicarbazides; Allophanates
- C10M2215/1026—Ureas; Semicarbazides; Allophanates used as thickening material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/14—Containing carbon-to-nitrogen double bounds, e.g. guanidines, hydrazones, semicarbazones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
- C10M2219/0445—Sulfonic acids, Derivatives thereof, e.g. neutral salts used as thickening agents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/76—Reduction of noise, shudder, or vibrations
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/14—Electric or magnetic purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/38—Conveyors or chain belts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/02—Reduction, e.g. hydrogenation
Definitions
- the invention relates to high temperature lubricants, especially oils and fats based on an aromatic ester, such as a trimellitic acid ester and mixtures of various trimellitic acid esters, alkylaromatics, estolides and a fully hydrogenated or hydrogenated polyisobutylene or a mixture thereof, a thickener.
- the invention further relates to the use of this high temperature grease for continuous use temperatures of up to 250 ° C.
- the lubricants must fulfill a variety of other tasks: they must cool, reduce friction, wear and power transmission, protect against corrosion and at the same time have a sealing effect.
- the high temperature greases should be quiet.
- Synthetic esters are often used as base oils for high-temperature applications since they have very good oxidative, hydrolytic and thermal stability.
- the lubricants In order to meet the diverse requirements of high-temperature applications, the lubricants must have, among other things, high stability, low friction coefficients and high wear resistance. In order to ensure uniform lubrication even at high temperatures, a liquid lubricant film must remain between metal parts during the entire processing process. Therefore, the lubricant must evaporate only slightly at the maximum processing temperature, form little residue and form as few cracking residues as possible. High temperatures often occur when used in chains, rolling and plain bearings, in vehicle technology, materials handling, mechanical engineering, office technology and in industrial equipment and machinery, but also in the fields of home appliances and consumer electronics. In rolling and plain bearings, lubricants ensure that a separating, load-transmitting lubricating film is built up between sliding or rolling parts.
- the lubricants must therefore meet high requirements. These include extreme Operating conditions such as very high or very low speeds, high temperatures due to high speeds or foreign heating, very low temperatures, for example, in camps that operate in cold environments or that occur in aerospace applications. Likewise, the modern lubricants under so-called clean room conditions should be used to avoid the pollution of the room by the abrasion or the consumption of lubricants. In addition, when using the modern lubricants should be avoided that they evaporate and thus "leach", ie that they become solid after a short time application and no longer show any lubricating effect.
- lubricants On lubricants special requirements are placed in the application to the effect that the running surfaces of the bearings are not attacked by low friction, run the storage areas quiet, and long running times are achieved without relubrication required. Also, lubricants must withstand the effects of force such as centrifugal force, gravity and vibration.
- a lubricating grease can stimulate vibrations in the rolling bearing during circulation participation (rolling over, rolling), which are "lubricant noises" in the frequency bands medium 300 to 1,800 Hz and high 1,800 to 10,000 Hz, compared to the bearing noise in the frequency band low at 50 to 300 Hz.
- the lubricant noise is superimposed by the noise peaks that occur during the rolling over of hard particles by the rolling elements in the form of shock pulses on the bearing ring.
- the noise behavior is evaluated according to the SKF BeQuiet + method.
- the fat noise class is classified as follows:
- GNX slightly worse than GN1 (very bad noise behavior)
- the object of the present invention is to provide a high temperature oil and high temperature grease which meets the above requirements.
- the Vercrackungs Wegwarnote formed should not lend, but be redissolvable by fresh fat.
- the high-temperature lubricant should have a good hydrolytic stability, corrosion and wear resistant, as well as have a good oxidation resistance and adapted to the requirement good low temperature behavior. This is defined by the pour point for lubricating oils and by the flow pressure at low temperatures for lubricating greases.
- the high-temperature grease should show good noise behavior, have long maturities and cause substantially no signs of wear of the devices.
