EP3227056B1 - Hand-held power tool - Google Patents

Hand-held power tool Download PDF

Info

Publication number
EP3227056B1
EP3227056B1 EP15802103.0A EP15802103A EP3227056B1 EP 3227056 B1 EP3227056 B1 EP 3227056B1 EP 15802103 A EP15802103 A EP 15802103A EP 3227056 B1 EP3227056 B1 EP 3227056B1
Authority
EP
European Patent Office
Prior art keywords
cam
bending spring
angular position
hand
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15802103.0A
Other languages
German (de)
French (fr)
Other versions
EP3227056A1 (en
Inventor
Oliver Ohlendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP3227056A1 publication Critical patent/EP3227056A1/en
Application granted granted Critical
Publication of EP3227056B1 publication Critical patent/EP3227056B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/062Means for driving the impulse member comprising a wobbling mechanism, swash plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/005Arrangements for adjusting the stroke of the impulse member or for stopping the impact action when the tool is lifted from the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D16/006Mode changers; Mechanisms connected thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/06Hammer pistons; Anvils ; Guide-sleeves for pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0088Arrangements for damping of the reaction force by use of counterweights being mechanically-driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0092Arrangements for damping of the reaction force by use of counterweights being spring-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/045Cams used in percussive tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/245Spatial arrangement of components of the tool relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/371Use of springs
    • B25D2250/381Leaf springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • the present invention relates to a chisel hand tool according to the preamble of claim 1, which includes a damper for reducing vibrations.
  • a hand tool is from the US 2011/0017483 A1 known.
  • the hand tool has a tool holder for holding a tool on a working axis, a pneumatic impact mechanism for applying shocks to the tool and a damper from a transverse to the working axis bending spring and a mass body.
  • a countershaft is driven by a rotation axis parallel to the working axis through the motor.
  • On the countershaft a wobble drive for driving the pneumatic impact mechanism is arranged.
  • a cam disc with a cam extending in a direction parallel to the working direction of the starting cam is arranged on the countershaft.
  • the spiral spring has provided counterpart to the cam. The cam biases adjacent to the counterpart of the spiral spring in the direction of advance.
  • the absorber is triggered by the rotating cam.
  • the abutment takes place at the resting position of the spiral spring when the absorber is at a standstill or when the absorber has not yet completely settled.
  • the cam periodically forces a minimum deflection of the absorber.
  • the absorber excited by the vibrations and the hand tool can deflect more.
  • the abutment is synchronized with the movement of the striking mechanism and thus the vibrations of the power tool.
  • the cam disc is non-contact with the bending spring when the cam and the counterpart are in diametrical angular position relative to the axis of rotation.
  • the cam disc dissolves with each revolution of the cam about the axis of rotation once by the spiral spring, so that the absorber can oscillate freely at least during this phase.
  • the absorber releases for at least 50% of an oscillation, ie, without contact with the cam and only driven by the inertia of the mass.
  • the mass body is guided by the spiral spring on a curved path.
  • the flexure spring may be attached to the machine housing at a first end and secured to a second end of the mass body, wherein the first end and the second end are diametrically disposed from the countershaft.
  • the projection may be at a distance from the first end which corresponds to between 30% and 50% of the distance of the first end to the second end.
  • An embodiment provides that a maximum deflection of the spiral spring from a rest position by the voltage applied to the counterpart cam is between 1 degree and 5 degrees.
  • the cam has a helical flank facing the spiral spring, which rises in the direction of feed via a central angle between 30 degrees and 90 degrees.
  • the counterpart may have a helical flank facing the cam, which rises in the opposite direction to the starting direction via a central angle between 30 degrees and 90 degrees.
  • the force applied to the absorber during abutment force is preferably kept low. This avoids suggestions of higher harmonic oscillations in the spiral spring.
  • the pneumatic chamber of the striking mechanism is maximally compressed when the countershaft angle is set.
  • the cam at the time assumes a specific position relative to the projection, which depends on the arrangement of the cam before or after the bending spring. If the cam is in front of the spiral spring, the cam and the projection are in the same angular position with respect to the axis of rotation, i. The cam can maximally deflect the projection. When the cam is positioned after the bending spring, the cam and projection are diametrically opposed to the axis of rotation, i. offset by 180 degrees.
  • the absorber is optimally tuned to the movement of the impact mechanism.
  • the wobble drive is at a first angular position of the countershaft in a dead center away from the tool.
  • the cam is at a second angular position in a bending spring maximally deflecting angular position. If the cam is arranged on the side facing away from the tool of the bending spring, the second angular position can advantageously follow between 95 degrees and 115 degrees to the first angular position. If the cam is arranged on the tool facing side of the spiral spring, the first angular position can advantageously follow between 65 degrees and 85 degrees to the second angular position.
  • Fig. 1 shows an exemplary hammer drill 1.
  • the hammer drill 1 has a tool holder 2, which along a working axis 3 a drill bit 4, a chisel or other tool can accommodate.
  • a motor 5 can drive the tool holder 2 in rotation about the working axis 3 .
  • a striking mechanism 6 can also exert on the lying in the tool holder 2 tool periodically blows in the direction of impact 7 along the working axis 3 for chiseling operation.
  • the striking mechanism 6 is driven by the motor 5 .
  • the user takes the motor 5 with a main switch 8 in operation.
  • the motor 5 and the striking mechanism 6 are arranged in a machine housing 9 .
  • a battery pack or a power line provide the motor 5 with electrical power.
  • the user can guide the hammer drill 1 with a handle 10 which is fixed to the machine housing 9 .
  • the hammer drill 1 has a shiftable transmission with a countershaft 11.
  • the countershaft 11 is rotatably mounted about an axis of rotation 12 .
  • the axis of rotation 12 is parallel to the working axis 3.
  • the motor 5 meshes with a drive pinion 13 on the countershaft 11 and drives the countershaft 11 permanently.
  • the countershaft 11 transmits the torque to a wobble drive 14 for the striking mechanism 6 and a rotary drive 15 for the tool holder 2.
  • the exemplary transmission allows the rotary drive of the tool holder 2 on and off.
  • a shift sleeve 16 is axially movable on the countershaft 11 between a first position and a second position.
  • the shift sleeve 16 In the first illustrated position engages an internal toothing of the shift sleeve 16 in a toothing 17 of the countershaft 11 , in a second position, the shift sleeve 16 is disengaged.
  • the shift sleeve 16 is in permanent engagement with a ring gear 18, which is coupled to the rotary drive 15 and the tool holder 2 .
  • a shift knob allows the user to move the shift sleeve 16 between the two positions.
  • An analog shift sleeve can be arranged on the countershaft 11 for connecting and disconnecting the wobble drive.
  • the wobble drive 14 converts the rotational movement of the countershaft 11 into a periodic, linear movement for the striking mechanism 6 .
  • the wobble drive 14 includes a swash plate 19 and a wobble finger 20.
  • the exemplary swash plate 19 includes a rolling bearing with an inner ring driven by the countershaft 11 and an outer ring connected to the wobble finger 20 .
  • the outer ring is rotatable relative to the inner ring about an axis inclined to the axis of rotation 12 , but inhibited by the applied to the percussion 6 tumble finger 20 against rotation about the axis of rotation 12 .
  • the driven inner ring forces the outer ring and the wobble finger 20 to a periodic pivotal movement in a plane E spanned by the axis of rotation 12 of the countershaft 11 and the working axis 3 about a pivot axis which passes through the axis of rotation 12 and perpendicular to the plane spanned E.
  • the pneumatic percussion 6 has an exciter piston 21 and a racket 22, both of which are guided in a guide tube 23 of the impact mechanism 6 coaxial with the working axis 3 .
  • the exciter piston 21 is connected to the wobble finger 20 .
  • the pivoting movement of the wobble finger 20 translates into a periodic linear movement of the excitation piston 21.
  • An air spring formed by a pneumatic chamber 24 between the excitation piston 21 and the racket 22 couples a movement of the racket 22 to the movement of the exciter piston 21 ( Fig. 8 ).
  • the racket 22 may strike directly on a rear end of the drill 4 or indirectly via a substantially resting intermediate racket 25 transmit a portion of its pulse to the drill 4 .
  • the impact rate of the hammer mechanism 6 is equal to the rotational speed of the countershaft. 11
  • the periodically striking mechanism 6 generates vibrations in the machine housing 9 , which the user perceives as vibrations of the handle 10 .
  • the vibrations lead to early fatigue of the user and can cause damage to health under excessive load.
  • the handle 10 may be connected to the vibration reduction via damping elements 26 to the machine housing 9 .
  • the damping elements 26 in particular reduce high-frequency components of the vibrations and convert them into heat.
  • the damping elements 26 are preferably made of open-cell polymer foams. The effectiveness of the damping elements 26 are limited.
  • the guiding of the power tool 1 requires a stable and rigid connection of the handle 10 to the machine housing 9, while for an ideal damping a loose and soft connection would be advantageous.
  • the exemplary hammer drill 1 has a damper 27 to reduce the vibration .
  • the damper 27 has a mass body 28 and a bending spring 29.
  • the mass body 28 is held only by the bending spring 29 and is preferably unguided otherwise.
  • the mass body 28 can move along the working axis 3 on a curved path, approximately a circular path, back and forth.
  • the curved path is preferably located in a plane spanned by the working axis 3 and the axis of rotation 12 of the countershaft 11 E (image plane of Fig. 2 ).
  • the absorber 27 has a rest position 30 (shown in FIG Fig. 2 ), in which the mass body 28 and the bending spring 29 return when no force is applied to the absorber 27 .
  • the mass body 28 can be deflected out of the rest position 30 on the curved path (cf. FIG. 3 and FIG. 4 ).
  • the bending spring 29 is elastically bent and exerts a force driving back into the rest position 30 on the mass body 28 .
  • the absorber 27 oscillates after a deflection 31 from the rest position 30 about the same with its natural frequency.
  • the natural frequency of the mass-spring system is determined by the rigidity of the spiral spring 29 and the mass of the mass body 28 .
  • the absorber 27 is tuned to the percussion 6 .
