EP3230412B1 - Co-current fixed bed gasifier for producing a product gas from biomass particulates - Google Patents

Co-current fixed bed gasifier for producing a product gas from biomass particulates Download PDF

Info

Publication number
EP3230412B1
EP3230412B1 EP15808371.7A EP15808371A EP3230412B1 EP 3230412 B1 EP3230412 B1 EP 3230412B1 EP 15808371 A EP15808371 A EP 15808371A EP 3230412 B1 EP3230412 B1 EP 3230412B1
Authority
EP
European Patent Office
Prior art keywords
gasifier
component
tubular
biomass
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15808371.7A
Other languages
German (de)
French (fr)
Other versions
EP3230412A1 (en
Inventor
Marco Senger
Michael Hofmeister
Horst Dressler
Julien UHLIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosmarin Holdings Ltd
Original Assignee
Rosmarin Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosmarin Holdings Ltd filed Critical Rosmarin Holdings Ltd
Publication of EP3230412A1 publication Critical patent/EP3230412A1/en
Application granted granted Critical
Publication of EP3230412B1 publication Critical patent/EP3230412B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air

Definitions

  • the invention relates to a direct current fixed bed gasifier for producing a product gas from pourable biomass particles according to claim 1, a method for operating such a direct current fixed bed gasifier according to claim 14, a method for starting up such a direct current fixed bed gasifier according to claim 18 and a method for shutting it down DC fixed bed gasifier according to claim 19.
  • Fixed bed gasifiers for generating a combustible product gas from biomass pellets, in particular from wood chips or wood pellets are characterized by a comparatively simple structure.
  • the flow direction of the combustion air and the product gas on the one hand and the feed direction of the biomass particles are opposite, and in the case of the co-current gasifier the feed direction of the biomass particles corresponds to the flow direction of the combustion air and product gas.
  • Different reaction zones namely drying, pyrolysis, oxidation and reduction zones, in which different thermochemical reactions take place, are distinguished in fixed bed gasifiers.
  • the drying, pyrolysis, oxidation and reduction zone is formed from top to bottom.
  • the oxidation zone forms in the area of the air supply and should remain limited to this zone, the reduction zone below, directly above the grate.
  • the product gas is extracted from the area of the carburettor tank under the grate, in which the small-part ash falling through the grate also collects.
  • the aim is that these different zones are almost stationary in the carburettor tank.
  • the position of the oxidation zone is determined by the position of the air supply by means of nozzles.
  • the air supply by means of nozzles has the disadvantage that there is no homogeneous air distribution in the area of the oxidation zone and temperature differences of up to 400 degrees can occur locally. This can lead to deposits of combustion residues (slag) at undesirable locations in the gasification chamber, this affects the movement of the biomass particles and causes an inhomogeneous gas flow which leads to increased tar values in the product gas.
  • WO 2010/114400 A2 describes a carburetor for solid fuels with a tubular component through which the fuels are filled. This is not a direct current gasifier, since on the one hand the air is supplied from below or in the central area of the tubular component and on the other hand the product gas is removed at the top.
  • US 2007/01694411 A1 describes a carburetor with a tubular carburetor component which is open at the top and in which the product gas is also removed above the grate.
  • WO 2008/006049 A2 describes a gasifier in which the product gas is discharged below under the grate as in the present invention.
  • the carburetor is constructed differently: in the inner chamber of the carburetor there is an agitator that stirs or swirls the biomass. Air is supplied through an air inlet on the outer carburetor component.
  • the fixed bed gasifier Due to the air supply from above and the extraction of the product gas below the grate, the fixed bed gasifier is only flowed through from top to bottom.
  • the drying zone and the pyrolysis zone form in the carburetor component that protrudes into the carburetor tank, the oxidation zone forms under the open end of the carburetor component, followed by the reduction zone above the grate.
  • the oxidation zone is bound locally by the gas flow from top to bottom and by means of a cross-sectional jump between the carburetor component and the carburettor container at the open end of the carburetor component, which results in different flow velocities.
  • the flow rate is slowed down by expanding the cross-section.
  • pyrolysis gases are not limited by any tube walls when flowing through the oxidation zone. There are no uniform flow conditions on the pipe walls and therefore no uniformly high temperatures. If pyrolysis gas flows through the oxidation zone at the edge of a tube wall, as is the case in the prior art, the long-chain hydrocarbons are not broken up completely. Because the pipe wall is not present, additional long-chain hydrocarbon compounds are broken up, which leads to an improvement in the motor capability of the product gas.
  • the advantageous embodiment of the invention according to claims 2 to 4 simplifies the structure of the direct current grease bed gasifier and enables a uniform air and product gas flow with a temperature-homogeneous oxidation zone Most of the long-chain hydrocarbon compounds break up and thus produce a high-quality product gas.
  • the advantageous embodiment according to claim 5 prevents clogging of the grate and a reduction in residual agglomeration, which enables ash to be drawn off through the grate as particle loading of the product gas.
  • the distance h of the open end of the carburetor component approximately corresponds to the diameter d of the carburetor component. This optimum was found empirically. If the distance h becomes smaller than this optimum, the reduction zone becomes smaller, which has a negative effect on the product gas quality. If the distance h is greater than this optimum, the reduction zone increases, which also has an unfavorable effect on the product gas quality.
  • the biomass particle conveying device is used as a lock for feeding the biomass particles into the tubular carburetor component used.
  • This configuration can also be used in other fixed bed gasifiers, independently of the present invention.
  • the product gas or wood gas generated in the direct current fixed bed gasifier is preferably used in a block-type thermal power station with an internal combustion engine or a fuel cell to provide electrical and thermal energy.
  • the product gas generated in the direct current fixed bed gasifier is cooled and cleaned in a downstream gas treatment device. In the gas mixing section of the internal combustion engine, this cooled and cleaned product gas is mixed with combustion air which is cold in comparison to the product gas from the gas processing device, as a result of which further cooling takes place. This further cooling can lead to undesired precipitation of solids or liquids and in particular tar.
  • the product gas is cooled to temperatures, so that it z. b. can be used as fuel in a CHP.
  • the advantageous embodiment of the invention according to claim 13 ensures that the biomass particle bed in the gasifier component is high enough to distribute the amount of air flowing through the biomass particle bed sufficiently and uniformly in front of the first reaction zone over the entire cross section. Due to the continuous supply of combustion air via the biomass particle bed and the continuous removal of the product gas, the various reaction zones of the direct current fixed bed gasifier remain stationary and defined conditions are formed.
  • biomass pellets as biomass particles is advantageous - claim 16.
  • the method for starting a direct current fixed bed gasifier according to claim 18 relates to a simple and preferred way of starting the direct current fixed bed gasifier filled with biomass particles.
  • the biomass particles are advantageously ignited by blowing hot air into the area under the open end of the tubular gasifier component.
  • the temperature of the hot air is selected so that the biomass particles are ignited safely.
  • Fig. 1 shows a schematic representation of an exemplary embodiment of the invention.
  • the DC fixed bed gasifier according to the present invention comprises a tubular gasifier tank 2, the ends of which are closed by an upper cover 4 and a lower cover 5.
  • a tubular carburetor component 6 with an open end 8 and a closed end 9 projects with the open end 8 into the carburetor tank 2.
  • the closed end 9 of the carburetor component 6 protrudes from the carburetor tank 2 through the upper cover 4.
  • the open end 8 of the carburetor component 6 comes to lie approximately in the middle of the carburetor container 2.
  • a rotatable grate 10 which can be moved periodically by a motor drive 12 which passes through the lower cover 5.
  • an ignition device 20 and a closed inspection shaft 22 are provided, which penetrate the outer wall of the carburetor container 2.
  • the ignition device 20 is used to generate hot air in a temperature range between 300 ° C. and 600 ° C.
  • the ignition device 20 comprises an air nozzle 21 for hot air, which passes through the carburetor tank 2. Through the air nozzle 21 made of ceramic, the parts of the ignition device 20, which are arranged inside the carburetor container 2, are thermally decoupled from the parts outside the carburetor container 2. When the reactor is at a standstill, maintenance work and cleaning work can be carried out above the inspection shaft 22 in the interior of the reactor vessel. In the area under the grate 10, product gas PG is withdrawn from the carburetor container 2 via a product gas discharge 24. The ash falling through the grate 10 is discharged from the fixed bed gasifier through the product gas flow PG via the product gas discharge 24.
  • Both the tubular carburetor container 2 and the tubular carburetor component 6 have an annular cross section and are arranged concentrically to one another.
  • the tubular carburetor component 6 has an inner diameter d that is smaller than the inner diameter D of the tubular carburetor tank 2.
  • the feed for biomass particles 14 is connected via a first lock valve 28 to a biomass particle conveyor device 30 in the form of a screw conveyor.
  • the screw conveyor 30 is gas-tightly connected to a biomass particle storage container 32, which is sealed gas-tight to the outside via a second lock valve 34. Due to the direct gas-tight connection of the biomass particle storage container 32 to the screw conveyor 30, these two components act between the two lock valves 28, 34 as a lock for the supply of biomass particles into the fixed bed gasifier.
  • Fig. 2 illustrates the combination of the fixed bed gasifier Fig. 1 with a downstream gas treatment unit and a CHP.
  • the product gas PG emerging from the product gas outlet 24 is fed to a gas processing device 36.
  • the product gas is cooled in a heat exchanger and solid and liquid impurities are separated out as far as possible.
  • the cooled and conditioned product gas from the product gas treatment device 36 is fed to a gas mixing section 40 of a gas engine 42 via a product gas line 38.
  • the gas mixing section 40 also includes a supply for combustion air 44.
  • a mixed gas line 46 By mixing comparatively cold outside air and comparatively hot product gas from the product gas processing device 36 in In a mixed gas line 46, the resulting gas mixture is cooled further, so that further liquid contaminants can fail.
  • These liquid contaminants settle in a condensate separator 48 at the end of the mixed gas line 46 immediately before the gas mixture is fed to the gas engine 42 and can be discharged. This increases the mixed gas quality and prevents harmful impurities in the gas engine.
  • Fig. 3 shows the direct current fixed bed gasifier in the stationary operating state with the biomass particle bed 50 in the gasifier tank 2 and in the gasifier component 6 and the position of the different reaction zones.
  • the oxidation zone OZ is formed directly below the open end 8 of the carburetor component 6.
  • the reduction zone RZ which extends to the grate 10, lies below the oxidation zone OZ.
  • the pyrolysis zone PZ extends over the oxidation zone OZ and the drying zone TZ forms the end.
  • the gasifier tank 2 is first filled with biomass particles via the feed 14 up to a desired level SP, so that the biomass bed 50 results.
  • the ignition device 20 By blowing in hot air by means of the ignition device 20, the biomass particles are ignited immediately below the open end 8 of the carburetor component 6, so that the oxidation zone OZ can form.
  • the ignition device 20 is switched off and combustion air L is now supplied via the air supply 16.
  • the product gas stream from the product gas outlet 24 is fed to the gas processing device 36.
  • the product gas quality is monitored in the gas processing device 36.
  • the product gas stream from the product gas discharge 24 is flared due to its poor quality in an exhaust gas torch (not shown).
  • the product gas is cooled in the gas processing device 36 and freed from solid and liquid impurities as far as possible.
  • the target level SP of the biomass particles in the carburetor component is monitored by the fill level sensor 18 and, if necessary, by the biomass particle conveyor 30, refilled 14 biomass particles via the first lock valve 28 and the feed.
  • Wood pellets or biomass pellets are particularly suitable for the fixed bed gasifier according to the present invention.
  • Kaolin is added to the biomass pellets during production, so that the finished pellets contain a kaolin fraction of 1% by mass to 5% by mass and preferably 1.5% by mass to 3% by mass.
  • the addition of kaolin increases the melting point of the ash obtained in the biomass gasification, so that clogging of the grate 10 or undesired accumulation of the ash on other components of the fixed bed gasifier is less likely or avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Fuel Combustion (AREA)