- a high-temperature oil comprising the following components: a) 93.9 to 45 wt .-% of at least one oil selected from the group consisting of alkylaromatics, preferably an aliphatic substituted naphthalene, estolides, trimellitic esters, or a mixture of different Trimellitic esters in which the alcohol group of the ester is a linear or branched alkyl group having 8 to 16 carbon atoms,
- a high-temperature fat comprising the following components: a) 91, 9 to 25 wt .-% of at least one oil selected from the group consisting of alkylaromatics, preferably an aliphatic substituted naphthalene, estolides, trimellitic esters, or a mixture of different Trimellitic acid esters in which the alcohol group of the ester is a linear or branched alkyl group having 8 to 16 carbon atoms,
- a polymer namely a hydrogenated or fully hydrogenated polyisobutylene or a mixture of hydrogenated or fully hydrogenated polyisobutylene;
- additives individually or in combination, selected from the group consisting of corrosion protection additives, antioxidants, anti-wear additives, UV stabilizers, inorganic or organic solid lubricants and
- the high-temperature oil according to the invention and the high-temperature fat according to the invention are distinguished by outstanding performance.
- the high-temperature oil or high-temperature grease according to the invention exhibits high thermal stability combined with a long service life and good lubricating properties.
- the high-temperature oil according to the invention comprises as ester compound an estolide or a mixture of different estolides or an aliphatically substituted naphthalene or a mixture of different aliphatically substituted naphthalenes.
- estolides are ester compounds which are acid or enzymatically catalyzed from fatty acids, preferably oleic acid or dicarboxylic acids, or a mixture of both.
- the acid function attacks the double bond of an adjacent oil fatty acid molecule, resulting in a higher molecular weight ester compound.
- the terminal acid group is then usually esterified with an alcohol, preferably 2-ethyl-hexanol and then the remaining double bonds are hydrogenated or esterified with carboxylic acid, for example acetic acid.
- alcohols such as isoamyl alcohol or Guebert alcohols are also conceivable for the esterification of the terminal acid group.
- estolides may also be obtained via condensation of hydroxycarboxylic acids or condensation of hydroxycarboxylic acids with fatty acids, e.g. Oleic acid or stearic acid derivatives are synthesized.
- the chain length of the hydroxycarboxylic acids or unsaturated acids used can range from C6 to C54.
- the acids may contain other functional groups e.g. Amines, ethers, containing sulfur-containing groups.
- an esterification with alpha-olefins or ß-Farnesen is conceivable.
- the high temperature oil of the invention may contain a second oil comprising an alkylaromatic.
- an aromatic is used.
- an aromatic means a monocyclic, bicyclic or tricyclic ring system having four to fifteen carbon atoms, the monocyclic ring system being aromatic or at least one of the rings being aromatic in a bi- or tricylic ring system.
- Preference is given to using a bicyclic ring system which preferably has 10 carbon atoms.
- the aromatic is substituted with one or more aliphatic substituents.
- Particularly preferred is the aromatic having one to four aliphatic substituents and in particular having two or three aliphatic substituents substituted.
- An alkyl group according to the invention is a saturated aliphatic hydrocarbon group having 1 to 30, preferably 3 to 20, more preferably 4 to 17 and especially 6 to 15 carbon atoms.
- An alkyl group may be linear or branched and is optionally substituted with one or more of the abovementioned substituents.
- the lubricating oil particularly preferably contains at least one aliphatically substituted naphthalene, in particular at least one alkyl-substituted naphthalene.
- the naphthalene is substituted with one to four aliphatic substituents and in particular with two or three aliphatic substituents.
- Practical experiments have shown that mixtures of differently substituted naphthalenes, ie mixtures of naphthalenes, which have a different degree of substitution and different aliphatic substituents, are particularly suitable.
- the properties, such as the viscosity, of the high-temperature lubricant can be set particularly easily.
- Aliphatic-substituted naphthalenes are also characterized by excellent dissolution properties and high thermo-oxidative stability.
- the viscosity, measured at 40 ° C, of the aliphatically substituted naphthalene is preferably 30 to 600 mm 2 / s, more preferably 30 to 300 m / s.
- the high temperature oil of the invention further comprises a polyisobutylene.
- a polyisobutylene By suitable choice of the polyisobutylene, in particular with regard to the degree of hydrogenation and molecular weight, the properties of the oil according to the invention, for example its kinematic viscosity and, above all, its formation of residues, can be influenced in a desired manner.
