EP3223981B1 - Procédé de fabrication de pièces tridimensionnelles en alliage d'aluminium et de titane - Google Patents

Procédé de fabrication de pièces tridimensionnelles en alliage d'aluminium et de titane Download PDF

Info

Publication number
EP3223981B1
EP3223981B1 EP15817955.6A EP15817955A EP3223981B1 EP 3223981 B1 EP3223981 B1 EP 3223981B1 EP 15817955 A EP15817955 A EP 15817955A EP 3223981 B1 EP3223981 B1 EP 3223981B1
Authority
EP
European Patent Office
Prior art keywords
pressure
sintering
sintering step
aluminum
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15817955.6A
Other languages
German (de)
English (en)
Other versions
EP3223981A1 (fr
Inventor
Guillaume Fribourg
Jean-François CASTAGNE
Jean-Claude Bihr
Clément GILLOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3223981A1 publication Critical patent/EP3223981A1/fr
Application granted granted Critical
Publication of EP3223981B1 publication Critical patent/EP3223981B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to the general field of manufacturing processes for three-dimensional parts based on metal alloys.
  • titanium-based alloys are used for parts intended to be subjected to significant thermomechanical stresses and corrosive atmospheres. These alloys make it possible to reduce the mass of these parts and their use is therefore advantageous for reasons of cost and/or energy efficiency, as is the case for example in the aeronautical field.
  • the manufacture of titanium-based metal alloy parts is traditionally done by processes involving foundry or the electron beam melting technique or “Electron Beam Melting” (EBM).
  • EBM Electro Beam Melting
  • the manufacture of parts of complex geometry, such as a turbomachine blade, is difficult and requires significant processing and machining steps subsequent to the application of the aforementioned development processes. In particular, additional machining steps often result in a high scrap rate, which increases production costs.
  • MIM Metal Injection Molding
  • Such a method comprises a step of preparing an injection composition based on metal powder (for example a metal alloy) and at least one binder (for example a thermoplastic resin), a step of injecting the injection composition in a cavity of a mold for producing a blank of the part, a step of selective elimination of the binder present in the blank or debinding, for example using a solvent at a controlled temperature, and a step of sintering the metal powder in order to densify it.
  • metal powder for example a metal alloy
  • binder for example a thermoplastic resin
  • titanium-based alloy parts produced by traditional MIM processes often exhibit inhomogeneous mechanical properties and relatively significant oxidation, which reduces their service life.
  • the present invention aims to overcome the disadvantages of the MIM processes of the prior art by proposing a method of manufacturing a sintered three-dimensional part comprising a titanium-based alloy which makes it possible to compensate for undesirable modifications in the chemistry of the alloy and to obtain, consequently, parts of complex geometry presenting homogeneous mechanical properties.
  • Controlling the pressure during the first sintering step is necessary because it is necessary to ensure the densification of the part at a high temperature, while avoiding a significant change in the chemistry of the preform following the first sintering step. Also, by setting a first pressure greater than or equal to 1 mbar, this first pressure is greater than the saturated vapor pressure of the addition elements at the sintering temperature, which limits their evaporation and therefore changes in the chemistry of the part following the first sintering step.
  • the first pressure can be greater than or equal to 10 mbar.
  • the first pressure can be applied for a duration of, for example, between 1 hour and 24 hours.
  • the method further comprises, after the first sintering step, a second sintering step during which a second pressure is imposed, the second pressure being lower than the first pressure, the duration of application of the second pressure being chosen so that the content mass of aluminum and/or chromium in a 200 ⁇ m thick layer located on the surface of the preform does not vary by more than 5% in relative value following the second sintering step.
  • the second pressure is less than 1 mbar.
  • the second pressure may be less than or equal to 10 -1 mbar, less than or equal to 10 -2 mbar, or even less than or equal to 10 -3 mbar.
  • the second pressure is applied for a period of less than 5 hours, for example between 10 minutes and 5 hours.
  • the porosity of the preform obtained after the first sintering step is further reduced due to the evacuation of the gas present in the porosity.
  • the conditions of the second sintering stage are optimal for evacuating the gas from the porosity, they are also favorable to the evaporation of the addition elements within the alloy which can lead to a modification of its chemistry, particularly on the surface of the preform. It is therefore desirable to limit the duration of this second sintering step. This limitation of duration is possible in the present invention because the densification of the preform has already been advanced during the first sintering step without affecting its chemistry. The duration of the second sintering step can then be significantly reduced so as not to unduly affect the chemistry of the alloy while being useful for evacuating the gas present in the porosity of the preform and thus improving the densification obtained.
  • the duration of application of the second pressure is determined so that the mass contents of addition elements (such as aluminum and/or chromium) on the surface of the preform do not vary by more than 5% in relative value. following the second sintering stage.
  • ICP plasma torch spectrometry
  • EDX energy dispersive analysis
  • WDS analysis wavelength dispersive
  • XRF X-ray fluorescence spectrometry
  • the method further comprises, after the second sintering step, a third sintering step during which a third pressure is imposed, the third pressure being greater at the second pressure, and which may for example be greater than or equal to 1 mbar.
  • the third sintering step makes it possible to complete the densification of the part, for example if too many addition elements have evaporated and the desired densification is not achieved.
  • the duration of this third step therefore depends on the progress of the densification of the preform at the end of the second sintering step.
  • the duration of this third step can be, for example, between 10 minutes and 10 hours.
