EP3230501A1 - Method and device for loading an installation with fibres - Google Patents
Method and device for loading an installation with fibresInfo
- Publication number
- EP3230501A1 EP3230501A1 EP15783955.6A EP15783955A EP3230501A1 EP 3230501 A1 EP3230501 A1 EP 3230501A1 EP 15783955 A EP15783955 A EP 15783955A EP 3230501 A1 EP3230501 A1 EP 3230501A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fiber
- signal
- fibers
- charging system
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000009434 installation Methods 0.000 title abstract description 8
- 239000000835 fiber Substances 0.000 claims abstract description 61
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000009960 carding Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 35
- 238000009826 distribution Methods 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 10
- 238000009987 spinning Methods 0.000 claims description 10
- 230000015654 memory Effects 0.000 claims description 6
- 230000004069 differentiation Effects 0.000 claims 2
- 239000000463 material Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 6
- 244000144992 flock Species 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G21/00—Combinations of machines, apparatus, or processes, e.g. for continuous processing
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G23/00—Feeding fibres to machines; Conveying fibres between machines
- D01G23/02—Hoppers; Delivery shoots
- D01G23/04—Hoppers; Delivery shoots with means for controlling the feed
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G23/00—Feeding fibres to machines; Conveying fibres between machines
- D01G23/02—Hoppers; Delivery shoots
- D01G23/04—Hoppers; Delivery shoots with means for controlling the feed
- D01G23/045—Hoppers; Delivery shoots with means for controlling the feed by successive weighing; Weighing hoppers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G23/00—Feeding fibres to machines; Conveying fibres between machines
- D01G23/06—Arrangements in which a machine or apparatus is regulated in response to changes in the volume or weight of fibres fed, e.g. piano motions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G23/00—Feeding fibres to machines; Conveying fibres between machines
- D01G23/08—Air draught or like pneumatic arrangements
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G15/00—Carding machines or accessories; Card clothing; Burr-crushing or removing arrangements associated with carding or other preliminary-treatment machines
- D01G15/02—Carding machines
- D01G15/12—Details
- D01G15/14—Constructional features of carding elements, e.g. for facilitating attachment of card clothing
- D01G15/24—Flats or like members
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01G—PRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
- D01G31/00—Warning or safety devices, e.g. automatic fault detectors, stop motions
- D01G31/006—On-line measurement and recording of process and product parameters
Definitions
- the invention relates to a method and a device for feeding a system with fibers supplied to the fiber flakes, these at least partially dissolved and fed by means of a feeder to a pneumatic charging system, the fibers in the memory of at least one fiber-processing machine, in particular a card, carding, Opener or cleaner, conducts.
- the flow of material within cleaning plants or spinning preparation plants is ensured by mechanical, electrical and pneumatic means.
- the density and height of the filling can be determined via a selected target pressure.
- the uniformity of filling, i. adherence to the target pressure determines the uniformity of the material template. As a result, compliance with the production and quality of the product is affected.
- the classic solution is based on a manual device of a controller or a regulator of the material-conveying machine to achieve a sufficient and constant filling of the following machine.
- Knowledge of the desired production, the basic material properties and the expected drive values are prerequisites for set-up operation. These steps and knowledge are necessary every time you change the production or the source material.
- the uniformity of the filling is essentially determined by the appropriate, manual choice of the operating point, ie the control parameters.
- Variations of the material and / or the material properties (resolution, density, humidity, temperature), non-deterministic fluctuations in the discharge of cleaning machines, as well as changes in the production itself lead to fluctuations in the operating point of the material-conveying machine and thus to fluctuations in the filling the following machine. Fluctuations in the filling can lead to quality fluctuations of the product or production failures. Based on existing solutions, these fluctuations in the operating point of a machine or machine sequence can only be corrected by continuous manual intervention in the setting values.
- a pressure measuring device is installed in a pneumatic supply and distribution line upstream of the card, which conducts the differential pressure as an electrical signal to a controller. Via a control device, the differential pressure over time is used to generate a corrected pressure actual value, with which a drive of a flake conveyor is regulated. As a result of the slope of the curve of the pressure with respect to time, temporally increasing, constant or decreasing pressure values can be anticipated and thus the feed of the flakes can be adjusted accordingly.
- a disadvantage of this method is that the adjustment of the control or regulation of the material-conveying machine to achieve a sufficient and constant filling of the following machine, such as a card, must be done manually.
- control circuit continuously determines the discharge quantity of the flake-feeding machine as a function of the setpoint and actual production of the fiber-processing machine. Variations of the material or material properties, production fluctuations and other disturbing factors (such as shutdowns of individual machines) are automatically compensated by the control loop.
- the signal for regulating the supply device is fed back into the control loop and there again passes through the control algorithm.
- the control loop adapts continuously due to the return of at least one signal for a manipulated variable to the optimum operating point and "learns" the production and the effects of the changes due to variations in material properties.
- the non-deterministic linearity deviations of the material-conveying machine are processed and compensated in the control loop. This always takes place without manual intervention and automatically leads to compliance with the targets and a constant filling of the following machine.
- the stored control algorithm for starting up the spinning preparation plant starts from a constant mass flow of supplied fiber flakes. This results in a suitable, automated starting value estimation, which additionally reduces the initial learning phase to a minimum.
- the operating point of a machine or plant for fiber processing is continuously and automatically determined by the control algorithm which adapts to the working conditions.
- the invention is characterized in that by means of at least one controller, which is part of a control loop, in which the actual pressure values, which are measured in the pneumatic charging system and further processed, and in the mass flow of the further processed fibers, the at least one fiber-processing machine measured and further processed, the optimum operating point of the system determined by means of a control algorithm and a signal is passed to an actuator of the feeder for controlling the amount of fiber flakes.
- the control loop is formed by a total of three controllers X1, X2 and X3, which have different functions.
- the controllers X1 and X3 are functionally disconnected from the controller X2, as there is no feedback from the controller X2 to the controllers X1 and X3.
- the controller X2 From the signals to the mass flow of the processed fibers and from the processed pressure signal from the pneumatic charging system, the controller X2 continuously determines the discharge quantity of the flake-feeding machine and regulates the associated actuator via the signal z, with which the drive for the fiber feed and thus for the supplied mass flow is regulated. The fact that the signal z is returned to the controller X2 back and there runs through the control algorithm again, the control loop is optimized even without manual intervention.
- FIG. 1 shows a schematic view of a spinning preparation plant with a block diagram of the device according to the invention
- FIG. 2 is a functional diagram of a prior art spinning preparation apparatus
- FIG. 3 shows a functional diagram of a system according to the invention when the system is started up
- Fig. 4 is a functional diagram of the system according to the invention in operation.
- the fiber material F is fed to a cleaner 1 by a bale opener, not shown, via a mixer (not shown).
- a cleaner 1 by a bale opener, not shown, via a mixer (not shown).
- the opened and cleaned fibers or fiber flakes are conveyed pneumatically via a pipe 2, a dedusting machine 3, a fan 4 into a pneumatic supply and distribution line 5, to which a flock feeder 6 with at least one card 7 is connected are.
- the flock feeder 6 has an upper reserve shaft 6a and a lower feeder shaft 6b, between which a flake conveyor may be arranged in the form of a slow-speed pick roller 6c and a high-speed opening roller 6d.
- the feed roller 6c can cooperate, for example, with a collecting trough, not shown over the width of the flock feeder 6.
- the indentation tray may be associated with an inductive position transducer, which are connected via a computer to a controller. As a result, changes in the mass of the conveyed fiber material are detected and converted into electrical signals.
- an unillustrated sliver funnel or an alternative device can be arranged, which are arranged downstream, for example, two take-off rolls.
- the sliver funnel or the alternative device have a sensor 14, with which the amount of fiber produced can be determined and forwards the corresponding signals for the mass flow rh1 to the controllers X1 and X2.
- the signal for the mass flow rh1 enters the card control, which forwards this value or an associated signal to the controllers X1 and X2.
- a pressure sensor 8 is mounted, which is in communication with a transducer 9.
- the measured actual pressure values p1 are converted into electrical signals x and entered into a controller 10, for example a computer.