Description

Die Erfindung betrifft einen Gleichstrom-Festbettvergaser zum Erzeugen eines Produktgases aus schüttbaren Biomasseteilchen nach Anspruch 1, ein Verfahren zum Betreiben eines solchen Gleichstrom-Festbettvergasers nach Anspruch 14, ein Verfahren zum Anfahren eines solchen Gleichstrom-Festbettvergasers nach Anspruch 18 und ein Verfahren zum Herunterfahren eines solchen Gleichstrom-Festbettvergasers nach Anspruch 19.The invention relates to a direct current fixed bed gasifier for producing a product gas from pourable biomass particles according to claim 1, a method for operating such a direct current fixed bed gasifier according to claim 14, a method for starting up such a direct current fixed bed gasifier according to claim 18 and a method for shutting it down DC fixed bed gasifier according to claim 19.

Festbettvergaser zur Erzeugung eines brennbaren Produktgases aus Biomassepellets, insbesondere aus Hackschnitzel oder Holzpellets, zeichnen sich durch einen vergleichsweise einfachen Aufbau aus. Man unterscheidet Gegenstrom- und Gleichstromvergaser. Beim Gegenstromvergaser ist die Strömungsrichtung der Verbrennungsluft und des Produktgases einerseits und der Zuführrichtung der Biomasseteilchen entgegengesetzt und beim Gleichstromvergaser stimmt die Zuführrichtung der Biomasseteilchen mit der Strömungsrichtung von Verbrennungsluft und Produktgas überein. In Festbettvergasern werden verschiedene Reaktionszonen, nämlich Trocknungs-, Pyrolyse-, Oxidations- und Reduktionszone unterschieden, in denen verschiedene thermochemische Reaktionen ablaufen.Fixed bed gasifiers for generating a combustible product gas from biomass pellets, in particular from wood chips or wood pellets, are characterized by a comparatively simple structure. A distinction is made between countercurrent and cocurrent carburettors. In the case of the countercurrent gasifier, the flow direction of the combustion air and the product gas on the one hand and the feed direction of the biomass particles are opposite, and in the case of the co-current gasifier the feed direction of the biomass particles corresponds to the flow direction of the combustion air and product gas. Different reaction zones, namely drying, pyrolysis, oxidation and reduction zones, in which different thermochemical reactions take place, are distinguished in fixed bed gasifiers.

Eine Übersicht zum Thema Festbettvergasung von Biomasseteilchen ist aus dem Vortrag "Festbett-Vergasung -Stand der Technik (Überblick)" von Lettner, Haselbacher und Timmerer auf der Tagung " Thermo-chemische Biomasse-Vergasung für eine effiziente Strom/Kraftstoffbereitstellung - Erkenntnisstand 2007" im Februar 2007 in Leipzig (http://www.holzgasjournal.de/download/2_Stufen_vergaser_1.pdf ) bekannt. In dieser Übersicht ist ein Gleichstromschachtvergaser erläutert, bei dem die Biomasseteilchen von oben mit der Schwerkraft dem Vergaserbehälter zugeführt werden. Die Verbrennungsluft wird im mittleren Bereich über Düsen zugeführt und das Produktgas wird aus dem unteren Bereich des Vergaserbehälters abgezogen. In diesem bekannten Festbettvergaser bildet sich von oben nach unten die Trocknungs- Pyrolyse-, Oxidations- und Reduktionszone aus. Die Oxidationszone bildet sich im Bereich der Luftzuführung aus und soll auf diese Zone begrenzt bleiben, die Reduktionszone darunter, unmittelbar über dem Rost. Der Produktgasabzug erfolgt aus dem Bereich des Vergaserbehälters unter dem Rost in dem sich auch die durch den Rost fallende kleinteilige Asche ansammelt.An overview of fixed bed gasification of biomass particles can be found in the lecture "Fixed bed gasification - state of the art (overview)" by Lettner, Haselbacher and Timmerer at the conference " Thermochemical biomass gasification for efficient electricity / fuel supply - state of knowledge 2007 "in February 2007 in Leipzig (http://www.holzgasjournal.de/download/2_Stufen_vergaser_1.pdf ) known. In this overview, a DC shaft gasifier is explained, in which the biomass particles are gravity fed to the gasifier tank. The combustion air is fed through nozzles in the central area and the product gas is drawn off from the lower area of the carburettor tank. In this known fixed bed gasifier the drying, pyrolysis, oxidation and reduction zone is formed from top to bottom. The oxidation zone forms in the area of the air supply and should remain limited to this zone, the reduction zone below, directly above the grate. The product gas is extracted from the area of the carburettor tank under the grate, in which the small-part ash falling through the grate also collects.