  • the invention also relates to the manufacturing process described above in which the manufactured part is a turbomachine blade.
  • the aluminum mass content of the titanium-based alloy powder is greater than 10% before the first sintering step.
  • the titanium-based alloy powder has the following mass contents of elements before the first sintering step: between 32% and 33.5% aluminum, between 4.5% and 5.1% niobium , and between 2.4% and 2.7% chromium.
  • the titanium-based alloy powder has the following mass contents of elements before the first sintering step: between 28.12% and 29.12% aluminum, between 8.56% and 9.56% aluminum. niobium, and between 1.84% and 2.84% molybdenum.
  • the titanium-based alloy powder has the following mass contents of elements before the first sintering step: between 5.4% and 6.6% aluminum, and between 3.6% and 4.4%. % vanadium.
  • one of the steps of a MIM process consists of injecting under pressure into a cavity of a mold an injection composition comprising a powder of a metal alloy and a binder.
  • the alloy powder may preferably be a titanium and aluminum alloy powder.
  • the alloys described above can be used.
  • the powder is preferably in the form of substantially spherical grains.
  • the powder preferably has a grain size (d 90 ) less than or equal to 150 ⁇ m. In other words, if we consider the size distribution of the grains making up the powder, 90% of the grains have a size less than or equal to 150 ⁇ m.
  • the binder may, in a manner known per se, comprise a compound chosen from: paraffins, thermoplastic resins, agar gel, cellulose, polyethylene, polyethylene glycol, polypropylene, stearic acid, polyoxymethylene, etc. . and their mixtures.
  • a mode of implementing a method according to the invention comprises the following steps.
  • An injection composition is prepared (step E10) from an alloy powder as described above and a binder.
  • the injection composition can typically consist of alloy powder between 50% and 70% by volume, and 30% to 50% by volume of binder.
  • the injection composition can first be mixed at a temperature between 150°C and 200°C under a neutral atmosphere for example, and will be injected at this temperature.
  • the injection mold 1 generally consists of two parts 14, 16 forming a cavity 12 having the shape of the part to be manufactured.
  • the injection mold advantageously has several injection points 18a, 18b, 18c which allow injection into several parts of the cavity 12 of the mold 1.
  • injection is carried out at pressures which can vary from 400 bars to 800 bars.
  • step E20 The injection is then carried out (step E20) in the injection mold 1 which is temperature regulated, between 30°C and 70°C for example, so that the injection composition becomes plastic to form a blank of the piece to be made.
  • the blank thus produced is said to be in a “green” or plastic state.
  • the blank is then demolded (step E30), and possibly machined in the green state (step E40) to remove burrs or carrots from the injection points which could have appeared during demoulding.
  • the next step consists of selectively eliminating the binder present in the blank thus formed.
  • step E50 also called “debinding”
  • step E50 makes it possible to obtain a powder which has the shape of the part to be manufactured from a blank of the part in the green state.
  • Selective removal of the binder may include dissolving the binder by treatment with a solvent.
  • the selective removal of the binder can be carried out entirely or finalized thermally. In this case, it can be carried out in a sintering chamber so as not to move the powder between the step of selective elimination of the binder present in the blank and the first sintering step.
  • the sintering chamber Prior to introducing the powder into the sintering chamber, the sintering chamber was purged and decontaminated by cycles pumping under vacuum, for example under reduced pressure of argon or dihydrogen. Indeed, it is necessary to be under a neutral or reducing atmosphere during sintering to avoid oxidation of the elements present in the alloy.
  • the sintering step (step E60) is carried out in a sintering chamber, in which a sintering temperature is imposed gradually.
  • the sintering temperature is of the order of 80% to 90% of the solidus temperature of the alloy present in the powder to be sintered and ramps from 0.10°C/minute to 20° C/minute allows you to gradually reach this temperature.
  • a first sintering step (step E601) is carried out by subjecting the powder to a first pressure, of neutral or reducing atmosphere (under argon or dihydrogen for example), greater than or equal to 1 mbar, for example greater than or equal to 10 mbar.
  • a first pressure of neutral or reducing atmosphere (under argon or dihydrogen for example), greater than or equal to 1 mbar, for example greater than or equal to 10 mbar.
  • addition compounds such as chromium and/or aluminum is negligible throughout the duration of the first sintering stage in which this first pressure is applied.
  • the densification of the preform is carried out while avoiding a modification of the chemistry of the powder on the surface of the preform by evaporation of the addition elements.
  • Partial sintering is carried out during the first sintering step and then a second sintering step is carried out.
  • the preform is subjected to a second pressure, lower than the first, which is imposed in the sintering chamber for a determined duration (step E602).
  • this second pressure is to evacuate the gas present in the porosity of the preform to increase its densification.
  • the duration of application of the second pressure is limited in order to minimize the evaporation of the addition elements such as aluminum and/or chromium from the surface of the preform.
  • a treatment is carried out to evacuate the gas present in the porosity. generated during sintering without significantly affecting the composition of the preform, particularly on its surface.
  • evaporation on the surface of the preform is meant the evaporation of the addition elements in a layer of characteristic thickness (generally of the order of 200 ⁇ m) on the surface of the preform.
  • the evacuation of the gas present in the porosity will be more effective and the densification faster, but the evaporation of the addition elements on the surface of the preform will be even more important.
  • the evacuation of the gas present in the porosity will be longer and the densification more limited, but the evaporation of the addition elements on the surface of the preform will be less.
  • the duration of application of the second pressure will be adapted to minimize the relative variation in the mass content of aluminum and/or chromium on the surface of the preform following the second sintering step, preferably to less than 5%, more preferably less than 3%, even more preferably less than 1%.
  • the mass content of aluminum and/or chromium on the surface of the preform does not preferentially vary by more than 5% in relative value following the second sintering step, more preferably by 3%, even more preferably 1%.
  • step E603 After the second sintering step, it is possible to carry out a third sintering step (step E603) during which a third pressure greater than the second pressure is imposed.
  • This third pressure can for example be greater than or equal to 1 mbar.
  • the preform is cooled by temperature reduction ramps, for example by 0.1° C/minute at 60°C/minute, in order to optimize the microstructure of the part.
  • the final part is obtained from the preform which will have undergone finishing treatments (step E70), known per se, such as hot isostatic compression to finalize the densification of the part, additional heat treatments to optimize the microstructure, surface treatments by machining or polishing, etc.
  • finishing treatments known per se, such as hot isostatic compression to finalize the densification of the part, additional heat treatments to optimize the microstructure, surface treatments by machining or polishing, etc.
  • the method of the invention is particularly suitable for the manufacture of a blade 2 of a turbomachine, comprising for example a foot 22, a blade 24 and a head 26, like that illustrated very schematically on the Figure 3 .
  • the first example describes a method of manufacturing a blade 2 made of titanium alloy of the TiAl6-V4 type by a method according to the invention.
  • TiAl6-V4 grade 23 titanium alloy
  • binder consisting in particular of paraffin wax, poly(ethylene-vinyl acetate) and stearic acid.
  • the injection composition is produced (step E10) by mixing the alloy powder with the binder under Argon, at a temperature of 120° C. for 2 hours.
  • the injection composition is injected into the cavity 12 of the injection mold 1 (step E20).
  • the blank of blade 2 in the green state is then demolded (step E30) and machined in the green state (step E40) to remove the burrs due to the injection.
  • the blade blank is placed in a hexane bath at 40°C for 10 hours to remove the binder by dissolution (step E50).
  • the step of selective elimination of the binder continues in a sintering chamber, in which the blank partially removed from the binder will have been placed, carrying out heat treatments to eliminate the last traces of binder.
  • the sintering step (step E60) is initiated by raising the temperature in the sintering chamber to 1350°C.
  • step E601 The pressure inside the enclosure is then adjusted to 10 mbar for 2 hours to carry out a first sintering step (step E601).
  • the preform is cooled then extracted from the sintering chamber to undergo conventional finishing treatments (step E70).
  • the second example describes a method of manufacturing a blade 2 of titanium alloy of the TiAl 48-2-2 type by another method according to the invention.
  • binder mainly made up of polyethylene and polyethylene glycol.
  • the injection composition is produced (step E10) by mixing the alloy powder with the binder, at a temperature of 170°C.
  • the injection composition is injected into the cavity 12 of the injection mold 1 (step E20) regulated at 40°C and in which a vacuum has been created.
  • the blank of blade 2 in the green state is then demolded (step E30) and machined in the green state (step E40) to remove the burrs due to the injection.
  • the blade blank is placed in a water bath at 75°C for 24 hours to remove the binder by dissolution (step E50).
  • the step of selective elimination of the binder continues in a sintering chamber in which the blank partially removed from the binder will have been placed, carrying out heat treatments to eliminate the last traces of binder.
  • the sintering step (step E60) is initiated by raising the temperature in the sintering chamber to 1410°C.
  • the pressure inside the enclosure is adjusted to 1 mbar for 6 hours to carry out a first sintering step (step E601).
  • a second sintering step is carried out (step E602) by lowering the pressure to 10 -1 mbar in the enclosure for 30 minutes.
  • the preform is cooled then extracted from the sintering chamber to undergo conventional finishing treatments (step E70).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général des procédés de fabrication de pièces tridimensionnelles à base d'alliages métalliques.
  • Plus particulièrement, des alliages à base de titane sont utilisés pour des pièces destinées à être soumises à des contraintes thermomécaniques importantes et à des atmosphères corrosives. Ces alliages permettent de réduire la masse de ces pièces et leur emploi est par conséquent avantageux pour des raisons de coût et/ou d'efficacité énergétique, comme c'est le cas par exemple dans le domaine aéronautique.
  • La fabrication de pièces en alliage métallique à base de titane se fait traditionnellement par des procédés mettant en oeuvre notamment de la fonderie ou la technique de fusion par faisceau électronique ou « Electron Beam Melting » (EBM). La fabrication de pièces de géométrie complexe, comme un aubage de turbomachine, est difficile et nécessite des étapes de traitement et d'usinage importantes postérieurement à l'application des procédés d'élaboration précités. En particulier, les étapes d'usinages supplémentaires entraînent souvent un taux de rebut élevé, ce qui augmente les coûts de production.
  • Afin de maîtriser ces coûts et d'obtenir une pièce de forme précise nécessitant moins d'usinage après élaboration, il est souhaitable de disposer d'un procédé qui permette de fabriquer des pièces complexes en alliage à base de titane qui ne présentent pas ces inconvénients.
  • On connaît le procédé de moulage par injection de métal, ou MIM (« Metal Injection Molding »), qui permet d'obtenir des pièces métalliques de formes précises qui ne nécessitent pas d'usinages lourds et coûteux après leur élaboration.
  • Les documents US 6 350 407 et Lindberg et al. "Influence of sintering atmosphère on the tensile properties of MIM-processed Ti 45Al5Nb0.2B" décrivent des exemples de procédés de moulage par injection de métal.
  • Un tel procédé comprend une étape de préparation d'une composition d'injection à base de poudre métallique (par exemple d'un alliage métallique) et d'au moins un liant (par exemple une résine thermoplastique), une étape d'injection de la composition d'injection dans une cavité d'un moule pour réaliser une ébauche de la pièce, une étape d'élimination sélective du liant présent dans l'ébauche ou déliantage, par exemple en utilisant un solvant sous une température contrôlée, et une étape de frittage de la poudre métallique afin de la densifier.
  • Cependant, les pièces en alliages à base de titane réalisées par des procédés MIM traditionnels présentent souvent des propriétés mécaniques inhomogènes et une oxydation relativement importante, ce qui réduit leur durée de vie.
  • Objet et résumé de l'invention
  • Les Inventeurs ont remarqué lors d'essais que l'inhomogénéité des propriétés mécaniques ou l'oxydation relativement importante des pièces obtenues par un procédé MIM traditionnel était principalement due à des modifications de la composition chimique de l'alliage se produisant au cours de la fabrication de la pièce. Plus précisément, les Inventeurs ont observé que cette modification de la chimie de la pièce se produit durant l'étape de frittage de la poudre d'alliage et qu'elle est principalement due à l'évaporation d'éléments d'addition. En outre, la plupart des procédés MIM connus préconisent d'appliquer une pression réduite dans l'enceinte de frittage, et l'évaporation des éléments d'addition est d'autant plus élevée que la pression dans l'enceinte est réduite.
  • La présente invention vise à s'affranchir des inconvénients des procédés MIM de l'art antérieur en proposant un procédé de fabrication d'une pièce tridimensionnelle frittée comportant un alliage à base de titane qui permet de pallier les modifications indésirables de la chimie de l'alliage et d'obtenir, par conséquent, des pièces de géométrie complexe présentant des propriétés mécaniques homogènes.
  • Ce but est atteint grâce à un procédé de fabrication d'une pièce tridimensionnelle frittée selon la revendication 1.
  • Le contrôle de la pression pendant la première étape de frittage est nécessaire car il faut assurer la densification de la pièce à une température élevée, tout en évitant une modification notable de la chimie de la préforme suite à la première étape de frittage. Aussi, en fixant une première pression supérieure ou égale à 1 mbar, cette première pression se trouve supérieure à la pression de vapeur saturante des éléments d'addition à la température de frittage, ce qui limite leur évaporation et donc les modifications de la chimie de la pièce suite à la première étape de frittage.
  • La première pression peut être supérieure ou égale à 10 mbar. La première pression peut être appliquée pendant une durée comprise par exemple entre 1 heures et 24 heures.
  • Le procédé comporte en outre après la première étape de frittage, une deuxième étape de frittage durant laquelle une deuxième pression est imposée, la deuxième pression étant inférieure à la première pression, la durée d'application de la deuxième pression étant choisie afin que la teneur massique en aluminium et/ou en chrome dans une couche d'épaisseur de 200 µm située à la surface de la préforme ne varie pas de plus de 5% en valeur relative suite à la deuxième étape de frittage.
  • La deuxième pression est inférieure à 1 mbar. Par exemple, la deuxième pression peut être inférieure ou égale à 10-1 mbar, inférieure ou égale à 10-2 mbar, voire inférieure ou égale à 10-3 mbar. La deuxième pression est appliquée pendant une durée inférieure à 5 heures, par exemple comprise par exemple entre 10 minutes et 5 heures.
  • Ainsi, en réalisant une telle deuxième étape de frittage dans lequel la deuxième pression appliquée est inférieure à la première pression, on diminue encore la porosité de la préforme obtenue après la première étape de frittage du fait de l'évacuation du gaz présent dans la porosité. Toutefois même si les conditions de la deuxième étape de frittage sont optimales pour évacuer le gaz de la porosité, elles sont aussi favorables à l'évaporation des éléments d'addition au sein de l'alliage qui peut entraîner une modification de sa chimie, notamment en surface de la préforme. Il est donc souhaitable de limiter la durée de cette deuxième étape de frittage. Cette limitation de durée est possible dans la présente invention car la densification de la préforme a déjà été avancée lors de la première étape de frittage sans affecter sa chimie. La durée de la deuxième étape de frittage peut être alors significativement réduite de manière à ne pas affecter outre mesure la chimie de l'alliage tout en étant utile pour évacuer le gaz présent dans la porosité de la préforme et ainsi améliorer la densification obtenue.
  • La durée d'application de la deuxième pression est déterminée pour que les teneurs massiques en éléments d'addition (tels que l'aluminium et/ou le chrome) en surface de la préforme ne varient relativement pas de plus de 5% en valeur relative suite à la deuxième étape de frittage.
  • On entend ici par teneur massique d'un élément d'addition à la surface de la préforme, la proportion massique d'un élément dans une couche d'épaisseur de l'ordre de 200µm située à la surface de la préforme.
  • Par variation relative de la teneur massique en un élément donné, on entend la variation relative entre la teneur massique dudit élément avant la première étape de frittage et après la deuxième étape de frittage. Par exemple si la teneur massique en aluminium était de 30% avant la première étape de frittage, et qu'elle est de 28,5% après la deuxième étape de frittage, la variation relative de la teneur massique en aluminium suite aux deux premières étapes frittage est de (30-28,5)/30=5%.
  • Ces teneurs massiques à la surface sont déterminées sur des échantillons de la préforme avant frittage et après frittage par des analyses chimiques destructives ou semi-destructives, notamment par : spectrométrie par torche à plasma (ICP), analyse dispersive en énergie (EDX), analyse dispersive en longueur d'onde (WDS) ou spectrométrie de fluorescence X (XRF).
  • De préférence, le procédé comprend en outre, après la deuxième étape de frittage, une troisième étape de frittage durant laquelle une troisième pression est imposée, la troisième pression étant supérieure à la deuxième pression, et pouvant par exemple être supérieure ou égale à 1 mbar.
  • La troisième étape de frittage permet de terminer la densification de la pièce, par exemple si trop d'éléments d'addition se sont évaporés et que la densification souhaitée n'est pas atteinte. La durée de cette troisième étape dépend donc de l'état d'avancement de la densification de la préforme à l'issue de la deuxième étape de frittage. La durée de cette troisième étape peut être comprise par exemple entre 10 minutes et 10 heures.
  • L'invention vise également le procédé de fabrication décrit précédemment dans lequel la pièce fabriquée est une aube de turbomachine.
  • Selon un aspect de l'invention, la teneur massique en aluminium de la poudre d'alliage à base de titane est supérieure à 10% avant la première étape de frittage.
  • De préférence, la poudre d'alliage à base de titane présente avant la première étape de frittage les teneurs massiques en éléments suivantes : entre 32% et 33,5% d'aluminium, entre 4,5% et 5,1% de niobium, et entre 2,4% et 2,7% de chrome.
  • Alternativement, la poudre d'alliage à base de titane présente avant la première étape de frittage les teneurs massiques en éléments suivantes : entre 28,12% et 29,12% d'aluminium, entre 8,56% et 9,56% de niobium, et entre 1,84% et 2,84% de molybdène.
  • Alternativement encore, la poudre d'alliage à base de titane présente avant la première étape de frittage les teneurs massiques en éléments suivantes : entre 5,4% et 6,6% d'aluminium, et entre 3,6% et 4,4% de vanadium.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
    • la figure 1 est un ordinogramme représentant les principales étapes d'un procédé selon un mode de réalisation de l'invention,
    • la figure 2 est une vue très schématique d'un moule d'injection, et
    • la figure 3 est une vue très schématique d'une aube de turbomachine pouvant être fabriquée par un procédé selon l'invention.
    Description détaillée de l'invention
  • L'invention sera à présent décrite dans son application à la fabrication de pièces tridimensionnelles frittées en alliages à base de titane.
  • De façon bien connue en soi, une des étapes d'un procédé MIM consiste à injecter sous pression dans une cavité d'un moule une composition d'injection comprenant une poudre d'un alliage métallique et un liant.
  • La poudre d'alliage peut préférentiellement être une poudre d'alliage de titane et d'aluminium. On peut utiliser les alliages décrits ci-dessus.
  • La poudre est de préférence sous forme de grains sensiblement sphériques. La poudre possède de préférence une taille de grains (d90) inférieure ou égale à 150 µm. En d'autres termes, si l'on considère la distribution de la taille des grains composant la poudre, 90% des grains ont une taille inférieure ou égale à 150 µm.
  • Le liant peut, de façon connue en soi, comporter un composé choisi parmi : les paraffines, les résines thermoplastiques, le gel d'agar, la cellulose, le polyéthylène, le polyéthylène glycol, le polypropylène, l'acide stéarique, polyoxyméthylène, etc. et leurs mélanges.
  • En référence à la figure 1, un mode de mise en oeuvre d'un procédé conforme à l'invention, comprend les étapes suivantes.
  • Une composition d'injection est préparée (étape E10) à partir d'une poudre d'alliage tel que décrit plus haut et d'un liant.
  • La composition d'injection peut être constituée typiquement de poudre d'alliage entre 50% et 70% en volume, et de 30% à 50% en volume de liant.
  • La composition d'injection peut d'abord être mélangée à une température comprise entre 150°C et 200°C sous atmosphère neutre par exemple, et sera injectée à cette température.
  • Comme illustré très schématiquement sur la figure 2, le moule d'injection 1 est généralement constitué de deux parties 14, 16 formant une cavité 12 ayant la forme de la pièce à fabriquer. Le moule d'injection possède avantageusement plusieurs points d'injection 18a, 18b, 18c qui permettent une injection dans plusieurs parties de la cavité 12 du moule 1.
  • Typiquement, l'injection est effectuée à des pressions pouvant varier de 400 bars à 800 bars.
  • L'injection est ensuite réalisée (étape E20) dans le moule d'injection 1 qui est régulé en température, entre 30°C et 70°C par exemple, de sorte que la composition d'injection devienne plastique pour former une ébauche de la pièce à réaliser. L'ébauche ainsi réalisée est dite dans un « état vert » ou plastique.
  • Il est avantageux de faire l'injection dans une cavité du moule dans laquelle aura été fait le vide, afin de faciliter l'injection et d'assurer l'homogénéité de l'ébauche qui sera moulée.
  • L'ébauche est ensuite démoulée (étape E30), et éventuellement usinée à l'état vert (étape E40) pour supprimer les bavures ou les carottes des points d'injection qui auraient pu apparaître lors du démoulage.
  • L'étape suivante consiste à éliminer sélectivement le liant présent dans l'ébauche ainsi formée.
  • L'étape d'élimination sélective du liant (étape E50), aussi appelée « déliantage », permet d'obtenir une poudre qui a la forme de la pièce à fabriquer à partir d'une ébauche de la pièce à l'état vert.
  • L'élimination sélective du liant peut consister à dissoudre le liant par traitement par un solvant.
  • L'élimination sélective du liant peut être entièrement réalisée ou finalisée par voie thermique. Dans ce cas, elle peut être réalisée dans une enceinte de frittage afin de ne pas déplacer la poudre entre l'étape d'élimination sélective du liant présent dans l'ébauche et la première étape de frittage.
  • Préalablement à l'introduction de la poudre dans l'enceinte de frittage, l'enceinte de frittage a été purgée et décontaminée par des cycles de pompage sous vide, par exemple sous pression réduite d'argon ou de dihydrogène. En effet, il est nécessaire d'être sous atmosphère neutre ou réductrice durant le frittage pour éviter l'oxydation des éléments présents dans l'alliage.
  • On réalise l'étape de frittage (étape E60) dans une enceinte de frittage, dans laquelle une température de frittage est imposée progressivement. De façon connue en soi, la température de frittage est de l'ordre de 80% à 90% de la température de solidus de l'alliage présent dans la poudre à fritter et des rampes de 0,10°C/minute à 20°C/minute permettent d'atteindre progressivement cette température.
  • Conformément à l'invention, une première étape de frittage (étape E601) est réalisée en soumettant la poudre à une première pression, d'atmosphère neutre ou réductrice (sous argon ou dihydrogène par exemple), supérieure ou égale à 1 mbar, par exemple supérieure ou égale à 10 mbar.
  • L'évaporation de composés d'addition tels que le chrome et/ou l'aluminium est négligeable pendant toute la durée de la première étape de frittage dans lequel cette première pression est appliquée. Ainsi, durant cette étape la densification de la préforme est conduite tout en évitant une modification de la chimie de la poudre en surface de la préforme par évaporation des éléments d'addition.
  • On réalise un frittage partiel durant la première étape de frittage et on réalise ensuite une deuxième étape de frittage.
  • Durant cette deuxième étape de frittage, la préforme est soumise à une deuxième pression, inférieure à la première, qui est imposée dans l'enceinte de frittage pendant une durée déterminée (étape E602).
  • Cette deuxième pression a pour but d'évacuer le gaz présent dans la porosité de la préforme pour augmenter la densification de celle-ci. Toutefois, comme expliqué plus haut, la durée d'application de la deuxième pression est limitée afin de minimiser l'évaporation en surface de la préforme des éléments d'addition tels que l'aluminium et/ou le chrome. En d'autres termes, on réalise lors de la deuxième étape de frittage un traitement d'évacuation du gaz présent dans la porosité générée au cours du frittage sans affecter significativement la composition de la préforme, notamment à sa surface.
  • Par évaporation en surface de la préforme, on entend l'évaporation des éléments d'addition dans une couche d'épaisseur caractéristique (généralement de l'ordre de 200µm) à la surface de la préforme.
  • Par exemple, si une valeur de deuxième pression est choisie très faible, l'évacuation du gaz présent dans la porosité sera plus efficace et la densification plus rapide, mais l'évaporation des éléments d'addition à la surface de la préforme sera d'autant plus importante.
  • Alternativement, si une valeur de deuxième pression plus élevée est appliquée, l'évacuation du gaz présent dans la porosité sera plus longue et la densification plus limitée, mais l'évaporation des éléments d'addition à la surface de la préforme sera moindre.
  • Ainsi, la durée d'application de la deuxième pression sera adaptée pour minimiser la variation relative de la teneur massique en aluminium et/ou en chrome à la surface de la préforme suite à la deuxième étape de frittage préférentiellement à moins de 5%, plus préférentiellement à moins de 3%, encore plus préférentiellement à moins de 1%. En d'autres termes, la teneur massique en aluminium et/ou en chrome à la surface de la préforme ne varie pas préférentiellement de plus de 5% en valeur relative suite à la deuxième étape de frittage, plus préférentiellement de 3%, encore plus préférentiellement de 1%.
  • Après la deuxième étape de frittage, il est possible de réaliser une troisième étape de frittage (étape E603) durant laquelle une troisième pression supérieure à la deuxième pression est imposée. Cette troisième pression peut par exemple être supérieure ou égale à 1 mbar.
  • Après la première étape de frittage (étape E601), ou après la deuxième ou la troisième étape de frittage le cas échéant (étapes E602 et E603), la préforme est refroidie par des rampes de descente en température, par exemple de 0,1°C/minute à 60°C/minute, afin d'optimiser la microstructure de la pièce.
  • On obtient la pièce finale à partir de la préforme qui aura subi des traitements de finition (étape E70), connus en soi, tels qu'une compression isostatique à chaud pour finaliser la densification de la pièce, des traitements thermiques supplémentaires pour optimiser la microstructure, des traitements de surface par usinage ou polissage, etc.
  • Le procédé de l'invention est particulièrement adapté à la fabrication d'une aube 2 de turbomachine, comportant par exemple un pied 22, une pale 24 et une tête 26, comme celle illustrée très schématiquement sur la figure 3.
  • Premier exemple (hors l'invention)
  • Le premier exemple décrit un procédé de fabrication d'une aube 2 en alliage de titane du type TiAl6-V4 par un procédé selon l'invention.
  • On dispose d'abord d'une poudre commerciale d'un l'alliage de titane de grade 23 (TiAl6-V4) ayant des grains sensiblement sphériques avec un d90 de 45 µm.
  • On dispose aussi d'un liant constitué notamment de cire de paraffine, de poly(éthylène-acétate de vinyle) et d'acide stéarique.
  • La composition d'injection est réalisée (étape E10) en mélangeant la poudre d'alliage avec le liant sous Argon, à une température de 120°C pendant 2 heures.
  • La composition d'injection est injectée dans la cavité 12 du moule d'injection 1 (étape E20).
  • L'ébauche de l'aube 2 à l'état vert est ensuite démoulée (étape E30) et usinée à l'état vert (étape E40) pour supprimer les bavures dues à l'injection.
  • Puis, l'ébauche de l'aube est placée dans un bain d'hexane à 40°C pendant 10 heures pour éliminer le liant par dissolution (étape E50).
  • L'étape d'élimination sélective du liant se poursuit dans une enceinte de frittage, dans laquelle aura été placée l'ébauche partiellement éliminée du liant, en effectuant des traitements thermiques pour éliminer les dernières traces de liant.
  • L'étape de frittage (étape E60) est amorcée par une montée en température dans l'enceinte de frittage jusqu'à 1350°C.
  • La pression à l'intérieur de l'enceinte est alors ajustée à 10 mbar pendant 2 heures pour réaliser une première étape de frittage (étape E601).
  • La préforme est refroidie puis extraite de l'enceinte de frittage pour subir des traitements de finition classiques (étape E70).
  • Deuxième exemple
  • Le deuxième exemple décrit un procédé de fabrication d'une aube 2 en alliage de titane du type TiAl 48-2-2 par un autre procédé selon l'invention.
  • On dispose d'abord d'une poudre commerciale d'un l'alliage de titane de composition chimique telle que décrite dans le Tableau 1, ayant des grains sensiblement sphériques avec un d90 de 25 µm. Tableau 1 - Composition chimique (en % massique) de l'alliage
    Ti Al Nb Cr Fe
    Base 32,0-33,0 4,50-5,10 2,40-2,70 0,10
    C N H2 O2 Si
    0,015 0,02 0,01 0,04-0,13 0,025
  • On dispose aussi d'un liant principalement constitué de polyéthylène et de polyéthylène glycol.
  • La composition d'injection est réalisée (étape E10) en mélangeant la poudre d'alliage avec le liant, à une température de 170°C.
  • La composition d'injection est injectée dans la cavité 12 du moule d'injection 1 (étape E20) régulé à 40°C et dans laquelle on a fait le vide.
  • L'ébauche de l'aube 2 à l'état vert est ensuite démoulée (étape E30) et usinée à l'état vert (étape E40) pour supprimer les bavures dues à l'injection.
  • Puis, l'ébauche de l'aube est placée dans un bain d'eau à 75°C pendant 24 heures pour éliminer le liant par dissolution (étape E50).
  • L'étape d'élimination sélective du liant se poursuit dans une enceinte de frittage dans laquelle aura été placée l'ébauche partiellement éliminée du liant, en effectuant des traitements thermiques pour éliminer les dernières traces de liant.
  • L'étape de frittage (étape E60) est amorcée par une montée en température dans l'enceinte de frittage jusqu'à 1410°C.
  • La pression à l'intérieur de l'enceinte est ajustée à 1 mbar pendant 6 heures pour réaliser une première étape de frittage (étape E601).
  • Après la première étape de frittage, une deuxième étape de frittage est réalisée (étape E602) en abaissant la pression à 10-1 mbar dans l'enceinte pendant 30 minutes.
  • La préforme est refroidie puis extraite de l'enceinte de frittage pour subir des traitements de finition classiques (étape E70).

Claims (8)

  1. Procédé de fabrication d'une pièce tridimensionnelle frittée comportant un alliage à base de titane, le procédé comportant les étapes suivantes :
    - préparation d'une composition d'injection comprenant un liant et une poudre d'un alliage à base de titane comportant de l'aluminium et/ou du chrome comme élément d'addition (étape E10),
    - injection de la composition d'injection dans une cavité (12) d'un moule (1) de manière à obtenir une ébauche de la pièce à former (étape E20),
    - élimination sélective du liant présent dans l'ébauche (étape E50),
    - une première étape de frittage de la poudre de l'alliage à base de titane (étape E601), la poudre étant durant la première étape de frittage soumise à une première pression supérieure ou égale à 1 mbar afin d'obtenir une préforme de la pièce en poudre d'alliage frittée, et
    - une deuxième étape de frittage, effectuée après la première étape de frittage, durant laquelle une deuxième pression est imposée (étape E602), la deuxième pression étant inférieure à la première pression, la durée d'application de la deuxième pression étant choisie afin que la teneur massique en aluminium et/ou en chrome dans une couche d'épaisseur de 200 µm située à la surface de la préforme ne varie pas de plus de 5% en valeur relative suite à la deuxième étape de frittage, dans lequel la deuxième pression est inférieure à 1 mbar, et dans lequel la deuxième pression est appliquée pendant une durée inférieure à 5 heures.
  2. Procédé selon la revendication 1, comportant en outre, après la deuxième étape de frittage, une troisième étape de frittage durant laquelle une troisième pression est imposée (étape E603), la troisième pression étant supérieure à la deuxième pression.
  3. Procédé selon la revendication 2, dans lequel la troisième pression est supérieure ou égale à 1 mbar.
  4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel la pièce obtenue est une aube (2) de turbomachine.
  5. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel la teneur massique en aluminium de la poudre d'alliage est supérieure à 10% avant la première étape de frittage.
  6. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel la poudre d'alliage présente avant la première étape de frittage les teneurs massiques en éléments suivantes :
    entre 32% et 33,5% d'aluminium,
    entre 4,5% et 5,1% de niobium, et
    entre 2,4% et 2,7% de chrome.
  7. Procédé selon l'une quelconque des revendications 1 à 5 dans lequel la poudre d'alliage présente avant la première étape de frittage les teneurs massiques en éléments suivantes :
    entre 28,12% et 29,12% d'aluminium,
    entre 8,56% et 9,56% de niobium, et
    entre 1,84% et 2,84% de molybdène.
  8. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel la poudre d'alliage présente avant la première étape de frittage les teneurs massiques en éléments suivantes :
    entre 5,4% et 6,6% d'aluminium, et
    entre 3,6% et 4,4% de vanadium.
EP15817955.6A 2014-11-25 2015-11-24 Procédé de fabrication de pièces tridimensionnelles en alliage d'aluminium et de titane Active EP3223981B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461443A FR3028784B1 (fr) 2014-11-25 2014-11-25 Procede de fabrication de pieces tridimensionnelles en alliage d'aluminium et de titane, et aube de turbomachine obtenue par un tel procede
PCT/FR2015/053187 WO2016083724A1 (fr) 2014-11-25 2015-11-24 Procede de fabrication de pieces tridimensionnelles en alliage d'aluminium et de titane

Publications (2)

Publication Number Publication Date
EP3223981A1 EP3223981A1 (fr) 2017-10-04
EP3223981B1 true EP3223981B1 (fr) 2024-01-17

Family

ID=53008582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15817955.6A Active EP3223981B1 (fr) 2014-11-25 2015-11-24 Procédé de fabrication de pièces tridimensionnelles en alliage d'aluminium et de titane

Country Status (5)

Country Link
US (1) US20170321303A1 (fr)
EP (1) EP3223981B1 (fr)
CN (1) CN107002178B (fr)
FR (1) FR3028784B1 (fr)
WO (1) WO2016083724A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179711A1 (fr) * 2016-04-14 2017-10-19 三菱日立パワーシステムズ株式会社 Aube de rotor de turbine à vapeur, turbine à vapeur, et procédé pour fabriquer une aube de rotor de turbine à vapeur
CN108588482A (zh) * 2018-07-16 2018-09-28 宝鸡钛程压力容器设备制造有限公司 一种3d打印钛合金粉末的配方及制备方法
FR3086566B1 (fr) * 2018-10-02 2022-05-27 Norimat Procede de fabrication de piece de forme complexe par frittage sous pression a partir d'une preforme
FR3096912B1 (fr) * 2019-06-07 2021-10-29 Safran Aircraft Engines Procédé de fabrication de pièce de turbomachine par moulage MIM
FR3099717B1 (fr) * 2019-08-06 2022-06-10 Safran Aircraft Engines Procédé de fabrication d’une pièce métallique
FR3132912A1 (fr) * 2022-02-22 2023-08-25 Safran Aircraft Engines Poudre d’alliage, procédé de fabrication d’une pièce à base de cet alliage et pièce ainsi obtenue.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350407B1 (en) * 1998-05-07 2002-02-26 Injex Corporation Process for producing sintered product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215194C2 (de) * 1992-05-08 1995-06-29 Abb Patent Gmbh Hochwarmfester Werkstoff
JP2004124244A (ja) * 2002-09-30 2004-04-22 Nippon Piston Ring Co Ltd 高精度焼結カムロブ材
JP2004292905A (ja) * 2003-03-27 2004-10-21 Tungaloy Corp 傾斜組成燒結合金及びその製造方法
CN1632148A (zh) * 2003-12-24 2005-06-29 中国科学院金属研究所 一种钛铝基合金的制备方法
WO2012148471A1 (fr) * 2011-04-26 2012-11-01 The University Of Utah Procédés de métallurgie des poudres pour la production de titane à grains fins et ultrafins et alliages de titane associés
CN102632075B (zh) * 2012-04-28 2013-12-18 中南大学 一种粉末冶金含铌钛铝基合金大尺寸薄板的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350407B1 (en) * 1998-05-07 2002-02-26 Injex Corporation Process for producing sintered product

Also Published As

Publication number Publication date
FR3028784A1 (fr) 2016-05-27
FR3028784B1 (fr) 2019-05-10
CN107002178A (zh) 2017-08-01
CN107002178B (zh) 2019-11-01
EP3223981A1 (fr) 2017-10-04
WO2016083724A1 (fr) 2016-06-02
US20170321303A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
EP3223981B1 (fr) Procédé de fabrication de pièces tridimensionnelles en alliage d'aluminium et de titane
EP3298173B1 (fr) Composition pour la fabrication de pieces en aluminure de titane par frittage de poudre, et procede de fabrication mettant en uvre une telle composition
EP2691551B1 (fr) Procede de fabrication par frittage flash d'une piece de forme complexe
EP3860785B1 (fr) Procédé de fabrication de pièce de forme complexe par frittage sous pression à partir d'une préforme
EP3302874B1 (fr) Procédé de fabrication d'une aube de turbomachine en tial
EP3129516A1 (fr) Traitement thermique d'un alliage a base d'aluminure de titane
CA2991283C (fr) Procede de traitement thermique d'une preforme en poudre en alliage a base de titane
EP3331657B1 (fr) Procede de fabrication d'une piece en materiau composite
EP1702082B1 (fr) Procede de fabrication de segments diamantes pour des outils de coupe
KR102524107B1 (ko) 실린더 타겟의 제조방법
FR3037514B1 (fr) Procede de fabrication d'une piece tridimensionnelle fritee a partir d'une poudre et installation permettant de mettre en oeuvre un tel procede
EP3287857B1 (fr) Procédé d'obtention d'un article à base de zircone ayant un aspect métallique
KR100509938B1 (ko) 금속사출성형법을 이용한 티타늄 알루미나이드금속간화합물 물품의 제조 방법
JP6888294B2 (ja) Cu−Ga合金スパッタリングターゲットの製造方法、及び、Cu−Ga合金スパッタリングターゲット
FR2659585A1 (fr) Procede pour faconner des objets annulaires renforces par filaments.
WO2023161576A1 (fr) Poudre d'alliage, procédé de fabrication d'une pièce à base de cet alliage et pièce ainsi obtenue
FR3055230A3 (fr) Procede de fabrication additive d'une piece metallique ou ceramique
WO2023161577A1 (fr) Poudre d'alliage, procédé de fabrication d'une pièce à base de cet alliage et pièce ainsi obtenue
FR3114318A1 (fr) Poudre de particules pour un procédé de fabrication directe d’un matériau composite.
EP4370262A1 (fr) Contre-forme améliorée pour la fabrication de pièce aéronautique métallique
CN115555561A (zh) 一种高熵合金自润滑材料与钛合金复合构件及其制备方法和应用
FR3039838A1 (fr) Procede de fabrication d'une piece en materiau composite
FR2894597A1 (fr) Ebauche massive pour piece mecanique, en materiau ceramique fritte et procede de fabrication d'une telle ebauche

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/22 20060101ALI20190719BHEP

Ipc: B22F 3/10 20060101AFI20190719BHEP

Ipc: C22C 14/00 20060101ALI20190719BHEP

Ipc: B22F 5/04 20060101ALI20190719BHEP

Ipc: C22C 1/04 20060101ALI20190719BHEP

17Q First examination report despatched

Effective date: 20190826

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230906

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015087318

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1650228

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240517