  • the natural frequency is approximately equal to the stroke rate of the striking mechanism 6 selected, for example, between 100% and 105% of the stroke rate.
  • inert mass body 28 dynamically counteracts the vibrations of the impact mechanism 6 , whereby the force acting on the handle 10 vibrations of the machine housing 9 are reduced.
  • the inertial mass body 28 begins to move due to its inertia by itself relative to the machine housing 9 , as soon as the impact mechanism. 6 is switched on and vibrations occur. Stimulated by the impact mechanism 6, the mass body 28 oscillates between two reversal points, which in 3 and 4 are shown.
  • the amplitude of the deflection 31 depends on the load of the hammer drill 1 .
  • the deflection is known for typical applications, eg when working with reinforced concrete, from test series.
  • the deflection 31 subsequently designates the angle of inclination of the bending spring 29 with respect to its rest position 30.
  • Fig. 2 shows the exemplary absorber 27 in its rest position 30.
  • the bending spring 29 is arranged in the rest position substantially perpendicular to the working axis 3 .
  • One end of the bending spring 29 is configured as the suspension 32 and fixed to the machine housing 9 .
  • the mass body 28 is attached to the distal end of the suspension 32 end 33 of the spiral spring 29 .
  • the distance of the distal end 33 to the suspension 32 is the largest dimension or length 34 of the bending spring 29.
  • a thickness 35 of the spiral spring 29, ie, its dimension along the working axis 3, is at least an order of magnitude smaller than the length 34.
  • the spiral spring 29 is elastically bendable along the working axis 3 .
  • the mass body 28 moves on the curved path around the suspension 32.
  • the length 34 of the spiral spring 29 provides the distance to the suspension 32 .
  • the curved path corresponds in good approximation to a circular arc with a radius equal to the length 34.
  • the bending spring 29 curves with increasing deflection, whereby the radius is shortened.
  • the spiral spring 29 is stiff in the third spatial direction.
  • the curved path runs in the plane defined by the working axis 3 and the axis of rotation 12 of the countershaft 11 plane E (image plane of Fig. 2 ).
  • the mass body 28 and the suspension 32 are arranged symmetrically to the plane E.
  • the absorber 27 is preferably arranged in a sufficiently large cavity in the machine housing 9 , so that the mass body 28 in typical vibrations, no element, except for the bending spring 29, in the machine housing 9 touches.
  • a cam 36 facilitates the settling of the damper 27, in particular when initially the striking mechanism 6 is still accelerated to the intended number of strokes.
  • the cam disc 36 deflects the absorber 27 in a direction of start 37 on one side of its rest position 30 ; the arranged for example in the direction of impact 7 in front of the absorber 27 cam 36 deflects the absorber 27 on the side facing away in the direction of impact 7 of the rest position 30 from.
  • the cam 36 does not touch the damper 27 when the damper 27 swings to the other side of the rest position 30 ( Fig. 4 ).
  • the typical deflection 30 of the damper 27 in the steady state and in an active hammer mechanism 6 is greater than the possible of the cam 36 possible forced deflection 38 of the damper 27.
  • the damper 27 vibrates freely according to its natural frequency, ie alone given by the inertia of the mass body 28 and stiffness of the spiral spring 29th
  • the cam plate 36 is disposed on the countershaft 11 adjacent to the bending spring 29 .
  • the cam 36 may be integrated in the drive sprocket 13, integrated in the swash plate 19 , or formed as a discrete disk.
  • the countershaft 11 drives the cam plate 36 at the same speed as the swash plate 19 , whereby the wobble of the swash plate 19 and the rotation cam 36 have a constant angular displacement.
  • the cam plate 36 can be coupled or decoupled from the countershaft 11 together with the swash plate 19 in order to activate or deactivate the impact mechanism 6 .
  • the cam disc 36 has a single cam 39, which projects in a direction parallel to the working axis 3 starting direction 37 to the bending spring 29 out.
  • the exemplary cam 39 has a vertex 40, a flank 42 rising in the circumferential direction 41 as far as the apex 40, and a flank 43 descending to the apex 40 (FIG. Fig. 6 ).
  • the helical flanks 42, 43 rise in the starting direction 37 or fall off in the starting direction 37 .
  • the flanks 42 can increase linearly with the angle of rotation about the axis of rotation 12 .
  • a center angle 44 of the rising flank 42 is for example in the range between 45 degrees and 90 degrees.
  • the falling edge 43 is preferably formed symmetrically to the rising edge 42 .
  • the entire cam 39 covers a maximum of a central angle of 180 degrees.
  • the exemplary cam disk 36 has a recess 45.
  • the cam disk 36 can touch the bending spring 29 with only one cam 39 .
  • the cam 39 passes over a coaxial to the rotational axis 12 , annular rotational volume.
  • the spiral spring 29 has a to the cam 36. against the start-up direction 37 extending projection 46 to which the cam can strike. 39
  • the projection 46 protrudes, when the bending spring 29 is in the rest position, into the rotational volume swept by the cam 39 .
  • the projection 46 may be formed the same as the cam 39 .
  • the exemplary projection 46 has a vertex 47 projecting toward the cam 36 .
  • the projection 46 has a flank 48 rising in the sense of rotation to the apex 47 and a flank 49 descending to the apex 47.
  • a center angle 50 of the rising flank 48 is, for example, in the range between 45 degrees and 90 degrees.
  • Of the Vertex 47 is preferably in the plane E and between the mass body 28 and the countershaft 11th
  • Fig. 7 illustrates the abutment of the damper 27 by the cam 36.
  • the ordinate shows the position of the cam 36 and the bending spring 29 along the working axis 3 in the plane E.
  • the position is plotted against the cyclic angular position 51 of the countershaft 11 .
  • the angular position 51 at 0 degrees lies in plane E and faces the mass body 28.
  • the movement of the damper 27 is represented by the projection 46 or its vertex 47 .
  • the movement of the damper 27 is shown for the following explanations without excitation by vibrations, with which typically sets a greater deflection.
  • the dashed line indicates the position of the apex 47 in the rest position 30 .
  • the cam 36 rotates driven by the countershaft 11 about the rotation axis 12.
  • the cam 39 approaches the projection 46 of the spiral spring 29.
  • the cam 39 exceeds in the direction of start 37 with the rising edge 42, the rest position 30 of the projection 46.
  • the cam exceeds 39, the rest position 30 at an angular position 52 of -45 degrees.
  • the angular position 52 is given by the axial distance of the cam plate 36 30 to the rest position, unless the damper 27 unmoved, and thus the projection 46 is in the rest position 30, the cam 39 begins to deflect in the start-up direction 37, 27 and to tension the vibration absorber.
  • the deflection 38 forced by the cam 39 is maximum when the apex 40 of the cam 39 has an angular position 53 which is aligned identically with the apex 47 of the projection 46 .
  • the equi-aligned peaks 40, 47 are both at 0 degrees.
  • the two vertices 40, 47 lie in the plane E with the mass body 28 and the vibration plane of the damper 27.
  • the maximum forced deflection 38 is in the range between 1 degree and 5 degrees.
  • the cam 39 moves away with the falling edge 43 of the projection 46.
  • the cam 39 no longer exerts force in the direction of start 37 on the bending spring 29 from.
  • the spiral spring 29 relaxes and accelerates the mass body 28 against the starting direction 37 in the direction of the rest position 30.
  • the projection 46 moves with increasing speed against the starting direction 37.
  • the rate of increase of the falling edge 48 at the speed of the countershaft 11 is greater than that Speed of the projection 46 is selected.
  • 36 opens a gap between the spiral spring 29 and the cam plate.
  • the movement of the damper 27 is now solely by the inertia of the mass body 28 and the Stiffness of the bending spring 29 predetermined.
  • the free movement lasts at least 75% of one revolution of the countershaft 11 (270 degrees).
  • the absorber 27 oscillates on the rest position 30 and reaches its greatest deflection 31 counter to the starting direction 37 when the cam 39 is at about 180 degrees.
  • the cam 39 is again in the plane E, but on the suspension 32 of the spiral spring 29 facing side of the countershaft 11.
  • the cam 39 and the projection 46 are relative to the axis of rotation 12 diametrically.
  • the cam 39 is preferably arranged along the axis of rotation 12 a recess 54 of the spiral spring 29 against the projection 46 is preferably along the axis of rotation 12, the recess 45 of the cam plate 36 against.
  • the cam 36 and the bending spring 29 do not touch each other in the diametrical angular position 55 , regardless of the amplitude of the deflection 31 of the spiral spring 29.
  • Die in Fig. 7 shown amplitude 38 includes only the excitation by the cam disc 36, in the chiseling rotary hammer 1 , the deflection 38 in the typical applications by at least 20% greater.
  • the maximum forced deflection 38 of the damper 27 is preferably carried out simultaneously with the maximum compression of the pneumatic chamber 24.
  • the countershaft 11 drives synchronously the wobble finger 20, thus indirectly the striking mechanism 6, and also the cam 36 at.
  • the wobble finger 20 periodically reaches its tool-remote dead center 56 at an angular position 57, for example at 255 degrees (-105 degrees).
  • the wobble finger 20 moves and the excitation piston 21 subsequently in the direction of impact 7.
  • the pneumatic chamber 24 of the striking mechanism 6 is compressed.
  • the maximum compression is achieved between 95 degrees and 115 degrees after dead center 56 .
  • the fixed angular offset of the wobble drive 14 to the cam 36 is selected so that the rectified angular position 53 of the cam 39 to the projection 46 between 95 degrees and 115 degrees to the tool away from the dead center 56 of the wobble drive 14 .
  • the angular offset shifts by 180 degrees when the cam plate 36 is arranged on the tool side of the bending spring 29 .
  • the already oscillating absorber 27 should be disturbed as little as possible by the cam 39 .
  • the projection 46 is designed to leave the area swept by the cam 39 quickly.
  • the apex 47 lies on a side facing away from the suspension 32 of the countershaft 11. The distance of the apex 47 to the suspension 32 is between 30% and 50% of the length 34 of the spiral spring 29th
  • the spiral spring 29 may be stiffened perpendicular to the plane.
  • the width 58 of the spiral spring 29 is preferably greater than its thickness 35 and less than its length 34.
  • the exemplary bending spring 29 is formed as a plate-shaped leaf spring ( Fig. 5 ).
  • the bending spring 29 surrounds the countershaft 11.
  • the suspension 32 of the spiral spring 29 and the distal end 33 with the mass body 28 are on diametrically opposite sides of the countershaft 11.
  • the spiral spring 29 has, for example, a recess 59 through which the countershaft 11 is guided.
  • the bending spring 29 may have a further recess 54 through which the impact mechanism 6 arranged parallel to the countershaft 11 is guided.
  • the recesses 54, 59 are sufficiently dimensioned so that the bending spring 29 does not abut against the countershaft 11 and the percussion mechanism 6 when it is deflected by the mass body 28 .
  • the bending spring 29 is for example made of spring steel or a fiber composite.