- the polyisobutylene can be used in hydrogenated or fully hydrogenated form, as well as a mixture of hydrogenated and fully hydrogenated polyisobutylene can be used. Fully hydrogenated polyisobutylenes are preferably used.
- the Polyisobutylene is present in an amount of 6 to 45 wt .-% in the composition, preferably 10 to 45 wt .-%, in particular 5 to 45 wt .-% are used.
- the high-temperature oil according to the invention further comprises from 0.1 to 10 wt .-%, additives which are used individually or in combination and from the group consisting of anti-corrosion additives, antioxidants, anti-wear additives, UV stabilizers, inorganic or organic solid lubricants selected.
- the high-temperature fat of the present invention comprises as an ester compound a trimellitic acid ester or a mixture of various trimellitic acid esters, wherein the alcoholic group of the ester is a linear or branched alkyl group having 8 to 16 carbon atoms.
- the properties of the lubricant for example, the viscosity, the viscosity-temperature behavior, the oxidation resistance and residue behavior can be adjusted.
- the high temperature grease of the invention may contain a second oil comprising an alkyl aromatic.
- an aromatic is used.
- an aromatic means a monocyclic, bicyclic or tricyclic ring system having four to fifteen carbon atoms, the monocyclic ring system being aromatic or at least one of the rings being aromatic in a bi- or tricylic ring system.
- Preference is given to using a bicyclic ring system which preferably has 10 carbon atoms.
- the aromatic is substituted with one or more aliphatic substituents.
- the aromatic is particularly preferably substituted by one to four aliphatic substituents and in particular by two or three aliphatic substituents.
- An alkyl group according to the invention is a saturated aliphatic hydrocarbon group having 1 to 30, preferably 3 to 20, more preferably 4 g to 17 and especially 6 to 15 carbon atoms.
- An alkyl group may be linear or branched and is optionally substituted with one or more of the abovementioned substituents.
- the lubricating grease particularly preferably contains at least one aliphatically substituted naphthalene, in particular at least one alkyl-substituted naphthalene.
- the naphthalene is substituted with one to four aliphatic substituents and in particular with two or three aliphatic substituents.
- estolides can also be used.
- Preferred viscosities, measured at 40 ° C are between 30 and 500 mm 2 / sec. Viscosities of 30 to 140 mm 2 / sec are particularly preferred.
- the high-temperature grease according to the invention further comprises a polyisobutylene.
- a polyisobutylene By suitable choice of the polyisobutylene, in particular with regard to the degree of hydrogenation and molecular weight, the properties of the fat according to the invention, for example its kinematic viscosity, can be influenced in a desired manner.
- the polyisobutylene can be used in hydrogenated or fully hydrogenated form, as well as a mixture of hydrogenated and fully hydrogenated polyisobutylene can be used. Fully hydrogenated polyisobutylenes are preferably used.
- the polyisobutylene is in an amount of 6 to 45 wt .-% in the composition, preferably 10 to 45 wt .-%, in particular 15 to 45 wt .-% are used.
- the polyisobutylene has a number average molecular weight of 115 to 0.000 g / mol, preferably from 160 to 5000 g / mol.
- the high-temperature fat according to the invention further comprises from 0.1 to 10 wt .-%, additives which are used individually or in combination and from the group consisting of anti-corrosion additives, antioxidants, anti-wear additives, UV stabilizers, inorganic or organic solid lubricants selected.
- the high-temperature fat according to the invention also comprises a thickener.
- the thickener in the high-temperature grease of the lubricant composition according to the invention is either a reaction product of a diisocyanate, preferably 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanatodiphenylmethane, 2,4'-diisocyanatophenylmethane, 4,4'-diisocyanatotoluene.
- Al complex soaps is selected from among Al complex soaps, metal soaps of the first and second main group elements of the perriodic system, metal complex soaps of elements of the first and second main group of the periodic table, bentonites, sulfonates, silicates, aerosil, polyimides or PTFE or a mixture of the foregoing thickener.
- the additives mentioned below have particularly good physical and chemical properties:
- the addition of antioxidants can reduce or even prevent the oxidation of the oil or fat according to the invention, in particular when it is used. Oxidation can lead to undesirable free radicals and, as a result, decomposition reactions of the high-temperature lubricant can occur.