Um eine stabile Prozessführung zur erhalten wird angestrebt, dass diese verschiedenen Zonen nahezu ortsfest im Vergaserbehälter sind. Bei Gleichstromvergasern wird die Lage der Oxidationszone durch die Lage der Luftzuführung mittels Düsen festgelegt. Die Luftzuführung mittels Düsen hat den Nachteil, dass im Bereich der Oxidationszone keine homogene Luftverteilung stattfindet und Temperaturunterschiede von bis zu 400 Grad lokal entstehen können. Dies kann zu Ablagerungen von Verbrennungsrückständen (Schlacke) an unerwünschten Orten im Vergaserraum führen, dies beeinträchtigt die Bewegung der Biomasseteilchen und verursacht eine inhomogene Gasströmung welche zu erhöhten Teerwerten im Produktgas führt.In order to maintain stable process control, the aim is that these different zones are almost stationary in the carburettor tank. In the case of direct current gasifiers, the position of the oxidation zone is determined by the position of the air supply by means of nozzles. The air supply by means of nozzles has the disadvantage that there is no homogeneous air distribution in the area of the oxidation zone and temperature differences of up to 400 degrees can occur locally. This can lead to deposits of combustion residues (slag) at undesirable locations in the gasification chamber, this affects the movement of the biomass particles and causes an inhomogeneous gas flow which leads to increased tar values in the product gas.

WO 2010/114400 A2 beschreibt einen Vergaser für feste Brennstoffe mit einem rohrförmigen Bauteil, durch das die Brennstoffe eingefüllt werden. Dabei handelt es sich nicht um einen Gleichstromvergaser, da einerseits die Luftzuführung von unten bzw. im mittleren Bereich des rohrförmigen Bauteils erfolgt und andererseits das Produktgas oben abgeführt wird. US 2007/01694411 A1 beschreibt einen Vergaser mit einem oben offenen rohrförmigen Vergaserbauteil, bei dem ebenfalls das Produktgas oberhalb des Rosts abgeführt wird. WO 2010/114400 A2 describes a carburetor for solid fuels with a tubular component through which the fuels are filled. This is not a direct current gasifier, since on the one hand the air is supplied from below or in the central area of the tubular component and on the other hand the product gas is removed at the top. US 2007/01694411 A1 describes a carburetor with a tubular carburetor component which is open at the top and in which the product gas is also removed above the grate.

WO 2008/006049 A2 beschreibt einen Vergaser, bei dem das Produktgas wie bei der vorliegenden Erfindung unten, unter dem Rost, abgeführt wird. Der Vergaser ist allerdings anders konstruiert: In der inneren Kammer des Vergasers befindet sich ein Rührwerk, das die Biomasse umrührt bzw. verwirbelt. Die Luftzuführung erfolgt durch einen Lufteinlass am äußeren Vergaserbauteil. WO 2008/006049 A2 describes a gasifier in which the product gas is discharged below under the grate as in the present invention. However, the carburetor is constructed differently: in the inner chamber of the carburetor there is an agitator that stirs or swirls the biomass. Air is supplied through an air inlet on the outer carburetor component.

Ausgehend von dem Gleichstrom-Festbettvergaser gemäß dem Vortrag "Festbett-Vergasung -Stand der Technik (Überblick)" ist es Aufgabe der vorliegenden Erfindung, einen Gleichstrom-Festbettvergaser sowie ein Verfahren zum Betreiben eines solchen Gleichstrom-Festbettvergasers anzugeben, bei dem schädliche Temperaturgradienten im Bereich der Oxidationszone vermieden werden. Weiter ist es Aufgabe der Erfindung, ein Verfahren zum Anfahren und zum Herunterfahren eines solchen Festbettreaktors anzugeben.Starting from the DC fixed bed gasifier according to the lecture "Fixed bed gasification - state of the art (overview)", it is an object of the present invention to provide a DC fixed bed gasifier and a method for operating such a DC fixed bed gasifier, in which harmful temperature gradients in the range the oxidation zone can be avoided. It is a further object of the invention to provide a method for starting up and shutting down such a fixed bed reactor.

Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1, 14, 18 bzw. 19.This object is achieved by the features of claims 1, 14, 18 and 19 respectively.

Dadurch, dass die Luftzufuhr durch die Biomasseteilchenschüttung in dem rohrförmigen Vergaserbauteil erfolgt, ergibt sich eine Gleichverteilung der Luft. Durch diese Gleichverteilung sind in der Oxidationszone kaum Temperaturunterschiede vorhanden. Dies hat zur Folge, dass auch Pyrolysegase, welche über der Oxidationszone entstehen, gleichmäßig durch die Oxidationszone strömen. Durch diese Gleichmäßigkeit der Gas und Luftströmungen lässt sich ein Produktgas mit geringen Teermengen erzeugen.The fact that the air is supplied through the biomass particle bed in the tubular gasifier component results in a uniform distribution of the air. This uniform distribution means that there are hardly any temperature differences in the oxidation zone. As a result, pyrolysis gases, which are generated above the oxidation zone, flow evenly through the oxidation zone. This uniformity of the gas and air flows enables a product gas to be produced with small amounts of tar.

Durch die Luftzufuhr von oben und den Abzug des Produktgases unten unterhalb des Rostes wird der Festbettvergaser nur von oben nach unten durchströmt. Hierbei bildet sich die Trocknungszone und die Pyrolysezone in dem Vergaserbauteil aus, das in den Vergaserbehälter hineinragt, die Oxidationszone bildet sich unter dem offenen Ende des Vergaserbauteils aus gefolgt von der Reduktionszone über dem Rost. Die örtliche Bindung der Oxidationszone erfolgt durch die Gasströmung von oben nach unten und mittels eines Querschnittsprungs zwischen Vergaserbauteil und Vergaserbehälter am offenen Ende des Vergaserbauteils, aus dem unterschiedliche Strömungsgeschwindigkeiten resultieren. Durch die Erweiterung des Querschnitts wird im Gegensatz zu herkömmlichen Festbettvergasern die Strömungsgeschwindigkeit verlangsamt. Herkömmliche Festbettvergaser haben unter der Oxidationszone eine Einschnürung, welche die Strömungsgeschwindigkeit des Gases erhöht. Durch die unterschiedlichen Strömungsgeschwindigkeiten innerhalb und außerhalb des rohrförmigen Vergaserbauteils wird die Oxidationszone quasi vor dem offenen Ende des rohrförmigen Vergaserbauteils fixiert.Due to the air supply from above and the extraction of the product gas below the grate, the fixed bed gasifier is only flowed through from top to bottom. Here, the drying zone and the pyrolysis zone form in the carburetor component that protrudes into the carburetor tank, the oxidation zone forms under the open end of the carburetor component, followed by the reduction zone above the grate. The oxidation zone is bound locally by the gas flow from top to bottom and by means of a cross-sectional jump between the carburetor component and the carburettor container at the open end of the carburetor component, which results in different flow velocities. In contrast to conventional fixed-bed gasifiers, the flow rate is slowed down by expanding the cross-section. Conventional fixed bed carburettors have a constriction under the oxidation zone, which increases the gas flow rate. Due to the different flow velocities inside and outside the tubular carburetor component, the oxidation zone is virtually fixed in front of the open end of the tubular carburetor component.

Ein weiterer Vorteil der Querschnittserweiterung besteht darin, dass die Pyrolysegase beim Durchströmen der Oxidationszone durch keine Rohrwandung begrenzt sind. An Rohrwandungen herrschen keine gleichmäßigen Strömungsverhältnisse und dadurch auch keine gleichmäßig hohen Temperaturen vor. Strömt Pyrolysegas am Rand einer Rohrwandung durch die Oxidationszone, wie dies im Stand der Technik der Fall ist, werden die langkettigen Kohlenwasserstoffe nicht vollständig aufgebrochen. Durch das nicht vorhanden sein der Rohrwandung, werden zusätzliche langkettige Kohlenwasserstoffverbindungen aufgebrochen, was zu einer Verbesserung der Motorfähigkeit des Produktgases führt.Another advantage of expanding the cross-section is that the pyrolysis gases are not limited by any tube walls when flowing through the oxidation zone. There are no uniform flow conditions on the pipe walls and therefore no uniformly high temperatures. If pyrolysis gas flows through the oxidation zone at the edge of a tube wall, as is the case in the prior art, the long-chain hydrocarbons are not broken up completely. Because the pipe wall is not present, additional long-chain hydrocarbon compounds are broken up, which leads to an improvement in the motor capability of the product gas.

Die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 2 bis 4 vereinfacht den Aufbau des Gleichstrom-Fettbettvergasers und ermöglicht eine gleichmäßige Luft- sowie Produktgasströmung mit einer temperatur-homogenen Oxidationszone die einen Großteil der langkettigen Kohlenwasserstoffverbindungen aufbricht und somit ein hochwertiges Produktgas erzeugt.The advantageous embodiment of the invention according to claims 2 to 4 simplifies the structure of the direct current grease bed gasifier and enables a uniform air and product gas flow with a temperature-homogeneous oxidation zone Most of the long-chain hydrocarbon compounds break up and thus produce a high-quality product gas.