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft eine meißelnde Handwerkzeugmaschine gemäß dem Oberbegriff des Anspruchs 1, die einen Tilger zum Reduzieren von Vibrationen enthält. Eine solche Handwerkzeugmaschine ist aus der US 2011/0017483 A1 bekannt.The present invention relates to a chisel hand tool according to the preamble of claim 1, which includes a damper for reducing vibrations. Such a hand tool is from the US 2011/0017483 A1 known.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Die Handwerkzeugmaschine hat eine Werkzeugaufnahme zum Haltern eines Werkzeugs auf einer Arbeitsachse, ein pneumatisches Schlagwerk zum Ausüben von Schlägen auf das Werkzeug und einen Tilger aus einer zu der Arbeitsachse quer angeordneten Biegefeder und einem Massekörper. Eine Vorgelegewelle ist um eine zu der Arbeitsachse parallelen Drehachse durch den Motor angetrieben. Auf der Vorgelegewelle ist ein Taumelantrieb zum Antreiben des pneumatischen Schlagwerks angeordnet. Zudem ist auf der Vorgelegewelle eine Nockenscheibe mit einer in eine zu der Arbeitsachse parallelen Anschubrichtung vorstehenden Nocke angeordnet. Die Biegefeder hat zu der Nocke vorgesehenes Gegenstück. Die Nocke spannt anliegend an dem Gegenstück die Biegefeder in die Anschubrichtung vor.The hand tool has a tool holder for holding a tool on a working axis, a pneumatic impact mechanism for applying shocks to the tool and a damper from a transverse to the working axis bending spring and a mass body. A countershaft is driven by a rotation axis parallel to the working axis through the motor. On the countershaft a wobble drive for driving the pneumatic impact mechanism is arranged. In addition, a cam disc with a cam extending in a direction parallel to the working direction of the starting cam is arranged on the countershaft. The spiral spring has provided counterpart to the cam. The cam biases adjacent to the counterpart of the spiral spring in the direction of advance.

Der Tilger wird von der sich drehenden Nocke angestoßen. Das Anstoßen erfolgt bei der im Stillstand des Tilgers eingenommenen Ruhelage der Biegefeder oder wenn der Tilger noch nicht vollständig eingeschwungen ist. Die Nocke erzwingt periodisch eine Mindestauslenkung des Tilgers. Jedoch kann der Tilger angeregt durch die Vibrationen und der Handwerkzeugmaschine stärker auslenken. Das Anstoßen erfolgt synchronisiert mit der Bewegung des Schlagwerks und damit den Vibrationen der Handwerkzeugmaschine.The absorber is triggered by the rotating cam. The abutment takes place at the resting position of the spiral spring when the absorber is at a standstill or when the absorber has not yet completely settled. The cam periodically forces a minimum deflection of the absorber. However, the absorber excited by the vibrations and the hand tool can deflect more. The abutment is synchronized with the movement of the striking mechanism and thus the vibrations of the power tool.

Eine Ausgestaltung sieht vor, dass die Nockenscheibe berührungsfrei zu der Biegefeder ist, wenn die Nocke und das Gegenstück bezogen auf die Drehachse in diametraler Winkelstellung sind. Die Nockenscheibe löst sich bei jedem Umlauf der Nocke um die Drehachse einmal von der Biegefeder, so dass der Tilger wenigstens während dieser Phase frei schwingen kann. Vorzugsweise schwingt der Tilger für wenigstens 50 % einer Oszillation frei, d.h. ohne Kontakt zu der Nocke und nur angetrieben durch die Trägheit der Masse.One embodiment provides that the cam disc is non-contact with the bending spring when the cam and the counterpart are in diametrical angular position relative to the axis of rotation. The cam disc dissolves with each revolution of the cam about the axis of rotation once by the spiral spring, so that the absorber can oscillate freely at least during this phase. Preferably, the absorber releases for at least 50% of an oscillation, ie, without contact with the cam and only driven by the inertia of the mass.

Eine Ausgestaltung sieht vor, dass der Massekörper durch die Biegefeder auf einer gebogenen Bahn geführt ist. Die Biegefeder kann mit einem ersten Ende an dem Maschinengehäuse befestigt und an einem zweiten Ende der Massekörper befestigt sein, wobei das erste Ende und das zweite Ende diametral von der Vorgelegewelle angeordnet sind. Der Vorsprung kann von dem ersten Ende in einem Abstand sein, welcher zwischen 30 % und 50 % des Abstandes des ersten Endes zu dem zweiten Ende entspricht.An embodiment provides that the mass body is guided by the spiral spring on a curved path. The flexure spring may be attached to the machine housing at a first end and secured to a second end of the mass body, wherein the first end and the second end are diametrically disposed from the countershaft. The projection may be at a distance from the first end which corresponds to between 30% and 50% of the distance of the first end to the second end.

Eine Ausgestaltung sieht vor, dass eine maximale Auslenkung der Biegefeder aus einer Ruhelage durch die an dem Gegenstück anliegende Nocke zwischen 1 Grad und 5 Grad beträgt.An embodiment provides that a maximum deflection of the spiral spring from a rest position by the voltage applied to the counterpart cam is between 1 degree and 5 degrees.

Eine Ausgestaltung sieht vor, dass die Nocke eine der Biegefeder zugewandte helixförmige Flanke aufweist, die über einen Zentriwinkel zwischen 30 Grad und 90 Grad in die Anschubrichtung ansteigt. Das Gegenstück kann eine der Nocke zugewandte helixförmige Flanke aufweisen, die über einen Zentriwinkel zwischen 30 Grad und 90 Grad entgegen der Anschubrichtung ansteigt. Die auf den Tilger beim Anstoßen eingeleitete Kraft wird vorzugsweise gering gehalten. Hierdurch werden Anregungen von höheren harmonischen Schwingungen in der Biegefeder vermieden.One embodiment provides that the cam has a helical flank facing the spiral spring, which rises in the direction of feed via a central angle between 30 degrees and 90 degrees. The counterpart may have a helical flank facing the cam, which rises in the opposite direction to the starting direction via a central angle between 30 degrees and 90 degrees. The force applied to the absorber during abutment force is preferably kept low. This avoids suggestions of higher harmonic oscillations in the spiral spring.

Die pneumatische Kammer des Schlagwerks ist bei einer Winkelstellung der Vorgelegewelle maximal komprimiert. Die Nocke nimmt zu dem Zeitpunkt eine spezielle Position relativ zu dem Vorsprung ein, welche von der Anordnung der Nocke vor oder nach der Biegefeder abhängt. Ist die Nocke vor der Biegefeder sind die Nocke und der Vorsprung in der gleichen Winkelstellung bezüglich der Drehachse, d.h. die Nocke kann den Vorsprung maximal auslenken. Ist die Nocke nach der Biegefeder angeordnet, sind Nocke und Vorsprung diametral zu der Drehachse, d.h. um 180 Grad versetzt. Der Tilger ist optimal auf die Bewegung des Schlagwerks abgestimmt angeregt.The pneumatic chamber of the striking mechanism is maximally compressed when the countershaft angle is set. The cam at the time assumes a specific position relative to the projection, which depends on the arrangement of the cam before or after the bending spring. If the cam is in front of the spiral spring, the cam and the projection are in the same angular position with respect to the axis of rotation, i. The cam can maximally deflect the projection. When the cam is positioned after the bending spring, the cam and projection are diametrically opposed to the axis of rotation, i. offset by 180 degrees. The absorber is optimally tuned to the movement of the impact mechanism.

Der Taumelantrieb ist bei einer ersten Winkelstellung der Vorgelegewelle in einem dem Werkzeug abgewandten Totpunkt. Die Nocke ist bei einer zweiten Winkelstellung in einer die Biegefeder maximal auslenkenden Winkelstellung. Sofern die Nocke auf der Werkzeug abgewandten Seite der Biegefeder angeordnet ist, kann die zweite Winkelstellung vorteilhafterweise zwischen 95 Grad und 115 Grad auf die erste Winkelstellung folgen. Sofern die Nocke auf der Werkzeug zugewandten Seite der Biegefeder angeordnet ist, kann die erste Winkelstellung vorteilhafterweise zwischen 65 Grad und 85 Grad auf die zweite Winkelstellung folgen.The wobble drive is at a first angular position of the countershaft in a dead center away from the tool. The cam is at a second angular position in a bending spring maximally deflecting angular position. If the cam is arranged on the side facing away from the tool of the bending spring, the second angular position can advantageously follow between 95 degrees and 115 degrees to the first angular position. If the cam is arranged on the tool facing side of the spiral spring, the first angular position can advantageously follow between 65 degrees and 85 degrees to the second angular position.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen:

Fig. 1
einen Bohrhammer
Fig. 2
den Tilger des Bohrhammers in Ruhelage
Fig. 3
den Tilger des Bohrhammers ausgelenkt in Schlagrichtung
Fig. 4
den Tilger des Bohrhammers ausgelenkt entgegen der Schlagrichtung
Fig. 5
die Biegefeder des Tilgers
Fig. 6
die Nockenscheibe zum Anstoßen des Tilgers
Fig. 7
die relative Bewegung des Tilgers und einer Nocke der Nockenscheibe
Fig. 8
die zu Fig. 7 synchrone Bewegung des Schlagwerks
The following description explains the invention with reference to exemplary embodiments and figures. In the figures show:
Fig. 1
a hammer drill
Fig. 2
the absorber of the rotary hammer at rest
Fig. 3
the absorber of the rotary hammer deflected in the direction of impact
Fig. 4
the absorber of the rotary hammer deflected against the direction of impact
Fig. 5
the spiral spring of the Tilgers
Fig. 6
the cam disc for abutment of the absorber
Fig. 7
the relative movement of the absorber and a cam of the cam
Fig. 8
the too Fig. 7 synchronous movement of the percussion mechanism

Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben.Identical or functionally identical elements are indicated by the same reference numerals in the figures, unless stated otherwise.