- the addition of antioxidants stabilizes the high temperature grease.
- Antioxidants which are particularly suitable according to the invention are the following compounds:
- Styrenated diphenylamines diaromatic amines, phenolic resins, thiophenol resins, phosphites, butylated hydroxytoluene, butylated hydroxyanisole, phenyl-alphanaphthylamine, phenyl-beta-naphthylamine, octylated / butylated diphenylamine, di-alpha-tocopherol, di-tert-butyl-phenyl, Benzenepropanoic acid, sulfur-containing phenolic compounds, phenolic compounds and mixtures of these components.
- the high temperature grease may contain corrosion inhibiting additives, metal deactivators or ion complexing agents.
- corrosion inhibiting additives include triazoles, imidazolines, N-methylglycine (sarcosine), benzotriazole derivatives, N, N-bis (2-ethylhexyl) -ar-methyl-1 H-benzotriazole-1-methanamine; N-methyl-N (1 -oxo-9-octadecenyl) glycine, mixture of phosphoric acid and mono- and Diisooctylester reacted with (C11-14) - alkylamines, mixture of phosphoric acid and mono- and Diisooctylester reacted with tert-alkylamine and primary (Ci2-14) amines, dodecanoic acid, triphenyl phosphorothionate and amine phosphates.
- IRGAMET ® 39 IRGACOR ® DSS G, amine O; Sarkosyl O ® (Ciba), COBRATEC ® 122, CUVAN ® 303, VANLUBE ® 9123, CI-426, CI-426EP, Cl- 429 and CI-498th
- anti-wear additives are amines, amine phosphates, phosphates, thiophosphates, phosphorothionates and mixtures of these components.
- anti-wear additives include IRGALUBE ® TPPT, IRGALUBE ® 232, IRGALUBE ® 349, IRGALUBE ® 211 and ADDITIN ® RC3760 Liq 3960, FIRC-shun ® FG 1505 and FG 1506 NA-LUBE ® KR-015FG, LUBEBOND ®, FLUORO ® FG, SYNALOX ® 40-D, ACHESON FGA ® 1820 and ACHESON ® FGA 1810th
- the grease may include solid lubricants such as PTFE, BN, pyrophosphate, Zn oxide, Mg oxide, pyrophosphates, thiosulfates, Mg carbonate, Ca carbonate, Ca stearate, Zn s
- the high temperature oil or fat according to the invention has up to a temperature of 250 ° C no or negligible decomposition phenomena. By this is meant that less than 10% of the lubricant decomposes.
- the high-temperature oil or fat according to the invention may contain, as another base oil, an oil, preferably selected from the group consisting of mineral oil, aliphatic carboxylic acid and dicarboxylic esters, fatty acid triglycerides, pyromellitic esters, diphenyl ethers, phloroglucinic esters and / or poly-alpha-olefins, alpha-olefin Contain copolymers.
- an oil preferably selected from the group consisting of mineral oil, aliphatic carboxylic acid and dicarboxylic esters, fatty acid triglycerides, pyromellitic esters, diphenyl ethers, phloroglucinic esters and / or poly-alpha-olefins, alpha-olefin Contain copolymers.
- the high temperature oil or fat according to the invention contains an estolide, preferably the main constituents of the estolide being obtained by chemical or enzymatic processes starting from native oils from the group of sunflower oil, rapeseed oil, castor oil, linseed oil, corn oil, diest oil, soybean oil, linseed oil Practical tests have shown that the high-temperature oil or fat according to the invention, due to its physical and chemical properties, is outstandingly suitable for use in chains, roller bearings and slide bearings , in the vehicle technology, the conveyor technology, the mechanical engineering, the office technology as well as in industrial plants and machines, in addition, in the ranges of household machines and the consumer electronics. Thanks to its good temperature resistance it can also be used at high operating temperatures up to 260 ° C, preferably be used at temperatures of 150 to 250 ° C.
- the invention further relates to a process for the preparation of the above-described High temperature oils or fats, in which the base oils and the additives are mixed together.