- a controller 10 an electrical signal y for a corrected pressure actual value is generated by differentiating the differential pressure over time.
- This signal y with the corrected pressure actual value is fed back to an electronic controller X3.
- a pressure setpoint can be entered as a reference variable in the controller 10 and in the controller X3.
- the difference between reference variable and controlled variable is given as signal v in the controller X2.
- control circuit determines the feed rate and thus the mass flow rh2 supplied to fibers in the cleaner.
- the invention provides at least two controllers X1 and X2, wherein the controller X1 is functionally separated from controller X2, since no feedback from controller X2 takes place at X1.
- Regulator X1 uses the card control to request the desired target production and compare it with the current actual production. The control deviation between the target production and the actual production enters the controller X2 as signal u.
- the controller X2 can be designed as a PI controller, assuming low fluctuations from a known mass flow rh2 to fibers F, and determines the optimum value for the card production via a computer on the basis of the current card production rh1.
- the controller X2 thus starts from a constant fiber feed rh2 (start value estimation), which may in fact be subject to wide fluctuations in order to determine the optimum operating point for the current card production with a mass flow rh1. With this start value estimation by the controller X2, the startup of the system can be accelerated to the actual optimum operating point.
- the output value for the constant fiber feed is the optimal (stored) operating point from the last operation of the system.
- the controller X2 continues to process the signal v for the difference between the reference variable and the controlled variable from the controller X3. As an additional value, the current card production rh1 minus the disturbance variable S1 for the variable degree of purification in the controller X2 is processed.
- the controller X2 continuously determines the discharge quantity of the flake-feeding machine with the mass flow rh2.
- the associated signal z controls the actuator drive 20 for the conveyor belt and the feed rollers a, 1b, whereby the amount of fibers F can increase or decrease.
- the speed for the actuator drive 20 can be limited to limit the maximum impact production for technological reasons.
- the signal z for controlling the actuator drive 20 is fed back into the controller X2 and there indirectly compared with the signal u and optimized taking into account the further signals v and rh1.
- the signal z is processed together with the signal from the current fiber or mass flow rh1 and the resulting result is processed with the result from the signals rh1, u and v processed together to form a new value or signal z.
- the order of the signals processed in the controller X2 is an essential basis for the control algorithm.
- the feedback of the already evaluated signal z ensures a new pass through the control algorithm with a new value for the signal z, whereby a differentiating behavior arises.
- the spinning preparation plant can work very continuously without fluctuations.
- the feedback of the signal z ensures a fast match to the current optimal operating point, which allows the loop to self-optimize and therefore be referred to as "self-learning".
- a further improvement can be achieved by an upcoming can change or a card stop or a restart of the card as a signal w in the controller X2 is fed from the controls or the cards to take into account an upcoming production fluctuation, which is characterized by more or less fibers with possibly a pressure change in the supply and distribution line 5 makes noticeable.
- the supply and distribution line 5 is longer, whereby the material running times increase, and thus the pressure in the supply and distribution line 5 is subject to greater fluctuations.
- the material delay can be determined in the controller 10 as the signal t and entered into the controller X2. This makes it possible to watch pressure fluctuations due to the slope of the pressure curve over the material life before, and to compensate for the or the fans 4 and / or the actuator drive 20.
- the control loop can also be used for any other fiber-processing machine or installation, such as web-forming machines or for spinning preparation systems for filling fiber memories.
- the algorithm for the control loop is such that variations of the material or the material properties, as well as production fluctuations and the other disturbing factors such as Example, the shutdown of individual machines by a feedback of at least one signal (controller X2) are automatically compensated by the control loop.
- the control loop adapts continuously to the optimum operating point and "learns" the production and the effects of the changes due to variations in the material properties, and the non-deterministic linearity deviations of the material-conveying machine are learned and compensated this always without manual intervention and leads automatically to a compliance with the optimum operating point for the cards and a constant filling of the feed shafts.
- a suitable, automated start value estimation reduces the startup phase to a minimum. It is no longer necessary to program the loop with fiber data.
- control loop can also process further disturbance variables such as, for example, the degree of soiling of the fiber flakes, strip breakage on the card or fluctuating moisture of the fiber flakes.
- the regulators X1, X2 and X3 are preferably housed in a common assembly and need not be executed as separate components.
- the graphs in FIGS. 2 to 4 show the time in seconds on the abscissa.
- the left ordinate indicates the pressure in Pascal in the supply and distribution line 5, simultaneously the speed in% and the production in kg / h.
- the right ordinate displays an abstract dimensionless rule value.
- Figure 2 shows a classic solution according to the prior art, in which a controller with manual operating point and fixed rule calculation is used.
- the target speed of the conveyor belt and the feed rollers 1a, 1b, the target production and the control value calculation are manually specified. Fluctuations in material properties with constant production can only be compensated by manual adjustment of the operating point.
- the first-time learning phase is shown in FIG. 3, in which the target production is automatically optimized and starts up in stages, since the cards are switched on one after the other.
- the actual pressure in the supply and distribution line 5 drops and approaches the target pressure after about 220 seconds.
- the actual production is congruent with the target production after approx. 300 seconds.
- With the start-up or switching on the cards also gradually increases the actual speed of the drive for the conveyor belt or for the feed rollers 1a, 1b.
- a subsequent startup of the system is even shorter, because the last optimal Operating point is stored in the controller X2 and serves as a starting level for the start.
- FIG. 4 shows the continuous adaptation of the optimum operating point. Fluctuations in material properties at constant production (see the left part of the diagram) are compensated by means of the "learning function" (feedback of at least one signal.) In the middle and in the right part of the diagram, production fluctuations are compensated in the same way. Due to the feedback of at least one signal into the control loop, all adjustments can be compensated automatically, without manual intervention and without fluctuations in the filling or production losses After a brief fluctuation, the actual pressure has approached the target pressure, and a stop in the supply of the feed machine and thus a considerable fluctuation in the filling of the following machine can be completely prevented and thus a uniform density and height in the filling, for example ka shafts are reached.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Preliminary Treatment Of Fibers (AREA)
Abstract
Description
Titel: Verfahren und Vorrichtung zum Beschicken einer Anlage mit Fasern Title: Method and device for feeding a plant with fibers
Beschreibung description
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Beschicken einer Anlage mit Fasern, der Faserflocken zugeführt, diese zumindest teilweise aufgelöst und mittels einer Zuführvorrichtung einer pneumatischen Beschickungsanlage zugeführt werden, die die Fasern in den Speicher mindestens einer faserverarbeitenden Maschine, insbesondere einer Karde, Krempel, Öffner oder Reiniger, leitet. The invention relates to a method and a device for feeding a system with fibers supplied to the fiber flakes, these at least partially dissolved and fed by means of a feeder to a pneumatic charging system, the fibers in the memory of at least one fiber-processing machine, in particular a card, carding, Opener or cleaner, conducts.
Der Materialfluss innerhalb von Putzereianlagen oder Spinnereivorbereitungsanlagen wird über mechanische, elektrische und pneumatische Einrichtungen gewährleistet. Bei einer pneumatischen Befüllung einer Maschine kann über einen gewählten Zieldruck die Dichte und Höhe der Befüllung bestimmt werden. Die Gleichmäßigkeit der Befüllung, d.h. die Einhaltung des Zieldrucks, bestimmt die Gleichmäßigkeit der Materialvorlage. Daraus resultierend wird die Einhaltung der Produktion und Qualität des Produktes beeinflusst. The flow of material within cleaning plants or spinning preparation plants is ensured by mechanical, electrical and pneumatic means. In the case of a pneumatic filling of a machine, the density and height of the filling can be determined via a selected target pressure. The uniformity of filling, i. adherence to the target pressure determines the uniformity of the material template. As a result, compliance with the production and quality of the product is affected.