AUSFÜHRUNGSFORMEN DER ERFINDUNGEMBODIMENTS OF THE INVENTION

Fig. 1 zeigt einen beispielhaften Bohrhammer 1. Der Bohrhammer 1 hat einen Werkzeughalter 2, der längs einer Arbeitsachse 3 einen Bohrer 4, einen Meißel oder ein anderes Werkzeug aufnehmen kann. Ein Motor 5 kann den Werkzeughalter 2 um die Arbeitsachse 3 drehend antreiben. Ein Schlagwerk 6 kann zudem auf das in der Werkzeugaufnahme 2 liegende Werkzeug periodisch Schläge in Schlagrichtung 7 längs der Arbeitsachse 3 für einen meißelnden Betrieb ausüben. Das Schlagwerk 6 wird von dem Motor 5 angetrieben. Der Anwender nimmt den Motor 5 mit einem Hauptschalter 8 in Betrieb. Der Motor 5 und das Schlagwerk 6 sind in einem Maschinengehäuse 9 angeordnet. Ein Batteriepaket oder eine Netzleitung versorgen den Motor 5 mit elektrischem Strom. Der Anwender kann den Bohrhammer 1 mit einem Handgriff 10 führen, der an dem Maschinengehäuse 9 befestigt ist. Fig. 1 shows an exemplary hammer drill 1. The hammer drill 1 has a tool holder 2, which along a working axis 3 a drill bit 4, a chisel or other tool can accommodate. A motor 5 can drive the tool holder 2 in rotation about the working axis 3 . A striking mechanism 6 can also exert on the lying in the tool holder 2 tool periodically blows in the direction of impact 7 along the working axis 3 for chiseling operation. The striking mechanism 6 is driven by the motor 5 . The user takes the motor 5 with a main switch 8 in operation. The motor 5 and the striking mechanism 6 are arranged in a machine housing 9 . A battery pack or a power line provide the motor 5 with electrical power. The user can guide the hammer drill 1 with a handle 10 which is fixed to the machine housing 9 .

Der Bohrhammer 1 hat ein schaltbares Getriebe mit einer Vorgelegewelle 11. Die Vorgelegewelle 11 ist um eine Drehachse 12 drehbar gelagert. Die Drehachse 12 ist parallel zu der Arbeitsachse 3. Der Motor 5 kämmt mit einem Antriebsritzel 13 auf der Vorgelegewelle 11 und treibt die Vorgelegewelle 11 permanent an. Die Vorgelegewelle 11 überträgt das Drehmoment auf einen Taumelantrieb 14 für das Schlagwerk 6 und einen Drehantrieb 15 für die Werkzeugaufnahme 2. Das beispielhafte Getriebe ermöglicht den Drehantrieb der Werkzeugaufnahme 2 zu- und abzuschalten. Eine Schalthülse 16 ist auf der Vorgelegewelle 11 axial zwischen einer ersten Stellung und einer zweiten Stellung beweglich. In der ersten dargestellten Stellung greift eine Innenverzahnung der Schalthülse 16 in eine Verzahnung 17 der Vorgelegewelle 11 ein, in einer zweiten Stellung ist die Schalthülse 16 außer Eingriff. Die Schalthülse 16 ist in permanenten Eingriff mit einem Zahnkranz 18, welcher mit dem Drehantrieb 15 und der Werkzeugaufnahme 2 gekoppelt ist. Ein Schaltknauf ermöglicht dem Anwender die Schalthülse 16 zwischen den beiden Stellungen zu bewegen. Eine analoge Schalthülse kann auf der Vorgelegewelle 11 zum Zu- und Abschalten des Taumelantriebs angeordnet sein.The hammer drill 1 has a shiftable transmission with a countershaft 11. The countershaft 11 is rotatably mounted about an axis of rotation 12 . The axis of rotation 12 is parallel to the working axis 3. The motor 5 meshes with a drive pinion 13 on the countershaft 11 and drives the countershaft 11 permanently. The countershaft 11 transmits the torque to a wobble drive 14 for the striking mechanism 6 and a rotary drive 15 for the tool holder 2. The exemplary transmission allows the rotary drive of the tool holder 2 on and off. A shift sleeve 16 is axially movable on the countershaft 11 between a first position and a second position. In the first illustrated position engages an internal toothing of the shift sleeve 16 in a toothing 17 of the countershaft 11 , in a second position, the shift sleeve 16 is disengaged. The shift sleeve 16 is in permanent engagement with a ring gear 18, which is coupled to the rotary drive 15 and the tool holder 2 . A shift knob allows the user to move the shift sleeve 16 between the two positions. An analog shift sleeve can be arranged on the countershaft 11 for connecting and disconnecting the wobble drive.

Der Taumelantrieb 14 setzt die Drehbewegung der Vorgelegewelle 11 in eine periodische, lineare Bewegung für das Schlagwerk 6 um. Der Taumelantrieb 14 enthält eine Taumelscheibe 19 und einen Taumelfinger 20. Die beispielhafte Taumelscheibe 19 beinhaltet ein Wälzlager mit einem von der Vorgelegewelle 11 angetriebenen Innenring und einem mit dem Taumelfinger 20 verbundenen Außenring. Der Außenring ist gegenüber dem Innenring um eine zu der Drehachse 12 geneigten Achse drehbar, jedoch durch den an dem Schlagwerk 6 angelegten Taumelfinger 20 gegenüber einer Drehung um die Drehachse 12 gehemmt. Der angetriebene Innenring zwingt den Außenring und den Taumelfinger 20 zu einer periodischen Schwenkbewegung in einer Ebene E aufgespannt von der Drehachse 12 der Vorgelegewelle 11 und der Arbeitsachse 3 um eine Schwenkachse, die durch die Drehachse 12 verläuft und senkrecht zu der aufgespannten Ebene E ist. The wobble drive 14 converts the rotational movement of the countershaft 11 into a periodic, linear movement for the striking mechanism 6 . The wobble drive 14 includes a swash plate 19 and a wobble finger 20. The exemplary swash plate 19 includes a rolling bearing with an inner ring driven by the countershaft 11 and an outer ring connected to the wobble finger 20 . The outer ring is rotatable relative to the inner ring about an axis inclined to the axis of rotation 12 , but inhibited by the applied to the percussion 6 tumble finger 20 against rotation about the axis of rotation 12 . The driven inner ring forces the outer ring and the wobble finger 20 to a periodic pivotal movement in a plane E spanned by the axis of rotation 12 of the countershaft 11 and the working axis 3 about a pivot axis which passes through the axis of rotation 12 and perpendicular to the plane spanned E.

Das pneumatische Schlagwerk 6 hat einen Erregerkolben 21 und einen Schläger 22, welche beide in einem Führungsrohr 23 des Schlagwerks 6 koaxial zu der Arbeitsachse 3 geführt sind. Der Erregerkolben 21 ist mit dem Taumelfinger 20 verbunden. Die Schwenkbewegung des Taumelfingers 20 übersetzt sich in eine periodische lineare Bewegung des Erregerkolbens 21. Eine Luftfeder gebildet durch eine pneumatische Kammer 24 zwischen dem Erregerkolben 21 und dem Schläger 22 koppelt eine Bewegung des Schlägers 22 an die Bewegung des Erregerkolbens 21 an (Fig. 8). Der Schläger 22 kann direkt auf ein hinteres Ende des Bohrers 4 aufschlagen oder mittelbar über einen im Wesentlichen ruhenden Zwischenschläger 25 einen Teil seines Impulses auf den Bohrer 4 übertragen. Die Schlagzahl des Schlagwerks 6 ist gleich der Drehzahl der Vorgelegewelle 11. The pneumatic percussion 6 has an exciter piston 21 and a racket 22, both of which are guided in a guide tube 23 of the impact mechanism 6 coaxial with the working axis 3 . The exciter piston 21 is connected to the wobble finger 20 . The pivoting movement of the wobble finger 20 translates into a periodic linear movement of the excitation piston 21. An air spring formed by a pneumatic chamber 24 between the excitation piston 21 and the racket 22 couples a movement of the racket 22 to the movement of the exciter piston 21 ( Fig. 8 ). The racket 22 may strike directly on a rear end of the drill 4 or indirectly via a substantially resting intermediate racket 25 transmit a portion of its pulse to the drill 4 . The impact rate of the hammer mechanism 6 is equal to the rotational speed of the countershaft. 11

Das periodisch schlagende Schlagwerk 6 erzeugt in dem Maschinengehäuse 9 Erschütterungen, welche der Anwender als Vibrationen des Handgriffs 10 wahrnimmt. Die Vibrationen führen zu einer frühzeitigen Ermüdung des Anwenders und können bei übermäßiger Belastung Gesundheitsschäden verursachen. Der Handgriff 10 kann zur Minderung der Vibrationen über Dämpfelemente 26 mit dem Maschinengehäuse 9 verbunden sein. Die Dämpfelemente 26 reduzieren insbesondere hochfrequente Anteile der Vibrationen und wandeln diese in Wärme um. Die Dämpfelemente 26 bestehen vorzugsweise aus offenporigen Polymerschäumen. Der Wirksamkeit der Dämpfelemente 26 sind Grenzen gesetzt. Das Führen der Handwerkzeugmaschine 1 erfordert eine stabile und steife Anbindung des Handgriffs 10 an das Maschinengehäuse 9, während für eine ideale Dämpfung eine lose und weiche Anbindung vorteilhaft wäre.The periodically striking mechanism 6 generates vibrations in the machine housing 9 , which the user perceives as vibrations of the handle 10 . The vibrations lead to early fatigue of the user and can cause damage to health under excessive load. The handle 10 may be connected to the vibration reduction via damping elements 26 to the machine housing 9 . The damping elements 26 in particular reduce high-frequency components of the vibrations and convert them into heat. The damping elements 26 are preferably made of open-cell polymer foams. The effectiveness of the damping elements 26 are limited. The guiding of the power tool 1 requires a stable and rigid connection of the handle 10 to the machine housing 9, while for an ideal damping a loose and soft connection would be advantageous.