Durch die vorteilhafte Ausgestaltung nach Anspruch 5 wird ein Zusetzen des Rostes verhindert, sowie eine Reduktion der Restagglomeration vorgenommen, was einen Ascheabzug durch den Rost als Partikelbeladung des Produktgases ermöglicht.The advantageous embodiment according to claim 5 prevents clogging of the grate and a reduction in residual agglomeration, which enables ash to be drawn off through the grate as particle loading of the product gas.

Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 6 entspricht der Abstand h des offenen Endes des Vergaserbauteils in etwa dem Durchmesser d des Vergaserbauteils. Dieses Optimum wurde empirisch aufgefunden. Wird der Abstand h kleiner als dieses Optimum, verkleinert sich die Reduktionszone, was sich negativ auf die Produktgasqualität auswirkt. Wird der Abstand h größer als dieses Optimum vergrößert sich die Reduktionszone, was sich ebenfalls ungünstig auf die Produktgasqualität auswirkt. Der Gleichstrom-Festbettvergaser funktioniert auch noch bei einem 40%igem Abweichen (h = d ± 40%) von dem Optimum, jedoch verschlechtert sich die Produktgasqualität und -ausbeute.According to the advantageous embodiment of the invention according to claim 6, the distance h of the open end of the carburetor component approximately corresponds to the diameter d of the carburetor component. This optimum was found empirically. If the distance h becomes smaller than this optimum, the reduction zone becomes smaller, which has a negative effect on the product gas quality. If the distance h is greater than this optimum, the reduction zone increases, which also has an unfavorable effect on the product gas quality. The DC fixed-bed carburettor still works with a 40% deviation (h = d ± 40%) from the optimum, but the product gas quality and yield deteriorate.

Je kleiner der Innendurchmesser d des Vergaserbauteils im Vergleich zum Innendurchmesser D des Vergaserbehälters ist, desto größer ist der Unterschied der Gasströmungsgeschwindigkeit innerhalb und außerhalb des rohrförmigen Vergaserbauteils. Wird der Geschwindigkeitsunterschied zu groß, reduziert sich die Brennstoff- und Materialeffizienz, wird der Geschwindigkeitsunterschied zu klein, ist die Strömungsgeschwindigkeit außerhalb des Vergaserbauteils zu hoch. Zusätzlich muss der Innendurchmesser d des rohrförmigen Vergaserbauteils so groß sein, dass sich im Vergaserbauteil eine Schüttung der Biomasseteilchen ausbilden kann. Das in Anspruch 7 angegebene empirisch aufgefundene Verhältnisintervall von Innendurchmesser D des Vergaserbehälters zu Innendurchmesser d des Vergaserbauteils ergeben einen funktionsfähigen Gleichstrom-Festbettvergaser.The smaller the inner diameter d of the carburetor component compared to the inner diameter D of the carburetor container, the greater the difference in the gas flow velocity inside and outside the tubular carburetor component. If the speed difference is too large, the fuel and material efficiency is reduced, if the speed difference is too small, the flow speed outside the carburetor component is too high. In addition, the inner diameter d of the tubular gasifier component must be large enough that a bed of the biomass particles can form in the gasifier component. The empirically found ratio interval of inner diameter D of the carburettor container to inner diameter d of the carburetor component, as found in claim 7, results in a functional direct current fixed bed carburetor.

Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 10 wird die Biomasseteilchen-Fördereinrichtung als Schleuse zur Zuführung der Biomasseteilchen in das rohrförmige Vergaserbauteil genutzt. Diese Ausgestaltung kann auch unabhängig von der vorliegenden Erfindung in anderen Festbettvergasern genutzt werden.Due to the advantageous embodiment of the invention according to claim 10, the biomass particle conveying device is used as a lock for feeding the biomass particles into the tubular carburetor component used. This configuration can also be used in other fixed bed gasifiers, independently of the present invention.

Das in dem Gleichstrom-Festbettvergaser erzeugte Produkt- bzw. Holzgas wird vorzugsweise in einem BHKW mit Verbrennungsmotor oder einer Brennstoffzelle zur Bereitstellung von elektrischer und thermischer Energie genutzt. Das in dem Gleichstrom-Festbettvergaser erzeugte Produktgas wird in einer nachgeschalteten Gasaufbereitungseinrichtung gekühlt und gereinigt. In der Gasmischstrecke des Verbrennungsmotors wird dieses gekühlte und gereinigte Produktgas mit im Vergleich zum dem Produktgas aus der Gasaufbereitungseinrichtung kalter Verbrennungsluft vermischt, wodurch eine weitere Abkühlung erfolgt. Diese weitere Abkühlung kann zu unerwünschtem Ausfallen von Feststoffen oder Flüssigkeiten und insbesondere von Teer führen. Durch das Vorsehen eines Kondensat-Abscheiders nach dem Zumischen von Verbrennungsluft zu dem Produktgas bzw. Holzgas, also unmittelbar vor der Verbrennung im Gasmotor werden diese festen und/oder flüssigen Ausfällungen abgeschieden und können somit im Gasmotor keinen Schaden anrichten - Anspruch 11. Diese Ausgestaltung kann auch unabhängig von der vorliegenden Erfindung in anderen Festbettvergasern genutzt werden.The product gas or wood gas generated in the direct current fixed bed gasifier is preferably used in a block-type thermal power station with an internal combustion engine or a fuel cell to provide electrical and thermal energy. The product gas generated in the direct current fixed bed gasifier is cooled and cleaned in a downstream gas treatment device. In the gas mixing section of the internal combustion engine, this cooled and cleaned product gas is mixed with combustion air which is cold in comparison to the product gas from the gas processing device, as a result of which further cooling takes place. This further cooling can lead to undesired precipitation of solids or liquids and in particular tar. By providing a condensate separator after the combustion air has been added to the product gas or wood gas, that is to say immediately before the combustion in the gas engine, these solid and / or liquid precipitates are separated off and can therefore not cause any damage in the gas engine - claim 11. This configuration can can also be used independently of the present invention in other fixed bed gasifiers.

Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 12 wird das Produktgas auf Temperaturen gekühlt, so dass es z. b. in einem BHKW als Treibstoff genutzt werden kann.Due to the advantageous embodiment of the invention according to claim 12, the product gas is cooled to temperatures, so that it z. b. can be used as fuel in a CHP.

Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 13 wird gewährleistet, dass die Biomasseteilchenschüttung im Vergaserbauteil hoch genug ist, um die durch die Biomasseteilchenschüttung strömende Luftmenge ausreichend und gleichmäßig vor der ersten Reaktionszone über den gesamten Querschnitt zu verteilen. Durch die kontinuierliche Zuführung von Verbrennungsluft über die Biomasseteilchenschüttung und der kontinuierlichen Abfuhr des Produktgases bleiben die verschiedenen Reaktionszonen des Gleichstrom-Festbettvergasers ortsfest und es bilden sich definierte Verhältnisse heraus.The advantageous embodiment of the invention according to claim 13 ensures that the biomass particle bed in the gasifier component is high enough to distribute the amount of air flowing through the biomass particle bed sufficiently and uniformly in front of the first reaction zone over the entire cross section. Due to the continuous supply of combustion air via the biomass particle bed and the continuous removal of the product gas, the various reaction zones of the direct current fixed bed gasifier remain stationary and defined conditions are formed.

Vorteilhaft ist die Verwendung von Biomassepellets als Biomasseteilchen - Anspruch 16.The use of biomass pellets as biomass particles is advantageous - claim 16.

Durch den Zusatz von Kaolin zu den Biomassepellets bei deren Herstellung erhöht sich der Schmelzpunkt der bei der Biomassevergasung anfallenden Asche, so dass ein Zusetzen des Rostes weniger wahrscheinlich ist bzw. vermieden wird - Anspruch 17. Derartige Pellets können auch unabhängig von der vorliegenden Erfindung in anderen Holzvergasern vorteilhaft eingesetzt werden.The addition of kaolin to the biomass pellets during their production increases the melting point of the ash produced in the biomass gasification, so that clogging of the grate is less likely or avoided - claim 17. Such pellets can also be used in others independently of the present invention Wood gasifiers can be used advantageously.