Die klassische Lösung basiert auf einer manuellen Einrichtung einer Steuerung oder eines Reglers der Material fördernden Maschine zur Erreichung einer ausreichenden und konstanten Befüllung der Folgemaschine. Kenntnisse der gewünschten Produktion, der grundlegenden Materialeigenschaften und der erwartenden Antriebswerte sind Voraussetzung für den Einrichtbetrieb. Diese Schritte und Kenntnisse sind bei jedem Wechsel der Produktion oder des Ausgangsmaterials notwendig. Darüber hinaus kann es auf Grund von Schwankungen in den Materialeigenschaften notwendig sein, fortwährende Korrekturen zur Produktionszeit auszuführen. Die Gleichmäßigkeit der Befüllung wird wesentlich durch die geeignete, manuelle Wahl des Arbeitspunktes, d.h. der Steuerungs- und Regelparameter bestimmt. The classic solution is based on a manual device of a controller or a regulator of the material-conveying machine to achieve a sufficient and constant filling of the following machine. Knowledge of the desired production, the basic material properties and the expected drive values are prerequisites for set-up operation. These steps and knowledge are necessary every time you change the production or the source material. In addition, due to variations in material properties, it may be necessary to make continual corrections to the Production time. The uniformity of the filling is essentially determined by the appropriate, manual choice of the operating point, ie the control parameters.
Variationen des Materials und/oder der Materialeigenschaften (Auflösung, Dichte, Feuchte, Temperatur), nicht-deterministische Schwankungen in der Austragung von Putzereimaschinen, sowie Wechsel in der Produktion selbst führen zu Schwankungen im Arbeitspunkt der Material fördernden Maschine und somit zu Schwankungen in der Befüllung der folgenden Maschine. Schwankungen in der Befüllung können zu Qualitäts- Schwankungen des Produktes oder Ausfällen in der Produktion führen. Auf Basis bestehender Lösungen können diese Schwankungen im Arbeitspunkt einer Maschine oder Maschinenfolge nur durch fortwährende manuelle Eingriffe in den Einstellwerten korrigiert werden. Variations of the material and / or the material properties (resolution, density, humidity, temperature), non-deterministic fluctuations in the discharge of cleaning machines, as well as changes in the production itself lead to fluctuations in the operating point of the material-conveying machine and thus to fluctuations in the filling the following machine. Fluctuations in the filling can lead to quality fluctuations of the product or production failures. Based on existing solutions, these fluctuations in the operating point of a machine or machine sequence can only be corrected by continuous manual intervention in the setting values.
In der DE 10064655 B4 ist in einer der Karde vorgeschalteten pneumatischen Zuführ- und Verteilerleitung ein Druckmessgerät eingebaut, das den Differenzdruck als elektrisches Signal an einen Regler leitet. Über eine Steuereinrichtung wird der Differenzdruck über die Zeit verwendet, um einen korrigierten Druck-Istwert zu erzeugen, mit dem ein Antrieb eines Flockenförderers geregelt wird. Dadurch kann anhand der Steigung der Kurve des Druckes gegenüber der Zeit zeitlich zunehmende, gleich bleibende oder abnehmende Druckwerte vorweggenommen und dadurch die Zuspeisung der Flocken entsprechend eingestellt werden. In DE 10064655 B4, a pressure measuring device is installed in a pneumatic supply and distribution line upstream of the card, which conducts the differential pressure as an electrical signal to a controller. Via a control device, the differential pressure over time is used to generate a corrected pressure actual value, with which a drive of a flake conveyor is regulated. As a result of the slope of the curve of the pressure with respect to time, temporally increasing, constant or decreasing pressure values can be anticipated and thus the feed of the flakes can be adjusted accordingly.
Nachteilig an diesem Verfahren ist, dass die Einstellung der Steuerung oder Regelung der materialfördernden Maschine zur Erreichung einer ausreichenden und konstanten Befüllung der Folgemaschine, beispielsweise einer Karde, manuell erfolgen muss. A disadvantage of this method is that the adjustment of the control or regulation of the material-conveying machine to achieve a sufficient and constant filling of the following machine, such as a card, must be done manually.
Es ist Aufgabe der Erfindung, die zuvor genannten Nachteile zu beheben und den Materialfluss automatisiert und präziser zu regeln. Die Erfindung löst die gestellte Aufgabe durch die Lehre nach Anspruch 1 und 10; weitere vorteilhafte Ausgestaltungsmerkmale der Erfindung sind durch die Unteransprüche gekennzeichnet. It is the object of the invention to remedy the aforementioned disadvantages and to regulate the material flow in an automated and precise manner. The invention solves the problem by the teaching of claim 1 and 10; Further advantageous features of the invention are characterized by the subclaims.
Gemäß der technischen Lehre nach Anspruch 1 umfasst das Verfahren zum Beschicken einer Anlage mit Fasern, der Faserflocken zugeführt, diese zumindest teilweise aufgelöst und mittels einer Zuführvorrichtung einer pneumatischen Beschickungsanlage zugeführt werden, die die Fasern in den Speicher mindestens einer faserverarbeitenden Maschine, insbesondere einer Karde, Krempel, Öffner oder Reiniger, leitet, einen Regelkreis, in den die Druck-Istwerte, die in der pneumatischen Beschickungsanlage gemessen und weiterverarbeitet einfließen, und in den der Massenstrom der weiterverarbeiteten Fasern, der an mindestens einer faserverarbeitenden Maschine gemessen und weiterverarbeitet einfließt, wobei der Regelkreis den optimalen Arbeitspunkt der Spinnereivorbereitungsanlage mittels eines Regelalgorithmus ermittelt und ein Signal an ein Stellglied der Zuführvorrichtung zur Regelung der Menge an Faserflocken geleitet wird. According to the technical teaching of claim 1, the method for feeding a system with fibers, the fiber flakes supplied, these at least partially dissolved and fed by means of a feeder to a pneumatic charging system, the fibers in the memory of at least one fiber-processing machine, in particular a card, Carding, Öffner or cleaner, conducts, a control loop, in which the pressure-actual values, which are measured in the pneumatic charging system and further processed, and in the mass flow of the further processed fibers, which is measured on at least one fiber-processing machine and further processed, the Control loop determines the optimal operating point of the spinning preparation plant by means of a control algorithm and a signal is passed to an actuator of the feeder to control the amount of fiber flakes.
Mit diesen Werten bzw. zugehörigen Signale ermittelt der Regelkreis kontinuierlich die Austragungsmenge der flockenspeisenden Maschine in Abhängigkeit der Soll- und Ist-Produktion der faserverarbeitenden Maschine. Variationen des Materials oder der Materialeigenschaften, Produktionsschwankungen, sowie die weiteren Störfaktoren (z.B. Abschaltvorgänge einzelner Maschinen) werden automatisch durch den Regelkreis ausgeglichen. With these values or associated signals, the control circuit continuously determines the discharge quantity of the flake-feeding machine as a function of the setpoint and actual production of the fiber-processing machine. Variations of the material or material properties, production fluctuations and other disturbing factors (such as shutdowns of individual machines) are automatically compensated by the control loop.
In vorteilhafter Ausführungsform ist vorgesehen, dass das Signal zur Regelung der Zuführvorrichtung in den Regelkreis zurückgeführt und dort erneut den Regelalgorithmus durchläuft. Der Regelkreis passt sich hierbei aufgrund der Rückführung mindestens eines Signals für eine Stellgröße kontinuierlich dem optimalen Arbeitspunkt an und„erlernt" die Produktion sowie die Auswirkungen der Änderungen auf Grund von Variationen in den Materialeigenschaften. Darüber hinaus werden die nichtdeterministischen Linearitätsabweichungen der materialfördernden Maschine im Regelkreis verarbeitet und ausgeglichen. Dies erfolgt hierbei immer ohne manuelle Eingriffe und führt selbstständig zu einer Einhaltung der Zielvorgaben und einer konstanten Befüllung der Folgemaschine. In an advantageous embodiment, it is provided that the signal for regulating the supply device is fed back into the control loop and there again passes through the control algorithm. The control loop adapts continuously due to the return of at least one signal for a manipulated variable to the optimum operating point and "learns" the production and the effects of the changes due to variations in material properties. In addition, the non-deterministic linearity deviations of the material-conveying machine are processed and compensated in the control loop. This always takes place without manual intervention and automatically leads to compliance with the targets and a constant filling of the following machine.