Der beispielhafte Bohrhammer 1 hat zur Verringerung der Vibrationen einen Tilger 27. Der Tilger 27 hat einen Massekörper 28 und eine Biegefeder 29. Der Massekörper 28 wird nur von der Biegefeder 29 gehalten und ist vorzugsweise ansonsten ungeführt. Der Massekörper 28 kann sich längs der Arbeitsachse 3 auf einer gebogenen Bahn, näherungsweise einer Kreisbahn, vor- und zurückbewegen. Die gebogene Bahn liegt vorzugsweise in einer von der Arbeitsachse 3 und Drehachse 12 der Vorgelegewelle 11 aufgespannte Ebene E (Bildebene von Fig. 2). Der Tilger 27 hat eine Ruhelage 30 (dargestellt in Fig. 2), in welche der Massekörper 28 und die Biegefeder 29 zurückkehren, wenn keine Kraft auf den Tilger 27 einwirkt. Der Massekörper 28 kann auf der gebogenen Bahn aus der Ruhelage 30 ausgelenkt werden (vgl. Fig. 3 und Fig. 4). Die Biegefeder 29 wird dabei elastisch gebogen und übt eine in die Ruhelage 30 zurücktreibende Kraft auf den Massekörper 28 aus. Der Tilger 27 schwingt nach einer Auslenkung 31 aus der Ruhelage 30 um die selbige mit seiner Eigenfrequenz. Die Eigenfrequenz des Masse-Feder-Systems ist durch die Steifigkeit der Biegefeder 29 und die Masse des Massekörpers 28 vorgegeben.The exemplary hammer drill 1 has a damper 27 to reduce the vibration . The damper 27 has a mass body 28 and a bending spring 29. The mass body 28 is held only by the bending spring 29 and is preferably unguided otherwise. The mass body 28 can move along the working axis 3 on a curved path, approximately a circular path, back and forth. The curved path is preferably located in a plane spanned by the working axis 3 and the axis of rotation 12 of the countershaft 11 E (image plane of Fig. 2 ). The absorber 27 has a rest position 30 (shown in FIG Fig. 2 ), in which the mass body 28 and the bending spring 29 return when no force is applied to the absorber 27 . The mass body 28 can be deflected out of the rest position 30 on the curved path (cf. FIG. 3 and FIG. 4 ). The bending spring 29 is elastically bent and exerts a force driving back into the rest position 30 on the mass body 28 . The absorber 27 oscillates after a deflection 31 from the rest position 30 about the same with its natural frequency. The natural frequency of the mass-spring system is determined by the rigidity of the spiral spring 29 and the mass of the mass body 28 .

Der Tilger 27 ist auf das Schlagwerk 6 abgestimmt. Die Eigenfrequenz ist etwa gleich der Schlagzahl des Schlagwerks 6 gewählt, beispielsweise zwischen 100 % und 105 % der Schlagzahl. Der nur über die Biegefeder 29 an das Maschinengehäuse 9 angekoppelte, träge Massekörper 28 wirkt dynamisch den Vibrationen des Schlagwerks 6 entgegen, wodurch die auf den Handgriff 10 einwirkenden Vibrationen des Maschinengehäuses 9 verringert werden. Der träge Massekörper 28 beginnt sich aufgrund seiner Trägheit von selbst gegenüber dem Maschinengehäuse 9 zu bewegen, sobald das Schlagwerk 6 eingeschaltet wird und Vibrationen auftreten. Angeregt durch das Schlagwerk 6 pendelt der Massekörper 28 zwischen zwei Umkehrpunkten, welche in Fig. 3 und 4 dargestellt sind. Die Amplitude der Auslenkung 31 hängt von der Belastung des Bohrhammers 1 ab. Die Auslenkung ist für die typischen Anwendungen z.B. beim Bearbeiten von armiertem Beton, aus Versuchsreihen bekannt. Die Auslenkung 31 bezeichnet nachfolgend den Neigungswinkel der Biegefeder 29 gegenüber ihrer Ruhelage 30. The absorber 27 is tuned to the percussion 6 . The natural frequency is approximately equal to the stroke rate of the striking mechanism 6 selected, for example, between 100% and 105% of the stroke rate. The only coupled via the spiral spring 29 to the machine housing 9 , inert mass body 28 dynamically counteracts the vibrations of the impact mechanism 6 , whereby the force acting on the handle 10 vibrations of the machine housing 9 are reduced. The inertial mass body 28 begins to move due to its inertia by itself relative to the machine housing 9 , as soon as the impact mechanism. 6 is switched on and vibrations occur. Stimulated by the impact mechanism 6, the mass body 28 oscillates between two reversal points, which in 3 and 4 are shown. The amplitude of the deflection 31 depends on the load of the hammer drill 1 . The deflection is known for typical applications, eg when working with reinforced concrete, from test series. The deflection 31 subsequently designates the angle of inclination of the bending spring 29 with respect to its rest position 30.

Fig. 2 zeigt den beispielhaften Tilger 27 in seiner Ruhelage 30. Die Biegefeder 29 ist in der Ruhelage im Wesentlichen senkrecht zu Arbeitsachse 3 angeordnet. Ein Ende der Biegefeder 29 ist als die Aufhängung 32 ausgestaltet und an dem Maschinengehäuse 9 befestigt. Der Massekörper 28 ist an dem von der Aufhängung 32 distalen Ende 33 der Biegefeder 29 befestigt. Der Abstand des distalen Ende 33 zu der Aufhängung 32 ist die größte Abmessung oder Länge 34 der Biegefeder 29. Eine Stärke 35 der Biegefeder 29, d.h. deren Abmessung entlang der Arbeitsachse 3, ist um wenigstens eine Größenordnung geringer als die Länge 34. Die Biegefeder 29 ist längs der Arbeitsachse 3 elastisch biegbar. Der Massekörper 28 bewegt sich auf der gebogenen Bahn um die Aufhängung 32. Die Länge 34 der Biegefeder 29 gibt den Abstand zu der Aufhängung 32 vor. Die gebogene Bahn entspricht in guter Näherung einem Kreisbogen mit einem Radius gleich der Länge 34. Die Biegefeder 29 krümmt sich mit zunehmender Auslenkung, wodurch sich der Radius verkürzt. Vorzugsweise ist die Biegefeder 29 in die dritte Raumrichtung steif. Die gebogene Bahn verläuft in der von der Arbeitsachse 3 und der Drehachse 12 der Vorgelegewelle 11 aufgespannten Ebene E (Bildebene von Fig. 2). Der Massekörper 28 und die Aufhängung 32 sind symmetrisch zu der Ebene E angeordnet. Der Tilger 27 ist vorzugsweise in einem ausreichend großen Hohlraum in dem Maschinengehäuse 9 angeordnet, so dass der Massekörper 28 bei typischen Vibrationen kein Element, abgesehen von der Biegefeder 29, in dem Maschinengehäuse 9 berührt. Fig. 2 shows the exemplary absorber 27 in its rest position 30. The bending spring 29 is arranged in the rest position substantially perpendicular to the working axis 3 . One end of the bending spring 29 is configured as the suspension 32 and fixed to the machine housing 9 . The mass body 28 is attached to the distal end of the suspension 32 end 33 of the spiral spring 29 . The distance of the distal end 33 to the suspension 32 is the largest dimension or length 34 of the bending spring 29. A thickness 35 of the spiral spring 29, ie, its dimension along the working axis 3, is at least an order of magnitude smaller than the length 34. The spiral spring 29 is elastically bendable along the working axis 3 . The mass body 28 moves on the curved path around the suspension 32. The length 34 of the spiral spring 29 provides the distance to the suspension 32 . The curved path corresponds in good approximation to a circular arc with a radius equal to the length 34. The bending spring 29 curves with increasing deflection, whereby the radius is shortened. Preferably, the spiral spring 29 is stiff in the third spatial direction. The curved path runs in the plane defined by the working axis 3 and the axis of rotation 12 of the countershaft 11 plane E (image plane of Fig. 2 ). The mass body 28 and the suspension 32 are arranged symmetrically to the plane E. The absorber 27 is preferably arranged in a sufficiently large cavity in the machine housing 9 , so that the mass body 28 in typical vibrations, no element, except for the bending spring 29, in the machine housing 9 touches.

Eine Nockenscheibe 36 erleichtert das Einschwingen des Tilgers 27, insbesondere wenn anfangs das Schlagwerk 6 noch auf die vorgesehene Schlagzahl beschleunigt wird. Die Nockenscheibe 36 lenkt den Tilger 27 in eine Anschubrichtung 37 auf eine Seite seiner Ruhelage 30 aus; die beispielsweise in Schlagrichtung 7 vor dem Tilger 27 angeordnete Nockenscheibe 36 lenkt den Tilger 27 auf die in Schlagrichtung 7 abgewandte Seite der Ruhelage 30 aus. Die Nockenscheibe 36 berührt den Tilger 27 nicht, wenn der Tilger 27 auf die andere Seite der Ruhelage 30 schwingt (Fig. 4). Vorteilhafterweise ist die typische Auslenkung 30 des Tilgers 27 im eingeschwungenen Zustand und bei einem aktiven Schlagwerk 6 größer als die von der Nockenscheibe 36 mögliche erzwungene Auslenkung 38 des Tilgers 27. Der Tilger 27 schwingt frei gemäß seiner Eigenfrequenz, d.h. allein vorgegeben durch die Trägheit des Massekörpers 28 und Steifigkeit der Biegefeder 29. A cam 36 facilitates the settling of the damper 27, in particular when initially the striking mechanism 6 is still accelerated to the intended number of strokes. The cam disc 36 deflects the absorber 27 in a direction of start 37 on one side of its rest position 30 ; the arranged for example in the direction of impact 7 in front of the absorber 27 cam 36 deflects the absorber 27 on the side facing away in the direction of impact 7 of the rest position 30 from. The cam 36 does not touch the damper 27 when the damper 27 swings to the other side of the rest position 30 ( Fig. 4 ). Advantageously, the typical deflection 30 of the damper 27 in the steady state and in an active hammer mechanism 6 is greater than the possible of the cam 36 possible forced deflection 38 of the damper 27. The damper 27 vibrates freely according to its natural frequency, ie alone given by the inertia of the mass body 28 and stiffness of the spiral spring 29th

Die Nockenscheibe 36 ist auf der Vorgelegewelle 11 benachbart zu der Biegefeder 29 angeordnet. Die Nockenscheibe 36 kann in dem Antriebsritzel 13 integriert, in der Taumelscheibe 19 integriert oder als eine eigenständige Scheibe ausgebildet sein. Die Vorgelegewelle 11 treibt die Nockenscheibe 36 mit der gleichen Drehzahl wie die Taumelscheibe 19 an, wodurch die Taumelbewegung der Taumelscheibe 19 und die Drehbewegung Nockenscheibe 36 einen konstanten Winkelversatz haben. Die Nockenscheibe 36 kann zusammen mit der Taumelscheibe 19 von der Vorgelegewelle 11 angekoppelt oder abgekoppelt werden, um das Schlagwerk 6 zu aktivieren bzw. deaktivieren.The cam plate 36 is disposed on the countershaft 11 adjacent to the bending spring 29 . The cam 36 may be integrated in the drive sprocket 13, integrated in the swash plate 19 , or formed as a discrete disk. The countershaft 11 drives the cam plate 36 at the same speed as the swash plate 19 , whereby the wobble of the swash plate 19 and the rotation cam 36 have a constant angular displacement. The cam plate 36 can be coupled or decoupled from the countershaft 11 together with the swash plate 19 in order to activate or deactivate the impact mechanism 6 .

Die Nockenscheibe 36 hat eine einzige Nocke 39, die in einer zu der Arbeitsachse 3 parallelen Anschubrichtung 37 zu der Biegefeder 29 hin vorsteht. Die beispielhafte Nocke 39 hat einen Scheitel 40, eine in Umlaufsrichtung 41 bis zu dem Scheitel 40 ansteigende Flanke 42 und nach dem Scheitel 40 abfallende Flanke 43 (Fig. 6). Die helix-förmigen Flanken 42, 43 steigen in die Anschubrichtung 37 an bzw. fallen in die Anschubrichtung 37 ab. Die Flanken 42 können linear mit dem Drehwinkel um die Drehachse 12 ansteigen. Ein Zentriwinkel 44 der ansteigenden Flanke 42 liegt beispielsweise im Bereich zwischen 45 Grad und 90 Grad. Die abfallende Flanke 43 ist vorzugsweise symmetrisch zu der ansteigenden Flanke 42 ausgebildet. Die gesamte Nocke 39 überdeckt maximal einen Zentriwinkel von 180 Grad. Außerhalb der Nocke 39, in gleichem radialen Abstand zu der Drehachse 12 hat die beispielhafte Nockenscheibe 36 eine Aussparung 45. Die Nockenscheibe 36 kann nur mit der einen Nocke 39 die Biegefeder 29 berühren. Angetrieben von der Vorgelegewelle 11 überstreicht die Nocke 39 ein zu der Drehachse 12 koaxiales, ringförmiges Rotationsvolumen.The cam disc 36 has a single cam 39, which projects in a direction parallel to the working axis 3 starting direction 37 to the bending spring 29 out. The exemplary cam 39 has a vertex 40, a flank 42 rising in the circumferential direction 41 as far as the apex 40, and a flank 43 descending to the apex 40 (FIG. Fig. 6 ). The helical flanks 42, 43 rise in the starting direction 37 or fall off in the starting direction 37 . The flanks 42 can increase linearly with the angle of rotation about the axis of rotation 12 . A center angle 44 of the rising flank 42 is for example in the range between 45 degrees and 90 degrees. The falling edge 43 is preferably formed symmetrically to the rising edge 42 . The entire cam 39 covers a maximum of a central angle of 180 degrees. Outside the cam 39, at the same radial distance from the axis of rotation 12 , the exemplary cam disk 36 has a recess 45. The cam disk 36 can touch the bending spring 29 with only one cam 39 . Driven by the countershaft 11, the cam 39 passes over a coaxial to the rotational axis 12 , annular rotational volume.

Die Biegefeder 29 hat einen zu der Nockenscheibe 36 hin entgegen der Anschubrichtung 37 vorstehenden Vorsprung 46, an dem die Nocke 39 anschlagen kann. Der Vorsprung 46 ragt dazu, wenn die Biegefeder 29 in der Ruhelage ist, in das von der Nocke 39 überstrichene Rotationsvolumen hinein. Der Vorsprung 46 kann gleich wie die Nocke 39 ausgebildet sein. Der beispielhafte Vorsprung 46 hat einen Scheitel 47, der in Richtung zu der Nockenscheibe 36 vorsteht. Der Vorsprung 46 hat eine zu dem Scheitel 47 im Drehsinn ansteigende Flanke 48 und eine nach dem Scheitel 47 abfallende Flanke 49. Ein Zentriwinkel 50 der ansteigenden Flanke 48 liegt beispielsweise im Bereich zwischen 45 Grad und 90 Grad. Der Scheitel 47 liegt vorzugsweise in der Ebene E und zwischen dem Massekörper 28 und der Vorgelegewelle 11. The spiral spring 29 has a to the cam 36. against the start-up direction 37 extending projection 46 to which the cam can strike. 39 The projection 46 protrudes, when the bending spring 29 is in the rest position, into the rotational volume swept by the cam 39 . The projection 46 may be formed the same as the cam 39 . The exemplary projection 46 has a vertex 47 projecting toward the cam 36 . The projection 46 has a flank 48 rising in the sense of rotation to the apex 47 and a flank 49 descending to the apex 47. A center angle 50 of the rising flank 48 is, for example, in the range between 45 degrees and 90 degrees. Of the Vertex 47 is preferably in the plane E and between the mass body 28 and the countershaft 11th

Fig. 7 illustriert das Anstoßen des Tilgers 27 durch die Nockenscheibe 36. Die Ordinate zeigt die Position der Nockenscheibe 36 und der Biegefeder 29 längs der Arbeitsachse 3 in der Ebene E. Die Position ist über die zyklische Winkelstellung 51 der Vorgelegewelle 11 aufgetragen. Die Winkelstellung 51 bei 0 Grad liegt in Ebene E und weist zu dem Massekörper 28. Die Bewegung des Tilgers 27 ist durch den Vorsprung 46 bzw. dessen Scheitel 47 repräsentiert. Die Bewegung des Tilgers 27 ist für die nachfolgenden Erläuterungen ohne Anregung durch Vibrationen dargestellt, mit welchen sich typischerweise eine größere Auslenkung einstellt. Die gestrichelte Linie deutet die Position des Scheitels 47 in der Ruhelage 30 an. Fig. 7 illustrates the abutment of the damper 27 by the cam 36. The ordinate shows the position of the cam 36 and the bending spring 29 along the working axis 3 in the plane E. The position is plotted against the cyclic angular position 51 of the countershaft 11 . The angular position 51 at 0 degrees lies in plane E and faces the mass body 28. The movement of the damper 27 is represented by the projection 46 or its vertex 47 . The movement of the damper 27 is shown for the following explanations without excitation by vibrations, with which typically sets a greater deflection. The dashed line indicates the position of the apex 47 in the rest position 30 .

Die Nockenscheibe 36 dreht sich angetrieben durch die Vorgelegewelle 11 um die Drehachse 12. Die Nocke 39 nähert sich dem Vorsprung 46 der Biegefeder 29. Die Nocke 39 überschreitet in Anschubrichtung 37 mit der ansteigenden Flanke 42 die Ruhelage 30 des Vorsprungs 46. Beispielhaft überschreitet die Nocke 39 die Ruhelage 30 bei einer Winkelstellung 52 von -45 Grad. Die Winkelstellung 52 ergibt sich durch den axialen Abstand der Nockenscheibe 36 zu der Ruhelage 30. Sofern der Tilger 27 unbewegt und somit der Vorsprung 46 in der Ruhelage 30 ist, beginnt die Nocke 39 den Tilger 27 in die Anschubrichtung 37 auszulenken und zu verspannen. Die durch die Nocke 39 erzwungene Auslenkung 38 ist maximal, wenn der Scheitel 40 der Nocke 39 eine zu dem Scheitel 47 des Vorsprungs 46 gleich ausgerichtete Winkelstellung 53 aufweist. Die gleich ausgerichteten Scheitel 40, 47 liegen beispielsweise beide bei 0 Grad. Die beiden Scheitel 40, 47 liegen in der Ebene E mit dem Massekörper 28 und der Schwingungsebene des Tilgers 27. Die maximale erzwungene Auslenkung 38 liegt im Bereich zwischen 1 Grad und 5 Grad.The cam 36 rotates driven by the countershaft 11 about the rotation axis 12. The cam 39 approaches the projection 46 of the spiral spring 29. The cam 39 exceeds in the direction of start 37 with the rising edge 42, the rest position 30 of the projection 46. By way of example, the cam exceeds 39, the rest position 30 at an angular position 52 of -45 degrees. The angular position 52 is given by the axial distance of the cam plate 36 30 to the rest position, unless the damper 27 unmoved, and thus the projection 46 is in the rest position 30, the cam 39 begins to deflect in the start-up direction 37, 27 and to tension the vibration absorber. The deflection 38 forced by the cam 39 is maximum when the apex 40 of the cam 39 has an angular position 53 which is aligned identically with the apex 47 of the projection 46 . For example, the equi-aligned peaks 40, 47 are both at 0 degrees. The two vertices 40, 47 lie in the plane E with the mass body 28 and the vibration plane of the damper 27. The maximum forced deflection 38 is in the range between 1 degree and 5 degrees.

Anschließend an die maximale erzwungene Auslenkung 38 entfernt sich die Nocke 39 mit der abfallenden Flanke 43 von dem Vorsprung 46. Die Nocke 39 übt keine Kraft mehr in die Anschubrichtung 37 auf die Biegefeder 29 aus. Entsprechend relaxiert die Biegefeder 29 und beschleunigt den Massekörper 28 entgegen der Anschubrichtung 37 in Richtung zu der Ruhelage 30. Der Vorsprung 46 bewegt sich mit zunehmender Geschwindigkeit entgegen der Anschubrichtung 37. Die Steigungsrate der abfallenden Flanke 48 bei der Drehzahl der Vorgelegewelle 11 ist größer als die Geschwindigkeit des Vorsprungs 46 gewählt. Entsprechend öffnet sich zwischen der Biegefeder 29 und der Nockenscheibe 36 ein Spalt. Die Bewegung des Tilgers 27 ist nun allein durch die Trägheit des Massekörpers 28 und die Steifigkeit der Biegefeder 29 vorgegeben. Die freie Bewegung dauert wenigstens 75 % einer Umdrehung der Vorgelegewelle 11 (270 Grad).Subsequent to the maximum forced deflection 38 , the cam 39 moves away with the falling edge 43 of the projection 46. The cam 39 no longer exerts force in the direction of start 37 on the bending spring 29 from. Accordingly, the spiral spring 29 relaxes and accelerates the mass body 28 against the starting direction 37 in the direction of the rest position 30. The projection 46 moves with increasing speed against the starting direction 37. The rate of increase of the falling edge 48 at the speed of the countershaft 11 is greater than that Speed of the projection 46 is selected. Accordingly, 36 opens a gap between the spiral spring 29 and the cam plate. The movement of the damper 27 is now solely by the inertia of the mass body 28 and the Stiffness of the bending spring 29 predetermined. The free movement lasts at least 75% of one revolution of the countershaft 11 (270 degrees).

Die Tilger 27 schwingt über die Ruhelage 30 und erreicht seine größte Auslenkung 31 entgegen der Anschubrichtung 37, wenn die Nocke 39 bei etwa 180 Grad liegt. Die Nocke 39 liegt wieder in der Ebene E, allerdings auf der der Aufhängung 32 der Biegefeder 29 zugewandten Seite der Vorgelegewelle 11. Die Nocke 39 und der Vorsprung 46 liegen bezogen auf die Drehachse 12 diametral. Der Nocke 39 ist vorzugsweise längs der Drehachse 12 eine Aussparung 54 der Biegefeder 29 gegenüber angeordnet, dem Vorsprung 46 liegt vorzugsweise längs der Drehachse 12 die Aussparung 45 der Nockenscheibe 36 gegenüber. Die Nockenscheibe 36 und die Biegefeder 29 berühren einander in der diametralen Winkelstellung 55 nicht, unabhängig von der Amplitude der Auslenkung 31 der Biegefeder 29. Die in Fig. 7 dargestellte Amplitude 38 beinhaltet nur die Anregung durch die Nockenscheibe 36, bei dem meißelnden Bohrhammer 1 ist die Auslenkung 38 bei den typischen Anwendungen um wenigstens 20 % größer.The absorber 27 oscillates on the rest position 30 and reaches its greatest deflection 31 counter to the starting direction 37 when the cam 39 is at about 180 degrees. The cam 39 is again in the plane E, but on the suspension 32 of the spiral spring 29 facing side of the countershaft 11. The cam 39 and the projection 46 are relative to the axis of rotation 12 diametrically. The cam 39 is preferably arranged along the axis of rotation 12 a recess 54 of the spiral spring 29 against the projection 46 is preferably along the axis of rotation 12, the recess 45 of the cam plate 36 against. The cam 36 and the bending spring 29 do not touch each other in the diametrical angular position 55 , regardless of the amplitude of the deflection 31 of the spiral spring 29. Die in Fig. 7 shown amplitude 38 includes only the excitation by the cam disc 36, in the chiseling rotary hammer 1 , the deflection 38 in the typical applications by at least 20% greater.

Die maximale erzwungene Auslenkung 38 des Tilgers 27 erfolgt vorzugsweise zeitgleich mit der maximalen Kompression der pneumatischen Kammer 24. Die Vorgelegewelle 11 treibt synchron den Taumelfinger 20, damit indirekt das Schlagwerk 6, und auch die Nockenscheibe 36 an. Der Taumelfinger 20 erreicht periodisch seinen werkzeugabgewandten Totpunkt 56 bei einer Winkelstellung 57, beispielsweise bei 255 Grad (-105 Grad). Die Taumelfinger 20 bewegt sich und den Erregerkolben 21 nachfolgend in Schlagrichtung 7. Die pneumatische Kammer 24 des Schlagwerks 6 wird komprimiert. Die maximale Kompression wird zwischen 95 Grad und 115 Grad nach dem Totpunkt 56 erreicht. Der feste Winkelversatz des Taumelantriebs 14 zu der Nockenscheibe 36 ist derart gewählt, dass die gleichgerichtete Winkelstellung 53 der Nocke 39 zu dem Vorsprung 46 zwischen 95 Grad und 115 Grad auf den werkzeugabgewandten Totpunkt 56 des Taumelantriebs 14 folgen. Der Winkelversatz verschiebt sich um 180 Grad, wenn die Nockenscheibe 36 auf der werkzeugseitig von der Biegefeder 29 angeordnet ist.The maximum forced deflection 38 of the damper 27 is preferably carried out simultaneously with the maximum compression of the pneumatic chamber 24. The countershaft 11 drives synchronously the wobble finger 20, thus indirectly the striking mechanism 6, and also the cam 36 at. The wobble finger 20 periodically reaches its tool-remote dead center 56 at an angular position 57, for example at 255 degrees (-105 degrees). The wobble finger 20 moves and the excitation piston 21 subsequently in the direction of impact 7. The pneumatic chamber 24 of the striking mechanism 6 is compressed. The maximum compression is achieved between 95 degrees and 115 degrees after dead center 56 . The fixed angular offset of the wobble drive 14 to the cam 36 is selected so that the rectified angular position 53 of the cam 39 to the projection 46 between 95 degrees and 115 degrees to the tool away from the dead center 56 of the wobble drive 14 . The angular offset shifts by 180 degrees when the cam plate 36 is arranged on the tool side of the bending spring 29 .

Der bereits schwingende Tilger 27 soll möglichst wenig durch die Nocke 39 gestört werden. Der Vorsprung 46 ist ausgelegt, den von der Nocke 39 überstrichenen Bereich schnell zu verlassen. Der Scheitel 47 liegt dazu auf einer der Aufhängung 32 abgewandten Seite der Vorgelegewelle 11. Der Abstand des Scheitels 47 zu der Aufhängung 32 liegt zwischen 30 % und 50 % der Länge 34 der Biegefeder 29. The already oscillating absorber 27 should be disturbed as little as possible by the cam 39 . The projection 46 is designed to leave the area swept by the cam 39 quickly. The apex 47 lies on a side facing away from the suspension 32 of the countershaft 11. The distance of the apex 47 to the suspension 32 is between 30% and 50% of the length 34 of the spiral spring 29th

Die Biegefeder 29 kann senkrecht zu der Ebene versteift sein. Die Breite 58 der Biegefeder 29 ist vorzugsweise größer als deren Stärke 35 und geringer als deren Länge 34. Die beispielhafte Biegefeder 29 ist als plattenförmige Blattfeder ausgebildet (Fig. 5). Die Biegefeder 29 umgreift die Vorgelegewelle 11. Die Aufhängung 32 der Biegefeder 29 und das distale Ende 33 mit dem Massekörper 28 sind an diametral gegenüberliegenden Seiten der Vorgelegewelle 11. Die Biegefeder 29 hat beispielsweise eine Aussparung 59, durch welche die Vorgelegewelle 11 geführt ist. Die Biegefeder 29 kann eine weitere Aussparung 54 aufweisen, durch welche das parallel zu der Vorgelegewelle 11 angeordnete Schlagwerk 6 geführt ist. Die Aussparungen 54, 59 sind so ausreichend dimensioniert, dass die Biegefeder 29 bei ihrer Auslenkung durch den Massekörper 28 nicht an der Vorgelegewelle 11 und dem Schlagwerk 6 anstößt. Die Biegefeder 29 ist beispielsweise aus Federstahl oder einem Faserverbundstoff.The spiral spring 29 may be stiffened perpendicular to the plane. The width 58 of the spiral spring 29 is preferably greater than its thickness 35 and less than its length 34. The exemplary bending spring 29 is formed as a plate-shaped leaf spring ( Fig. 5 ). The bending spring 29 surrounds the countershaft 11. The suspension 32 of the spiral spring 29 and the distal end 33 with the mass body 28 are on diametrically opposite sides of the countershaft 11. The spiral spring 29 has, for example, a recess 59 through which the countershaft 11 is guided. The bending spring 29 may have a further recess 54 through which the impact mechanism 6 arranged parallel to the countershaft 11 is guided. The recesses 54, 59 are sufficiently dimensioned so that the bending spring 29 does not abut against the countershaft 11 and the percussion mechanism 6 when it is deflected by the mass body 28 . The bending spring 29 is for example made of spring steel or a fiber composite.

Claims (11)

  1. Hand-held power tool comprising
    a tool holder (2) for supporting a tool (4) on a working axis (3),
    a motor (5),
    a pneumatic striking mechanism (6) for striking the tool (4),
    an absorber (27) consisting of a mass body (28),
    a countershaft (11) driven about an axis of rotation (12) parallel to the working axis (3) by the motor (5) and
    a wobble drive (14) arranged on the countershaft (11) for driving the pneumatic striking mechanism (6),
    characterised in that the absorber (27) further consists of a bending spring (29) arranged transversely to the working axis (3) and that the hand-held power tool is further provided with a cam disc (36) arranged on the countershaft (11), the cam disc having a cam (39) projecting in a pushing direction (37) parallel to the working axis (3), and with a counterpart (46) to the cam (39) provided on the bending spring (29), the cam (39) bearing against the counterpart (46) and pretensioning the bending spring (29) in the pushing direction (37).
  2. Hand-held power tool (1) according to claim 1, characterised in that the cam disc (36) is contact-free relative to the bending spring (29) when the cam (39) and the counterpart (46) are in a diametrical angular position (55) in relation to the axis of rotation (12).
  3. Hand-held power tool (1) according to claim 1 or claim 2, characterised in that the cam disc (36) is contact-free relative to the bending spring (29) for at least 75 % of one rotation about the axis of rotation (12).
  4. Hand-held power tool (1) according to one of the preceding claims, characterised in that the mass body (28) is guided along a curved path by the bending spring (29).
  5. Hand-held power tool (1) according to one of the preceding claims, characterised in that the bending spring (29) is fastened to the machine housing (9) by means of a first end (32) and the mass body is fastened to a second end (33), the first end (32) and the second end (33) being arranged diametrically relative to the countershaft (11).
  6. Hand-held power tool (1) according to claim 5, characterised in that the counterpart (46) to the cam (39) is at a distance from the first end (32) corresponding to between 30 % and 50 % of the distance (34) of the first end (32) from the second end (33).
  7. Hand-held power tool (1) according to one of the preceding claims, characterised in that the maximum forced deflection (38) of the bending spring (29) from a rest position (30) as a result of the cam (39) bearing against the counterpart (46) is between 1 degree and 5 degrees.
  8. Hand-held power tool (1) according to one of the preceding claims, characterised in that the cam (39) has a helical flank (42) directed towards the bending spring (29), the helical flank ascending in the pushing direction (37) over a central angle (44) of between 30 degrees and 90 degrees.
  9. Hand-held power tool (1) according to one of the preceding claims, characterised in that the counterpart (46) has a helical flank (48) directed towards the cam (39), the helical flank ascending in the opposite direction to the pushing direction (37) over a central angle (50) of between 30 degrees and 90 degrees.
  10. Hand-held power tool (1) according to one of the preceding claims, characterised in that a pneumatic chamber (24) of the striking mechanism (6) is compressed to the maximum extent in an angular position (54) of the countershaft (11), the cam (39) being situated in the same angular position (53) as the counterpart (46) in relation to the axis of rotation (12) in the angular position (53) of the countershaft (11) and when the cam (39) is arranged on a side of the bending spring (29) directed away from the tool (4) or the cam (39) being situated diametrically relative to the counterpart (46) in relation to the axis of rotation (12) in the angular position (53) and when the cam (39) is arranged on a side of the bending spring (29) directed towards the tool (4).
  11. Hand-held power tool (1) according to one of the preceding claims, characterised in that the wobble drive (14) is in a dead centre (56) directed away from the tool (4) in a first angular position (57) of the countershaft (11) and the cam (39) is in an angular position deflecting the bending spring (29) to the maximum extent in a second angular position (53), the second angular position (53) being between 95 degrees and 115 degrees on from the first angular position (57) when the cam (39) is arranged on the side of the bending spring (29) directed away from the tool (4) and the first angular position (57) being between 65 degrees and 85 degrees on from the second angular position (53) when the cam (39) is arranged on the side of the bending spring (29) directed towards the tool (4).
EP15802103.0A 2014-12-03 2015-12-01 Hand-held power tool Active EP3227056B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14196018.7A EP3028818A1 (en) 2014-12-03 2014-12-03 Power tool
PCT/EP2015/078122 WO2016087399A1 (en) 2014-12-03 2015-12-01 Hand-held power tool

Publications (2)

Publication Number Publication Date
EP3227056A1 EP3227056A1 (en) 2017-10-11
EP3227056B1 true EP3227056B1 (en) 2018-08-15

Family

ID=52023219

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14196018.7A Withdrawn EP3028818A1 (en) 2014-12-03 2014-12-03 Power tool
EP15802103.0A Active EP3227056B1 (en) 2014-12-03 2015-12-01 Hand-held power tool

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14196018.7A Withdrawn EP3028818A1 (en) 2014-12-03 2014-12-03 Power tool

Country Status (4)

Country Link
US (1) US10414035B2 (en)
EP (2) EP3028818A1 (en)
CN (1) CN107000181B (en)
WO (1) WO2016087399A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015225864A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Suction device for a portable machine tool
EP3626398A1 (en) 2018-09-19 2020-03-25 Hilti Aktiengesellschaft Forcibly energised biharmonic damper
EP3670097A1 (en) * 2018-12-21 2020-06-24 Hilti Aktiengesellschaft Handheld machine tool
JP7251612B2 (en) * 2019-03-28 2023-04-04 工機ホールディングス株式会社 percussion work machine
EP3789161A1 (en) * 2019-09-06 2021-03-10 Hilti Aktiengesellschaft Hand machine tool
DE102020212425A1 (en) * 2020-10-01 2022-04-07 Robert Bosch Gesellschaft mit beschränkter Haftung Bearing flange for a drive system of a hand-held power tool, as well as a rotary hammer with a percussion mechanism and a bearing flange
EP4319944A1 (en) 2021-04-07 2024-02-14 Milwaukee Electric Tool Corporation Impact power tool

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165066B2 (en) * 1971-12-28 1976-12-02 Impex-Essen Vertrieb Von Werkzeugen Gmbh, 8800 Ansbach ROTARY IMPACT DRILL
DE2917475A1 (en) * 1979-04-30 1980-11-13 Hilti Ag DRILLING OR CHISEL HAMMER
US4325436A (en) * 1980-05-21 1982-04-20 Hilti Aktiengesellschaft Hammer drill or chipping hammer device
DE3429140A1 (en) * 1984-08-08 1986-02-20 Black & Decker Inc., Newark, Del. DRILLING HAMMER WITH A PNEUMATIC STRIKE
DE3506695A1 (en) * 1985-02-26 1986-08-28 Robert Bosch Gmbh, 7000 Stuttgart DRILLING HAMMER
NL8801466A (en) * 1988-06-07 1990-01-02 Emerson Electric Co DEVICE FOR DRIVING A DRILL AND / OR IMPACT TOOL.
DE4231986A1 (en) * 1992-09-24 1994-03-31 Bosch Gmbh Robert Hammer and / or percussion hammer
DE19955412A1 (en) * 1999-11-18 2001-05-23 Hilti Ag Drilling and chiseling device
DE10149216A1 (en) * 2001-10-05 2003-04-24 Bosch Gmbh Robert Hand-held machine tool e.g. hammer drills etc. ha impact tool driver unit with am element consists of two cam track parts acting in two different axial directions of an intermediate shaft
DE10356928A1 (en) 2003-12-05 2005-06-30 Robert Bosch Gmbh Schlagwerk, piston device and machine tool
DE102004026845A1 (en) 2004-06-02 2005-12-22 Robert Bosch Gmbh Hand tool, in particular drill and / or percussion hammer
DE102004044499B4 (en) * 2004-09-15 2021-02-18 Robert Bosch Gmbh Hand machine tool, in particular drill and / or percussion hammer
GB0716849D0 (en) 2007-08-30 2007-10-10 Fisher Hugh E Improved tool
DE102007061716A1 (en) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Tumbling drive of a hand tool machine
DE102008000677A1 (en) * 2008-03-14 2009-09-17 Robert Bosch Gmbh Hand tool for impact driven tools
GB0804963D0 (en) * 2008-03-18 2008-04-16 Black & Decker Inc Hammer
DE102008054873A1 (en) * 2008-12-18 2010-07-01 Robert Bosch Gmbh Hand tool with counter-oscillator
DE102010043810A1 (en) * 2010-11-12 2012-05-16 Hilti Aktiengesellschaft Hand tool
DE102010062099A1 (en) * 2010-11-29 2012-05-31 Robert Bosch Gmbh Hammer mechanism
RU2620399C2 (en) * 2012-03-22 2017-05-25 Хитачи Коки Ко., Лтд. Pulse power hand-driven machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016087399A1 (en) 2016-06-09
US20170355070A1 (en) 2017-12-14
CN107000181B (en) 2019-07-12
EP3028818A1 (en) 2016-06-08
EP3227056A1 (en) 2017-10-11
US10414035B2 (en) 2019-09-17
CN107000181A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
EP3227056B1 (en) Hand-held power tool
EP2265419B1 (en) Hand-held power tool for impacting driven tools
EP2234768B1 (en) Swash drive of a hand-held machine tool
EP2265420B1 (en) Hand-held power tool for impacting driven tool attachments
EP2072191B1 (en) Hand-held power tool
DE19505068C2 (en) Striking tool
EP1716980B1 (en) Hand tool with a wobble drive
EP2379282B1 (en) Hand tool having counter-oscillator
DE202004021825U1 (en) Vibration reduction device for a power tool and power tool with such a device
EP2176036A1 (en) Hand-held power tool comprising a spring unit
EP2269781A2 (en) Device for reduction and/or compensation of vibrations, in particular for a handheld machine tool and for use in handheld machine tools
EP3638457B1 (en) Hand-held power tool
EP1787761B1 (en) Motor-driven hammer drill
DE2437023A1 (en) STRIKING OR ROTARY HAMMER
DE102007062248A1 (en) Hand tool with a, at least one rotatably mounted intermediate shaft comprehensive gear device
EP2448719A1 (en) Device for reducing and/or compensating vibrations, in particular for a hand machine tool, and for application in hand machine tools
EP2027972B1 (en) Hand tool with reciprocating drive
EP2047951B1 (en) Manual machine tool with a crank drive
EP2480382B1 (en) Power tool with acounter-oscillation mechanism located in the power tool to compensate housing vibrations
EP2504603A1 (en) Controlled oscillation damper
EP4324597A1 (en) Drill hammer or chisel hammer with a vibration-reduced impact mechanism unit
EP3898117A1 (en) Hand-held power tool
DE102009044938A1 (en) Power tool with a striking mechanism assembly and a balancing mass to compensate for vibrations of the power tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1029218

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005513

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005513

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1029218

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9