Das Verfahren zum Anfahren eines Gleichstrom-Festbettvergasers nach Anspruch 18 betrifft eine einfache und bevorzugte Art und Weise des Startens des mit Biomasseteilchen befüllten Gleichstrom-Festbettvergasers. Die Zündung der Biomasseteilchen erfolgt in vorteilhafter Weise durch das Einblasen von heißer Luft in den Bereich unter dem offenen Ende des rohrförmigen Vergaserbauteils. Die Temperatur der heißen Luft wird so gewählt, dass die Biomasseteilchen sicher gezündet werden.The method for starting a direct current fixed bed gasifier according to claim 18 relates to a simple and preferred way of starting the direct current fixed bed gasifier filled with biomass particles. The biomass particles are advantageously ignited by blowing hot air into the area under the open end of the tubular gasifier component. The temperature of the hot air is selected so that the biomass particles are ignited safely.

Dadurch, dass in dem Verfahren zum Herunterfahren eines Gleichstrom-Festbettvergasers nach Anspruch 19 die Biomassevergasung nach dem Beenden der Biomasseteilchenzufuhr fortgesetzt wird, sinkt der Pegel der Biomasseteilchenschüttung in dem rohrförmigen Vergaserbauteil ab und es verbleiben möglichst wenig unverbrauchte Biomasseteilchen. Würde nach dem Beenden der Luftzufuhr ein Großteil unverbrauchter Biomasseteilchen in dem rohrförmigen Vergaserbauteil verbleiben, würden diese Ausgasen und das feuchte Gas würde zum Aufquellen der darüber liegenden Biomasseteilchen führen. Dieses Aufquellen kann dann beim Wiederanfahren zu einer Verstopfung des rohrförmigen Vergaserbauteils führen.As a result of the fact that in the method for shutting down a direct current fixed bed gasifier according to claim 19, the biomass gasification is continued after the end of the supply of biomass particles, the level of the biomass particle bed in the tubular gasifier component drops and as little as possible unused biomass particles remain. If a large part of unused biomass particles would remain in the tubular gasifier component after the air supply had ended, these would outgas and the moist gas would lead to the swelling of the biomass particles above. This swelling can then lead to a blockage of the tubular carburetor component when restarting.

Die übrigen Unteransprüche beziehen sich auf weiter vorteilhafte Ausgestaltungen der Erfindung.The remaining subclaims relate to further advantageous embodiments of the invention.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung vorteilhafter Ausführungsformen anhand der Zeichnung.

  • Fig. 1 eine schematische Schnittdarstellung einer beispielhaften Ausgestaltung der Erfindung mit den wesentlichen Komponenten;
  • Fig. 2 eine schematische Darstellung der Kombination des Gleichstrom-Festbettvergasers nach Fig. 1 mit Gasaufbereitung und BHKW; und
  • Fig. 3 zeigt die Biomasseteilchenschüttung im Vergaser und die verschiedenen Reaktionszonen.
Further details, features and advantages of the invention result from the following description of advantageous embodiments with reference to the drawing.
  • Fig. 1 is a schematic sectional view of an exemplary embodiment of the invention with the essential components;
  • Fig. 2 is a schematic representation of the combination of the DC fixed bed gasifier Fig. 1 with gas conditioning and CHP; and
  • Fig. 3 shows the biomass particle bed in the gasifier and the different reaction zones.

Fig. 1 zeigt eine schematische Darstellung einer beispielhaften Ausgestaltung der Erfindung. Der Gleichstrom-Festbettvergaser gemäß der vorliegenden Erfindung umfasst einen rohrförmigen Vergaserbehälter 2, dessen Enden mit einem oberen Deckel 4 und einen unteren Deckel 5 verschlossen sind. Ein rohrförmiges Vergaserbauteil 6 mit einem offenen Ende 8 und einem geschlossenen Ende 9 ragt mit dem offenen Ende 8 in den Vergaserbehälter 2 hinein. Das geschlossene Ende 9 des Vergaserbauteils 6 ragt durch den oberen Deckel 4 aus dem Vergaserbehälter 2 heraus. Das offene Ende 8 des Vergaserbauteils 6 kommt in etwa in der Mitte des Vergaserbehälters 2 zu liegen. Im Abstand h unter dem offenen Ende 8 des Vergaserbauteils 6 ist ein drehbeweglicher Rost 10 angeordnet, der durch einen motorischen Antrieb 12, der den unteren Deckel 5 durchsetzt, periodisch bewegt werden kann. In das aus dem Vergaserbehälter 2 herausragende geschlossene Ende 9 des Vergaserbauteils 6 münden eine Zuführung für Biomasseteilchen 14, eine Luftzuführung 16 zur Zuführung von Verbrennungsluft L in den Vergaserbehälter 2 und ein Füllstandssensor 18, mit dem sich der Füllstand von Biomasseteilchen im rohrförmigen Vergaserbauteil 6 ermitteln und überwachen lässt. Im Bereich des offenen Endes 8 des Vergaserbauteils 6 ist eine Zündvorrichtung 20 und ein geschlossener Revisionsschacht 22 vorgesehen, die die Außenwand des Vergaserbehälters 2 durchdringen. Die Zündvorrichtung 20 dient zur Erzeugung von heißer Luft in einem Temperaturbereich zwischen 300°C und 600°C, um beim Anfahren des Gleichstrom-Festbettvergasers die Biomasseteilchen im Bereich des unter dem offenen Ende 8 des Vergaserbauteils, d. h. im Bereich der Oxidationszone zu entzünden. Die Zündvorrichtung 20 umfasst eine Luftdüse 21 für heiße Luft, die den Vergaserbehälter 2 durchsetzt. Durch die Luftdüse 21 aus Keramik werden die Teile der Zündvorrichtung 20, die innerhalb des Vergaserbehälters 2 angeordnet sind von den Teilen außerhalb des Vergaserbehälters 2 thermisch entkoppelt. Über dem Revisionsschacht 22 können bei Stillstand des Reaktors, Wartungsarbeiten, Reinigungsarbeiten im Reaktorbehälterinneren vorgenommen werden. Im Bereich unter dem Rost 10 wird über einen Produktgasabzug 24 Produktgas PG aus dem Vergaserbehälter 2 abgezogen. Die durch den Rost 10 fallende Asche wird durch den Produktgasstrom PG über den Produktgasabzug 24 aus dem Festbettvergaser ausgetragen. Fig. 1 shows a schematic representation of an exemplary embodiment of the invention. The DC fixed bed gasifier according to the present invention comprises a tubular gasifier tank 2, the ends of which are closed by an upper cover 4 and a lower cover 5. A tubular carburetor component 6 with an open end 8 and a closed end 9 projects with the open end 8 into the carburetor tank 2. The closed end 9 of the carburetor component 6 protrudes from the carburetor tank 2 through the upper cover 4. The open end 8 of the carburetor component 6 comes to lie approximately in the middle of the carburetor container 2. At a distance h below the open end 8 of the carburetor component 6 there is a rotatable grate 10 which can be moved periodically by a motor drive 12 which passes through the lower cover 5. A supply for biomass particles 14, an air supply 16 for supplying combustion air L into the carburetor container 2 and a fill level sensor 18, with which the fill level of biomass particles in the tubular carburetor component 6 are determined, open into the protruding end 9 of the carburetor component 6 can be monitored. In the area of the open end 8 of the carburetor component 6, an ignition device 20 and a closed inspection shaft 22 are provided, which penetrate the outer wall of the carburetor container 2. The ignition device 20 is used to generate hot air in a temperature range between 300 ° C. and 600 ° C. in order to ignite the biomass particles in the region under the open end 8 of the carburetor component, ie in the region of the oxidation zone, when the DC fixed-bed gasifier starts up. The ignition device 20 comprises an air nozzle 21 for hot air, which passes through the carburetor tank 2. Through the air nozzle 21 made of ceramic, the parts of the ignition device 20, which are arranged inside the carburetor container 2, are thermally decoupled from the parts outside the carburetor container 2. When the reactor is at a standstill, maintenance work and cleaning work can be carried out above the inspection shaft 22 in the interior of the reactor vessel. In the area under the grate 10, product gas PG is withdrawn from the carburetor container 2 via a product gas discharge 24. The ash falling through the grate 10 is discharged from the fixed bed gasifier through the product gas flow PG via the product gas discharge 24.

Sowohl der rohrförmige Vergaserbehälter 2 als auch das rohrförmige Vergaserbauteil 6 weisen einen kreisringförmigen Querschnitt auf und sind konzentrisch zueinander angeordnet. Das rohrförmige Vergaserbauteil 6 weist einen Innendurchmesser d auf, der kleiner ist als der Innendurchmesser D des rohrförmigen Vergaserbehälters 2.Both the tubular carburetor container 2 and the tubular carburetor component 6 have an annular cross section and are arranged concentrically to one another. The tubular carburetor component 6 has an inner diameter d that is smaller than the inner diameter D of the tubular carburetor tank 2.