In einer bevorzugten Ausführungsform geht der hinterlegte Regelalgorithmus zum Anfahren der Spinnereivorbereitungsanlage von einem konstanten Massenstrom an zugeführten Faserflocken aus. Damit ergibt sich eine geeignete, automatisierte Startwertschätzung, die die initiale Lernphase zusätzlich auf ein Minimum reduziert. In a preferred embodiment, the stored control algorithm for starting up the spinning preparation plant starts from a constant mass flow of supplied fiber flakes. This results in a suitable, automated starting value estimation, which additionally reduces the initial learning phase to a minimum.
Der Arbeitspunkt einer Maschine oder Anlage zur Faserverarbeitung wird durch den sich an die Arbeitsbedingungen anpassenden Regelalgorithmus kontinuierlich und automatisch bestimmt. Die erfindungsgemäße Vorrichtung zum Beschicken einer Anlage mit Fasern nach Anspruch 10, der Faserflocken zugeführt, diese zumindest teilweise aufgelöst und mittels einer Zuführvorrichtung einer pneumatischen Beschickungsanlage zugeführt werden, die die Fasern in den Speicher mindestens einer faserverarbeitenden Maschine, insbesondere einer Karde, Krempel, Öffner oder Reiniger, leitet. Die Erfindung ist dadurch gekennzeichnet, dass mittels mindestens eines Reglers, der Teil eines Regelkreises ist, in den die Druck- Istwerte, die in der pneumatischen Beschickungsanlage gemessen und weiterverarbeitet einfließen, und in den der Massenstrom der weiterverarbeiteten Fasern, der an mindestens einer faserverarbeitenden Maschine gemessen und weiterverarbeitet einfließt, der optimale Arbeitspunkt der Anlage mittels eines Regelalgorithmus ermittelt und ein Signal an ein Stellglied der Zuführvorrichtung zur Regelung der Menge an Faserflocken geleitet wird. Nach der erfindungsgemäßen Vorrichtung wird der Regelkreis durch insgesamt drei Regler X1 , X2 und X3 gebildet, die unterschiedliche Funktionen haben. Die Regler X1 und X3 sind funktional vom Regler X2 getrennt, da keine Rückkopplung vom Regler X2 zu den Reglern X1 und X3 stattfindet. Der Regler X2 ermittelt aus den Signalen zum Massenstrom der weiterverarbeiteten Fasern und aus dem aufbereiteten Drucksignal aus der pneumatischen Beschickungsanlage kontinuierlich die Austragungsmenge der flockenspeisenden Maschine und regelt über das Signal z das zugehörige Stellglied, mit dem der Antrieb für die Faserzuführung und damit für den zugeführten Massenstrom geregelt wird. Dadurch, dass das Signal z wieder in den Regler X2 zurück geführt wird und dort den Regelalgorithmus noch einmal durchläuft, optimiert sich der Regelkreis selbst ohne manuelle Eingriffe. The operating point of a machine or plant for fiber processing is continuously and automatically determined by the control algorithm which adapts to the working conditions. The device according to the invention for feeding a system with fibers according to claim 10, the fiber flakes at least partially dissolved and fed by means of a feeder to a pneumatic charging system, the fibers in the memory of at least one fiber-processing machine, in particular a card, carding, NC or Cleaner, directs. The invention is characterized in that by means of at least one controller, which is part of a control loop, in which the actual pressure values, which are measured in the pneumatic charging system and further processed, and in the mass flow of the further processed fibers, the at least one fiber-processing machine measured and further processed, the optimum operating point of the system determined by means of a control algorithm and a signal is passed to an actuator of the feeder for controlling the amount of fiber flakes. According to the device of the invention, the control loop is formed by a total of three controllers X1, X2 and X3, which have different functions. The controllers X1 and X3 are functionally disconnected from the controller X2, as there is no feedback from the controller X2 to the controllers X1 and X3. From the signals to the mass flow of the processed fibers and from the processed pressure signal from the pneumatic charging system, the controller X2 continuously determines the discharge quantity of the flake-feeding machine and regulates the associated actuator via the signal z, with which the drive for the fiber feed and thus for the supplied mass flow is regulated. The fact that the signal z is returned to the controller X2 back and there runs through the control algorithm again, the control loop is optimized even without manual intervention.
Die Annahme geringer Schwankungen mit einem bekannten und konstanten Massenstrom an zugeführten Fasern ermöglicht ein schnelles Hochfahren der Anlage an den optimalen Arbeitspunkt der faserverarbeitenden Maschinen. The assumption of small fluctuations with a known and constant mass flow of supplied fibers allows a fast start-up of the plant to the optimum operating point of the fiber-processing machines.
Die Erfindung wird anhand der beiliegenden Zeichnungen beispielhaft näher erläutert; in diesen zeigt The invention will be described by way of example with reference to the accompanying drawings; in these shows
Fig.1 eine schematische Ansicht einer Spinnereivorbereitungsanlage mit einem Blockschaltbild der erfindungsgemäßen Vorrichtung; 1 shows a schematic view of a spinning preparation plant with a block diagram of the device according to the invention;
Fig. 2 ein Funktionsdiagramm einer Spinnereivorbereitungsanlage nach dem Stand der Technik; FIG. 2 is a functional diagram of a prior art spinning preparation apparatus; FIG.
Fig. 3 ein Funktionsdiagramm einer erfindungsgemäßen Anlage beim Hochfahren der Anlage; 3 shows a functional diagram of a system according to the invention when the system is started up;
Fig. 4 ein Funktionsdiagramm der erfindungsgemäßen Anlage im Betrieb. Fig. 4 is a functional diagram of the system according to the invention in operation.
In der Spinnereivorbereitungsanlage nach Figur 1 wird das Fasermaterial F von einem nicht dargestellten Ballenöffner über einen nicht dargestellten Mischer einem Reiniger 1 zugeführt. Von der letzten Walze des Reinigers 1 werden die geöffneten und gereinigten Fasern bzw. Faserflocken pneumatisch über eine Rohrleitung 2, eine Entstaubungsmaschine 3, einem Ventilator 4 in eine pneumatische Zuführ- und Verteilerleitung 5 gefördert, an die ein Flockenspeiser 6 mit mindestens einer Karde 7 angeschlossen sind. In the spinning preparation plant according to FIG. 1, the fiber material F is fed to a cleaner 1 by a bale opener, not shown, via a mixer (not shown). From the last roll of the cleaner 1, the opened and cleaned fibers or fiber flakes are conveyed pneumatically via a pipe 2, a dedusting machine 3, a fan 4 into a pneumatic supply and distribution line 5, to which a flock feeder 6 with at least one card 7 is connected are.
Der Flockenspeiser 6 weist einen oberen Reserveschacht 6a und einen unteren Speiseschacht 6b auf, zwischen denen eine Flockenfördereinrichtung in Form einer langsam laufenden Einzugswalze 6c und einer schnell laufenden Öffnungswalze 6d angeordnet sein kann. Die Einzugswalze 6c kann beispielsweise mit einer über die Breite des Flockenspeisers 6 nicht dargestellten Einzugsmulde zusammenarbeiten. Der Einzugsmulde kann ein induktiver Wegaufnehmer zugeordnet sein, der über einen Rechner an einen Regler angeschlossen sind. Dadurch werden Änderungen der Masse des geförderten Fasermaterials erfasst und in elektrische Signale umgewandelt. The flock feeder 6 has an upper reserve shaft 6a and a lower feeder shaft 6b, between which a flake conveyor may be arranged in the form of a slow-speed pick roller 6c and a high-speed opening roller 6d. The feed roller 6c can cooperate, for example, with a collecting trough, not shown over the width of the flock feeder 6. The indentation tray may be associated with an inductive position transducer, which are connected via a computer to a controller. As a result, changes in the mass of the conveyed fiber material are detected and converted into electrical signals.