- Estolides or aliphatically substituted naphthalenes are initially charged in a stirred tank. At 100 ° C, the polyisobutylene and optionally a further oil is added with stirring. Subsequently, the mixture is stirred for 1 h to obtain a homogeneous mixture. The anti-wear agents and the antioxidant are added to the kettle at 60 ° C with stirring. After about 1 hour, the finished oil can be filled into the containers provided.
- the base oil is placed in a stirred tank. At 100 ° C, the polyisobutylene and optionally a further oil and the thickener is added with stirring. lg
- the thickener is formed by an in situ reaction of the reactants used in the base oil. Subsequently, the mixture is heated to 150 ° C to 210 ° C, stirred for several hours and cooled again. In the cooling process at about 60 ° C, the necessary anti-wear agents, antioxidants and corrosion inhibitors are added. A homogeneous mixture of the fat is obtained by the final homogenization step on roller, colloid mill or Gaulin.
- compositions of the high temperature fats are shown in Table 6.
- the thickeners used in Examples 3 to 8 are:
- Example 3 LiOH, 12-hydroxystearic acid, azelaic acid,
- Example 4 LiOH, 12-hydroxystearic acid, azelaic acid,
- Example 5 LiOH, 12-hydroxystearic acid, azelaic acid,
- Example 6 Di-urea; Methylene diphenyl diisocyanate (MDI), octylamine,
- Example 7 Di-urea; MDI, octylamine, oleylamine
- Example 8 Di-urea; MDI, octylamine, oleylamine The general characteristics of the fat patterns 3 to 8 are shown in Table 7.
- a decisive influence on the lubricating effect of a grease has the oil separation. It is important to ensure that on the one hand, the oil separation is not too high and the oil runs out of the warehouse and thus the Tribo system is no longer available and on the other hand no oil separation is observed and the lubricating effect of the grease is lost. Ideally, the oil separation should be between 0.5 and 8% by weight in order to form an optimum lubricating film in the bearing.
- the greases of the examples were subjected to a FE 9 rolling bearing test according to DIN 51 821 in which the service life of the greases investigated is determined and the upper service temperature of greases in roller bearings at medium speeds and average axial loads is determined. lg
- Table 8 shows that the runtimes through the use of PIB in combination with various base oils have long run times and are thus suitable for high application temperatures in continuous operation.
- the noise behavior of the various fat formulations is very positively influenced by the use of fully hydrogenated polyisobutylene. With the exception of Example 6, good to very good noise properties can be achieved.
- Example 3 The property of the fat of Example 3 using fully hydrogenated PIB was now compared to a fat (Comparative Example 3) containing a PIB still having double bonds, that is, a non-fully hydrogenated PIB.
- Example 3 grease exhibits a doubled run time in the FE9 test, has lower evaporation losses and significantly better noise performance.
- Table 11 shows the results. Table 1 1
- Table 1 shows that there are marked differences in the use of fully hydrogenated and partially hydrogenated PIB.