Die Zuführung für Biomasseteilchen 14 ist über ein erstes Schleusenventil 28 mit einer Biomasseteilchenfördereinrichtung 30 in Form eines Schneckenförderers verbunden. Der Schneckenförderer 30 ist gasdicht mit einem Biomasseteilchenvorratsbehälter 32 verbunden der nach außen über ein zweites Schleusenventil 34 gasdicht gegenüber der Umgebung abgeschlossen ist. Durch die unmittelbare gasdichte Verbindung des Biomasseteilchenvorratsbehälters 32 mit dem Schneckenförderer 30 wirken diese beide Komponenten zwischen den beiden Schleusenventilen 28, 34 als Schleuse für die Zuführung von Biomasseteilchen in den Festbettvergaser.The feed for biomass particles 14 is connected via a first lock valve 28 to a biomass particle conveyor device 30 in the form of a screw conveyor. The screw conveyor 30 is gas-tightly connected to a biomass particle storage container 32, which is sealed gas-tight to the outside via a second lock valve 34. Due to the direct gas-tight connection of the biomass particle storage container 32 to the screw conveyor 30, these two components act between the two lock valves 28, 34 as a lock for the supply of biomass particles into the fixed bed gasifier.

Fig. 2 illustriert die Kombination des Festbettvergasers nach Fig. 1 mit einer nachgeschalteten Gasaufbereitungseinrichtung und einem BHKW. Das aus dem Produktgasabzug 24 austretende Produktgas PG wird einer Gasaufbereitungseinrichtung 36 zugeführt. In der Gasaufbereitungseinrichtung 36 wird das Produktgas in einem Wärmetauscher gekühlt und feste und flüssige Verunreinigungen werden soweit möglich abgeschieden. Fig. 2 illustrates the combination of the fixed bed gasifier Fig. 1 with a downstream gas treatment unit and a CHP. The product gas PG emerging from the product gas outlet 24 is fed to a gas processing device 36. In the gas processing device 36, the product gas is cooled in a heat exchanger and solid and liquid impurities are separated out as far as possible.

Über eine Produktgasleitung 38 wird das gekühlte und aufbereitete Produktgas aus der Produktgasaufbereitungseinrichtung 36 einer Gasmischstrecke 40 eines Gasmotors 42 zugeführt. Die Gasmischstrecke 40 umfasst auch eine Zuführung für Verbrennungsluft 44. Durch die Mischung von vergleichsweise kalter Außenluft und vergleichsweise heißem Produktgas aus der Produktgasaufbereitungseinrichtung 36 in einer Mischgasleitung 46 wird das entstehende Gasgemisch weiter gekühlt, so dass weiter flüssige Verunreinigungen ausfallen können. Diese flüssigen Verunreinigungen setzen sich in einem Kondensat-Abscheider 48 am Ende der Mischgasleitung 46 unmittelbar vor Zuführung des Gasgemisches zu dem Gasmotor 42 ab und können ausgeschleust werden. Hierdurch erhöht sich die Mischgasqualität und schädliche Verunreinigungen im Gasmotor werden vermieden.The cooled and conditioned product gas from the product gas treatment device 36 is fed to a gas mixing section 40 of a gas engine 42 via a product gas line 38. The gas mixing section 40 also includes a supply for combustion air 44. By mixing comparatively cold outside air and comparatively hot product gas from the product gas processing device 36 in In a mixed gas line 46, the resulting gas mixture is cooled further, so that further liquid contaminants can fail. These liquid contaminants settle in a condensate separator 48 at the end of the mixed gas line 46 immediately before the gas mixture is fed to the gas engine 42 and can be discharged. This increases the mixed gas quality and prevents harmful impurities in the gas engine.

Fig. 3 zeigt den Gleichstrom-Festbettvergaser im stationären Betriebszustand mit der Biomasseteilchenschüttung 50 im Vergaserbehälter 2 und im Vergaserbauteil 6 und die Lage der verschiedenen Reaktionszonen. Unmittelbar unter dem offenen Ende 8 des Vergaserbauteils 6 bildet sich die Oxidationszone OZ aus. Unter der Oxidationszone OZ liegt die Reduktionszone RZ, die sich bis zum Rost 10 erstreckt. Über der Oxidationszone OZ erstreckt sich die Pyrolysezone PZ und den Abschluss bildet die Trocknungszone TZ. Fig. 3 shows the direct current fixed bed gasifier in the stationary operating state with the biomass particle bed 50 in the gasifier tank 2 and in the gasifier component 6 and the position of the different reaction zones. The oxidation zone OZ is formed directly below the open end 8 of the carburetor component 6. The reduction zone RZ, which extends to the grate 10, lies below the oxidation zone OZ. The pyrolysis zone PZ extends over the oxidation zone OZ and the drying zone TZ forms the end.

Zum Anfahren des Gleichstrom-Festbettvergasers wird der Vergaserbehälter 2 über die Zuführung 14 zunächst bis zu einem Sollpegel SP mit Biomasseteilchen gefüllt, so dass sich die Biomasseschüttung 50 ergibt. Durch das Einblasen heißer Luft mittels der Zündvorrichtung 20 werden die Biomasseteilchen unmittelbar unter dem offenen Ende 8 des Vergaserbauteils 6 entzündet, so dass sich die Oxidationszone OZ ausbilden kann. Sobald die Verbrennung der Biomasseteilchen in der Oxidationszone OZ selbsterhaltend ist, wird die Zündvorrichtung 20 abgeschaltet und bereits zuvor wird nunmehr Verbrennungsluft L über die Luftzuführung 16 zugeführt. Durch die in der Oxidationszone OZ frei werdende Verbrennungswärme bilden sich nach und nach die übrigen Reaktionszonen aus. Der Produktgasstrom aus dem Produktgasabzug 24 wird der Gasaufbereitungseinrichtung 36 zugeführt. In der Gasaufbereitungseinrichtung 36 wird die Produktgasqualität überwacht. Während des Anfahrens wird der Produktgasstrom aus dem Produktgasabzug 24 aufgrund seiner schlechten Qualität in einer Abgasfackel (nicht dargestellt) abgefackelt. Sobald sich eine ausreichende Produktgasqualität eingestellt hat, wird das Produktgas in der Gasaufbereitungseinrichtung 36 gekühlt und soweit wie möglich von festen und flüssigen Verunreinigungen befreit. Während des stationären Betriebs wird der Sollpegel SP der Biomasseteilchen in dem Vergaserbauteil durch den Füllstandsensor 18 überwacht und falls nötig werden über die Biomasseteilchenfördereinrichtung 30, über das erste Schleusenventil 28 und die Zuführung 14 Biomasseteilchen nachgefüllt.To start up the DC fixed-bed gasifier, the gasifier tank 2 is first filled with biomass particles via the feed 14 up to a desired level SP, so that the biomass bed 50 results. By blowing in hot air by means of the ignition device 20, the biomass particles are ignited immediately below the open end 8 of the carburetor component 6, so that the oxidation zone OZ can form. As soon as the combustion of the biomass particles in the oxidation zone OZ is self-sustaining, the ignition device 20 is switched off and combustion air L is now supplied via the air supply 16. As a result of the heat of combustion released in the oxidation zone OZ, the remaining reaction zones gradually form. The product gas stream from the product gas outlet 24 is fed to the gas processing device 36. The product gas quality is monitored in the gas processing device 36. During the start-up, the product gas stream from the product gas discharge 24 is flared due to its poor quality in an exhaust gas torch (not shown). As soon as a sufficient product gas quality has been established, the product gas is cooled in the gas processing device 36 and freed from solid and liquid impurities as far as possible. During stationary operation, the target level SP of the biomass particles in the carburetor component is monitored by the fill level sensor 18 and, if necessary, by the biomass particle conveyor 30, refilled 14 biomass particles via the first lock valve 28 and the feed.