Um die produzierte Fasermenge bestimmen zu können, kann am Ausgang jeder Karde 7 ein nicht dargestellter Bandtrichter oder eine alternative Vorrichtung angeordnet sein, der beispielsweise zwei Abzugswalzen nachgeordnet sind. Der Bandtrichter oder die alternative Vorrichtung weisen einen Sensor 14 auf, mit der die produzierte Fasermenge bestimmbar ist und die entsprechenden Signale für den Massenstrom rh1 an die Regler X1 und X2 weiterleitet. In order to determine the amount of fiber produced, at the output of each card 7, an unillustrated sliver funnel or an alternative device can be arranged, which are arranged downstream, for example, two take-off rolls. The sliver funnel or the alternative device have a sensor 14, with which the amount of fiber produced can be determined and forwards the corresponding signals for the mass flow rh1 to the controllers X1 and X2.
Dies kann beispielweise durch eine Feder belastete Tastzunge erfolgen, die um ein Drehgelenk drehbar ist. Die Tastzunge arbeitet mit einem induktiven Wegaufnehmer zusammen, der mit einem Regler X1 und X2 in Verbindung steht. Auf diese Weise kann über die Banddicke in Abhängigkeit der Bandgeschwindigkeit die produzierte Fasermenge, also der Massenstrom rh1 bestimmt werden. This can be done, for example, by a spring loaded tongue, which is rotatable about a hinge. The tongue works together with an inductive position transducer, which is connected to a controller X1 and X2. In this way, the amount of fiber produced, that is the mass flow rh1, can be determined via the strip thickness as a function of the strip speed.
In praktischer Umsetzung geht das Signal für den Massenstrom rh1 in die Kardensteuerung ein, die diesen Wert bzw. ein zugehöriges Signal an den Regler X1 und X2 weiterleitet. In practical implementation, the signal for the mass flow rh1 enters the card control, which forwards this value or an associated signal to the controllers X1 and X2.
In einer Wand der Zuführ- und Verteilerleitung 5 ist ein Drucksensor 8 angebracht, der mit einem Messwertwandler 9 in Verbindung steht. Dabei werden die gemessenen Druck-Istwerte p1 in elektrische Signale x umgewandelt und in eine Steuerung 10, zum Beispiel einen Rechner, eingegeben. In der Steuerung 10 wird durch Differenzierung des Differenzdruckes über die Zeit ein elektrisches Signal y für einen korrigierten Druck-Istwert erzeugt. Dieses Signal y mit dem korrigierten Druck-Istwert wird wieder einem elektronischen Regler X3 zugeführt. Über eine Eingabevorrichtung 12 kann ein Druck-Sollwert als Führungsgröße in die Steuerung 10 und in den Regler X3 eingegeben werden. Die Differenz zwischen Führungsgröße und Regelgröße wird als Signal v in den Regler X2 gegeben. In a wall of the supply and distribution line 5, a pressure sensor 8 is mounted, which is in communication with a transducer 9. In this case, the measured actual pressure values p1 are converted into electrical signals x and entered into a controller 10, for example a computer. In the controller 10, an electrical signal y for a corrected pressure actual value is generated by differentiating the differential pressure over time. This signal y with the corrected pressure actual value is fed back to an electronic controller X3. Via an input device 12, a pressure setpoint can be entered as a reference variable in the controller 10 and in the controller X3. The difference between reference variable and controlled variable is given as signal v in the controller X2.
Über die Messung der Druck-Istwerte p1 in der Zuführ- und Verteilerleitung 5 und dem Massenstrom rh1 des abgeführten Faserbandes an der Karde 7 und dem Vergleich mit den Führungsgrößen bestimmt der Regelkreis die Zuführgeschwindigkeit und damit den zugeführten Massenstrom rh2 an Fasern in den Reiniger. By measuring the actual pressure values p1 in the supply and distribution line 5 and the mass flow rh1 of the discharged sliver on the carding machine 7 and the comparison with the reference variables, the control circuit determines the feed rate and thus the mass flow rh2 supplied to fibers in the cleaner.
Damit der Regelkreis ohne manuelle Nachjustierung von Faserqualitäten oder Materialschwankungen beim Abtrag der Faserballen immer den optimalen Arbeitspunkt für die Spinnereivorbereitungsanlage findet, sieht die Erfindung mindestens zwei Regler X1 und X2 vor, wobei der Regler X1 funktional von Regler X2 getrennt ist, da keine Rückkopplung von Regler X2 zu X1 stattfindet. Der Regler X1 fragt über die Kardensteuerung die angestrebte Sollproduktion an und vergleicht diese mit der aktuellen Istproduktion. Die Regelabweichung zwischen der Sollproduktion und der Istproduktion geht als Signal u in den Regler X2 ein. So that the control loop always finds the optimum operating point for the spinning preparation plant without manual readjustment of fiber qualities or material fluctuations during removal of the fiber bales, the invention provides at least two controllers X1 and X2, wherein the controller X1 is functionally separated from controller X2, since no feedback from controller X2 takes place at X1. Regulator X1 uses the card control to request the desired target production and compare it with the current actual production. The control deviation between the target production and the actual production enters the controller X2 as signal u.
Der Regler X2 kann als Pl-Regler ausgeführt sein, der unter der Annahme geringer Schwankungen von einem bekannten Massenstrom rh2 an Fasern F ausgeht, und über einen Rechner anhand der aktuellen Kardenproduktion rh1 den optimalen Wert für die Kardenproduktion bestimmt. Der Regler X2 geht also von einer konstanten Faserzuführung rh2 aus (Startwertschätzung), die tatsächlich breiten Schwankungen unterliegen kann, um den optimalen Arbeitspunkt für die aktuelle Kardenproduktion mit einem Massenstrom rh1 zu ermitteln. Mit dieser Startwertschätzung durch den Regler X2 kann das Anfahren der Anlage an den tatsächlichen optimalen Arbeitspunkt beschleunigt werden. Als Ausgangswert für die konstante Faserzuführung dient der optimale (abgespeicherte) Arbeitspunkt aus dem letzten Betrieb der Anlage. Durch die Annahme einer konstanten Faserzuführung rh2 des Reglers X2, erreicht der Regelkreis in kürzester Zeit eine Annäherung an den optimalen Arbeitspunkt der Karden 7 The controller X2 can be designed as a PI controller, assuming low fluctuations from a known mass flow rh2 to fibers F, and determines the optimum value for the card production via a computer on the basis of the current card production rh1. The controller X2 thus starts from a constant fiber feed rh2 (start value estimation), which may in fact be subject to wide fluctuations in order to determine the optimum operating point for the current card production with a mass flow rh1. With this start value estimation by the controller X2, the startup of the system can be accelerated to the actual optimum operating point. The output value for the constant fiber feed is the optimal (stored) operating point from the last operation of the system. By assuming a constant fiber feed rh2 of the controller X2, reaches the control loop in a very short time, an approximation to the optimum operating point of the card 7
Neben dem Wert aus dem Signal u verarbeitet der Regler X2 weiterhin das Signal v für die Differenz aus Führungsgröße und Regelgröße vom Regler X3. Als weiterer Wert wird die aktuelle Kardenproduktion rh1 abzüglich der Störgröße S1 für den variablen Ausreinigungsgrad im Regler X2 verarbeitet. In addition to the value from the signal u, the controller X2 continues to process the signal v for the difference between the reference variable and the controlled variable from the controller X3. As an additional value, the current card production rh1 minus the disturbance variable S1 for the variable degree of purification in the controller X2 is processed.