- the dissolution of the residue based on the partially hydrogenated PIV is no longer possible, while the oil with the fully hydrogenated PIB has very good Wiederananseigenschaften.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18000076.2A EP3372660B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
PL18000075T PL3372659T3 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
DK18000076.2T DK3372660T3 (en) | 2014-12-17 | 2015-11-19 | HIGH TEMPERATURE LUBRICANTS |
PL18000076T PL3372660T3 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
EP18000075.4A EP3372659B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014018718.7A DE102014018718A1 (en) | 2014-12-17 | 2014-12-17 | High temperature lubricants |
PCT/EP2015/002322 WO2016096074A2 (en) | 2014-12-17 | 2015-11-19 | High-temperature lubricants |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18000075.4A Division-Into EP3372659B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
EP18000075.4A Division EP3372659B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
EP18000076.2A Division-Into EP3372660B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
EP18000076.2A Division EP3372660B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3234079A2 true EP3234079A2 (en) | 2017-10-25 |
EP3234079B1 EP3234079B1 (en) | 2021-07-07 |
Family
ID=54705550
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18000076.2A Active EP3372660B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
EP15801328.4A Active EP3234079B1 (en) | 2014-12-17 | 2015-11-19 | High-temperature lubricants |
EP18000075.4A Active EP3372659B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18000076.2A Active EP3372660B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18000075.4A Active EP3372659B1 (en) | 2014-12-17 | 2015-11-19 | High temperature lubricants |
Country Status (14)
Country | Link |
---|---|
US (1) | US20170327760A1 (en) |
EP (3) | EP3372660B1 (en) |
JP (1) | JP6448801B2 (en) |
KR (1) | KR102019083B1 (en) |
CN (1) | CN107406791B (en) |
BR (1) | BR112017012528A2 (en) |
DE (1) | DE102014018718A1 (en) |
DK (1) | DK3372660T3 (en) |
ES (1) | ES2893843T3 (en) |
HU (1) | HUE057256T2 (en) |
MX (2) | MX2017007674A (en) |
PL (2) | PL3372659T3 (en) |
SI (1) | SI3372659T1 (en) |
WO (1) | WO2016096074A2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2839174A1 (en) * | 2011-06-17 | 2012-12-20 | Lubrigreen Biosynthetics, Llc | Grease compositions comprising estolide base oils |
DE102016011022A1 (en) * | 2015-09-17 | 2017-03-23 | Klüber Lubrication München Se & Co. Kg | Biodegradable lubricant compositions with high elastomer compatibility for use in the marine sector, especially in the area of stern tube lubrication |
FR3060016B1 (en) * | 2016-12-12 | 2020-10-23 | Total Marketing Services | LUBRICATING COMPOSITION FOR INDUSTRIAL GEAR WITH FOOD CONTACT |
JP6919848B2 (en) * | 2017-05-01 | 2021-08-18 | 出光興産株式会社 | Grease composition |
US20190382680A1 (en) * | 2018-06-18 | 2019-12-19 | Exxonmobil Research And Engineering Company | Formulation approach to extend the high temperature performance of lithium complex greases |
DE102018008362A1 (en) * | 2018-07-09 | 2020-01-09 | Klüber Lubrication München Se & Co. Kg | Environmentally friendly grease for steel cables |
DE102018006661A1 (en) * | 2018-08-23 | 2020-02-27 | Klüber Lubrication München Se & Co. Kg | lubricant composition |
CN112521998B (en) * | 2019-09-17 | 2022-08-16 | 中国石油化工股份有限公司 | Low-noise polyurea lubricating grease composition and preparation method thereof |
DE102020112993A1 (en) * | 2020-05-13 | 2021-11-18 | Klüber Lubrication München Se & Co. Kg | Lithium complex hybrid grease |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075112A (en) * | 1975-01-28 | 1978-02-21 | Labofina S.A. | Grease composition |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE636108A (en) * | 1961-08-18 | 1900-01-01 | ||
GB8408017D0 (en) * | 1984-03-28 | 1984-05-10 | Bp Chem Int Ltd | Oil-based lubricant compositions |
US4604491A (en) * | 1984-11-26 | 1986-08-05 | Koppers Company, Inc. | Synthetic oils |
AU5874786A (en) * | 1985-06-21 | 1986-12-24 | National Distillers And Chemical Corporation | Process of mist lubrication using synthetic esters |