Beim Herunterfahren des Festbettvergasers wird zunächst die Zufuhr von Biomasseteilchen beendet, so dass der Pegel der Biomasseteilchen im Vergaserbauteil 6 unter den Sollpegel SP absinkt. Würde nach dem Beenden der Luftzufuhr ein Großteil unverbrauchter Biomasseteilchen in dem rohrförmigen Vergaserbauteil verbleiben, würden diese Ausgasen und das feuchte Gas würde zum Aufquellen der darüber liegenden Biomasseteilchen führen. Dieses Aufquellen kann dann beim Wiederanfahren zu einer Verstopfung des rohrförmigen Vergaserbauteils führen. Ist ein minimaler Biomasseteilchen-Pegel MP erreicht, werden die Luftzufuhr und die Gasproduktion beendet. Dieser minimale Pegel MP entspricht in etwa der Obergrenze der Pyrolysezone PZ im stationären Betriebszustand. Auf diese Weise verbleiben möglichst wenig unverbrauchte Biomasseteilchen im Vergaserbehälter 2 und im Vergaserbauteil 6.When the fixed bed gasifier is shut down, the supply of biomass particles is first stopped, so that the level of the biomass particles in the gasifier component 6 drops below the desired level SP. If a large part of unused biomass particles would remain in the tubular gasifier component after the air supply had ended, these would outgas and the moist gas would lead to the swelling of the biomass particles above. This swelling can then lead to a blockage of the tubular carburetor component when restarting. When a minimum biomass particle level MP is reached, the air supply and gas production are stopped. This minimum level MP corresponds approximately to the upper limit of the pyrolysis zone PZ in the stationary operating state. In this way, as few unused biomass particles as possible remain in the gasifier container 2 and in the gasifier component 6.

Besonders geeignet für den Festbettvergaser gemäß der vorliegenden Erfindung sind Holzpellets oder Biomassepellets. Den Biomassepellets wird bei der Herstellung Kaolin zugesetzt wird, so dass die fertigen Pellets einen Kaolinanteil von 1 Ma% bis 5 Ma% und vorzugsweise von 1,5 Ma% bis 3 Ma% enthalten. Durch den Kaolinzusatz erhöht sich der Schmelzpunkt der bei der Biomassevergasung anfallenden Asche, so dass ein Zusetzen des Rostes 10 oder eine unerwünschte Anlagerung der Asche an sonstigen Komponenten des Festbettvergasers weniger wahrscheinlich ist bzw. vermieden wird.Wood pellets or biomass pellets are particularly suitable for the fixed bed gasifier according to the present invention. Kaolin is added to the biomass pellets during production, so that the finished pellets contain a kaolin fraction of 1% by mass to 5% by mass and preferably 1.5% by mass to 3% by mass. The addition of kaolin increases the melting point of the ash obtained in the biomass gasification, so that clogging of the grate 10 or undesired accumulation of the ash on other components of the fixed bed gasifier is less likely or avoided.

Bezugszeichenliste:Reference symbol list:

LL
Luftair
PGPG
ProduktgasProduct gas
SPSP
Biomasseteilchen-SollpegelBiomass particle target level
MPMP
minimaler Biomasseteilchen-Pegel beim Herunterfahrenminimum biomass particle level on shutdown
dd
Innendurchmesser Vergaserbauteil 6Inner diameter of carburetor component 6
DD
Innendurchmesser Vergaserbehälter 2Inner diameter of carburetor tank 2
TZTZ
TrockenzoneDrying zone
PZPZ
PyrolysezonePyrolysis zone
OZOZ
OxidationszoneOxidation zone
RZRZ
ReduktionszoneReduction zone
22nd
VergaserbehälterCarburettor tank
44th
oberer Deckelupper lid
55
unterer Deckellower lid
66
VergaserbauteilCarburetor component
88th
offenes Ende von 6open end of 6
99
geschlossenes Ende von 6closed end of 6
1010th
Rostrust
1212
motorischer Rostantriebmotorized grate drive
1414
Zuführung für BiomasseteilchenFeeder for biomass particles
1616
LuftzuführungAir supply
1818th
FüllstandsensorLevel sensor
2020th
ZündvorrichtungIgniter
2121st
Luftdüse aus KeramikCeramic air nozzle
2222
RevisionsschachtInspection shaft
2424th
ProduktgasabzugProduct gas discharge
2828
erstes Schleusenventilfirst lock valve
3030th
Biomasseteilchenfördereinrichtung, SchneckenfördererBiomass particle conveyor, screw conveyor
3232
BiomasseteilchenvorratsbehälterBiomass particle storage container
3434
zweites Schleusenventilsecond lock valve
3636
GasaufbereitungseinrichtungGas processing facility
3838
ProduktgasleitungProduct gas line
4040
GasmischstreckeGas mixing section
4242
GasmotorGas engine
4444
VerbrennungsluftzufuhrCombustion air supply
4646
MischgasleitungMixed gas line
4848
Kondensat-AbscheiderCondensate separator
5050
BiomasseteilchenschüttungBiomass particle filling

Claims (19)

  1. Cocurrent fixed-bed gasifier for producing a product gas from pourable biomass particles (50), comprising
    a gasifier vessel (2),
    a feed conduit (14) for the biomass particles in the upper region of the gasifier vessel (2),
    a grating (10) located in the lower region of the gasifier vessel (2) for supporting the biomass particles (50),
    an air feed conduit (16) for introducing combustion air into the gasifier vessel (2),
    a product gas offtake (24) leading out from the region under the grating (10) of the gasifier vessel (2) for discharging the product gas from the gasifier vessel, and
    a tubular gasifier component (6) which projects into the gasifier vessel (2),
    where the tubular gasifier component (6) has an open end (8) which is arranged in the gasifier vessel (2),
    where the tubular gasifier component (6) has a closed end (9) which projects out of the gasifier vessel (2) or ends flush with the upper side of the gasifier vessel (2),
    where the internal diameter (d) of the tubular gasifier component (6) is smaller than the internal diameter (D) of the gasifier vessel (2), where the tubular gasifier component (6) is arranged in the gasifier vessel (2) in such a way that a spacing (h) remains between the open end (2) of the tubular gasifier component (6) and the grating (10), and
    where the feed conduit (14) for the biomass particles opens into the closed end (9) of the tubular gasifier component (6),
    characterized in that the air feed conduit (16) opens into the closed end (9) of the tubular gasifier component (6).
  2. Cocurrent fixed-bed gasifier according to Claim 1, characterized in that the gasifier vessel (2) and/or the tubular gasifier component (6) has a circular cross section.
  3. Cocurrent fixed-bed gasifier according to Claim 2, characterized in that the tubular gasifier component (6) has its circular cross section arranged coaxially with the gasifier vessel (2) having a circular cross section.
  4. Cocurrent fixed-bed gasifier according to either of the preceding Claims 2 and 3, characterized in that the tubular gasifier component (6) and/or the gasifier vessel (2) have a constant diameter.
  5. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized in that the grating (10) is movable and in particular rotatable.
  6. Fixed-bed gasifier according to any of the preceding claims, characterized in that the spacing (h) between the open end (8) of the tubular gasifier component (6) and the grating (10) and the internal diameter (d) of the tubular gasifier component (6) obey the following relationship: h = d ± 10 % .
    Figure imgb0002
  7. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized in that the internal diameter (d) of the tubular gasifier component is from 80% to 50% of the internal diameter (D) of the gasifier vessel.
  8. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized in that an ignition device (20) penetrates the gasifier vessel (2) in the region of the open end (8) of the tubular gasifier component (6).
  9. Cocurrent fixed-bed gasifier according to Claim 8, characterized in that the ignition device (20) comprises an injection device for hot air.
  10. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized by a biomass particle store (32) which is coupled to a biomass particle transport device (30), where the biomass particle transport device (30) is connected via a gastight shutoff device (28) to the feed conduit (14) for biomass particles and the biomass particle store (32) comprises a gastight charging opening (34).
  11. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized in that a gas treatment device (36) is located downstream of the product gas offtake (24), in that the gas treatment device (36) is connected via a product gas conduit (38) to a gas mixing section (40) of an internal combustion engine (42), in that the gas mixing section (40) comprises a combustion air feed conduit (44) and in that a condensate precipitate (48) is arranged in a mixed gas conduit (46) for combustion air (L) and product gas (PG).
  12. Cocurrent fixed-bed gasifier according to Claim 11, characterized in that the gas treatment device (36) comprises a heat exchanger for cooling the product gas (PG).
  13. Cocurrent fixed-bed gasifier according to any of the preceding claims, characterized in that a control device which controls the biomass particle transport device (30) and has a fill level sensor (18) for measuring the fill level (SP) of the biomass particles (50) in the tubular gasifier component (6) is provided.
  14. Method for operating a cocurrent fixed-bed gasifier according to any of the preceding claims, comprising the process steps:
    - setting and maintaining a particular fill level (SP) of biomass particles in the tubular gasifier component (6),
    - continuously introducing air (L) via the air feed conduit (16) and
    - continuously taking off product gas (PG) via the product gas offtake (24).
  15. Method according to Claim 14, characterized in that the grating (10) is moved at time intervals.
  16. Method according to Claim 14 or 15, characterized in that biomass pellets are used as biomass particles.
  17. Method according to Claim 16, characterized in that the biomass particles have a kaolin content of from 1% by mass to 5% by mass and preferably from 1.5% by mass to 3% by mass.
  18. Method for starting up a cocurrent fixed-bed gasifier according to any of Claims 1 to 13, comprising the process steps:
    - charging the gasifier component (6) with biomass particles up to a predetermined height (SP); and
    - igniting the biomass particles by blowing hot air having a temperature of greater than 300°C into the region of the biomass particle bed (50) underneath the open end (8) of the tubular gasifier component (6).
  19. Method for running down a cocurrent fixed-bed gasifier according to any of Claims 1 to 13, comprising the process steps:
    - stopping the introduction of biomass particles,
    - continuing the introduction of combustion air (L) for a predetermined period or until the fill level of biomass particles has dropped to a prescribed minimum level, and
    - stopping the introduction of combustion air (L).
EP15808371.7A 2014-12-08 2015-12-07 Co-current fixed bed gasifier for producing a product gas from biomass particulates Active EP3230412B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225166.4A DE102014225166A1 (en) 2014-12-08 2014-12-08 DC fixed-bed gasifier for producing a product gas from pourable biomass particles
PCT/EP2015/078888 WO2016091835A1 (en) 2014-12-08 2015-12-07 Downdraft fixed-bed gasifier for generating a product gas from pourable biomass particles

Publications (2)

Publication Number Publication Date
EP3230412A1 EP3230412A1 (en) 2017-10-18
EP3230412B1 true EP3230412B1 (en) 2020-06-10

Family

ID=54849605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15808371.7A Active EP3230412B1 (en) 2014-12-08 2015-12-07 Co-current fixed bed gasifier for producing a product gas from biomass particulates

Country Status (5)

Country Link
US (1) US20170275543A1 (en)
EP (1) EP3230412B1 (en)
DE (1) DE102014225166A1 (en)
EA (1) EA034879B1 (en)
WO (1) WO2016091835A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208923B4 (en) * 2015-05-13 2019-01-03 Entrade Energiesysteme Ag Cyclone separator and fixed bed gasifier for producing a product gas from carbonaceous feedstocks with such a cyclone separator
US11215360B2 (en) * 2015-08-18 2022-01-04 Glock Ökoenergie Gmbh Method and device for drying wood chips
DE202016107341U1 (en) * 2016-12-23 2018-04-03 Entrade Engergiesysteme Ag DC fixed-bed gasifier
DE102017213195A1 (en) 2017-07-31 2019-01-31 Entrade Energiesysteme Ag Grate device for a fixed bed gasifier for producing a product gas from pourable carbonaceous feedstocks, fixed bed gasifier with such a grate device and use of such a fixed bed gasifier
DE102017213189B4 (en) 2017-07-31 2020-07-23 Rosmarin Holdings Limited A method of treating fibrous organic waste that is produced in the production of palm oil and a method of operating a fixed bed gasifier to generate a product gas with such waste
EP3662038A1 (en) 2017-07-31 2020-06-10 Rosmarin Holdings Limited Process for processing of organic solids as a fuel for fixed bed gasifiers and a process for operating a fixed bed gasifier for producing a product gas with such processed organic solids
DE102018205115B4 (en) 2018-04-05 2021-10-14 Rosmarin Holdings Limited Fixed bed gasifier for generating a product gas from pourable biomass particles
US11713426B2 (en) * 2020-01-07 2023-08-01 V-Grid Energy Systems, Inc. Systems for automatic solids flow in a gasifier
CN113604253A (en) * 2021-08-06 2021-11-05 合肥工业大学 Poly-generation device for efficiently cleaning carbon and gas by biomass
DE202022105034U1 (en) 2022-09-07 2023-12-15 Wegscheidentrenco Gmbh screw carburetor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169411A1 (en) * 2006-01-25 2007-07-26 Thiessen Randall J Rotating bed gasifier

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE252797C (en) *
CH48321A (en) * 1909-06-12 1910-10-01 Dresdner Gasmotorenfabrik Vorm Method and apparatus for producing fuel gas from bituminous fuels
DE918885C (en) * 1951-08-03 1954-10-07 Georg Knaus Shaft gas generator, in particular wood gas generator, with a filling shaft arranged in the gas generator jacket
US5318602A (en) * 1991-11-26 1994-06-07 Helmut Juch Fuel gas generator for lean gas generation
JPH1096507A (en) * 1996-08-02 1998-04-14 Yamaichi Kinzoku Kk Waste resin-processing burner
GB0325668D0 (en) * 2003-11-04 2003-12-10 Dogru Murat Intensified and minaturized gasifier with multiple air injection and catalytic bed
DE102005028377B4 (en) * 2005-06-20 2013-07-25 Bernd Joos Device for producing a combustible gas mixture
US20080098653A1 (en) * 2006-07-06 2008-05-01 The Board Of Regents For Oklahoma State University Downdraft gasifier with internal cyclonic combustion chamber
FI122109B (en) * 2006-11-17 2011-08-31 Leo Ruokamo Method for gasification of fuel and gasification generator
PL213400B1 (en) * 2009-03-30 2013-02-28 Inst Energetyki Method and gas generator for gasification of solid fuel with low calorification value, preferably biomass with wide spectrum of humidity
DE202010013745U1 (en) * 2010-02-05 2010-12-30 Pyrox Gmbh Manhole carburetor for producing fuel gas from a solid fuel
DE202012002872U1 (en) * 2012-03-20 2013-06-21 Stadtwerke Rosenheim Gmbh & Co. Kg biomass gasifier
KR101218976B1 (en) * 2012-06-26 2013-01-09 한국에너지기술연구원 Gasification system for a combination of power generation and combustion boiler with variable gasifier and operation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070169411A1 (en) * 2006-01-25 2007-07-26 Thiessen Randall J Rotating bed gasifier

Also Published As

Publication number Publication date
EA201791272A1 (en) 2017-11-30
EA034879B1 (en) 2020-04-01
WO2016091835A1 (en) 2016-06-16
US20170275543A1 (en) 2017-09-28
EP3230412A1 (en) 2017-10-18
DE102014225166A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3230412B1 (en) Co-current fixed bed gasifier for producing a product gas from biomass particulates
EP0136255B1 (en) Reactor for producing generatorgas from combustible waste products
EP2536811B1 (en) Gasification device and gasification method
DE102011088628B4 (en) Method and apparatus for entrained flow gasification of solid fuels under pressure
EP1261827B1 (en) Reactor and method for gasifying and/or melting materials
CH615215A5 (en)
EP0309387A2 (en) Process and apparatus for the production of generator gas and activated carbon from solid fuels
EP2563881B1 (en) Method for gasifying biomass
DE102016121046B4 (en) Duplex-TEK multistage gasifier
EP2641958B1 (en) Biomass gasifier
DE202006009174U1 (en) Apparatus for producing fuel gas from a solid fuel
WO2010057458A2 (en) Apparatus in the form of a moving bed carburetor and method for operating the same in an arrangement for the thermal decomposition of waste products and waste materials
EP2451904A2 (en) Reactor for generating a product gas by allothermic gasification of carbonaceous raw materials
DE102013015920B4 (en) Device in the form of a 3-zone carburetor and method for operating such a carburetor for the thermal conversion of waste products and wastes
EP0126408A2 (en) Gas converter
EP3088492B1 (en) Method and device for the gasification of biomass
DE202016101023U1 (en) Tubular carburetor component and DC fixed-bed gasifier for producing a product gas from flowable biomass particles with such a carburetor component
DE202016106184U1 (en) Duplex-TEK multistage gasifier
DE2747571A1 (en) Continuous reducing gas mixt. prodn. - from solid fuel using a vertical three-zone gasifier
DE102008026252A1 (en) Method for autothermal gasification of hard carbonaceous gasification product, in internal combustion engine, involves providing gasification agent that is not mixed with burning material such that isolated coke bed is formed
DE8328140U1 (en) Reactor device for producing generator gas from combustible waste products
EP2851410A1 (en) Biomass gasification installation
DE102006058673A1 (en) Weak gas producing device for energy production, has helical conveyor i.e. agitation device, and inner wall of reactors arranged for maximum temperature adapted materials obtained in thermal processes
EP0531778A1 (en) Co-current gasifier
DE4427860A1 (en) Fluidised bed generator for burning or gasification of coal

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180417

19U Interruption of proceedings before grant

Effective date: 20181217

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20190701

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROSMARIN HOLDINGS LIMITED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012777

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012777

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231227

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9

Ref country code: AT

Payment date: 20231219

Year of fee payment: 9