Aus diesen drei Signalen u, v und rh1 ermittelt der Regler X2 kontinuierlich die Austragungsmenge der flockenspeisenden Maschine mit dem Massenstrom rh2. Das dazugehörige Signal z regelt das Stellglied Antrieb 20 für das Förderband und die Einzugswalzen a, 1b, wodurch die Menge der Fasern F zu- oder abnehmen kann. Über die Eingabeeinrichtung 13 kann die Drehzahl für das Stellglied Antrieb 20 begrenzt werden, um die maximale Stoßproduktion aus technologischen Gründen zu begrenzen. Gleichzeitig wird das Signal z zur Regelung des Stellgliedes Antrieb 20 in den Regler X2 zurückgeführt und dort indirekt mit dem Signal u verglichen und unter Berücksichtigung der weiteren Signale v und rh1 optimiert. Innerhalb des Reglers X2 wird das Signal z mit dem Signal aus dem aktuellen Faser- bzw. Massenstrom rh1 miteinander verarbeitet und das daraus entstehende Ergebnis mit dem Ergebnis aus den miteinander verarbeiteten Signalen rh1 , u und v zu einem neuen Wert bzw. Signal z verarbeitet. Die Reihenfolge der im Regler X2 miteinander verarbeiteten Signale ist eine wesentliche Grundlage für den Regelalgorithmus. Die Rückführung des schon bewerteten Signals z sorgt für einen erneuten Durchlauf durch den Regelalgorithmus mit einem neuen Wert für das Signal z, wodurch ein differenzierendes Verhalten entsteht. From these three signals u, v and rh1, the controller X2 continuously determines the discharge quantity of the flake-feeding machine with the mass flow rh2. The associated signal z controls the actuator drive 20 for the conveyor belt and the feed rollers a, 1b, whereby the amount of fibers F can increase or decrease. Via the input device 13, the speed for the actuator drive 20 can be limited to limit the maximum impact production for technological reasons. At the same time, the signal z for controlling the actuator drive 20 is fed back into the controller X2 and there indirectly compared with the signal u and optimized taking into account the further signals v and rh1. Within the controller X2, the signal z is processed together with the signal from the current fiber or mass flow rh1 and the resulting result is processed with the result from the signals rh1, u and v processed together to form a new value or signal z. The order of the signals processed in the controller X2 is an essential basis for the control algorithm. The feedback of the already evaluated signal z ensures a new pass through the control algorithm with a new value for the signal z, whereby a differentiating behavior arises.
Durch die Rückführung des Signales z und dem indirekten Abgleich mit dem Signal u kann die Spinnereivorbereitungsanlage sehr kontinuierlich ohne Schwankungen arbeiten. Die Rückführung des Signals z sorgt für ein schnelles Angleichen an den aktuellen optimalen Arbeitspunkt, wodurch der Regelkreis sich selbst optimiert und daher als„selbstlernend" bezeichnet werden kann. By returning the signal z and the indirect comparison with the signal u, the spinning preparation plant can work very continuously without fluctuations. The feedback of the signal z ensures a fast match to the current optimal operating point, which allows the loop to self-optimize and therefore be referred to as "self-learning".
Eine weitere Verbesserung kann dadurch erreicht werden, indem aus der oder den Steuerungen der Karden ein kommender Kannenwechsel oder ein Kardenstopp bzw. ein erneutes Hochfahren der Karde als Signal w in den Regler X2 eingespeist wird, um eine kommende Produktionsschwankung zu berücksichtigen, die sich durch mehr oder weniger Fasern mit ggf. einer Druckänderung in der Zuführ- und Verteilerleitung 5 bemerkbar macht. A further improvement can be achieved by an upcoming can change or a card stop or a restart of the card as a signal w in the controller X2 is fed from the controls or the cards to take into account an upcoming production fluctuation, which is characterized by more or less fibers with possibly a pressure change in the supply and distribution line 5 makes noticeable.
Mit der Anzahl der Karden 7 wird die Zuführ- und Verteilerleitung 5 länger, wodurch die Materiallaufzeiten sich vergrößern, und damit der Druck in der Zuführ- und Verteilerleitung 5 größeren Schwankungen unterliegt. Um dies zu berücksichtigen, kann in der Steuerung 10 als Signal t die Materiallaufzeit ermittelt und in den Regler X2 eingegeben werden. Damit ist es möglich, Druckschwankungen aufgrund der Steigung der Druckkurve über die Materiallaufzeit vorher zusehen, und über den oder die Ventilatoren 4 und/oder das Stellglied Antrieb 20 zu kompensieren. With the number of cards 7, the supply and distribution line 5 is longer, whereby the material running times increase, and thus the pressure in the supply and distribution line 5 is subject to greater fluctuations. To take this into account, the material delay can be determined in the controller 10 as the signal t and entered into the controller X2. This makes it possible to watch pressure fluctuations due to the slope of the pressure curve over the material life before, and to compensate for the or the fans 4 and / or the actuator drive 20.
Aus Gründen der Übersichtlichkeit wurde nur eine Karde 7 in Figur 1 dargestellt. Üblicherweise sind an der Verteilerleitung 5 mehrere Karden angeschlossen, die alle von der Faseraufbereitungsanlage (Mischer, Reiniger 1 , Entstaubungsmaschine 3) gespeist werden, wobei jede Karde 7 einen eigenen Flockenspeiser 6 aufweist. Statt für Karden kann der Regelkreis auch für jede andere faserverarbeitende Maschine oder Anlage verwendet werden, wie vliesbildende Maschinen oder für Spinnereivorbereitungsanlagen zur Befüllung von Faserspeichern. For reasons of clarity, only one card 7 has been shown in FIG. Usually, several cards are connected to the distribution line 5, all of which are fed by the fiber processing plant (mixer, cleaner 1, dedusting machine 3), each carding machine 7 having its own flock feeder 6. Instead of cards, the control loop can also be used for any other fiber-processing machine or installation, such as web-forming machines or for spinning preparation systems for filling fiber memories.
Der Algorithmus für den Regelkreis ist so beschaffen, dass Variationen des Materials oder der Materialeigenschaften, sowie Produktionsschwankungen und die weiteren Störfaktoren wie zum Beispiel das Abschalten einzelner Maschinen durch eine Rückkopplung mindestens eines Signals (Regler X2) automatisch durch den Regelkreis ausgeglichen werden. Der Regelkreis passt sich hierbei kontinuierlich dem optimalen Arbeitspunkt an und „erlernt" die Produktion sowie die Auswirkungen der Änderungen aufgrund von Variationen in den Materialeigenschaften. Darüber hinaus werden die nicht-deterministischen Linearitätsabweichungen der materialfördernden Maschine erlernt und ausgeglichen. Der„Lernprozess" des Regelkreises erfolgt hierbei immer ohne manuelle Eingriffe und führt selbstständig zu einer Einhaltung des optimalen Arbeitspunktes für die Karden und einer konstanten Befüllung der Speiseschächte. Durch eine geeignete, automatisierte Startwertschätzung (Regler X2) wird die Hochlaufphase auf ein Minimum reduziert. Es ist nicht mehr notwendig, den Regelkreis mit Faserdaten zu programmieren. Lediglich die Dämpfung des Regelkreises aufgrund der Totzeit bei größerer Rohrlänge, beispielsweise bei Vergrößerung der Zuführ- und Verteilerleitung 5 aufgrund weiterer Karden, muss eingestellt werden. Als Eingabewerte werden nur noch der Druck-Sollwert in der Eingabevorrichtung 12 und die maximale Drehzahl in der Eingabevorrichtung 13 verlangt. Materialspezifische Daten werden nicht mehr benötigt, da der Regelkreis sich automatisch den optimalen Arbeitspunkt sucht und sich diesem anpasst. The algorithm for the control loop is such that variations of the material or the material properties, as well as production fluctuations and the other disturbing factors such as Example, the shutdown of individual machines by a feedback of at least one signal (controller X2) are automatically compensated by the control loop. The control loop adapts continuously to the optimum operating point and "learns" the production and the effects of the changes due to variations in the material properties, and the non-deterministic linearity deviations of the material-conveying machine are learned and compensated this always without manual intervention and leads automatically to a compliance with the optimum operating point for the cards and a constant filling of the feed shafts. A suitable, automated start value estimation (controller X2) reduces the startup phase to a minimum. It is no longer necessary to program the loop with fiber data. Only the damping of the control loop due to the dead time with a larger pipe length, for example, when enlarging the supply and distribution line 5 due to other cards, must be set. As input values, only the pressure setpoint in the input device 12 and the maximum speed in the input device 13 are required. Material-specific data is no longer needed because the control loop automatically searches for and adapts to the optimum operating point.