US4601840A (en) * | 1985-06-21 | 1986-07-22 | National Distillers And Chemical Corp. | Mist lubrication process |
US6074995A (en) * | 1992-06-02 | 2000-06-13 | The Lubrizol Corporation | Triglycerides as friction modifiers in engine oil for improved fuel economy |
US5691283A (en) * | 1994-03-01 | 1997-11-25 | Ethyl Petroleum Additives Limited | Use of transmission and gear oil lubricants having enhanced friction properties |
JPH1053786A (en) * | 1996-06-03 | 1998-02-24 | Nkk Corp | Synthetic lubricating oil composition |
AU3454397A (en) * | 1996-07-12 | 1998-02-09 | Castrol Limited | A lubricant comprising an alkyl-substituted naphthaline and an ester |
DE19730318C2 (en) * | 1997-07-15 | 2002-04-04 | Klueber Lubrication | Grease composition, process for making the same and their use |
ZA988282B (en) * | 1997-09-12 | 1999-03-09 | Shell Int Research | Lubricating compositions |
US6018063A (en) * | 1998-11-13 | 2000-01-25 | The United States Of America As Represented By The Secretary Of Agriculture | Biodegradable oleic estolide ester base stocks and lubricants |
US6316649B1 (en) * | 1998-11-13 | 2001-11-13 | The United States Of America As Represented By The Secretary Of Agriculture | Biodegradable oleic estolide ester having saturated fatty acid end group useful as lubricant base stock |
JP4049916B2 (en) * | 1998-12-25 | 2008-02-20 | 出光興産株式会社 | High temperature lubricating oil composition |
US7135441B2 (en) * | 2000-11-06 | 2006-11-14 | Nsk Ltd. | Lubricating grease composition and rolling apparatus |
JP2003201492A (en) * | 2000-11-06 | 2003-07-18 | Nsk Ltd | Grease composition and rolling unit |
JP2003013973A (en) * | 2001-06-28 | 2003-01-15 | Ntn Corp | Heat-resistant, high speed, and high-loaded rolling bearing and grease composition |
JP4662118B2 (en) * | 2004-03-26 | 2011-03-30 | 協同油脂株式会社 | Low dust generation grease composition |
DE102006043747A1 (en) * | 2006-09-13 | 2008-03-27 | Addinol Lube Oil Gmbh | High temperature lubricant for chains in film stretching plants, comprises ester base oils and corrosion inhibiting, high pressure, antioxidant, metal deactivating and wear reducing additives |
JP5565999B2 (en) * | 2007-01-31 | 2014-08-06 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP5534386B2 (en) * | 2009-02-13 | 2014-06-25 | 協同油脂株式会社 | Silencer grease composition |
CN101693851A (en) * | 2009-09-30 | 2010-04-14 | 中国石油化工股份有限公司 | Synthetic high-temperature lubricating grease and production method thereof |
CN101812356A (en) * | 2009-12-18 | 2010-08-25 | 益田润石(北京)化工有限公司 | Thickening type high-temperature chain lubricant combination |
DE102011102540B4 (en) * | 2011-05-26 | 2013-12-12 | KLüBER LUBRICATION MüNCHEN KG | High temperature oil |
CN103620008B (en) * | 2011-06-17 | 2016-03-02 | 生物合成技术有限责任公司 | There is the estolide composition of high oxidation stability |
CA2839174A1 (en) * | 2011-06-17 | 2012-12-20 | Lubrigreen Biosynthetics, Llc | Grease compositions comprising estolide base oils |
JP2013018861A (en) * | 2011-07-11 | 2013-01-31 | Nsk Ltd | Grease composition, and rolling bearing for machine tool |
DE102012015648A1 (en) * | 2012-04-16 | 2013-10-17 | KLüBER LUBRICATION MüNCHEN KG | High-temperature grease, useful e.g. in corrugating rolls of corrugating machines, comprises a specified range of fluorine free base oil, thickening agent, additives and further fluorine free oil component |
BR112014006050A2 (en) * | 2011-09-15 | 2017-04-04 | Klüber Lubrication München Se & Co Kg | high temperature grease |
JPWO2014142157A1 (en) * | 2013-03-14 | 2017-02-16 | 出光興産株式会社 | High temperature lubricating oil composition |
CN103343032B (en) * | 2013-07-25 | 2015-09-09 | 中国石油化工股份有限公司 | A kind of lubricating grease and preparation method thereof |
CN103409209B (en) * | 2013-08-12 | 2014-12-24 | 上海海联润滑材料科技有限公司 | Synthetic high temperature chain oil |
-
2014
- 2014-12-17 DE DE102014018718.7A patent/DE102014018718A1/en not_active Withdrawn
-
2015
- 2015-11-19 ES ES18000076T patent/ES2893843T3/en active Active
- 2015-11-19 BR BR112017012528-5A patent/BR112017012528A2/en not_active Application Discontinuation
- 2015-11-19 JP JP2017533019A patent/JP6448801B2/en active Active
