EP3221633B1 - Pressure container and method for producing a pressure container - Google Patents

Pressure container and method for producing a pressure container Download PDF

Info

Publication number
EP3221633B1
EP3221633B1 EP15778265.7A EP15778265A EP3221633B1 EP 3221633 B1 EP3221633 B1 EP 3221633B1 EP 15778265 A EP15778265 A EP 15778265A EP 3221633 B1 EP3221633 B1 EP 3221633B1
Authority
EP
European Patent Office
Prior art keywords
layer
pressure container
fibers
inner liner
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15778265.7A
Other languages
German (de)
French (fr)
Other versions
EP3221633A1 (en
Inventor
Frank Cichy
Guido ENNINGHORST
Thorsten Thelen
Marc Tillmanns
Ole Hinneburg
Arne Böckenhauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP3221633A1 publication Critical patent/EP3221633A1/en
Application granted granted Critical
Publication of EP3221633B1 publication Critical patent/EP3221633B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0123Shape cylindrical with variable thickness or diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0668Synthetics in form of fibers or filaments axially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2181Metal working processes, e.g. deep drawing, stamping or cutting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0131Submarines

Definitions

  • the present invention relates to a pressure vessel and a method for manufacturing a pressure vessel.
  • Pressure vessels are well known, for example in the form of pressure bottles in which compressed air is stored.
  • these pressure vessels usually not only have to withstand pressure from the inside, which emanates from a fluid compressed in the pressure bottle, but also pressure from the outside, for example a dive of the submarine acts on the pressure vessel.
  • pressure cylinders made of steel are used for submarines in order to meet the loads mentioned.
  • these pressure bottles generally have such a high weight that they cannot be used to achieve a targeted balancing of a hull, for example the submarine, without additional balancing weights.
  • EP0666450 A1 relates to a pressure vessel comprising a liner with a cylindrical middle part and two dome-shaped end parts, and an outer jacket enveloping the liner.
  • the present object is achieved by the pressure vessel according to claim 1.
  • the use of the fiber layer package advantageously provides reinforcement, and the preferably targeted arrangement of the area of increased material thickness increases stability or increases shock resistance.
  • the use of fibers in the fiber layer package makes it possible to realize a fiber-plastic composite which, together with the area of increased material thickness, ensures that the pressure vessel also has an increased external pressure which, for example, acts on the pressure vessel during a submarine dive, withstand.
  • the at least partial use of the fiber-plastic composite instead of a solid pressure vessel made of steel advantageously enables a weight reduction compared to the pressure vessels made of solid steel.
  • the pressure vessel is a pressure bottle that is used in a submarine and in which compressed air or a pressure fluid is stored.
  • the inliner is designed as a hollow body.
  • the inliner is shaped in such a way that the pressure vessel has an axis of symmetry and / or that the pressure vessel is adapted to its place of use in terms of its geometric configuration for better use of space. It is conceivable, for example, that the cross section of the pressure vessel is kidney-shaped or that its cross section deviates from a circular or elliptical shape.
  • the pressure vessel is preferably adapted to the space in which the pressure vessel is to be used.
  • the pressure vessel can be used to store a compressed fluid, the compressed fluid preferably being enclosed in a cavity which the inliner forms.
  • Areas of increased material thickness are preferably arranged in specific areas on the inliner.
  • the area of increased material thickness is preferably a bulge or an elevation on the outside of the inliner.
  • the wall of the pressure vessel can be reinforced in a targeted manner at those points where an increased tension, for example during a dive, is to be expected.
  • an area of increased material thickness to be arranged between the cylindrical area and the pole cap area is. It can preferably be provided that the distances between the areas of increased material thickness along the axis of symmetry in the central area of the inliner are half as large as in the outer area.
  • the fiber layer package has a third layer, fibers in the third layer running along a third fiber direction, the second fiber direction and the third fiber direction differing from one another, second layers and third layers moving along alternate in a direction perpendicular to the surface of the liner.
  • the inliner forms a core.
  • the fiber layer package has a multiplicity of second layers and a multiplicity of third layers, the individual second layers and third layers being arranged alternately with respect to one another.
  • the fibers of the second layer preferably follow a circular winding and the fibers of the third layer follow a pole winding. It is conceivable that the fibers of the second layer run approximately perpendicular to the fibers in the third layer.
  • the fibers are each evenly distributed in the first or second layer.
  • the most stable plastic composite for reinforcing the pressure vessel can be realized in the form of the fiber layer package, with a layer thickness of the first layer extending up to a maximum increase in the liner in the area of increased material thickness.
  • the first layer serving as a compensation layer makes it possible to provide a surface that is as smooth and flat as possible, above which the rest of the fiber layer system is arranged.
  • the fibers of the compensation layer run at least obliquely, preferably essentially perpendicular, to the fibers of the second or third layer adjoining the first layer.
  • the fibers of the first layer are preferably wound onto an outside of the inliner in accordance with a circulation winding, in particular without winding around the region of increased material thickness.
  • the fiber layer package is surrounded by a protective layer.
  • the protective layer is a glass fiber reinforced plastic, which is applied evenly to the fiber layer package in particular.
  • the protective layer can advantageously ensure that the pressure vessel is not corroded or otherwise damaged.
  • the protective layer is preferably in the area of use of the pressure vessel, for example adapted to its maritime environment and prevents, for example, deposition and / or fouling, which would ultimately cause corroding.
  • the protective layer can therefore advantageously ensure that, on the one hand, fouling, ie growth, is minimized and, on the other hand, corrosion is prevented by insulation or material separation.
  • the protective layer insulates the fiber layer package from sea water, which means that no electrical currents can flow and the electromagnetic signature is not increased.
  • the protective layer can be designed in such a way that it changes under impact or point loads, for example becomes cloudy or changes color.
  • This indicator function makes it easy to detect possible damage to the fiber layer package.
  • the pressure container is stored in a zippered pocket.
  • the bag can be made of neoprene or similar material, for example. To check the indicator function, the bag can be removed, making an inspection easier.
  • the area of increased material thickness is designed as a reinforcing rib.
  • the inliner is at least partially cylindrical in shape and / or has a pole cap area.
  • the fiber layer package is arranged in a cylindrically shaped area. Through the targeted arrangement of the fiber layer package in the cylindrical area, the stability of the pressure vessel can be strengthened in the area that is most stressed from the outside under pressure or the application of force.
  • the fibers run along a fiber direction which differs from the corresponding fiber direction in the cylindrical area by an angle change. In particular, the change in angle is selected such that the storage path is arranged in the region of the curved pole region on a surface of revolution.
  • the fibers are arranged isotensoidally in the fiber layer package.
  • the inliner acting as a mandrel is designed in such a way that its surface allows the fibers to be deposited isotensoidally.
  • the isotonic deposition of the fibers can advantageously prevent the deposited fibers from slipping off during wet winding.
  • it can be ensured in an advantageous manner that the same stress is present in the fibers at every location of the pressure vessel.
  • the pressure acting on the pressure vessel can advantageously be uniformly distributed.
  • the region of increased material thickness runs along the intended connection, ie. H. each at the ends of the individual parts to be connected. This advantageously simplifies or enables later material connections, in particular during welding.
  • the first layer, the second layer and / or the third layer have a thermoplastic or thermosetting matrix system.
  • the respective matrix system fixes the fibers to the inliner or in the fiber layer package.
  • the thermosetting matrix system is preferably a two-component resin system, in particular consisting of an (epoxy) resin.
  • the use of a thermosetting matrix system has the advantage of good long-term durability. It is also conceivable that a thermoplastic matrix system consisting, for example, of polyethylene, polypropylene or polyether ether ketone is used to fix the respective fibers.
  • the use of a thermoplastic matrix system has the advantage of imparting impact strength to the pressure vessel and of providing an energy-absorbing wall.
  • the inliner is made from a metal, an aluminum or a thermoplastic.
  • the inliner is made of stainless steel, which can be used to produce a comparatively thin metallic inliner.
  • Thermoplastics can be shaped without much effort, which advantageously further simplifies the manufacture of the pressure vessel.
  • a thickness of the inliner is less than 5 mm, preferably less than 2.5 mm and particularly preferably less than 1.5 mm.
  • metallic inliners in particular, it can be easily processed and brought into the desired shape due to its small thickness.
  • the weight can be reduced further advantageously by reducing the metallic portion of the pressure vessel.
  • the fiber layer package is more than twice, preferably more than four times, and particularly preferably more than ten times, as thick as the inliner along a direction running perpendicular to the surface of the inliner.
  • the wall of the pressure vessel has a shock resistance of up to 250 G, preferably has a shock resistance of up to 350 G and particularly preferably a shock resistance of up to 400 G.
  • the present invention furthermore relates to a method for producing a pressure container according to the invention, the inliner being provided in method step a and the fiber layer package being deposited on the inliner in method step b.
  • a fiber-plastic composite is preferably realized in a simple manner by laying it down.
  • the fibers are arranged in the fiber layer package in such a way that a plastic-fiber composite is created, which makes the use of solid steel as the only material for forming the pressure container superfluous.
  • the fibers are preferably deposited in the second layer along a second fiber direction and / or in a third layer along a third fiber direction.
  • an inliner with a cylindrical region and at least one pole region, preferably two opposite pole regions is preferably expanded. It is furthermore provided that the second fiber direction in the cylindrical region differs from the second fiber direction in the pole region. The same applies in particular to the third fiber direction with regard to the cylindrical region and the pole region.
  • the second fiber direction is essentially determined by a circulating winding around a hollow body-shaped inliner and the third fiber direction is essentially determined by a pole winding that is perpendicular to the circulating winding.
  • the second fiber direction in the cylindrical region is not parallel, preferably essentially perpendicular, to the third fiber direction.
  • thermosetting matrix in method step b the fibers are soaked in a thermosetting matrix and then wound up.
  • fibers are provided as a dry continuous fiber, the continuous fibers being infiltrated by the liquid thermoset immediately before being wound up or soaked in the thermoset matrix.
  • a two-component resin system for example composed of an (epoxy) resin and a hardener, is used as the thermosetting matrix system.
  • a thermosetting matrix system is preferably provided, the thermosetting matrix system being distinguished by an increased glass transition temperature and thereby guaranteeing a sufficient strength of the winding even at high ambient temperatures.
  • the fibers are preferably combined as roving, in particular with a width of up to 8 mm, before winding, and the roving is wound onto the metallic or thermoplastic inliner.
  • the roving is wound up on a rotating inliner. It is conceivable that several rovings are placed in parallel on the inliner.
  • the fibers are soaked in a thermoplastic matrix and then wound up.
  • fibers are provided as tape, in particular with a tape width of up to 50 mm, and are pre-impregnated with a thermoplastic matrix.
  • the thermoplastic matrix comprises polyethylene, polypropylene or polyether ether ketone.
  • the tape is preferably melted onto the inliner immediately before winding and then hardens again.
  • FIG. 1 a section of a wall 10 of a pressure container according to an exemplary embodiment of the present invention is shown schematically.
  • the wall 10 shown here runs essentially parallel to an axis of symmetry S of the pressure vessel, which for example has at least partially a cylindrical shape.
  • Such pressure vessels are part of a submarine or other marine engineering construction, for example.
  • the pressure vessel In addition to the high demands on the stability of the pressure vessel, it is also desirable that the pressure vessel have a comparatively low weight.
  • the wall 10 of the pressure vessel is preferably designed as a hybrid structure.
  • the wall in addition to a, preferably metallic or thermoplastic, liner 1, the wall has a fiber layer package 7, the fiber layer package 7 surrounding or encasing the inliner 1.
  • the fiber layer package 7 rests on a side facing away from the center of the pressure vessel or a cavity of the pressure body, ie on an outside of the pressure vessel.
  • the fiber layer package 7 is preferably used to reinforce the pressure vessel and thereby stabilizes the essentially shape-determining inliner 1.
  • the fiber layer package 7 is configured in multiple layers and has at least a second layer 3 and a third layer 4.
  • fibers preferably run along a second fiber direction and in the third layer 4 fibers along a third fiber direction.
  • the fibers follow the second layer of a pole winding, while the fibers of the third layer follow a circulation winding.
  • the fibers, in particular in the cylindrical region preferably run essentially along an axial direction, that is to say parallel to the axis of symmetry S.
  • the fibers, in particular in the cylindrical region run essentially along a radial direction, the fibers being wound all around the axis of symmetry S. It is also conceivable that the fibers are wound helically around the inliner. It is clear to the person skilled in the art that such a helical arrangement of the fibers leads to the second fiber direction and the third fiber direction no longer being exactly perpendicular to one another.
  • the second fiber direction and the third fiber direction are still to be understood as running perpendicular to one another if a deviation from an ideal vertical course is less than 10 °, preferably 5 °.
  • the inliner 1 comprises an area of increased material thickness 1 ′, which in the present embodiment is configured as a bulge or as a protrusion on the cylindrical area of the pressure container.
  • Such a region of increased material thickness 1 ' can advantageously support the stabilization of the pressure vessel.
  • the area of increased material thickness 1 ' is located in the areas of the pressure vessel in which comparatively high stresses occur under operating conditions, for example at an external pressure of more than 60 bar.
  • the area of increased material thickness 1 ′ on the inliner 1 is arranged in a transition area in which the pressure vessel merges from its cylindrical area into a pole cap area of the pressure vessel.
  • a first layer 5 is provided, the first layer 5 comprising fibers which, for example, run all the way along a first fiber direction the inliner 1 are wound.
  • the area of increased material thickness 1 ' is omitted from the winding, as a result of which the areas next to the area of increased material thickness 1' can be filled up to the first layer 5 and the area of increased material thickness along the radial direction Complete at the same height.
  • the fiber layer package 7 is surrounded or sheathed, preferably completely, by a protective layer 6.
  • a protective layer 6 is a layer made of a glass fiber reinforced plastic. It is also conceivable that the fiber layer package 7 is surrounded by a protective layer 6 or another layer in the form of a pocket for protection against possible deposits, ie against fouling, or for transport.
  • FIG 2 a pressure vessel is shown, which is not part of the invention.
  • the representation is selected such that the pressure vessel without the fiber layer package 7 is illustrated on the right side and with the fiber layer package 7 on the left side.
  • the region of increased material thickness extends all the way along the outside of the inliner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft einen Druckbehälter und ein Verfahren zum Fertigen eines Druckbehälters.The present invention relates to a pressure vessel and a method for manufacturing a pressure vessel.

Druckbehälter sind beispielsweise in Form von Druckflaschen, in denen Druckluft gespeichert ist, hinlänglich bekannt. In maritimer Umgebung, beispielsweise im Umfeld eines U-Boots oder einer anderen meerestechnischen Konstruktion, müssen diese Druckbehälter zumeist nicht nur einem Druck von innen, der von einem in der Druckflasche komprimierten Fluid ausgeht, standhalten, sondern auch einem Druck von außen, der beispielsweise bei einem Tauchgang des U-Boots auf den Druckbehälter einwirkt.Pressure vessels are well known, for example in the form of pressure bottles in which compressed air is stored. In a maritime environment, for example in the vicinity of a submarine or other marine engineering, these pressure vessels usually not only have to withstand pressure from the inside, which emanates from a fluid compressed in the pressure bottle, but also pressure from the outside, for example a dive of the submarine acts on the pressure vessel.

Typischerweise werden für U-Boote Druckflaschen verwendet, die aus Stahl gefertigt sind, um den genannten Belastungen gerecht zu werden. Allerdings weisen diese Druckflaschen in der Regel ein derart hohes Eigengewicht auf, dass sich mit ihnen keine gezielte Balancierung eines Bootskörpers, beispielsweise des U-Boots, ohne zusätzliche Ausgleichsmassen erzielen lässt.Typically, pressure cylinders made of steel are used for submarines in order to meet the loads mentioned. However, these pressure bottles generally have such a high weight that they cannot be used to achieve a targeted balancing of a hull, for example the submarine, without additional balancing weights.

EP0666450 A1 bezieht sich auf einen Druckbehälter, umfassend einen Liner mit einem zylindrischen Mittelteil und zwei kalottenförmigen Endteilen, und einen den Liner umhüllenden Aussenmantel. EP0666450 A1 relates to a pressure vessel comprising a liner with a cylindrical middle part and two dome-shaped end parts, and an outer jacket enveloping the liner.

Offenbarung der ErfindungDisclosure of the invention

Es ist eine Aufgabe der vorliegenden Erfindung Druckbehälter zur Verfügung zu stellen, die gegenüber den massiv aus Stahl gefertigten Druckbehältern leichter sind und trotzdem so stabil sind, dass sie sich auch bei einem Außendruck, der beispielsweise bei einem U-Boot im Tauchgang auf den Druckbehälter einwirkt, verwenden lassen.It is an object of the present invention to provide pressure vessels which are lighter than the pressure vessels made of solid steel and yet are so stable that they also act on an external pressure which, for example, affects the pressure vessel during a submarine dive , let it be used.

Die vorliegende Aufgabe wird durch den Druckbehälter gemäß Anspruch 1 gelöst.The present object is achieved by the pressure vessel according to claim 1.

Gegenüber dem Stand der Technik wird durch die Verwendung des Faserlagenpakets in vorteilhafter Weise für eine Armierung gesorgt und durch die vorzugsweise gezielte Anordnung des Bereichs erhöhter Materialstärke für eine Stabilitätserhöhung bzw. eine Erhöhung der Schockfestigkeit gesorgt. Insbesondere lässt sich durch die Verwendung von Fasern im Faserlagenpaket ein Faser-Kunststoff-Verbund realisieren, der zusammen mit dem Bereich erhöhter Materialstärke dafür sorgt, dass der Druckbehälter auch einem erhöhten Außendruck, der beispielsweise bei einem Tauchgang eines U-Boots auf den Druckbehälter wirkt, standhält. Die zumindest teilweise Verwendung des Faser-Kunststoff-Verbunds statt eines massiven Druckbehälters aus Stahl ermöglicht dabei in vorteilhafter Weise eine Gewichtsreduzierung gegenüber den massiv aus Stahl gefertigten Druckbehältern.Compared to the prior art, the use of the fiber layer package advantageously provides reinforcement, and the preferably targeted arrangement of the area of increased material thickness increases stability or increases shock resistance. In particular, the use of fibers in the fiber layer package makes it possible to realize a fiber-plastic composite which, together with the area of increased material thickness, ensures that the pressure vessel also has an increased external pressure which, for example, acts on the pressure vessel during a submarine dive, withstand. The at least partial use of the fiber-plastic composite instead of a solid pressure vessel made of steel advantageously enables a weight reduction compared to the pressure vessels made of solid steel.

Vorzugsweise handelt es sich um einen formstabilen Druckbehälter, der besonders bevorzugt für die Nutzung im maritimen Umfeld, insbesondere in einem U-Boot, vorgesehen ist. Beispielsweise handelt es sich bei dem Druckbehälter um eine Druckflasche, die in einem U-Boot eingesetzt wird und in der Druckluft bzw. ein Druckfluid gespeichert wird. Dabei ist der Inliner als Hohlkörper ausgestaltet. Insbesondere ist es vorgesehen, dass der Inliner derart geformt ist, dass der Druckbehälter eine Symmetrieachse aufweist und/oder dass der Druckbehälter für eine bessere Raumnutzung hinsichtlich seiner geometrischen Ausgestaltung an seinen Einsatzort angepasst ist. Denkbar ist beispielsweise, dass der Druckbehälter in seinem Querschnitt nierenförmig ausgestaltet ist bzw. dass sein Querschnitt von einer Kreisform oder elliptischen Form abweicht. Dabei ist der Druckbehälter vorzugsweise bauraumangepasst an die Umgebung, in der der Druckbehälter eingesetzt werden soll, ausgestaltet. Insbesondere lässt sich der Druckbehälter dazu nutzen, ein komprimiertes Fluid aufzubewahren, wobei das komprimierte Fluid vorzugsweise in einem Hohlraum eingeschlossen ist, den der Inliner bildet. Vorzugsweise sind Bereiche erhöhter Materialstärke gezielt in bestimmten Bereichen auf dem Inliner angeordnet. Vorzugsweise handelt es sich bei dem Bereich erhöhter Materialstärke um eine Ausbuchtung bzw. eine Erhebung an der Außenseite des Inliners. Mit einem solchen Bereich erhöhter Materialstärke lässt sich die Wandung des Druckbehälters gezielt an den Stellen verstärken, an denen mit einer erhöhten Spannung, beispielsweise bei einem Tauchgang, zu rechnen ist. Weiterhin ist es vorstellbar, dass ein Bereich erhöhter Materialstärke zwischen dem zylindrischen Bereich und dem Polkappenbereich angeordnet ist. Es kann vorzugsweise vorgesehen sein, dass die Abstände der Bereiche erhöhter Materialstärke entlang der Symmetrieachse im mittleren Bereich des Inliners halb so groß sind wie im äußeren Bereich.It is preferably a dimensionally stable pressure vessel, which is particularly preferably intended for use in a maritime environment, in particular in a submarine. For example, the pressure vessel is a pressure bottle that is used in a submarine and in which compressed air or a pressure fluid is stored. The inliner is designed as a hollow body. In particular, it is provided that the inliner is shaped in such a way that the pressure vessel has an axis of symmetry and / or that the pressure vessel is adapted to its place of use in terms of its geometric configuration for better use of space. It is conceivable, for example, that the cross section of the pressure vessel is kidney-shaped or that its cross section deviates from a circular or elliptical shape. In this case, the pressure vessel is preferably adapted to the space in which the pressure vessel is to be used. In particular, the pressure vessel can be used to store a compressed fluid, the compressed fluid preferably being enclosed in a cavity which the inliner forms. Areas of increased material thickness are preferably arranged in specific areas on the inliner. The area of increased material thickness is preferably a bulge or an elevation on the outside of the inliner. With such an area of increased material thickness, the wall of the pressure vessel can be reinforced in a targeted manner at those points where an increased tension, for example during a dive, is to be expected. Furthermore, it is conceivable for an area of increased material thickness to be arranged between the cylindrical area and the pole cap area is. It can preferably be provided that the distances between the areas of increased material thickness along the axis of symmetry in the central area of the inliner are half as large as in the outer area.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen, sowie der Beschreibung unter Bezugnahme auf die Zeichnungen entnehmbar.Advantageous refinements and developments of the invention can be found in the subclaims and in the description with reference to the drawings.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass das Faserlagenpaket eine dritte Schicht aufweist, wobei in der dritten Schicht Fasern entlang einer dritten Faserrichtung verlaufen, wobei die zweite Faserrichtung und die dritte Faserrichtung voneinander abweichen, wobei sich zweite Schichten und dritte Schichten entlang einer senkrecht zur Oberfläche des Inliners verlaufenden Richtung abwechseln. Dabei bildet der Inliner einen Formkern. Insbesondere ist es vorgesehen, dass das Faserlagenpaket eine Vielzahl zweiter Schichten und eine Vielzahl dritter Schichten aufweist, wobei die einzelnen zweiten Schichten und dritten Schichten jeweils abwechselnd zueinander angeordnet sind. Vorzugsweise folgen die Fasern der zweiten Schicht einer Umlaufwickelung und die Fasern der dritten Schicht einer Polwickelung. Denkbar ist dabei, dass die Fasern der zweiten Schicht in etwa senkrecht zu den Fasern in der dritten Schicht verlaufen. Weiterhin ist es vorgesehen, dass die Fasern jeweils gleichmäßig in der ersten bzw. zweiten Schicht verteilt sind. Dadurch lässt sich in Gestalt des Faserlagenpakets ein möglichst stabiler Kunststoff-Verbund zur Armierung des Druckbehälters realisieren, wobei sich eine Schichtdicke der ersten Schicht bis zu einer maximalen Erhöhung des Inliners im Bereich erhöhter Materialstärke erstreckt. Durch die als Kompensationsschicht dienende erste Schicht lässt sich ein möglichst glatte und ebene Oberfläche bereitstellen, oberhalb der der Rest des Faserlagensystems angeordnet ist. Insbesondere ist es vorgesehen, dass die Fasern der Kompensationsschicht zumindest schräg, vorzugsweise im Wesentlichen senkrecht, zu den Fasern der sich an die erste Schicht anschließenden zweiten oder dritten Schicht verlaufen. Vorzugsweise sind die Fasern der ersten Schicht gemäß einer Umlaufwickelung auf eine Außenseite des Inliner aufgewickelt, insbesondere ohne den Bereich erhöhter Materialstärke zu umwickeln.According to a further embodiment of the present invention, it is provided that the fiber layer package has a third layer, fibers in the third layer running along a third fiber direction, the second fiber direction and the third fiber direction differing from one another, second layers and third layers moving along alternate in a direction perpendicular to the surface of the liner. The inliner forms a core. In particular, it is provided that the fiber layer package has a multiplicity of second layers and a multiplicity of third layers, the individual second layers and third layers being arranged alternately with respect to one another. The fibers of the second layer preferably follow a circular winding and the fibers of the third layer follow a pole winding. It is conceivable that the fibers of the second layer run approximately perpendicular to the fibers in the third layer. Furthermore, it is provided that the fibers are each evenly distributed in the first or second layer. As a result, the most stable plastic composite for reinforcing the pressure vessel can be realized in the form of the fiber layer package, with a layer thickness of the first layer extending up to a maximum increase in the liner in the area of increased material thickness. The first layer serving as a compensation layer makes it possible to provide a surface that is as smooth and flat as possible, above which the rest of the fiber layer system is arranged. In particular, it is provided that the fibers of the compensation layer run at least obliquely, preferably essentially perpendicular, to the fibers of the second or third layer adjoining the first layer. The fibers of the first layer are preferably wound onto an outside of the inliner in accordance with a circulation winding, in particular without winding around the region of increased material thickness.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass das Faserlagenpaket von einer Schutzschicht umgeben ist. Beispielsweise handelt es sich bei der Schutzschicht um einen glasfaserverstärkten Kunststoff, der insbesondere gleichmäßig auf das Faserlagenpaket aufgetragen ist. Durch die Schutzschicht lässt sich vorteilhafter Weise dafür sorgen, dass der Druckbehälter nicht korrodiert oder anders beschädigt wird. Dabei ist die Schutzschicht vorzugsweise an das Einsatzumfeld des Druckbehälters, beispielsweise an seine maritime Umgebung, angepasst und verhindert beispielsweise ein Ablagern und/oder ein fouling, das letztendlich für ein Korrodieren ursächlich wäre. Die Schutzschickt kann also in vorteilhafter Weise dafür sorgen, dass einerseits ein Fouling, d. h. ein Bewuchs, minimiert wird und andererseits durch eine Isolation bzw. Materialtrennung eine Korrosion verhindert wird. Darüber hinaus isoliert die Schutzschicht das Faserlagenpaket gegen Meerwasser, wodurch keine elektrischen Ströme fließen können und die elektromagnetische Signatur nicht erhöht wird. Desweiteren kann die Schutzschicht derart ausgestaltet sein, dass sie sich bei Stoss- oder Punktbelastungen verändert, beispielsweise trübe wird oder sich farblich verändert. Durch diese Indikatorfunktion kann eine mögliche Beschädigung des Faserlagenpakets leicht erkannt werden. Denkbar ist zudem, dass der Druckbehälter in einer Tasche mit Reißverschluss gelagert wird. Die Tasche kann beispielsweise aus Neopren oder ähnlichem Material gefertigt sein. Zur Prüfung der Indikatorfunktion kann die Tasche entfernt werden und somit eine Inspektion erleichtert werden.According to a further embodiment of the present invention, it is provided that the fiber layer package is surrounded by a protective layer. For example, the protective layer is a glass fiber reinforced plastic, which is applied evenly to the fiber layer package in particular. The protective layer can advantageously ensure that the pressure vessel is not corroded or otherwise damaged. The protective layer is preferably in the area of use of the pressure vessel, for example adapted to its maritime environment and prevents, for example, deposition and / or fouling, which would ultimately cause corroding. The protective layer can therefore advantageously ensure that, on the one hand, fouling, ie growth, is minimized and, on the other hand, corrosion is prevented by insulation or material separation. In addition, the protective layer insulates the fiber layer package from sea water, which means that no electrical currents can flow and the electromagnetic signature is not increased. Furthermore, the protective layer can be designed in such a way that it changes under impact or point loads, for example becomes cloudy or changes color. This indicator function makes it easy to detect possible damage to the fiber layer package. It is also conceivable that the pressure container is stored in a zippered pocket. The bag can be made of neoprene or similar material, for example. To check the indicator function, the bag can be removed, making an inspection easier.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass der Bereich der erhöhten Materialstärke als Verstärkungsrippe ausgestaltet ist.According to a further embodiment of the present invention, it is provided that the area of increased material thickness is designed as a reinforcing rib.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass der Inliner zumindest teilweise zylindrisch geformt ist und/oder einen Polkappenbereich aufweist. Insbesondere ist es vorgesehen, dass das Faserlagenpaket in einem zylindrisch geformten Bereich angeordnet ist. Durch das gezielte Anordnen des Faserlagenpakets im zylindrischen Bereich lässt sich der Druckbehälter in seiner Stabilität in dem Bereich verstärken, der unter Druck bzw. Kraftbeaufschlagung von außen am stärksten beansprucht wird. Im Polkappenbereich verlaufen die Fasern entlang einer Faserrichtung, die sich zur entsprechenden Faserrichtung im zylindrischen Bereich durch eine Winkeländerung unterscheidet. Insbesondere ist die Winkeländerung derart gewählt, dass der Ablagepfad im Bereich des gekrümmten Polbereichs auf einer Rotationsfläche angeordnet ist.According to a further embodiment of the present invention, it is provided that the inliner is at least partially cylindrical in shape and / or has a pole cap area. In particular, it is provided that the fiber layer package is arranged in a cylindrically shaped area. Through the targeted arrangement of the fiber layer package in the cylindrical area, the stability of the pressure vessel can be strengthened in the area that is most stressed from the outside under pressure or the application of force. In the polar cap area, the fibers run along a fiber direction which differs from the corresponding fiber direction in the cylindrical area by an angle change. In particular, the change in angle is selected such that the storage path is arranged in the region of the curved pole region on a surface of revolution.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass die Fasern isotensoid im Faserlagenpaket angeordnet sind. Insbesondere ist es vorgesehen, dass der als Formkern wirkende Inliner derart ausgestaltet ist, dass seine Oberfläche das isotensoide Ablegen der Fasern erlaubt. Durch das isotensoide Ablegen der Fasern lässt sich in vorteilhafter Weise vermeiden, dass die abgelegten Fasern beim Nasswickeln abrutschen. Außerdem lässt sich in vorteilhafter Weise dafür sorgen, dass an jedem Ort des Druckbehälters die gleiche Beanspruchung in den Fasern herrscht. Dadurch lässt sich der auf den Druckbehälter wirkende Druck in vorteilhafter Weise gleichmäßig verteilen.According to a further embodiment of the present invention, it is provided that the fibers are arranged isotensoidally in the fiber layer package. In particular, it is provided that the inliner acting as a mandrel is designed in such a way that its surface allows the fibers to be deposited isotensoidally. The isotonic deposition of the fibers can advantageously prevent the deposited fibers from slipping off during wet winding. In addition, it can be ensured in an advantageous manner that the same stress is present in the fibers at every location of the pressure vessel. As a result, the pressure acting on the pressure vessel can advantageously be uniformly distributed.

Bei mehrteiligen Inlinern mit Trennlinie senkrecht zur Längsachse kann es vorzugsweise vorgesehen sein, dass der Bereich erhöhter Materialstärke entlang der vorgesehenen Verbindung verläuft, d. h. jeweils an den Enden der zu verbindenden Einzelteile. Dadurch wird in vorteilhafter Weise die spätere materialschlüssige Verbindungen, insbesondere beim Verschweißen, vereinfacht bzw. ermöglicht.In the case of multi-part inliners with a dividing line perpendicular to the longitudinal axis, it can preferably be provided that the region of increased material thickness runs along the intended connection, ie. H. each at the ends of the individual parts to be connected. This advantageously simplifies or enables later material connections, in particular during welding.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass die erste Schicht, die zweite Schicht und/oder die dritte Schicht ein thermoplastisches oder duroplastisches Matrixsystem aufweist. Durch das jeweilige Matrixsystem werden die Fasern am Inliner bzw. im Faserlagenpaket fixiert. Bei dem duroplastischen Matrixsystem handelt es sich vorzugsweise um ein Zweikomponenten-Harzsystem, insbesondere bestehend aus einem (Epoxid-)Harz. Die Verwendung eines duroplastischen Matrixsystems hat den Vorteil einer guten Langzeitbeständigkeit. Es ist auch vorstellbar, dass zum Fixieren der jeweiligen Fasern ein thermoplastisches Matrixsystem, bestehend beispielsweise aus Polyethylen, Polypropylen oder Polyetheretherketon verwendet wird. Die Verwendung eines thermoplastischen Matrixsystems hat den Vorteil, dem Druckbehälter eine Schlagzähe zu verleihen und eine energieabsorbierende Wandung zur Verfügung zu stellen.According to a further embodiment of the present invention, it is provided that the first layer, the second layer and / or the third layer have a thermoplastic or thermosetting matrix system. The respective matrix system fixes the fibers to the inliner or in the fiber layer package. The thermosetting matrix system is preferably a two-component resin system, in particular consisting of an (epoxy) resin. The use of a thermosetting matrix system has the advantage of good long-term durability. It is also conceivable that a thermoplastic matrix system consisting, for example, of polyethylene, polypropylene or polyether ether ketone is used to fix the respective fibers. The use of a thermoplastic matrix system has the advantage of imparting impact strength to the pressure vessel and of providing an energy-absorbing wall.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass der Inliner aus einem Metall, einem Aluminium oder einem Thermoplast gefertigt ist. Beispielsweise ist der Inliner aus einem rostfreien Stahl hergestellt, mit dem sich ein vergleichsweise dünner metallischer Inliner realisieren lässt. Thermoplasten lassen sich ohne großen Aufwand formgebend bearbeiten, wodurch in vorteilhafter Weise die Fertigung des Druckbehälters weiter vereinfacht wird.According to a further embodiment of the present invention, it is provided that the inliner is made from a metal, an aluminum or a thermoplastic. For example, the inliner is made of stainless steel, which can be used to produce a comparatively thin metallic inliner. Thermoplastics can be shaped without much effort, which advantageously further simplifies the manufacture of the pressure vessel.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass eine Dicke des Inliners weniger als 5 mm, bevorzugt weniger als 2,5 mm und besonders bevorzugt weniger als 1,5 mm beträgt. Insbesondere bei metallischen Inlinern lässt sich dieser wegen seiner geringen Dicke einfach bearbeiten und in die gewünschte Form bringen. Außerdem kann durch die Reduzierung des metallischen Anteils am Druckbehälter das Gewicht in vorteilhafter Weise weiter reduziert werden. Weiterhin ist es vorgesehen, dass das Faserlagenpaket mehr als doppelt, vorzugsweise mehr als vierfach, und besonders bevorzugt mehr als zehnfach, so dick ist wie der Inliner entlang einer senkrecht zur Oberfläche des Inliners verlaufenden Richtung.According to a further embodiment of the present invention, it is provided that a thickness of the inliner is less than 5 mm, preferably less than 2.5 mm and particularly preferably less than 1.5 mm. In the case of metallic inliners in particular, it can be easily processed and brought into the desired shape due to its small thickness. In addition, the weight can be reduced further advantageously by reducing the metallic portion of the pressure vessel. Furthermore, it is provided that the fiber layer package is more than twice, preferably more than four times, and particularly preferably more than ten times, as thick as the inliner along a direction running perpendicular to the surface of the inliner.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass die Wandung des Druckbehälters eine Schockfestigkeit bis zu 250 G, bevorzugt eine Schockfestigkeit bis zu 350 G und besonders bevorzugt eine Schockfestigkeit bis zu 400 G aufweist.According to a further embodiment of the present invention, it is provided that the wall of the pressure vessel has a shock resistance of up to 250 G, preferably has a shock resistance of up to 350 G and particularly preferably a shock resistance of up to 400 G.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines erfindungsgemäßen Druckbehälters, wobei in einem Verfahrensschritt a der Inliner bereitgestellt wird und in einem Verfahrensschritt b das Faserlagenpaket auf den Inliner abgelegt wird.The present invention furthermore relates to a method for producing a pressure container according to the invention, the inliner being provided in method step a and the fiber layer package being deposited on the inliner in method step b.

Vorzugsweise wird im Verfahrensschritt b durch das Ablegen auf einfache Weise ein Faser-Kunststoff-Verbund realisiert. Dabei werden die Fasern derart im Faserlagenpaket angeordnet, dass dadurch ein Kunststoff-Faserverbund entsteht, der die Verwendung von massivem Stahl als einzigen Werkstoff zur Bildung des Druckbehälters überflüssig macht. Vorzugsweise werden die Fasern dabei in der zweiten Schicht entlang einer zweiten Faserrichtung und/oder in einer dritten Schicht entlang einer dritten Faserrichtung abgelegt. Vorzugsweise wird im Verfahrensschritt a ein Inliner mit einem zylinderförmigen Bereich und mindestens einem Polbereich, vorzugsweise zwei gegenüberliegenden Polbereichen, breitgestellt. Weiterhin ist es vorgesehen, dass sich die zweite Faserrichtung im zylinderförmigen Bereich unterscheidet von der zweiten Faserrichtung im Polbereich. Insbesondere gilt Analoges für die dritte Faserrichtung bezüglich des zylinderförmigen Bereichs und des Polbereichs.In process step b, a fiber-plastic composite is preferably realized in a simple manner by laying it down. The fibers are arranged in the fiber layer package in such a way that a plastic-fiber composite is created, which makes the use of solid steel as the only material for forming the pressure container superfluous. The fibers are preferably deposited in the second layer along a second fiber direction and / or in a third layer along a third fiber direction. In method step a, an inliner with a cylindrical region and at least one pole region, preferably two opposite pole regions, is preferably expanded. It is furthermore provided that the second fiber direction in the cylindrical region differs from the second fiber direction in the pole region. The same applies in particular to the third fiber direction with regard to the cylindrical region and the pole region.

Vorzugsweise ist es vorgesehen, dass die zweite Faserrichtung im Wesentlichen durch eine Umlaufwicklung um einen hohlkörperförmigen Inliner festgelegt wird und die dritte Faserrichtung im Wesentlichen durch eine senkrecht zur Umlaufwicklung erfolgenden Polwickelung. Insbesondere ist es vorgesehen, dass die zweite Faserrichtung im zylinderförmigen Bereich nicht parallel, bevorzugt im Wesentlichen senkrecht, zur dritten Faserrichtung verläuft.It is preferably provided that the second fiber direction is essentially determined by a circulating winding around a hollow body-shaped inliner and the third fiber direction is essentially determined by a pole winding that is perpendicular to the circulating winding. In particular, it is provided that the second fiber direction in the cylindrical region is not parallel, preferably essentially perpendicular, to the third fiber direction.

Gemäß einer weiteren Ausführungsform der vorliegende Erfindung ist es vorgesehen, dass in Verfahrensschritt a

  • -- ein metallischer Inliner durch ein Drückwalzverfahren oder
  • -- ein thermoplastischer Inliner durch ein Spritzblasverfahren
hergestellt wird. Bei der Herstellung des metallischen Inliners mit dem Drückwalzverfahren wird vorzugsweise eine Ronde in einer Drehmaschine auf eine Mandrel gespannt und anschließend wird die Ronde entsprechend einer Mandrelkontur unter gleichzeitigem Drücken und Vorschubwalzen in die gewünschte Form des metallischen Inliners verformt. Mittels dieses spanlosen Verfahrens lassen sich in vorteilhafter Weise dünnwandige metallische Inliner herstellen, deren Dicke weniger als 2 mm beträgt. Zudem lassen sich auf einfache Weise Bereich erhöhter Materialstärke bzw. Vorsprünge am metallischen Inliner realisieren. Bei der Herstellung des thermoplastischen Inliners wird eine Vorform auf eine Temperatur erhitzt, die oberhalb der Glasübergangstemperatur liegt, wodurch sich Makromoleküle entlang der Vorform ausrichten lassen. Die erwärmte Vorform wird vorzugsweise in eine Blasform, insbesondere in ein Konturwerkzeug, eingeführt und anschließend mit einem Innendruck beaufschlagt. Dadurch passt sich die Vorform an die Kontur der Innenseite des Konturwerkzeugs bzw. der Blasform an. Durch dieses Spritzblasverfahren lässt sich in vorteilhafter Weise ein thermoplastischer Inliner realisieren, der sich nahtlos fertigen lässt und eine hohe Oberflächengüte hat.According to a further embodiment of the present invention, it is provided that in method step a
  • - a metallic inliner by a pressure rolling process or
  • - a thermoplastic liner by injection blow molding
will be produced. In the production of the metallic inliner using the pressure rolling method, a round blank is preferably clamped onto a mandrel in a lathe and then the blank is deformed into the desired shape of the metallic inliner according to a mandrel contour with simultaneous pressing and feed rolling. This non-cutting process can advantageously be used to produce thin-walled metallic inliners whose thickness is less than 2 mm. In addition, areas of increased material thickness or projections on the metallic inliner can be realized in a simple manner. In the The thermoplastic inliner is manufactured by heating a preform to a temperature which is above the glass transition temperature, as a result of which macromolecules can be aligned along the preform. The heated preform is preferably introduced into a blow mold, in particular into a contour tool, and then subjected to an internal pressure. As a result, the preform adapts to the contour of the inside of the contour tool or the blow mold. This injection blow molding process advantageously enables a thermoplastic inliner to be produced which can be manufactured seamlessly and has a high surface quality.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass in Verfahrensschritt b die Fasern in einer duroplastischen Matrix getränkt und anschließend aufgewickelt werden. Insbesondere ist es vorgesehen, dass Fasern als trockene Endlosfaser bereitgestellt werden, wobei die Endlosfasern unmittelbar vor dem Aufwickeln von dem flüssigen Duroplast infiltriert werden bzw. in der duroplastischen Matrix getränkt werden. Insbesondere wird als duroplastisches Matrixsystem ein zweikomponentiges Harzsystem, beispielsweise aus einem (Epoxid)-Harz und einem Härter, verwendet. Vorzugsweise ist ein heißhärtendes Matrixsystem vorgesehen, wobei sich das heißhärtende Matrixsystem durch eine erhöhte Glasübergangstemperatur auszeichnet und dabei eine ausreichende Festigkeit der Wickelung auch bei hohen Umgebungstemperaturen garantiert. Durch die Verwendung einer duroplastischen Matrix lässt sich in vorteilhafter Weise die Viskosität einstellen und eine hohe Festigkeit erzielen. Vorzugsweise werden die Fasern zeitlich vor dem Aufwickeln als Roving, insbesondere mit einer Breite von bis zu 8 mm, zusammengefasst und der Roving wird auf den metallischen oder thermoplastischen Inliner aufgewickelt. Insbesondere wird der Roving beim Aufwickeln auf einen rotierenden Inliner aufgewickelt. Es ist dabei vorstellbar, dass mehrere Rovings parallel nebeneinander auf dem Inliner abgelegt werden.According to a further embodiment of the present invention, it is provided that in method step b the fibers are soaked in a thermosetting matrix and then wound up. In particular, it is provided that fibers are provided as a dry continuous fiber, the continuous fibers being infiltrated by the liquid thermoset immediately before being wound up or soaked in the thermoset matrix. In particular, a two-component resin system, for example composed of an (epoxy) resin and a hardener, is used as the thermosetting matrix system. A thermosetting matrix system is preferably provided, the thermosetting matrix system being distinguished by an increased glass transition temperature and thereby guaranteeing a sufficient strength of the winding even at high ambient temperatures. By using a thermosetting matrix, the viscosity can be advantageously adjusted and high strength achieved. The fibers are preferably combined as roving, in particular with a width of up to 8 mm, before winding, and the roving is wound onto the metallic or thermoplastic inliner. In particular, the roving is wound up on a rotating inliner. It is conceivable that several rovings are placed in parallel on the inliner.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass in Verfahrensschritt b die Fasern in einer thermoplastischen Matrix getränkt und anschließend aufgewickelt werden. Insbesondere ist es vorgesehen, dass Fasern als Tape, insbesondere mit einer Tapebreite von bis zu 50 mm, bereitgestellt werden und mit einer thermoplastischen Matrix vorimprägniert werden. Insbesondere umfasst die thermoplastische Matrix dabei Polyethylen, Polypropylen oder Polyetheretherketon. Vorzugsweise wird das Tape unmittelbar vor dem Aufwickeln auf dem Inliner aufgeschmolzen und härtet anschließend wieder aus. Die Nutzung einer thermoplastischen Matrix hat den Vorteil, dass sie vergleichsweise schnell aushärtet und keiner thermischen Nachbehandlung bedarf.According to a further embodiment of the present invention, it is provided that in process step b the fibers are soaked in a thermoplastic matrix and then wound up. In particular, it is provided that fibers are provided as tape, in particular with a tape width of up to 50 mm, and are pre-impregnated with a thermoplastic matrix. In particular, the thermoplastic matrix comprises polyethylene, polypropylene or polyether ether ketone. The tape is preferably melted onto the inliner immediately before winding and then hardens again. The advantage of using a thermoplastic matrix is that it cures comparatively quickly and requires no thermal aftertreatment.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus den Zeichnungen, sowie aus der nachfolgenden Beschreibung von bevorzugten Ausführungsformen anhand der Zeichnungen. Die Zeichnungen illustrieren dabei lediglich beispielhafte Ausführungsform der Erfindung, welche den Erfindungsgedanken nicht einschränken.Further details, features and advantages of the invention result from the drawings, as well as from the following description of preferred embodiments with reference to the drawings. The drawings illustrate merely exemplary embodiments of the invention, which do not restrict the inventive concept.

Kurze Beschreibung der FigurenBrief description of the figures

  • Die Figur 1 zeigt einen Ausschnitt aus einer Wandung eines Druckbehälters gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung.The Figure 1 shows a section of a wall of a pressure vessel according to an exemplary embodiment of the present invention.
  • Die Figur 2 zeigt einen Druckbehälter, der nicht Bestandteil der Erfindung ist.The Figure 2 shows a pressure vessel, which is not part of the invention.

In den verschiedenen Figuren sind gleiche Teile stets mit den gleichen Bezugszeichen versehen und werden daher in der Regel auch jeweils nur einmal benannt bzw. erwähnt.In the different figures, the same parts are always provided with the same reference numerals and are therefore usually only named or mentioned once.

In Figur 1 ist schematisch ein Ausschnitt aus einer Wandung 10 eines Druckbehälters gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung dargestellt. Dabei verläuft die hier dargestellte Wandung 10 im Wesentlichen parallel zu einer Symmetrieachse S des Druckbehälters, der beispielsweise zumindest teilweise eine zylindrische Form aufweist. Solche Druckbehälter sind beispielsweise Teil eines U-Boots oder einer anderen meerestechnische Konstruktion. Neben den hohen Anforderungen an die Stabilität des Druckbehälters ist es ebenfalls gewünscht, dass der Druckbehälter ein vergleichsweise geringes Gewicht aufweist. Zur Reduzierung des Druckbehältergewichts ist die Wandung 10 des Druckbehälters vorzugsweise als Hybridstruktur ausgestaltet. Dazu weist die Wandung neben einem, vorzugsweise metallischen oder thermoplastischen, Inliner 1 ein Faserlagenpaket 7 auf, wobei das Faserlagenpaket 7 den Inliner 1 umgibt bzw. ummantelt. Insbesondere liegt das Faserlagenpaket 7 an einer dem Zentrum des Druckbehälters bzw. einem Hohlraum des Druckkörpers abgewandten Seite, d. h. an einer Außenseite des Druckbehälters an. Vorzugsweise dient das Faserlagenpaket 7 der Armierung des Druckbehälters und sorgt dadurch für eine Stabilisierung des im Wesentlichen formbestimmenden Inliners 1. Dabei ist es vorgesehen, dass das Faserlagenpaket 7 mehrschichtig ausgestaltet ist und mindestens eine zweite Schicht 3 und eine dritte Schicht 4 aufweist. Dabei verlaufen in der zweiten Schicht 3 vorzugsweise Fasern entlang einer zweiten Faserrichtung und in der dritten Schicht 4 Fasern entlang einer dritten Faserrichtung. Insbesondere folgen die Fasern der zweiten Schicht einer Polwickelung, während die Fasern der dritten Schicht einer Umlaufwicklung folgen. Bei der Polwickelung verlaufen vorzugsweise die Fasern, insbesondere im zylindrischen Bereich, im Wesentlichen entlang einer axialen, d. h. parallel zur Symmetrieachse S verlaufenden, Richtung. Bei der Umlaufwicklung verlaufen die Fasern, insbesondere im zylindrischen Bereich, im Wesentlichen entlang einer radialen Richtung, wobei die Fasern umlaufend um die Symmetrieachse S aufgewickelt sind. Denkbar ist auch, dass die Fasern helixartig um den Inliner gewickelt sind. Dem Fachmann ist klar, dass eine solche helixartige Anordnung der Fasern dazu führt, dass die zweite Faserrichtung und die dritte Faserrichtung nicht mehr exakt senkrecht zueinander verlaufen. Entsprechend sind die zweite Faserrichtung und die dritte Faserrichtung noch als senkrecht zueinander verlaufend zu verstehen, wenn ein Abweichen von einem idealen senkrechten Verlauf weniger als 10°, vorzugsweise 5°, beträgt. Weiterhin ist es vorgesehen, dass der Inliner 1 einen Bereich erhöhter Materialstärke 1' umfasst, die in der vorliegenden Ausführung als Ausbuchtung bzw. als Vorsprung auf dem zylinderförmigen Bereich des Druckbehälters ausgestaltet ist. Durch einen solchen Bereich erhöhter Materialstärke 1' lässt sich in vorteilhafter Weise die Stabilisierung des Druckbehälters unterstützen. Insbesondere ist es vorstellbar, dass sich der Bereich erhöhter Materialstärke 1' in den Bereichen des Druckbehälters befindet, in denen unter Betriebsbedingungen, beispielsweise bei einem Außendruck von mehr als 60 bar, vergleichsweise hohe Spannungen auftreten. Denkbar ist beispielsweise das der Bereich erhöhter Materialstärke 1' am Inliner 1 in einem Übergangsbereich angeordnet ist, in dem der Druckbehälter von seinem zylindrischen Bereich in einen Polkappenbereich des Druckbehälter übergeht. Um dem Rest des Faserlagenpaket 7, insbesondere der zweiten und/oder der dritten Schicht, eine ebene Fläche für das Aufwickeln zur Verfügung zu stellen ist eine erste Schicht 5 vorgesehen, wobei die erste Schicht 5 Fasern umfasst, die beispielsweise entlang einer ersten Faserrichtung umlaufend um den Inliner 1 gewickelt sind. Insbesondere ist bei der Wickelung der Fasern in der ersten Schicht 5 der Bereich erhöhter Materialstärke 1' von der Wickelung ausgelassen, wodurch die Bereiche neben dem Bereich erhöhter Materialstärke 1' aufgefüllt werden können bis die erste Schicht 5 und der Bereich erhöhter Materialstärke entlang der radialen Richtung auf derselben Höhe abschließen.In Figure 1 a section of a wall 10 of a pressure container according to an exemplary embodiment of the present invention is shown schematically. The wall 10 shown here runs essentially parallel to an axis of symmetry S of the pressure vessel, which for example has at least partially a cylindrical shape. Such pressure vessels are part of a submarine or other marine engineering construction, for example. In addition to the high demands on the stability of the pressure vessel, it is also desirable that the pressure vessel have a comparatively low weight. To reduce the pressure vessel weight, the wall 10 of the pressure vessel is preferably designed as a hybrid structure. For this purpose, in addition to a, preferably metallic or thermoplastic, liner 1, the wall has a fiber layer package 7, the fiber layer package 7 surrounding or encasing the inliner 1. In particular, the fiber layer package 7 rests on a side facing away from the center of the pressure vessel or a cavity of the pressure body, ie on an outside of the pressure vessel. The fiber layer package 7 is preferably used to reinforce the pressure vessel and thereby stabilizes the essentially shape-determining inliner 1. In this case, it is provided that the fiber layer package 7 is configured in multiple layers and has at least a second layer 3 and a third layer 4. In the second layer 3, fibers preferably run along a second fiber direction and in the third layer 4 fibers along a third fiber direction. In particular, the fibers follow the second layer of a pole winding, while the fibers of the third layer follow a circulation winding. In the case of the pole winding, the fibers, in particular in the cylindrical region, preferably run essentially along an axial direction, that is to say parallel to the axis of symmetry S. In the case of the circulation winding, the fibers, in particular in the cylindrical region, run essentially along a radial direction, the fibers being wound all around the axis of symmetry S. It is also conceivable that the fibers are wound helically around the inliner. It is clear to the person skilled in the art that such a helical arrangement of the fibers leads to the second fiber direction and the third fiber direction no longer being exactly perpendicular to one another. Correspondingly, the second fiber direction and the third fiber direction are still to be understood as running perpendicular to one another if a deviation from an ideal vertical course is less than 10 °, preferably 5 °. Furthermore, it is provided that the inliner 1 comprises an area of increased material thickness 1 ′, which in the present embodiment is configured as a bulge or as a protrusion on the cylindrical area of the pressure container. Such a region of increased material thickness 1 'can advantageously support the stabilization of the pressure vessel. In particular, it is conceivable that the area of increased material thickness 1 'is located in the areas of the pressure vessel in which comparatively high stresses occur under operating conditions, for example at an external pressure of more than 60 bar. It is conceivable, for example, that the area of increased material thickness 1 ′ on the inliner 1 is arranged in a transition area in which the pressure vessel merges from its cylindrical area into a pole cap area of the pressure vessel. In order to provide the rest of the fiber layer package 7, in particular the second and / or the third layer, with a flat surface for winding, a first layer 5 is provided, the first layer 5 comprising fibers which, for example, run all the way along a first fiber direction the inliner 1 are wound. In particular, when the fibers are wound in the first layer 5, the area of increased material thickness 1 'is omitted from the winding, as a result of which the areas next to the area of increased material thickness 1' can be filled up to the first layer 5 and the area of increased material thickness along the radial direction Complete at the same height.

Weiterhin ist es vorgesehen, dass das Faserlagenpaket 7 von einer Schutzschicht 6, vorzugsweise vollständig, umgeben bzw. ummantelt ist. In der dargestellten Ausführungsform handelt es sich dabei um eine Schicht aus einem glasfaserverstärkten Kunststoff. Denkbar ist zudem, dass das Faserlagenpaket 7 zum Schutz vor etwaigen Ablagerungen, d. h. vor fouling, oder zum Transport von einer Schutzschicht 6 oder eine weiteren Schicht in Form einer Tasche umgeben ist.Furthermore, it is provided that the fiber layer package 7 is surrounded or sheathed, preferably completely, by a protective layer 6. In the illustrated embodiment, this is a layer made of a glass fiber reinforced plastic. It is also conceivable that the fiber layer package 7 is surrounded by a protective layer 6 or another layer in the form of a pocket for protection against possible deposits, ie against fouling, or for transport.

In Figur 2 ist ein Druckbehälter dargestellt, der nicht Bestandteil der Erfindung ist. Dabei ist die Darstellung so gewählt, dass auf der rechten Seite der Druckbehälter ohne das Faserlagenpaket 7 illustriert ist und auf der linken Seite mit dem Faserlagenpaket 7. Insbesondere ist es vorgesehen, dass die Bereiche erhöhter Materialstärke 1' in regelmäßigen Abständen entlang des Inliners 1 und damit auch entlang des Druckkörpers, insbesondere entlang der Symmetrieachse S, angeordnet sind. Insbesondere erstreckt sich der Bereich erhöhter Materialstärke umlaufend entlang der Außenseite des Inliners.In Figure 2 a pressure vessel is shown, which is not part of the invention. The representation is selected such that the pressure vessel without the fiber layer package 7 is illustrated on the right side and with the fiber layer package 7 on the left side. In particular, it is provided that the areas of increased material thickness 1 'at regular intervals along the inliner 1 and thus also arranged along the pressure body, in particular along the axis of symmetry S. In particular, the region of increased material thickness extends all the way along the outside of the inliner.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Inlinerinline
1'1'
Bereich erhöhter MaterialstärkeArea of increased material thickness
33
zweite Schichtsecond layer
44
dritte Schichtthird layer
55
erste Schichtfirst layer
66
Schutzschichtprotective layer
77
FaserlagenpaketFiber layer packet
1010
Wandungwall
SS
Symmetrieachseaxis of symmetry

Claims (13)

  1. Pressure container for internal or external compression loading for a submarine, said container having a wall (10) comprising an inner liner (1) and a fiber layer package (7) comprising fibers, wherein the inner liner (1) is at least partially sheathed by the fiber layer package (7), wherein the fiber layer package (7) comprises a first layer (5) and a second layer (2), wherein, in a sub-region in the first layer (5), fibers run along a first fiber direction around the inner liner (1), and, in the second layer (2), fibers run along a second fiber direction, wherein the inner liner (1) comprises regions of increased material thickness (1') for stabilizing the pressure container, characterized in that a layer thickness of the first layer (5) extends up to a maximum height of the inner liner (1) in the regions of increased material thickness (1'), whereby the first layer (5) serves as a compensation layer, wherein the regions of increased material thickness (1') are arranged at irregular intervals along an axis of symmetry of the pressure container.
  2. Pressure container according to Claim 1, wherein the fiber layer package (7) comprises a third layer (3), wherein fibers run along a third fiber direction in the third layer (3), wherein the second fiber direction differs from the third fiber direction, wherein second layers (2) and third layers (3) alternate along a direction running normal to the surface of the inner liner (1).
  3. Pressure container according to any one of the preceding claims, wherein the fiber layer package (7) is surrounded by a protective layer (6).
  4. Pressure container according to any one of the preceding claims, wherein the region of increased material thickness (1) is constituted as a reinforcement rib.
  5. Pressure container according to any one of the preceding claims, wherein the fibers are arranged in an isotensoid manner in the fiber layer package (7).
  6. Pressure container according to any one of the preceding claims, wherein the first layer (5), the second layer (2) and/or the third layer (3) comprise (s) a thermoplastic or thermosetting matrix system.
  7. Pressure container according to any one of the preceding claims, wherein the inner liner (1) is produced from a metal, in particular a special steel, or a thermoplastic.
  8. Pressure container according to any one of the preceding claims, wherein a thickness of the inner liner (1) amounts to less than 5 mm, preferably less than 2.5 mm and particularly preferably less than 1.5 mm.
  9. Pressure container according to any one of the preceding claims, wherein the wall (10) of the pressure container a shock resistance of up to 250 G.
  10. Method for producing a pressure container according to any one of the preceding claims, wherein the inner liner (1) is prepared in a process step a and fibers are wound onto the inner liner (1) to form the fiber layer package in a process step b.
  11. Method according to Claim 10, wherein in process step a
    -- a metal inner liner is produced by a flow-forming process or
    -- a thermoplastic inner liner is produced by an injection blow-molding process.
  12. Method according to Claim 10 or 11, wherein in process step b the fibers are impregnated in a thermosetting matrix and then wound on.
  13. Method according to any one of Claims 10 to 12, wherein in process step b the fibers are impregnated in a thermoplastic matrix and then wound on.
EP15778265.7A 2014-11-19 2015-10-07 Pressure container and method for producing a pressure container Active EP3221633B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116951.4A DE102014116951A1 (en) 2014-11-19 2014-11-19 Pressure vessel and method of manufacturing a pressure vessel
PCT/EP2015/073087 WO2016078823A1 (en) 2014-11-19 2015-10-07 Pressure container and method for producing a pressure container

Publications (2)

Publication Number Publication Date
EP3221633A1 EP3221633A1 (en) 2017-09-27
EP3221633B1 true EP3221633B1 (en) 2020-01-15

Family

ID=54291280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15778265.7A Active EP3221633B1 (en) 2014-11-19 2015-10-07 Pressure container and method for producing a pressure container

Country Status (4)

Country Link
EP (1) EP3221633B1 (en)
KR (1) KR20170066654A (en)
DE (1) DE102014116951A1 (en)
WO (1) WO2016078823A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081208B1 (en) * 2018-05-18 2021-11-26 Max Sardou OPTIMIZED STRUCTURE AND MASS PRODUCTION MEANS OF VERY HIGH PRESSURE TANKS AT LOW COST
JP7226346B2 (en) 2020-01-09 2023-02-21 トヨタ自動車株式会社 High-pressure tank manufacturing method and its manufacturing apparatus
CN114636093B (en) * 2020-12-15 2023-09-01 宇通客车股份有限公司 Carbon fiber wound gas cylinder and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666450A1 (en) * 1994-01-31 1995-08-09 Urenco Deutschland GmbH Pressure vessel
CA2212244C (en) * 1995-12-04 2007-05-29 Toray Industries, Inc. Pressure vessel and process for producing the same
DE19631546C1 (en) * 1996-07-24 1997-11-13 Mannesmann Ag Composite gas pressure-bottle with plastic liner
NL1014290C2 (en) * 2000-02-04 2001-08-07 Advanced Lightweight Const Gro Fiber-reinforced pressure vessel and method for making a fiber-reinforced pressure vessel.
DE102010020944A1 (en) * 2010-05-19 2011-11-24 Benteler Automobiltechnik Gmbh Method for manufacturing gas pressure vessel, involves providing seamless pipe for generating liner and enlarging wall thickness in end sections of pipe relative to wall thickness of central section
DE102010017413B4 (en) * 2010-06-17 2012-08-30 Xperion Gmbh Pressure vessel for storing a fluid
EP2628994A1 (en) * 2012-02-14 2013-08-21 Lanxess Deutschland GmbH Plastic liner with fixing elements for pressurised containers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3221633A1 (en) 2017-09-27
DE102014116951A1 (en) 2016-05-19
KR20170066654A (en) 2017-06-14
WO2016078823A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
EP2326865B1 (en) High-pressure container
EP3221633B1 (en) Pressure container and method for producing a pressure container
DE102013007284A1 (en) Connecting strut and method of making the same
DE102015222392A1 (en) Pressure vessel with a load ring, motor vehicle and method for producing a pressure vessel
DE3113791A1 (en) "TUBULAR HOLLOW BODY, PROCESS FOR ITS PRODUCTION AND DEVICE FOR IMPLEMENTING THE PROCESS"
DE102016201477A1 (en) Pressure vessel and method for producing a pressure vessel
DE102015222391A1 (en) Pressure vessel with a dome cap and method for producing a pressure vessel
DE102015215077A1 (en) Torque rod
DE102016208376A1 (en) Pressure vessel for storing fuel in a motor vehicle
DE102017220882A1 (en) Pressure vessel with thermoplastic and thermoset reinforcement and manufacturing process
DE102011007361A1 (en) Method for manufacturing pressure tank i.e. type 3 pressure tank, for motor car for storing hydrogen, involves pre-tensioning metallic liner in longitudinal direction until curing matrix material, and applying composite material on liner
DE102017201420B4 (en) Tank, in particular pressure tank, in particular hydrogen pressure tank
DE102016211211A1 (en) Axle strut for a vehicle
DE102017207498A1 (en) Pressure vessel manufacturing with fiber reinforced cap
DE202008005538U1 (en) Gas tank bottle
EP3601870B1 (en) Pressurised container and method for producing an outer casing for a pressurised container
EP3557117B1 (en) Pressure vessel and method for connecting a pressure vessel into a body structure
DE102017205190A1 (en) Pressure vessel with fuel-impermeable liner
DE102016208005B3 (en) Pressure vessel with outgassing channels and manufacturing process
DE102017201672A1 (en) Pressure vessel and method for producing a pressure vessel
DE102017219380B4 (en) Method for producing a pressure vessel
WO2021038000A1 (en) Method for producing a pressure container and pressure container
WO2017102165A1 (en) Pressure vessel having continuous fibers
DE102018204803A1 (en) Pressure vessel and pressure vessel arrangement for a vehicle
WO2017001239A1 (en) Steering device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Owner name: THYSSENKRUPP AG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HINNEBURG, OLE

Inventor name: BOECKENHAUER, ARNE

Inventor name: CICHY, FRANK

Inventor name: ENNINGHORST, GUIDO

Inventor name: TILLMANNS, MARC

Inventor name: THELEN, THORSTEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011549

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1225458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200416

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011549

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015011549

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1225458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200115