Auch wenn dies in dem Ausführungsbeispiel nicht explizit offenbart ist, kann der Regelkreis auch weitere Störgrößen wie beispielsweise den Verschmutzungsgrad der Faserflocken, Bandbruch an den Karden oder schwankende Feuchtigkeit der Faserflocken verarbeiten. Although this is not explicitly disclosed in the exemplary embodiment, the control loop can also process further disturbance variables such as, for example, the degree of soiling of the fiber flakes, strip breakage on the card or fluctuating moisture of the fiber flakes.
Die Regler X1 , X2 und X3 sind bevorzugt in einer gemeinsamen Baugruppe untergebracht und brauchen nicht als separate Bauteile ausgeführt zu werden. Die Grafiken in den Figuren 2 bis 4 zeigen auf der Abszisse die Zeit in Sekunden. Die linke Ordinate zeigt den Druck in Pascal in der Zuführ- und Verteilerleitung 5, gleichzeitig die Drehzahl in % und die Produktion in kg/h an. Die rechte Ordinate zeigt einen abstrakten dimensionslosen Regelwert an. The regulators X1, X2 and X3 are preferably housed in a common assembly and need not be executed as separate components. The graphs in FIGS. 2 to 4 show the time in seconds on the abscissa. The left ordinate indicates the pressure in Pascal in the supply and distribution line 5, simultaneously the speed in% and the production in kg / h. The right ordinate displays an abstract dimensionless rule value.
Figur 2 zeigt eine klassische Lösung nach dem Stand der Technik, bei der ein Regler mit manuellem Arbeitspunkt und fester Regelberechnung verwendet wird. Die Solldrehzahl des Förderbandes und der Einzugswalzen 1a, 1 b, die Sollproduktion und die Regelwertberechnung werden manuell vorgegeben. Schwankungen der Materialeigenschaften bei konstanter Produktion können nur durch manuelle Anpassung des Arbeitspunktes ausgeglichen werden. Figure 2 shows a classic solution according to the prior art, in which a controller with manual operating point and fixed rule calculation is used. The target speed of the conveyor belt and the feed rollers 1a, 1b, the target production and the control value calculation are manually specified. Fluctuations in material properties with constant production can only be compensated by manual adjustment of the operating point.
Kurzzeitige Schwankungen der aktuellen Produktion (X-Achse: bei 50 - 79 Sekunden und bei 90 - 115 Sekunden) können ebenso nicht sicher ausgeglichen werden. Das führt zu erheblichen Schwankungen im Druckverlauf (1100 Pa bis 1450 Pa), der stark vom Soll-Druck von 1250 Pa abweicht. Dies führt wiederum zu vollständigen Stopps in der Lieferung (Regelwert 0) der Speisemaschine (die Antriebe für das Zuführband und die Einzugswalzen 1a, 1 b stehen still) und somit zu Störungen in der Dichte der Befüllung der Folgemaschinen, beispielsweise der Karden. Momentary fluctuations in current production (X-axis: 50-79 seconds and 90-115 seconds) can not be compensated for safely. This leads to significant fluctuations in the pressure curve (1100 Pa to 1450 Pa), which deviates greatly from the target pressure of 1250 Pa. This in turn leads to complete stops in the delivery (control value 0) of the feed machine (the drives for the feed belt and the feed rollers 1a, 1 b stand still) and thus to disturbances in the density of the filling of the following machines, such as the cards.
Die erstmalige Lernphase wird in Figur 3 gezeigt, in der sich die Soll- Produktion selbstständig optimiert und in Stufen hochfährt, da die Karden nach und nach zugeschaltet werden. Gleichzeitig sinkt der Ist-Druck in der Zuführ- und Verteilerleitung 5 und nähert sich dem Soll-Druck nach ca. 220 Sekunden an. Die Ist-Produktion wird mit der Soll-Produktion nach ca. 300 Sekunden deckungsgleich. Mit dem Hochfahren bzw. Einschalten der Karden steigt auch nach und nach die Ist-Drehzahl des Antriebes für das Förderband bzw. für die Einzugswalzen 1a, 1 b. Ein nachfolgendes Anfahren der Anlage erfolgt noch kürzer, da der letzte optimale Arbeitspunkt im Regler X2 abgespeichert wird und als Startlevel für das Anfahren dient. The first-time learning phase is shown in FIG. 3, in which the target production is automatically optimized and starts up in stages, since the cards are switched on one after the other. At the same time, the actual pressure in the supply and distribution line 5 drops and approaches the target pressure after about 220 seconds. The actual production is congruent with the target production after approx. 300 seconds. With the start-up or switching on the cards also gradually increases the actual speed of the drive for the conveyor belt or for the feed rollers 1a, 1b. A subsequent startup of the system is even shorter, because the last optimal Operating point is stored in the controller X2 and serves as a starting level for the start.
Figur 4 zeigt die fortwährende Anpassung des optimalen Arbeitspunktes. Schwankungen in den Materialeigenschaften bei konstanter Produktion (siehe linker Teil des Diagramms) werden mit Hilfe der„Lernfunktion" (Rückkopplung mindestens eines Signals) ausgeglichen. In der Mitte und im rechten Teil des Diagramms zeigen sich Produktionsschwankungen die gleichartig ausgeglichen werden, wobei die Ist-Produktion kurz unterhalb der Soll-Produktion liegt. Aufgrund der Rückkopplung mindestens eines Signals in den Regelkreis können alle Anpassungen automatisch, ohne manuelle Eingriffe und ohne Schwankungen in der Befüllung oder Produktionsausfälle, ausgeglichen werden. Der optimale Arbeitspunkt geht leicht zurück und findet sein Optimum, wenn sich nach kurzen Schwankungen der Ist-Druck dem Soll-Druck angenähert hat. Ein Stopp in der Lieferung der Speisemaschine und somit eine erhebliche Schwankung in der Befüllung der Folgemaschine kann vollständig verhindert werden und damit kann eine gleichmäßige Dichte und Höhe in der Befüllung, beispielsweise der Kardenschächte, erreicht werden. FIG. 4 shows the continuous adaptation of the optimum operating point. Fluctuations in material properties at constant production (see the left part of the diagram) are compensated by means of the "learning function" (feedback of at least one signal.) In the middle and in the right part of the diagram, production fluctuations are compensated in the same way. Due to the feedback of at least one signal into the control loop, all adjustments can be compensated automatically, without manual intervention and without fluctuations in the filling or production losses After a brief fluctuation, the actual pressure has approached the target pressure, and a stop in the supply of the feed machine and thus a considerable fluctuation in the filling of the following machine can be completely prevented and thus a uniform density and height in the filling, for example ka shafts are reached.
Bezugszeichen reference numeral
1 Reiniger 1 cleaner
1a, 1 b Einzugswalzen 1a, 1 b feed rollers
2 Rohrleitung 2 pipe
3 Entstaubungsmaschine 3 dedusting machine
4 Ventilator 4 fans
5 Zuführ- und Verteilerleitung 5 supply and distribution line
6 Flockenspeiser 6 flock feeders
6a Reserveschacht 6a reserve shaft
6b Speiseschacht 6b feeder
6c Einzugswalze 6c feed roller
6d Öffnerwalze 6d opening roller
7 Karde 7 cards
8 Drucksensor 8 pressure sensor
9 Messwertwandler 9 transducers
10 Steuerung 10 control
12 Eingabeeinrichtung 12 input device
13 Eingabeeinrichtung 14 Sensor 13 input device 14 sensor
20 Stellglied Antrieb 20 actuator drive
F Fasermaterial F fiber material
p1 Druck-Istwert p1 pressure feedback
t Signal t signal
u Signal u signal
v Signal v signal
w Signal w signal
x Signal x signal
y Signal z Signal rh1 Massenstrom Karde rh2 Massenstrom Faserflockeny signal z signal rh1 mass flow card rh2 mass flow fiber flakes
S1 Störgröße S1 disturbance
Regler regulator
Regler regulator
Regler regulator
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014018655 | 2014-12-13 | ||
DE102015106415.4A DE102015106415A1 (en) | 2014-12-13 | 2015-04-27 | Method and device for feeding a system with fibers |
PCT/EP2015/002000 WO2016091340A1 (en) | 2014-12-13 | 2015-10-09 | Method and device for loading an installation with fibres |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3230501A1 true EP3230501A1 (en) | 2017-10-18 |
EP3230501B1 EP3230501B1 (en) | 2022-03-02 |
Family
ID=56082434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15783955.6A Active EP3230501B1 (en) | 2014-12-13 | 2015-10-09 | Method and device for loading an installation with fibres |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170342603A1 (en) |
EP (1) | EP3230501B1 (en) |
CN (1) | CN107002309B (en) |
BR (1) | BR112017011396B8 (en) |
DE (1) | DE102015106415A1 (en) |
WO (1) | WO2016091340A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024240819A1 (en) | 2023-05-24 | 2024-11-28 | Säntis Textiles Ag | Fiber dosing apparatus and method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20160392A1 (en) * | 2016-01-26 | 2017-07-26 | Saldarini 1882 S R L | FILLING METHOD OF A PADDED CLOTHING GARMENT AND PADDED JACKET |
CN106637539B (en) * | 2016-12-20 | 2018-10-23 | 绍兴柯桥南红纱业有限公司 | Multifilament mixed cotton technique |
CH714101A1 (en) * | 2017-08-30 | 2019-03-15 | Rieter Ag Maschf | Device for controlling a fiber fluff stream in a cleaner. |
CH715076A1 (en) * | 2018-06-07 | 2019-12-13 | Rieter Ag Maschf | Level measurement of a fiber flake storage. |
CH715422A1 (en) | 2018-10-02 | 2020-04-15 | Rieter Ag Maschf | Fiber preparation with a sequence of machines. |
CN109554783A (en) * | 2018-12-27 | 2019-04-02 | 扬州好爱玩具礼品有限公司 | A kind of technique controlling storage PP cotton by automation equipment |
DE102019115138B3 (en) * | 2019-06-05 | 2020-12-10 | TRüTZSCHLER GMBH & CO. KG | Card, fleece guide element, spinning preparation plant and method for detecting interfering particles |
WO2022233773A1 (en) * | 2021-05-04 | 2022-11-10 | Hubert Hergeth | Material feed |
CH720835A1 (en) * | 2023-06-06 | 2024-12-13 | Rieter Ag Maschf | Method and device for production control of cards |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0253471A1 (en) * | 1986-07-18 | 1988-01-20 | John D. Hollingsworth On Wheels Inc. | Web weight control system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3142348A (en) * | 1961-06-14 | 1964-07-28 | Fiber Controls Corp | Fiber feeding apparatus |
US3903570A (en) * | 1972-10-20 | 1975-09-09 | Iii Daniel G Rowe | Apparatus for forming a lap of textile fiber |
DE2658044C3 (en) * | 1976-12-22 | 1980-02-21 | Truetzschler Gmbh & Co Kg, 4050 Moenchengladbach | Method and device for producing a uniform sliver |
IN158614B (en) * | 1982-04-01 | 1986-12-27 | Truetzschler & Co | |
US4682388A (en) * | 1986-08-22 | 1987-07-28 | John D. Hollingsworth On Wheels, Inc. | Textile flock feed control system and method |
EP0303023B1 (en) * | 1987-08-12 | 1996-10-23 | Maschinenfabrik Rieter Ag | A system for treatment of textile fibers and method for controling such a system |
IN171722B (en) * | 1987-10-08 | 1992-12-19 | Rieter Ag Maschf | |
WO1998032903A1 (en) * | 1997-01-23 | 1998-07-30 | Maschinenfabrik Rieter Ag | Carding machine with drawing rollers at the outlet |
US6581248B1 (en) * | 1997-01-23 | 2003-06-24 | Maschinenfabrik Rieter Ag | Carding machine with drawing rollers at the outlet |
EP0894878A3 (en) * | 1997-07-30 | 2000-04-19 | Maschinenfabrik Rieter Ag | Flock cleaner |
DE10064655B4 (en) | 2000-12-22 | 2012-01-26 | TRüTZSCHLER GMBH & CO. KG | Device for controlling the at least one card to be supplied amount of fiber flock |
CH706658A1 (en) * | 2012-06-29 | 2013-12-31 | Rieter Ag Maschf | Method and apparatus for controlling the supply of fiber to a carding machine. |
-
2015
- 2015-04-27 DE DE102015106415.4A patent/DE102015106415A1/en not_active Withdrawn
- 2015-10-09 WO PCT/EP2015/002000 patent/WO2016091340A1/en active Application Filing
- 2015-10-09 CN CN201580064991.2A patent/CN107002309B/en active Active
- 2015-10-09 EP EP15783955.6A patent/EP3230501B1/en active Active
- 2015-10-09 BR BR112017011396A patent/BR112017011396B8/en active IP Right Grant
- 2015-10-09 US US15/535,167 patent/US20170342603A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0253471A1 (en) * | 1986-07-18 | 1988-01-20 | John D. Hollingsworth On Wheels Inc. | Web weight control system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024240819A1 (en) | 2023-05-24 | 2024-11-28 | Säntis Textiles Ag | Fiber dosing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
EP3230501B1 (en) | 2022-03-02 |
BR112017011396A2 (en) | 2018-02-20 |
BR112017011396B1 (en) | 2022-01-25 |
CN107002309A (en) | 2017-08-01 |
CN107002309B (en) | 2020-04-03 |
BR112017011396B8 (en) | 2022-07-05 |
DE102015106415A1 (en) | 2016-06-16 |
US20170342603A1 (en) | 2017-11-30 |
WO2016091340A1 (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016091340A1 (en) | Method and device for loading an installation with fibres | |
DE10064655B4 (en) | Device for controlling the at least one card to be supplied amount of fiber flock | |
EP0412448B1 (en) | Drafting arrangement with meshed control | |
CH661291A5 (en) | METHOD AND DEVICE FOR CONTROLLING AND / OR REGULATING A SPINNING PREPARATION PLANT. | |
EP2867392B1 (en) | Method and device for controlling the fiber feed to a carding machine | |
DE102006029639B4 (en) | Method for controlling the draft of a drafting system of a textile machine and textile machine | |
EP0028291B1 (en) | Process and apparatus for controlling the production of a carding machine | |
CH659663A5 (en) | METHOD AND DEVICE FOR CONTROLLING AND REGULATING THE MACHINES OF A SPINNING PREPARATION PLANT. | |
EP0799916A2 (en) | Combing machine with a controlled draw frame | |
DE2704241A1 (en) | PROCESS AND DEVICE FOR CREATING A UNIFORM, CONTINUOUS FIBER BODY | |
DE3617526A1 (en) | METHOD AND DEVICE FOR SUPPLYING A NUMBER OF CARDS, CRAWLS OR THE LIKE | |
EP3412804B1 (en) | Method and device for production control in a blowing room | |
EP0303023B1 (en) | A system for treatment of textile fibers and method for controling such a system | |
EP4107319B1 (en) | Method for producing a sliver, and carding machine | |
EP0978581B1 (en) | Textile processing machine with a drawing frame unit | |
EP0347715B1 (en) | Method and apparatus for producing an even fibre web | |
DE3244619C2 (en) | Device for controlling a spinning preparation plant consisting of several sections | |
EP1009870A1 (en) | Regulated drawing frame | |
CH673292A5 (en) | ||
WO2007016798A1 (en) | Method for plaiting a fibre web control device and textile machine combination | |
EP1917388A1 (en) | Flock supply system. | |
WO1998032903A1 (en) | Carding machine with drawing rollers at the outlet | |
CH715422A1 (en) | Fiber preparation with a sequence of machines. | |
DE3625311C2 (en) | Device for regulating or controlling the feed roller of a flake feed device | |
EP0093235A1 (en) | Method of opening fibre bales |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200727 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210120 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211022 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TRUETZSCHLER GROUP SE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1472294 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015015681 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220603 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220704 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220702 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015015681 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
26N | No opposition filed |
Effective date: 20221205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221009 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221009 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221009 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1472294 Country of ref document: AT Kind code of ref document: T Effective date: 20221009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241030 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241025 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241101 Year of fee payment: 10 |