- 2015-11-19 PL PL18000075T patent/PL3372659T3/en unknown
- 2015-11-19 EP EP18000076.2A patent/EP3372660B1/en active Active
- 2015-11-19 HU HUE18000075A patent/HUE057256T2/en unknown
- 2015-11-19 SI SI201531644T patent/SI3372659T1/en unknown
- 2015-11-19 EP EP15801328.4A patent/EP3234079B1/en active Active
- 2015-11-19 EP EP18000075.4A patent/EP3372659B1/en active Active
- 2015-11-19 KR KR1020177016305A patent/KR102019083B1/en active IP Right Grant
- 2015-11-19 WO PCT/EP2015/002322 patent/WO2016096074A2/en active Application Filing
- 2015-11-19 MX MX2017007674A patent/MX2017007674A/en unknown
- 2015-11-19 CN CN201580069045.7A patent/CN107406791B/en active Active
- 2015-11-19 US US15/532,350 patent/US20170327760A1/en not_active Abandoned
- 2015-11-19 PL PL18000076T patent/PL3372660T3/en unknown
- 2015-11-19 DK DK18000076.2T patent/DK3372660T3/en active
-
2017
- 2017-06-12 MX MX2021012796A patent/MX2021012796A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075112A (en) * | 1975-01-28 | 1978-02-21 | Labofina S.A. | Grease composition |
Also Published As
Publication number | Publication date |
---|---|
HUE057256T2 (en) | 2022-05-28 |
SI3372659T1 (en) | 2021-08-31 |
DE102014018718A1 (en) | 2016-06-23 |
MX2021012796A (en) | 2021-11-12 |
WO2016096074A3 (en) | 2016-09-01 |
EP3234079B1 (en) | 2021-07-07 |
PL3372659T3 (en) | 2021-10-25 |
PL3372660T3 (en) | 2022-01-31 |
CN107406791A (en) | 2017-11-28 |
WO2016096074A2 (en) | 2016-06-23 |
JP6448801B2 (en) | 2019-01-09 |
EP3372660B1 (en) | 2021-09-22 |
EP3372659A1 (en) | 2018-09-12 |
EP3372660A1 (en) | 2018-09-12 |
BR112017012528A2 (en) | 2018-03-13 |
ES2893843T3 (en) | 2022-02-10 |
CN107406791B (en) | 2021-01-01 |
JP2017538838A (en) | 2017-12-28 |
KR20170085089A (en) | 2017-07-21 |
EP3372659B1 (en) | 2021-06-16 |
US20170327760A1 (en) | 2017-11-16 |
DK3372660T3 (en) | 2021-12-20 |
MX2017007674A (en) | 2018-01-23 |
KR102019083B1 (en) | 2019-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3372660B1 (en) | High temperature lubricants | |
EP2164935B1 (en) | Lubricating grease composition | |
EP3375850B1 (en) | High-temperature lubricant for the food industry | |
DE102018002041A1 (en) | New ester compounds, process for their preparation and their use | |
WO2013037456A1 (en) | High-temperature grease | |
DE112012000940T5 (en) | lubricant composition | |
DE10108343B4 (en) | Use of a grease composition for a rolling bearing | |
EP4090723B1 (en) | Lithium complex hybrid grease | |
DE112010005707B4 (en) | Lubricant composition and its use | |
DE112013000604B4 (en) | Lubricating composition and its use for bearings | |
DE102012015648A1 (en) | High-temperature grease, useful e.g. in corrugating rolls of corrugating machines, comprises a specified range of fluorine free base oil, thickening agent, additives and further fluorine free oil component | |
EP4176027B1 (en) | Polyurea greases containing carbonates and their use | |
EP3841190B1 (en) | Use of a lubricant composition | |
WO2024017518A1 (en) | Lubricating grease composition containing an ionic fluid | |
EP4384589A1 (en) | Use of hemimellitic ester as a base oil for lubricant compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170608 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200331 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1408612 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015014921 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211108 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015014921 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
26N | No opposition filed |
Effective date: 20220408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211119 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211119 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1408612 Country of ref document: AT Kind code of ref document: T Effective date: 20211119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151119 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015014921 Country of ref document: DE Representative=s name: PUSCHMANN BORCHERT KAISER KLETTNER PATENTANWAE, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231127 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |