EP3203059B1 - Zylinderlauffläche eines zylinders einer hubkolbenmaschine - Google Patents

Zylinderlauffläche eines zylinders einer hubkolbenmaschine Download PDF

Info

Publication number
EP3203059B1
EP3203059B1 EP17153819.2A EP17153819A EP3203059B1 EP 3203059 B1 EP3203059 B1 EP 3203059B1 EP 17153819 A EP17153819 A EP 17153819A EP 3203059 B1 EP3203059 B1 EP 3203059B1
Authority
EP
European Patent Office
Prior art keywords
grooves
plateau
cylinder
running surface
cylinder running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17153819.2A
Other languages
English (en)
French (fr)
Other versions
EP3203059A1 (de
Inventor
Paulo Urzua Torres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3203059A1 publication Critical patent/EP3203059A1/de
Application granted granted Critical
Publication of EP3203059B1 publication Critical patent/EP3203059B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B33/00Honing machines or devices; Accessories therefor
    • B24B33/02Honing machines or devices; Accessories therefor designed for working internal surfaces of revolution, e.g. of cylindrical or conical shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating

Definitions

  • the invention relates to a cylinder running surface of a cylinder of a reciprocating piston engine.
  • the invention is based on the object of providing a cylinder running surface for a reciprocating piston machine, by means of which a particularly low-friction operation of a reciprocating piston machine is made possible.
  • a cylinder running surface according to the invention of a cylinder for a reciprocating piston engine in particular a reciprocating internal combustion engine or other reciprocating piston working machine, for example a reciprocating piston pump, has depressions in the form of spaced apart grooves, whereby plateaus are formed between adjacent grooves.
  • grooves that are spaced apart from one another it is meant that, viewed in the vertical direction of the cylinder running surface, ie parallel to the central axis, two adjacent grooves are at a distance from one another.
  • the grooves are formed consistently over the entire working height of the cylinder running surface with the same angle of intersection.
  • the cylinder running surface has depressions in the form of plateau grooves formed in the region of the plateaus, first plateau regions being formed with a first orientation of plateau grooves and at least second plateau regions are formed with a second orientation of plateau grooves.
  • the first orientation and the second orientation differ from one another.
  • the grooves mentioned have a greater depth than the plateau grooves.
  • the invention makes use of a principle determined by simulation calculations, according to which the orientation of the grooves is decoupled from the orientation of the plateau grooves.
  • a cylinder running surface according to the invention with - viewed over the entire cylinder height - grooves oriented only in one direction or with grooves that intersect at a constant angle of intersection only in a certain groove structure on the plateaus formed between the grooves Depending on the area, be arranged in first plateau areas in a first orientation and in second plateau areas in a second orientation.
  • plateau grooves can be formed on plateaus between these flutes which intersect at a different angle of intersection and / or are otherwise oriented in another way, e.g. in that the central axis is pivoted with respect to the first intersection angle.
  • the invention thus particularly takes into account the fact that in cylinders of reciprocating piston machines a reciprocating piston is usually guided by the cylinder running surface and lubricant, in particular oil, is used to reduce friction. Because the reciprocating piston constantly changes its direction of movement during operation of reciprocating piston machines, it moves in a central area at relatively high speeds, while in the reversal areas it comes to a standstill or is only moved at low speeds. Lubricant collects in the grooves and plateau grooves and is intended to reduce friction by making it easier for the piston to slide off the cylinder running surface by means of a lubricating film.
  • the friction in a reciprocating piston machine can be reduced by optimizing the plateau grooves depending on the speed of the piston in certain areas of the cylinder running surface with the aid of simulation calculations. It has been shown that an optimization of the orientation of the plateau grooves that is decoupled from the orientation of the grooves can contribute to a significant reduction in friction.
  • the orientation of the plateau grooves is particularly important in the reversal areas, since the piston only moves at a very low speed there becomes. In these areas, through a suitable design of the plateau grooves - in particular regardless of the orientation of the grooves in this area - particularly good results with regard to a reduction in friction can be achieved.
  • grooves and plateau grooves are understood to mean in particular depressions extending over the circumference of a cylinder running surface and at least over a height range, which can be produced, for example, by honing and are formed helically on the cylinder running surface with a uniform rotational speed and uniform advance of the tool. This results in grooves and plateau grooves at equal distances from one another at every point on the circumference, viewed in the vertical direction of the cylinder.
  • different designs can also be produced, in particular wave-shaped patterns of grooves and / or plateau grooves.
  • intersecting grooves and plateau grooves are often formed with - at least in certain areas - constant overlapping angles on cylinder running surfaces.
  • Simulation calculations carried out in connection with the invention were determined in particular on cylinder running surfaces in which plateau grooves intersecting at an intersection angle ⁇ are formed in first plateau areas and / or in second plateau areas.
  • the angle of intersection ⁇ is understood to mean that angle which is formed between two plateau grooves in the vertical direction of the cylinder and which sweeps over the plane perpendicular to the central axis of the cylinder and running through the intersection of the plateau grooves.
  • the plateau grooves can be formed in different orientations to the plane perpendicular to the central axis. All variants are orientations that differ from one another within the meaning of the invention. It was found that with intersecting plateau grooves and / or grooves the transport of lubricant between individual plateau grooves or grooves is improved and the friction is reduced. It is particularly preferred if intersecting arrangements are selected for both the grooves and the plateau grooves, in particular by means of plateau honing at - within a range - constant rotational speed and constant feed, so that parallelogram-shaped patterns of grooves and plateau grooves are created.
  • plateau grooves intersecting at an intersection angle ⁇ A are formed in the first plateau areas and plateau grooves intersecting at an intersection angle ⁇ B are formed in the second plateau areas, the intersection angles being at least 30 ° apart.
  • This embodiment of the invention has been made in particular in connection with plateau grooves with intersecting angles which are arranged symmetrically to planes (transverse planes) which are perpendicular to the vertical direction. However, it can be implemented independently of this orientation, ie also in connection with overlapping angles that are rotated with respect to the transverse planes. It has been shown that it is preferred if the distance between the intersection angles is at least 55 ° and particularly preferably at least 70 °. Such a distance between the overlap angles has proven to be advantageous in order to adapt the cylinder running surface to the frictional forces between the cylinder running surface and the reciprocating piston, which differ greatly, particularly in the central area and in the reversal areas.
  • first plateau areas are arranged in at least one reversal area of the cylinder and / or the second plateau areas are arranged in a central area deviating from the reversal area and the plateau grooves are suitably designed in these areas, a reciprocating piston engine operates with particularly low friction.
  • cylinder running surfaces which are divided into a central area (or several central areas) with high piston speeds and reversing areas with lower piston speeds.
  • the term reversal area means an area of a cylinder running surface which also includes at least the top dead center of the first piston ring or bottom dead center of the lowest piston ring (oil control ring) of a reciprocating piston guided in the cylinder or is directly adjacent to this area.
  • such a region can, for example, start from the outermost piston ring, e.g. starting from the top edge of the top piston ring of a piston with several piston rings at top dead center, extend over 0.5 to 2 times the distance from the top piston ring to the bottom piston ring (oil control ring).
  • a reversal area can also be defined starting from the upper edge of the uppermost piston ring of the total stroke, for example as a maximum of 5% of the total stroke (working height H) from one of these dead centers. Due to the different speeds in the different areas, the friction changes.
  • a cylinder running surface according to the invention one can be special for each area suitable design of the plateau grooves can be realized, not only taking into account the grooves formed in these areas, taking into account the interaction with the grooves, but also with regard to the piston speeds occurring in these areas.
  • first plateau areas with plateau grooves which intersect at an intersection angle ⁇ A in reversal areas and through the arrangement of second plateau areas with intersection angles ⁇ B in a central area can thus be optimally adapted to the design and the speed profile as well as to the formation of the grooves on the cylinder running surface. It is particularly preferred if first plateau areas with the same design of the plateau grooves and / or grooves are arranged both in the upper reversal area and in the lower reversal area.
  • the top reversal area which includes the top dead center of the first piston ring or which is located in the vicinity of the top dead center, is preferably one that extends along the central axis M over a height of 2 to 10% of the total working height H of the reciprocating piston Area set.
  • the lower reversal area which includes the bottom dead center of the lowest piston ring (oil control ring) or which is arranged in the vicinity of the bottom dead center, an area extending along the central axis M over a height of 5 to 20% starting from the bottom dead center is preferred lowest piston ring (oil control ring).
  • the central area accordingly preferably extends over a height of 60 to 93% of the working height H between the respective reversal areas.
  • plateau grooves are designed in such a way that an obtuse overlap angle ⁇ A (ie an angle between 90 ° and 180 °) in first plateau-like areas, in particular in a reversal area, and / or an acute overlap angle ⁇ B (ie an angle between 0 ° and 90 °) results in second plateau-like areas, in particular in a central area.
  • ⁇ A ie an angle between 90 ° and 180 °
  • ⁇ B ie an angle between 0 ° and 90 °
  • a preferred range of values for ⁇ A is between 100 ° and 170 °, more preferably between 110 ° and 150 ° and particularly preferably between 120 ° and 140 °.
  • the intersection angle ⁇ B in a central area is preferably between 10 ° and 50 ° are selected, more preferably between 20 ° and 40 ° and particularly preferably between 25 ° and 35 °.
  • the decoupling already described at the beginning is particularly friction-reducing if the orientation of the plateau grooves is at least partially different from the orientation of the grooves immediately surrounding these plateau grooves at least in a partial area of the cylinder.
  • the grooves have an area proportion of at least 20% of the total cylinder running surface.
  • the proportion of the area of the grooves on the entire cylinder running surface is preferably 30% to 60%.
  • the area proportion of the grooves is understood to mean the proportion of the total cylinder running surface which includes grooves.
  • the proportion of the area of the grooves is determined in particular by the number of grooves and the width of the grooves. The larger the area proportion of the grooves, the smaller the area proportion of the plateaus and thus the area available for plateau grooves. It should be pointed out that instead of the area share, approximately the value Mr2 of an Abott curve can also be used as the basis for calculating the area share of the grooves, the area share roughly corresponding to the value (1-Mr2). To this extent it is advantageous if a maximum of 80% is specified as the value Mr2, preferably a maximum of 70% and more preferably a maximum of 60%.
  • the area proportion of the grooves is preferably chosen between 20% and 50%.
  • both the grooves and the plateau grooves each have an acute intersection angle ⁇ and ⁇ in the central region.
  • the intersection angles ⁇ of the grooves and the intersection angles ⁇ of the plateau grooves are designed to be the same in the central region.
  • grooves and plateau grooves in the central area - apart from the depth of penetration - can be produced with the same tool angle settings.
  • a geometric configuration of a cylinder running surface as described above can be produced flexibly with any suitable method.
  • the grooves and / or the plateau grooves are produced by honing.
  • the so-called plateau honing can take place here in the form of multi-stage honing machining.
  • plateau grooves are then formed on the plateaus between grooves, the plateau grooves likewise having a depth which, however, is less than the depth of the grooves.
  • the depth and width of the grooves and plateau grooves can also be varied.
  • a depth of at least 1 ⁇ m has proven to be advantageous.
  • grooves and plateau grooves with different contours can be produced; for example, the grooves or plateau grooves can have w-shaped, v-shaped, u-shaped or rectangular cross-sectional shapes. Different cross-sectional shapes can only be selected for grooves and plateau grooves in different areas.
  • both the plateau grooves and the grooves can also be selected. These can also be designed differently in different areas. Grooves preferably have a greater width than plateau grooves.
  • the surface properties of cylinder running surfaces can be measured in particular using a laser, profilometer or scanning probe microscope.
  • a so-called Abbott curve can be created and analyzed for characterization. Various parameters that characterize the surface are determined. Conclusions about the surface properties can be drawn from these parameters, in particular the core roughness R k , the reduced peak height R pk , and the reduced groove depth R vk as well as the material proportion Mr1 of so-called peaks and the material proportion Mr2 of so-called valleys. The value Mr2 represents a measure of the area portion of the grooves. Individual values of a so-called Abbott curve can also be specified for the production of desired surface properties, in particular if production is carried out by means of plateau honing.
  • a section of a cylinder block of a reciprocating piston engine in the form of a reciprocating piston internal combustion engine 10 is shown, which can be used, for example, to drive a motor vehicle.
  • the cylinder block has a bore 12 for receiving and guiding a reciprocating piston (not shown) in a cylinder 22 produced by the bore.
  • the bore 12 is surrounded by a cylinder running surface 14 for the reciprocating piston.
  • Figures 2 to 4 In the following, geometric designs of embodiments of cylinder running surfaces 14 according to the invention are described.
  • a cutout of the cylinder running surface 14 rolled into a plane according to the cutout marked II in FIG Figure 1 is in Figure 2 shown.
  • the thick, parallel lines in Figure 2 These are depressions in the form of intersecting grooves 16.
  • plateaus 20 hereinafter also referred to as plateau-like surfaces
  • recesses with intersecting plateau grooves 18 are arranged at regular intervals.
  • the plateau grooves 18 likewise enclose partial surfaces 26 which are embodied in the form of parallelograms and which are overlaid by the plateau-like surfaces 20 in parallelogram configuration.
  • each parallelogram formed by plateau grooves 18 is from at least one groove 16 penetrates.
  • the height H F is preferably a multiple of the height H T , in particular at least 3 times, at least 5 times or even at least 10 times.
  • the plateau grooves 18 are preferably arranged in such a way that a factor between 3 and 20 results between the height H F and the height H T. Regardless of the type of surface shapes, the plateau grooves 18 are preferably arranged relative to the grooves 16 such that the plateau grooves 18 within a plateau-like surface 20 between 10 and 1000 partial areas 26 are formed, preferably 15 to 500 partial areas and particularly preferably 20 to 300 partial areas.
  • the intersecting grooves 16 are arranged in the transverse direction of the cylinder 22 with an intersection angle ⁇ to one another.
  • the intersecting plateau grooves 18 on the plateau-like surfaces 20 are arranged at an intersection angle ⁇ to one another.
  • Figure 3 shows a schematic representation of a cylinder running surface 14 of a cylinder 22, the geometry of the cylinder running surface 14 in cross section after a first processing stage of plateau honing (far right) and after a second processing stage of plateau honing. After the second processing stage, the plateau-like surfaces 20 and the grooves 16 surrounding them are in the in Figure 2 shown condition. Even smoother plateau-like surfaces 20 can be produced by further processing stages.
  • grooves 16 are first made in the cylinder running surface 14, so that a uniform, serrated profile with tips 24 protruding to the inside of the cylinder 22 and grooves 16 already formed with the desired depth results.
  • the grooves 16 are V-shaped in cross-section, and the ratio between the depth of the grooves 16 and the distance between the grooves 16 running parallel to one another in the cylindrical wall is selected so that a zigzag profile cross-section results after the first processing stage .
  • the invention is not restricted to this possibility.
  • any other shapes, depths and distances between the grooves 16 can be selected, which can also result in other cross-sectional geometries, for example tooth-shaped geometries with flank-like flattened areas between two adjacent grooves 16 and / or w-shaped, u- shaped or otherwise shaped grooves (not shown).
  • plateau-like surfaces 20 extending parallel to central axis M of cylinder 22 are produced, in which plateau grooves 18 are formed.
  • the cylinder running surface 14 of the cylinder 22 is off Figure 1 Shown over the entire working height H, the working height H in this embodiment being the height range of the cylinder 22 over which the reciprocating piston (not shown) moves up and down along the cylinder running surface 14 when the reciprocating internal combustion engine shown is used as intended.
  • the cylinder running surface 14 is divided into three areas A, B and C, the area A including the top dead center of the cylinder 22 shown and the area C including the bottom dead center of the cylinder 22 shown.
  • the areas A and C are therefore reversal areas for the piston guided in the cylinder 22 (not shown).
  • the area B is accordingly a central area.
  • the reciprocating piston reaches the highest speed in the central area B compared to the cylinder running surface 14, while it is moved in the reversing areas A and C at lower speeds compared to the cylinder running surface 14. At the top dead center and at the bottom dead center, the speed even drops briefly to zero, which results in high static friction.
  • grooves 16 and plateau grooves 18 are formed with partially different intersection angles ⁇ and ⁇ , both grooves 16 and plateau grooves 18 being shown only in partial areas and only schematically as straight lines.
  • the grooves 16 and plateau grooves 18 extend helically over the entire circumference of the cylinder running surface 14 with a constant slope in the respective areas A, B and C.
  • the cylinder running surface 14 has over all three areas A, B and C, i. Over the entire working height H, grooves 16 with a constant intersection angle ⁇ , which is selected between 20 ° and 40 °, preferably between 25 ° and 35 ° and particularly preferably between 28 ° and 32 °. In the embodiment shown, an overlap angle ⁇ of 30 ° is formed. It has been shown that groove intersection angles support the hydrodynamic pressure build-up in these value ranges and the solid body contact, i.e. the friction between the reciprocating piston and the cylinder running surface 14 is also reduced.
  • the plateau grooves 18 are formed with different intersection angles ⁇ A , ⁇ B , ⁇ C depending on the region A, B or C.
  • an intersection angle ⁇ A and ⁇ C of at least 90 °, preferably at least 100 ° and particularly preferably more than 110 °, is selected.
  • the angle of intersection ⁇ B is preferably selected between 10 ° and 50 °, preferably between 20 ° and 10 ° and particularly preferably between 25 ° and 35 °.
  • the angles of intersection ⁇ A and ⁇ C are 120 ° and the angle of intersection ⁇ B is 30 °.
  • the grooves 16 and the plateau grooves 18 in the central region B preferably have the same intersection angle ⁇ or ⁇ B for reasons of processing technology. However, values that differ from one another can also be selected for the intersection angles ⁇ A and ⁇ C , in particular within the aforementioned value ranges.
  • Figure 5 shows a piston 28 which is shown in a cylinder 22, shown only schematically, with a cylinder running surface 14 in its top dead center (upper illustration) and in a lower dead center (below illustration).
  • a first piston ring 30, a middle piston ring 32 and a lowermost piston ring (oil control ring) 34 are arranged on the piston 28, oriented toward the cylinder running surface 14.
  • the distance between the first piston ring 30 and the lowermost piston ring 34 is marked with Z.
  • An upper reversal region preferably extends in a region from the arrow O in the direction of the arrow A over a length of 0.5Z to 2Z.
  • an area C can also be defined as the lower reversal area.
  • a reversal area preferably extends from the arrow U, which indicates the position of the lowest piston ring 34 at bottom dead center, by 1Z to 4Z upwards, in particular by 2Z.
  • the central area B extends in this case between the areas A and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

  • Die Erfindung betrifft eine Zylinderlauffläche eines Zylinders einer Hubkolbenmaschine.
  • Aus DE 43 16 012 A1 ist ein Verfahren zur Fertigbearbeitung von Bohrungswandungen im Zylinder eines Verbrennungsmotors bekannt, gemäß welchem sich überkreuzende Vertiefungen in Form von Riefen in der Oberfläche durch Strahlbehandlung erzeugt werden sollen. Es wird darauf hingewiesen, dass die Riefen abhängig von einem bereichsabhängigen Verschleiß innerhalb des Zylinders unterschiedlich orientiert sein können. In diesem Zusammenhang werden kleine Überschneidungswinkel der Riefen von 5° bis 30° im Bereich des oberen Totpunkts, etwas größere Überschneidungswinkel von 30° bis 60° in einem mittleren Bereich und parallele Riefen in Axialrichtung im Bereich des unteren Totpunkts vorgeschlagen. Es wird auch beschrieben, dass zwischen zwei Riefen jeweils mehrere Plateaurillen mit geringerer Tiefe angeordnet sein können. Auf eine bestimmte Orientierung der Plateaurillen und eine konkrete Anordnung zwischen Riefen und Plateaurillen wird nicht Bezug genommen. Eine Bearbeitung von Bohrungen mittels Plateauhonen wird als negativ beschrieben mit der Begründung, dass beim Plateauhonen ein Anpressdruck erforderlich sei, der zu Abweichungen im Bohrungsquerschnitt von der idealen Kreisform führen könne.
  • Aus DE 10 2007 032 370 A1 ist ein Verfahren zur Bearbeitung von Zylinderlaufflächen von Verbrennungsmotoren bekannt, das für die Erzeugung von als Honspuren bezeichneten, sich überkreuzenden Riefen eingesetzt wird. Es wird darauf hingewiesen, dass die Riefen derart angeordnet sein können, dass in verschiedenen Bereichen eines Zylinders (in Axialrichtung betrachtet) unterschiedliche Überschneidungswinkel (in dem Dokument als Honwinkel bezeichnet) zwischen den sich überkreuzenden Riefen gebildet sind. In einem Ausführungsbeispiel wird vorgeschlagen, in einem oberen und einem unteren Bereich, welche den oberen und den unteren Totpunkt des Verbrennungsmotors einschließen und somit Umkehrbereiche des Kolbens sind, Überschneidungswinkel von 140° zu erzeugen und in einem mittleren Bereich Überschneidungswinkel von 50°. In einem anderen Ausführungsbeispiel wird eine umgekehrte Auswahl der Überschneidungswinkel beschrieben. Als mögliche Winkelunterschiede zwischen den Überschneidungswinkeln wird auf Winkelunterschiede von 10° bis 60° und auf 90° bis 110° oder darüber verwiesen, wobei keine Angabe dazu gemacht wird, wann welche Winkelunterschiede geeignet sein sollen.
  • Aus DE 196 07 774 A1 ist ein Verfahren zur honenden Bearbeitung von Zylinderlaufflächen von Hubkolben-Kraft- und Arbeitsmaschinen bekannt, gemäß welchem als Drallhonspuren bezeichnete Riefen und als Honspuren bezeichnete Plateaurillen erzeugt werden sollen. Hinsichtlich der Riefen werden große Überschneidungswinkel von 120° bis 170° vorgeschlagen. Hinsichtlich der Plateaurillen werden kleine Winkel von 30° bis 90° vorgeschlagen. Die Riefen und die Plateaurillen weisen jeweils über die gesamte Zylinderlauffläche die gleiche Orientierung auf.
  • Aus JP S59 196 954 A ist eine Zylinderlauffläche für eine Brennkraftmaschine bekannt. Durch honende Bearbeitung sind in die Zylinderlauffläche Riefen und zwischen den Riefen Plateaurillen eingebracht. Der Überschneidungswinkel zwischen den Riefen soll kleiner als 30° sein, und der Überschneidungswinkel zwischen den Plateaurillen soll mindestens 5° mehr als der Überschneidungswinkel zwischen den Riefen betragen. Die Riefen und Plateaurillen weisen jeweils über die gesamte Zylinderlauffläche die gleiche Orientierung auf.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Zylinderlauffläche für eine Hubkolbenmaschine zur Verfügung zu stellen, mittels welcher ein besonders reibungsarmer Betrieb einer Hubkolbenmaschine ermöglicht wird.
  • Die Lösung der Aufgabe erfolgt erfindungsgemäß mit den Merkmalen der unabhängigen Ansprüche. Weitere praktische Ausführungsformen und Vorteile der Erfindung sind in Verbindung mit den abhängigen Ansprüchen beschrieben.
  • Eine erfindungsgemäße Zylinderlauffläche eines Zylinders für eine Hubkolbenmaschine, insbesondere eine Hubkolbenbrennkraftmaschine oder eine sonstige Hubkolbenarbeitsmaschine, beispielsweise eine Hubkolbenpumpe, weist Vertiefungen in Form von zueinander beabstandeten Riefen auf, wodurch zwischen benachbarten Riefen Plateaus gebildet sind. Mit zueinander beabstandeten Riefen ist gemeint, dass in Hochrichtung der Zylinderlauffläche betrachtet, d.h. parallel zur Mittelachse, zwei benachbarte Riefen einen Abstand zueinander aufweisen. Die Riefen sind gleichbleibend über die gesamte Arbeitshöhe der Zylinderlauffläche mit dem gleichen Überschneidungswinkel ausgebildet. Ferner weist die Zylinderlauffläche im Bereich der Plateaus ausgebildete Vertiefungen in Form von Plateaurillen auf, wobei erste Plateaubereiche mit einer ersten Orientierung von Plateaurillen ausgebildet sind und mindestens zweite Plateaubereiche mit einer zweiten Orientierung von Plateaurillen ausgebildet sind. Die erste Orientierung und die zweite Orientierung weichen dabei voneinander ab. Die genannten Riefen weisen eine größere Tiefe auf als die Plateaurillen. Die Erfindung macht sich ein durch Simulationsberechnungen ermitteltes Prinzip zunutze, gemäß welchem die Orientierung der Riefen von der Orientierung der Plateaurillen entkoppelt wird. So können beispielsweise in einer Ausführungsform der Erfindung an einer erfindungsgemäßen Zylinderlauffläche mit - über die gesamte Zylinderhöhe betrachtet - nur in einer Richtung orientierten Riefen oder mit nur in einer bestimmten Riefenstruktur mit sich in einem gleichbleibenden Überschneidungswinkel kreuzenden Riefen auf den zwischen den Riefen gebildeten Plateaus ausgebildete Plateaurillen bereichsbedingt in ersten Plateaubereichen in einer ersten Orientierung und in zweiten Plateaubereichen in einer zweiten Orientierung angeordnet sein. So kann durch eine geeignete Wahl der Orientierung der Plateaurillen die während des Betriebes der Hubkolbenmaschine auftretende Reibung minimiert werden.
  • Ebenso können an Zylinderlaufflächen mit sich in einem ersten Überschneidungswinkel kreuzenden Riefen auf Plateaus zwischen diesen Riefen Plateaurillen ausgebildet sein, die sich in einem anderen Überschneidungswinkel kreuzen und/oder in andere Art und Weise anders orientiert sind, z.B. indem die Mittelachse gegenüber dem ersten Überschneidungswinkel verschwenkt ist.
  • Die Erfindung trägt damit insbesondere der Tatsache Rechnung, dass in Zylindern von Hubkolbenmaschinen üblicherweise ein Hubkolben von der Zylinderlauffläche geführt wird und Schmiermittel, insbesondere Öl, zur Reibungsverringerung verwendet wird. Dadurch, dass der Hubkolben seine Bewegungsrichtung während des Betriebes von Hubkolbenmaschinen ständig ändert, bewegt er sich in einem mittleren Bereich mit relativ hohen Geschwindigkeiten, während er in den Umkehrbereichen punktuell zum Stillstand kommt bzw. nur mit geringen Geschwindigkeiten bewegt wird. Schmiermittel sammelt sich in den Riefen und Plateaurillen und soll reibungsverringernd wirken, indem es ein Abgleiten des Kolben an der Zylinderlauffläche mittels eines Schmierfilmes erleichtert. Mit einer erfindungsgemäßen Ausbildung einer Zylinderlauffläche kann die Reibung in einer Hubkolbenmaschine dadurch verringert werden, dass die Plateaurillen abhängig von der Geschwindigkeit des Kolbens in bestimmten Bereichen der Zylinderlauffläche mit Hilfe von Simulationsberechnungen optimiert werden. Es hat sich gezeigt, dass eine von der Orientierung der Riefen entkoppelte Optimierung der Orientierung der Plateaurillen zu einer deutlichen Reibungsverringerung beitragen kann. Insbesondere in den Umkehrbereichen ist die Orientierung der Plateaurillen von besonderer Bedeutung, da dort der Kolben nur mit sehr geringer Geschwindigkeit verfahren wird. In diesen Bereichen können durch eine geeignete Gestaltung der Plateaurillen - insbesondere unabhängig von der Orientierung der Riefen in diesem Bereich - besonders gute Ergebnisse hinsichtlich einer Reibungsverringerung erzielt werden.
  • Unter Riefen und Plateaurillen werden vorliegend insbesondere sich über den Umfang einer Zylinderlauffläche und zumindest über einen Höhenbereich erstreckende Vertiefungen verstanden, die beispielsweise durch Honen erzeugt werden können und bei gleichmäßiger Drehgeschwindigkeit und gleichmäßigen Vorschub des Werkzeugs wendelförmig an der Zylinderlauffläche ausgebildet sind. Dadurch ergeben sich in Hochrichtung des Zylinders betrachtet an jeder Stelle des Umfangs Riefen und Plateaurillen in gleichmäßigen Abständen zueinander. Durch Variation der Drehgeschwindigkeit und/oder des Werkzeugvorschubs können auch abweichende Gestaltungen erzeugt werden, insbesondere wellenförmige Muster von Riefen und/oder Plateaurillen.
  • Wie vorstehend bereits erwähnt, werden in der Praxis häufig sich kreuzende Riefen und Plateaurillen mit - zumindest in gewissen Bereichen - gleichbleibenden Überschneidungswinkeln an Zylinderlaufflächen ausgebildet. In Verbindung mit der Erfindung durchgeführte Simulationsberechnungen wurden insbesondere an Zylinderlaufflächen ermittelt, bei welchen in ersten Plateaubereichen und/oder in zweiten Plateaubereichen sich in einem Überschneidungswinkel β überkreuzende Plateaurillen ausgebildet sind. Als Überschneidungswinkel β wird in diesem Zusammenhang derjenige Winkel verstanden, welcher in Hochrichtung des Zylinders zwischen zwei Plateaurillen ausgebildet ist und die auf die Mittelachse des Zylinders senkrecht stehende, durch den Kreuzungspunkt der Plateaurillen verlaufende Ebene überstreicht. In ersten Plateaubereichen und in zweiten Plateaubereichen können unterschiedliche Überschneidungswinkel β und/oder zwar gleiche Überschneidungswinkel, aber die Plateaurillen in unterschiedlichen Ausrichtungen zur auf die Mittelachse senkrechten Ebene ausgebildet sein. Bei allen Varianten handelt es sich um voneinander abweichende Orientierungen im Sinne der Erfindung. Es wurde festgestellt, dass mit sich überkreuzenden Plateaurillen und/oder Riefen der Schmiermitteltransport zwischen einzelnen Plateaurillen bzw. Riefen verbessert und die Reibung reduziert ist. Besonders bevorzugt ist es, wenn sowohl für die Riefen als auch für die Plateaurillen sich überkreuzende Anordnungen gewählt werden, insbesondere mittels Plateauhonen bei - innerhalb eines Bereichs - konstanter Drehgeschwindigkeit und konstantem Vorschub, so dass parallelogrammförmig ausgebildete Muster von Riefen und Plateaurillen entstehen.
  • Bei einer besonders reibungsarmen Zylinderlauffläche sind in den ersten Plateaubereichen sich in einem Überschneidungswinkel βA kreuzende Plateaurillen ausgebildet und in den zweiten Plateaubereichen sich in einem Überschneidungswinkel βB kreuzende Plateaurillen ausgebildet, wobei die Überschneidungswinkel einen Abstand von mindestens 30° zueinander aufweisen. Diese Ausführungsform der Erfindung ist insbesondere in Verbindung mit Plateaurillen mit Überschneidungswinkeln gemacht worden, die symmetrisch zu senkrecht auf die Hochrichtung stehenden Ebenen (Querebenen) angeordnet sind. Sie ist jedoch unabhängig von dieser Ausrichtung realisierbar, d.h. auch in Verbindung mit gegenüber den Querebenen verdrehten Überschneidungswinkeln. Es hat sich gezeigt, dass es bevorzugt ist, wenn der Abstand der Überschneidungswinkel zueinander mindestens 55° und besonders bevorzugt mindestens 70° beträgt. Ein solcher Abstand zwischen den Überschneidungswinkeln hat sich als vorteilhaft erwiesen, um die Zylinderlauffläche an die sich insbesondere im Mittelbereich und in den Umkehrbereichen stark unterscheidenden Reibungskräfte zwischen der Zylinderlauffläche und dem Hubkolben anzupassen.
  • Wenn die ersten Plateaubereiche in mindestens einem Umkehrbereich des Zylinders angeordnet sind und/oder die zweiten Plateaubereiche in einem von dem Umkehrbereich abweichenden Mittelbereich angeordnet sind und die Plateaurillen in diesen Bereichen geeignet ausgebildet sind, ergibt sich ein besonders reibungsarmer Betrieb einer Hubkolbenmaschine. Dies gilt insbesondere für Zylinderlaufflächen, die in einen mittleren Bereich (oder mehrere mittlere Bereichen) mit hoher Kolbengeschwindigkeit und in Umkehrbereiche mit geringeren Kolbengeschwindigkeiten aufgeteilt sind. Mit dem Begriff Umkehrbereich ist vorliegend ein Bereich einer Zylinderlauffläche gemeint, der mindestens auch den oberen Totpunkt des ersten Kolbenrings oder unteren Totpunkt des untersten Kolbenrings (Ölabstreifring) eines in dem Zylinder geführten Hubkolbens umfasst oder unmittelbar an diesen Bereich angrenzt. Ein solcher Bereich kann sich bei Kolben mit mehreren Kolbenringen beispielsweise ausgehend von dem jeweils äußersten Kolbenring, z.B. ausgehend von der Oberkante des obersten Kolbenrings eines Kolbens mit mehreren Kolbenringen im oberen Totpunkt, über das 0,5-fache bis 2-fache des Abstands von dem obersten Kolbenring bis zum untersten Kolbenring (Ölabstreifring) erstrecken.
  • Alternativ und/oder in Ergänzung kann ein Umkehrbereich auch ausgehend von der Oberkante des obersten Kolbenrings des Gesamthubs festgelegt werden, beispielsweise als maximal 5% des Gesamthubs (Arbeitshöhe H) von einem dieser Totpunkte. Durch die unterschiedlichen Geschwindigkeiten in den unterschiedlichen Bereichen, verändert sich die Reibung. Mit einer erfindungsgemäßen Ausbildung einer Zylinderlauffläche kann für jeden Bereich eine besonders geeignete Gestaltung der Plateaurillen realisiert werden, nicht nur unter Berücksichtigung von in diesen Bereichen ausgebildeten Riefen unter Berücksichtigung der Wechselwirkung mit den Riefen, sondern auch in Bezug auf die in diesen Bereichen auftretenden Kolbengeschwindigkeiten. Dies erfolgt besonders vorteilhaft durch die Anordnung erster Plateaubereiche mit Plateaurillen, die sich in einem Überschneidungswinkel βA kreuzen, in Umkehrbereichen und durch die Anordnung zweiter Plateaubereiche mit Überschneidungswinkeln βB in einem Mittelbereich. Die Zylinderlauffläche kann so an die Gestaltung und das Geschwindigkeitsprofil sowie an die Ausbildung der Riefen der Zylinderlauffläche optimal angepasst werden. Besonders bevorzugt ist es, wenn erste Plateaubereiche mit gleicher Gestaltung der Plateaurillen und/oder Riefen sowohl im oberen Umkehrbereich als auch im unteren Umkehrbereich angeordnet sind.
  • Als oberer Umkehrbereich, welcher den oberen Totpunkt des ersten Kolbenrings umfasst oder welcher in der Nähe des oberen Totpunkts angeordnet ist, wird bevorzugt gemäß der alternativen Definition ein sich entlang der Mittelachse M über eine Höhe von 2 bis 10% der gesamten Arbeitshöhe H des Hubkolbens erstreckender Bereich festgelegt. Als unterer Umkehrbereich, welcher den unteren Totpunkt des untersten Kolbenrings (Ölabstreifring) umfasst oder welcher in der Nähe des unteren Totpunkts angeordnet ist, wird bevorzugt ein sich entlang der Mittelachse M über eine Höhe von 5 bis 20% erstreckender Bereich ausgehend von dem unteren Totpunkt des untersten Kolbenrings (Ölabstreifring) festgelegt. Der Mittelbereich erstreckt sich demnach bevorzugt über eine Höhe von 60 bis 93% der Arbeitshöhe H zwischen den jeweiligen Umkehrbereichen.
  • In den durchgeführten Simulationsrechnungen hat es sich ebenfalls als besonders bevorzugt gezeigt, wenn die Plateaurillen derart ausgebildet sind, dass sich ein stumpfer Überschneidungswinkel βA(d.h. ein Winkel zwischen 90° und 180°) in ersten plateauartigen Bereichen, insbesondere in einem Umkehrbereich, und/oder ein spitzer Überschneidungswinkel βB (d.h. ein Winkel zwischen 0° und 90°) in zweiten plateauartigen Bereichen, insbesondere in einem Mittelbereich, ergibt. Eine besonders deutliche reibungsverringernde Wirkung stellt sich immer dann ein, wenn in mindestens einem Umkehrbereich Plateaurillen mit einem stumpfen Überschneidungswinkel ausgebildet sind. Es ist dabei dementsprechend besonders bevorzugt, wenn ein Überschneidungswinkel βA mindestens 90° beträgt, weiter bevorzugt mindestens 100° und besonders bevorzugt mindestens 110°. Ein bevorzugter Wertebereich für βA liegt zwischen 100° und 170°, weiter bevorzugt zwischen 110° und 150° und besonders bevorzugt zwischen 120° und 140°. Der Überschneidungswinkel βB in einem Mittelbereich wird bevorzugt zwischen 10° und 50° gewählt, weiter bevorzugt zwischen 20° und 40° und besonders bevorzugt zwischen 25° und 35°.
  • Die eingangs bereits beschriebene Entkopplung ist besonders reibungsverringernd, wenn die Orientierung der Plateaurillen mindestens in einem Teilbereich des Zylinders im Vergleich zu der Orientierung der diese Plateaurillen unmittelbar umgebenden Riefen zumindest teilweise abweichend ausgebildet ist. Damit sind alle Ausführungsformen gemeint, bei welchen die Richtung der Plateaurillen von der Richtung der die Plateaurillen unmittelbar umgebenden Riefen abweichend ist, insbesondere wenn die Riefen und Plateaurillen keinen gekrümmten Verlauf aufweisen. Dies ist insbesondere dann der Fall, wenn die Riefen und Plateaurillen mittels Honen bei gleichbleibender Drehgeschwindigkeit und gleichbleibendem Werkzeugvorschub erzeugt werden. In diesem Fall verlaufen die Riefen und die Plateaurillen auf zwischen den Riefen gebildeten Plateaus nicht parallel.
  • In einer weiteren vorteilhaften Ausführungsform weisen die Riefen einen Flächenanteil von mindestens 20% an der gesamten Zylinderlauffläche auf. Der Flächenanteil der Riefen an der gesamten Zylinderlauffläche beträgt bevorzugt 30% bis 60%. Unter dem Flächenanteil der Riefen wird vorliegend der Anteil an der gesamten Zylinderlauffläche verstanden, welcher Riefen umfasst.
  • Eine exemplarische Berechnung des Flächenanteils wird nachfolgend in Verbindung mit Fig. 3 erläutert. Der Flächenanteil der Riefen wird insbesondere durch die Anzahl der Riefen und durch die Breite der Riefen bestimmt. Je größer der Flächenanteil der Riefen ist, desto kleiner ist der Flächenanteil der Plateaus und damit die für Plateaurillen zur Verfügung stehende Fläche. Es sei darauf hingewiesen, dass anstelle des Flächenanteils auch annähernd der Wert Mr2 einer Abottkurve als Grundlage zur Berechnung des Flächenanteils der Riefen verwendet werden kann, wobei der Flächenanteil ungefähr dem Wert (1-Mr2) entspricht. Insoweit ist es vorteilhaft, wenn als Wert Mr2 ein Maximum von 80% vorgegeben wird, bevorzugt ein Maximum von 70% und weiter bevorzugt ein Maximum von 60%. Der Flächenanteil der Riefen wird bevorzugt zwischen 20% und 50% gewählt.
  • Mit Riefen, die zumindest teilweise einen spitzen Überschneidungswinkel α aufweisen, wurden bei mehreren Simulationsrechnungen besonders gute Ergebnisse hinsichtlich einer Reibungsreduzierung erzielt. Dabei hat sich gezeigt, dass Überschneidungswinkel α von 20° bis 40° bevorzugt sind, solche von 25° bis 35° besonders bevorzugt sind, und solche zwischen 28° bis 32° weiter bevorzugt sind. Dies gilt vor allem für erfindungsgemäße Zylinderlaufflächen, bei denen die Riefen gleichbleibend über die gesamte Arbeitshöhe H des Hubkolbens mit dem gleichen Überschneidungswinkel α ausgebildet sind. In diesem Fall ergibt sich auch eine kostengünstige Herstellung, weil die Riefen über die gesamte Arbeitshöhe H gleichbleibend erzeugt werden. Eine Änderung oder komplizierte Programmierung von Werkzeugparametern ist in diesem Fall nicht erforderlich.
  • In einer weiteren praktischen Ausführungsform weisen sowohl die Riefen als auch die Plateaurillen im Mittelbereich jeweils einen spitzen Überschneidungswinkel α bzw. β auf. Insbesondere ist es einfach und kostengünstig, wenn die Überschneidungswinkel α der Riefen und die Überschneidungswinkel β der Plateaurillen im Mittelbereich gleich ausgebildet sind. In diesem Fall können Riefen und Plateaurillen im Mittelbereich - abgesehen von der Eindringtiefe - mit den gleichen Werkzeugwinkeleinstellungen erzeugt werden.
  • Grundsätzlich kann eine wie vorstehend beschriebene geometrische Ausbildung einer Zylinderlauffläche zwar mit jedem geeigneten Verfahren flexibel erzeugt werden. Besonders bevorzugt und besonders kostengünstig ist es aber, wenn die Riefen und/oder die Plateaurillen durch honende Bearbeitung erzeugt sind. Insbesondere kann hier das sogenannte Plateauhonen in Form einer mehrstufigen honenden Bearbeitung erfolgen. Üblicherweise werden dabei in einer ersten Bearbeitungsstufe Riefen mit einer bestimmten Tiefe in einer Zylinderlauffläche erzeugt, wodurch zwischen zwei benachbarten Riefen Plateaus ausgebildet werden. In einer zweiten Bearbeitungsstufe werden dann Plateaurillen auf den Plateaus zwischen Riefen ausgebildet, wobei die Plateaurillen ebenfalls eine Tiefe aufweisen, die aber geringer ist als die Tiefe der Riefen. Der Vollständigkeit halber wird darauf verwiesen, dass sich zur Herstellung einer erfindungsgemäßen Zylinderlauffläche auch andere mechanische und/oder optische Verfahren eignen, insbesondere Strahlverfahren, Ätzverfahren und Laserverfahren.
  • Neben der Orientierung der Riefen und Plateaurillen sowie den Überschneidungswinkeln können auch die Tiefe und die Breite der Riefen und der Plateaurillen variiert werden. Bezüglich der Tiefe von Riefen hat sich eine Tiefe von mindestens 1 µm als vorteilhaft erwiesen.
  • Ferner können Riefen und Plateaurillen mit unterschiedlichen Konturen (Querschnittsformen) erzeugt werden, so können die Riefen bzw. die Plateaurillen beispielsweise w-förmige, v-förmige, u-förmige oder rechteckige Querschnittsformen aufweisen. Dabei können nur für Riefen und Plateaurillen in verschiedenen Bereichen unterschiedliche Querschnittsformen gewählt werden.
  • Es können auch unterschiedliche Breiten sowohl der Plateaurillen als auch der Riefen gewählt werden. Auch diese können in verschiedenen Bereichen verschieden ausgebildet sein. Riefen weisen bevorzugt eine größere Breite auf als Plateaurillen.
  • Die Messung der Oberflächenbeschaffenheit von Zylinderlaufflächen kann insbesondere mittels Laser, Profilometer oder Rastersondenmikroskop erfolgen. Zur Charakterisierung kann eine sogenannte Abbottkurve erstellt und analysiert werden. Dabei werden verschiedene, die Oberfläche charakterisierende Parameter ermittelt. Über diese Parameter, insbesondere die Kernrautiefe Rk, die reduzierte Spitzenhöhe Rpk, und die reduzierte Riefentiefe Rvk sowie den Materialanteil Mr1 sogenannter Spitzen und den Materialanteil Mr2 sogenannter Täler können Rückschlüsse auf die Oberflächenbeschaffenheit gezogen werden. Dabei stellt der Wert Mr2 ein Maß für den Flächenanteil der Riefen dar. Einzelne Werte einer sogenannten Abbottkurve können auch für die Herstellung von gewünschten Oberflächenbeschaffenheiten vorgegeben werden, insbesondere wenn die Herstellung mittels Plateauhonen erfolgt.
  • Vorliegend wurden besonders gute Zylinderlaufflächen mit Oberflächen mit Parametern in den folgenden Wertebereichen erzielt, wobei die Wertbereiche einzelner Parameter sowohl für sich gesehen als auch in Kombination mit Wertebereichen anderer Parameter vorteilhaft sind:
    • Rk: 0.05 - 0.4 µm, insbesondere 0,1 - 0,3 µm,
    • Rpk: ≤0.2 µm, insbesondere ≤0,1 µm, bevorzugte Wertebereiche sind 0,04 µm - 0,14 µm, weiter bevorzugt 0,06 µm +/- 0,04µm,
    • Rvk: 0.4 - 4.0 µm, insbesondere 0,8 - 3.0 µm.
  • Aus Simulationen und Versuchen wurde insbesondere folgende Anordnung von Riefen und Plateaurillen als besonders reibungsarm ermittelt:
    • Flächenanteil der Riefen: 20 - 50 Prozent, insbesondere 30 - 50 Prozent oder alternativ: Mr2=80 - 50 Prozent, insbesondere 70 - 50 Prozent,
    • Riefentiefe: 0,5µm - 4 µm, insbesondere 1 µm - 3 µm und bevorzugt 2 µm +/- 0,5 µm,
    • Überschneidungswinkel im oberen Umkehrbereich: α = 30° (+/- Toleranz), βA = 130° (+/-Toleranz),
    • Überschneidungswinkel im Mittelbereich: α = 30° (+/- Toleranz), βB = 30° (+/- Toleranz),
    • Überschneidungswinkel im unteren Umkehrbereich: α = 30° (+/- Toleranz), βA = 130° (+/- Toleranz),
    • Die vorstehend genannten Toleranzen, insbesondere für βA, können bis zu 30° betragen. Sie betragen vorzugsweise 10°, besonders bevorzugt 5° und weiter bevorzugt 3°,
    • Prozentuale Verteilung der Gesamthöhe H des Zylinders auf einen oberen Umkehrbereich, einen Mittelbereich und einen unteren Umkehrbereich: vorzugsweise wie vorstehend beschrieben, insbesondere ausgehend von dem oberen Totpunkt eines ersten Kolbenrings: das 0,5 bis 2-fache des Abstands zwischen dem ersten Kolbenring und dem untersten Kolbenring (Ölabstreifring) und/oder 5 Prozent +/- 3 Prozent für den oberen Umkehrbereich,
      ausgehend von dem unteren Totpunkt eines untersten Kolbenrings (Ölabstreifring) das 0,5-fache bis 2-fache des Abstands zwischen dem ersten Kolbenring und dem untersten Kolbenring (Ölabstreifring) und/oder 10 Prozent +/- 5 Prozent für den unteren Umkehrbereich und
      den sich dazwischen ergebenden Bereich als Mittelbereich, d.h.
      Gesamthub zuzüglich dem Abstand zwischen dem ersten Kolbenring und dem untersten Kolbenring abzüglich des oberen Umkehrbereichs und des unteren Umkehrbereichs oder bei prozentualer Definition: 85 Prozent +/- 5 Prozent für den Mittelbereich.
  • Weitere praktische Ausführungsformen der Erfindung sind nachfolgend im Zusammenhang mit den Zeichnungen beschrieben. Es zeigen:
  • Fig. 1
    einen Ausschnitt eines Zylinderblocks zur Führung eines nicht dargestellten Kolbens einer Hubkolbenbrennkraftmaschine mit einer Zylinderlauffläche in einer perspektivischen und teilweise geschnittenen Darstellung,
    Fig. 2
    eine vergrößerte Darstellung des in Figur 1 mit II gekennzeichneten Ausschnitts,
    Fig. 3
    einen Querschnitt durch eine Zylinderlauffläche zur vergrößerten Darstellung von Riefen und Plateaurillen in der Zylinderlauffläche in einer schematischen Darstellung,
    Fig. 4
    einen Ausschnitt einer sich über die Arbeitshöhe H erstreckenden Zylinderlauffläche der in Figur 1 gezeigten Hubkolbenbrennkraftmaschine mit hinsichtlich der Riefen und Plateaurillen unterschiedlich bearbeiteten Bereichen A, B und C in einer schematischen Darstellung und
    Fig. 5
    eine exemplarische Darstellung eines Kolbens in seinem oberen Totpunkt und in seinem unteren Totpunkt zur Erläuterung einer alternativen Definitionsmöglichkeit von unterschiedlich bearbeiteten Bereichen A, B und C.
  • In Fig. 1 ist ein Ausschnitt eines Zylinderblocks einer Hubkolbenmaschine in Form einer Hubkolbenbrennkraftmaschine 10 dargestellt, die beispielsweise für den Antrieb eines Kraftfahrzeuges dienen kann. Der Zylinderblock weist eine Bohrung 12 zur Aufnahme und Führung eines nicht dargestellten Hubkolbens in einem durch die Bohrung erzeugten Zylinder 22 auf. Die Bohrung 12 ist von einer Zylinderlauffläche 14 für den Hubkolben umgeben. Anhand der Figuren 2 bis 4 werden im Folgenden geometrische Gestaltungen von Ausführungsformen erfindungsgemäßer Zylinderlaufflächen 14 beschrieben.
  • Ein in eine Ebene abgerollter Ausschnitt der Zylinderlauffläche 14 gemäß dem mit II gekennzeichneten Ausschnitt in Figur 1 ist in Figur 2 dargestellt. Bei den dicken, parallel zueinander verlaufenden Linien in Figur 2 handelt es sich um Vertiefungen in Form von sich überkreuzenden Riefen 16. Zwischen den Riefen 16 ergeben sich Plateaus 20 (nachfolgend auch plateauartige Flächen genannt), die in der gezeigten Ausführungsform paralellogrammförmig ausgebildet sind. Auf diesen plateauartigen Flächen 20 sind Vertiefungen mit sich überkreuzenden Plateaurillen 18 in regelmäßigen Abständen angeordnet. Die Plateaurillen 18 umschließen ebenfalls parallelogrammförmig ausgebildete Teilflächen 26, die von den parallelogrammförmig ausgebildeten plateauartigen Flächen 20 überlagert sind. Die sich in Hochrichtung des Zylinders 22 erstreckende Höhe HT der durch die Plateaurillen 18 gebildeten parallelogrammförmigen Teilflächen 26 ist vorliegend kleiner als die sich in Hochrichtung der Zylinders 22 erstreckende Höhe HF der parallelogrammförmigen plateauartigen Flächen 20. Dadurch ist jedes durch Plateaurillen 18 gebildete Parallelogramm von mindestens einer Riefe 16 durchsetzt.
  • Die Darstellung gemäß Figur 2 wurde gewählt, um die Ausbildung und Anordnung der Riefen 16 und der Plateaurillen 18 schematisch in einer gemeinsamen Darstellung gut sichtbar zu machen. In der Praxis beträgt die Höhe HF vorzugsweise ein Vielfaches der Höhe HT, insbesondere mindestens das 3-fache, mindestens das 5-fache oder sogar mindestens das 10-fache. Bevorzugt werden die Plateaurillen 18 so angeordnet, dass sich zwischen der Höhe HF und der Höhe HT ein Faktor zwischen 3 und 20 ergibt. Unabhängig von der Art der Flächenformen werden die Plateaurillen 18 relativ zu den Riefen 16 vorzugsweise so angeordnet, dass durch die Plateaurillen 18 innerhalb einer plateauartigen Fläche 20 zwischen 10 und 1000 Teilflächen 26 gebildet sind, bevorzugt 15 bis 500 Teilflächen und besonders bevorzugt 20 bis 300 Teilflächen.
  • Die sich überschneidenden Riefen 16 sind in Querrichtung des Zylinders 22 jeweils mit einem Überschneidungswinkel α zueinander angeordnet. Die sich überschneidenden Plateaurillen 18 auf den plateauartigen Flächen 20 sind mit einem Überschneidungswinkel β zueinander angeordnet.
  • Figur 3 zeigt anhand einer schematischen Darstellung einer Zylinderlauffläche 14 eines Zylinders 22 die Geometrie der Zylinderlauffläche 14 im Querschnitt nach einer ersten Bearbeitungsstufe einer Plateauhonung (ganz rechts) und nach einer zweiten Bearbeitungsstufe einer Plateauhonung. Nach der zweiten Bearbeitungsstufe sind die plateauartigen Flächen 20 und die diese umgebenden Riefen 16 in dem in Figur 2 gezeigten Zustand. Durch weitere Bearbeitungsstufen können noch glattere plateauartige Flächen 20 erzeugt werden.
  • Wie ganz rechts in Figur 3 angedeutet ist, werden in einer ersten Bearbeitungsstufe zunächst Riefen 16 in die Zylinderlauffläche 14 eingebracht, so dass sich ein gleichmäßiges zackenförmiges Profil mit zur Innenseite des Zylinders 22 ragenden Spitzen 24 und bereits mit der gewünschten Tiefe ausgebildeten Riefen 16 ergibt. Im vorliegenden Fall sind die Riefen 16 im Querschnitt v-förmig ausgebildet, und das Verhältnis zwischen der Tiefe der Riefen 16 und dem Abstand der parallel zueinander verlaufenden Riefen 16 in der zylindrischen Wand ist so gewählt, dass sich nach der ersten Bearbeitungsstufe ein zickzackförmiger Profilquerschnitt ergibt. Die Erfindung ist nicht auf diese Möglichkeit beschränkt. Es wird insoweit darauf hingewiesen, dass beliebige andere Formen, Tiefen und Abstände der Riefen 16 zueinander gewählt werden können, wodurch sich auch andere Querschnittsgeometrien ergeben können, beispielsweise zahnförmige Geometrien mit flankenartigen Abflachungen zwischen zwei benachbarten Riefen 16 und/oder w-förmige, u-förmige oder anders geformten Riefen (nicht dargestellt).
  • Wie links der - von rechts aus betrachtet - ersten Riefe 16 dargestellt, werden in einer zweiten Bearbeitungsstufe zwischen zwei Riefen 16 sich parallel zur Mittelachse M des Zylinders 22 erstreckende, plateauartige Flächen 20 erzeugt, in welchen die Plateaurillen 18 ausgebildet sind.
  • Anhand von Figur 3 wird nachstehend exemplarisch erläutert, wie der Flächenanteil der Riefen 16 zu verstehen ist und berechnet werden kann. Dabei wird in dem Beispiel davon ausgegangen, dass das Verhältnis von Riefen 16 zu Plateaus in dem in Figur 3 dargestellten linearen Querschnittsbereich repräsentativ für das Flächenverhältnis der gesamten Zylinderlauffläche ist. In der Praxis kann die Berechnung auch auf der Grundlage einer repräsentativen Teilfläche oder auf der Grundlage der gesamten Zylinderlauffläche erfolgen. Vorliegend wird der Flächenanteil der Riefen 16 im Bereich der Länge L bestimmt. Der Flächenanteil ergibt sich aus der Summe der einzelnen Breiten der Riefen 16 innerhalb des Bereiches dividiert durch die Länge des Bereiches L, d.h. (R1+R2+R3/L). Als Breite wird dabei die Stelle mit der größten Breite der Riefe 16 definiert. R1 und R3 bezeichnen im gewählten Bereich die halbe Breite einer Riefe 16, wohingegen R2 die gesamte Breite der Riefe 16 angibt.
  • In Fig. 4 ist die Zylinderlauffläche 14 des Zylinders 22 aus Figur 1 über die gesamte Arbeitshöhe H dargestellt, wobei als Arbeitshöhe H in dieser Ausführungsform der Höhenbereich des Zylinders 22 angesehen wurde, über welchen sich bei bestimmungemäßer Verwendung der gezeigten Hubkolbenbrennkraftmaschine 1 0 der nicht dargestellte Hubkolben entlang der Zylinderlauffläche 14 auf- und abbewegt. Wie dargestellt, ist die Zylinderlauffläche 14 in drei Bereiche A, B und C unterteilt, wobei der Bereich A den oberen Totpunkt des dargestellten Zylinders 22 einschließt und der Bereich C den unteren Totpunkt des dargestellten Zylinders 22 einschließt. Die Bereiche A und C sind daher Umkehrbereiche für den in dem Zylinder 22 geführten Kolben (nicht dargestellt). Der Bereich B ist entsprechend ein Mittelbereich. In Bezug auf die Geschwindigkeiten des nicht dargestellten Hubkolbens kann daher qualitativ festgehalten werden, dass der Hubkolben in dem Mittelbereich B die höchste Geschwindigkeit gegenüber der Zylinderlauffläche 14 erreicht, während er in den Umkehrbereichen A und C mit geringeren Geschwindigkeiten gegenüber der Zylinderlauffläche 14 verfahren wird. An dem oberen Totpunkt und an dem unteren Totpunkt sinkt die Geschwindigkeit sogar kurzzeitig auf null ab, wodurch eine hohe Haftreibung entsteht.
  • In den drei Bereichen A, B und C sind Riefen 16 und Plateaurillen 18 mit teilweise unterschiedlichen Überschneidungswinkeln α und β ausgebildet, wobei sowohl die Riefen 16 als auch die Plateaurillen 18 nur in Teilbereichen und nur schematisch als gerade Linien dargestellt sind. Tatsächlich erstrecken sich die Riefen 16 und Plateaurillen 18 wendelförmig über den gesamten Umfang der Zylinderlauffläche 14 mit einer konstanten Steigung in den jeweiligen Bereichen A, B und C. Auch diese können tatsächlich unterschiedlich ausgebildet sein, insbesondere wie im Folgenden erläutert.
  • In der gezeigten Ausführungsform weist die Zylinderlauffläche 14 über alle drei Bereiche A, B und C, d.h. über die gesamte Arbeitshöhe H, Riefen 16 mit einem konstanten Überschneidungswinkel α auf, der zwischen 20° und 40° gewählt wird, bevorzugt zwischen 25° und 35° und besonders bevorzugt zwischen 28° und 32°. In der gezeigten Ausführungsform ist ein Überschneidungswinkel α von 30° ausgebildet. Es hat sich gezeigt, dass Riefen-Überschneidungswinkel in diesen Wertebereichen den hydrodynamischen Druckaufbau unterstützen und der Festkörperkontakt, d.h. auch die Reibung, zwischen Hubkolben und der Zylinderlauffläche 14 reduziert wird.
  • Die Plateaurillen 18 sind in der gezeigten Ausführungsform abhängig von dem Bereich A, B oder C mit unterschiedlichen Überschneidungswinkeln βA, βB, βC ausgebildet. In den Bereichen A und C wird vorzugsweise ein Überschneidungswinkel βA und βC von mindestens 90° gewählt, bevorzugt mindestens 100° und besonders bevorzugt mehr als 110°. Der Überschneidungswinkel βB wird vorzugsweise zwischen 10° und 50°, bevorzugt zwischen 20° und 10° und besonders bevorzugt zwischen 25° und 35° gewählt. In der gezeigten Ausführungsform betragen die Überschneidungswinkel βA und βC 120° und der Überschneidungswinkel βB 30°. Bevorzugt weisen die Riefen 16 und die Plateaurillen 18 im mittleren Bereich B aus bearbeitungstechnischen Gründen denselben Überschneidungswinkel α bzw. βB auf. Für die Überschneidungswinkel βA und βC können aber auch voneinander abweichende Werte gewählt werden, insbesondere innerhalb der vorstehend genannten Wertebereiche.
  • Figur 5 zeigt einen Kolben 28, der in einem nur schematisch dargestellten Zylinder 22 mit einer Zylinderlauffläche 14 in seinem oberen Totpunkt (obere Darstellung) und in einem unteren Totpunkt (unter Darstellung) gezeigt ist. An dem Kolben 28 sind in erster Kolbenring 30, ein mittlere Kolbenring 32 und ein unterster Kolbenring (Ölabstreifring) 34 zur Zylinderlauffläche 14 orientiert angeordnet. Der Abstand zwischen dem ersten Kolbenring 30 und dem untersten Kolbenring 34 ist mit Z gekennzeichnet. Ein oberer Umkehrbereich erstreckt sich vorzugsweise in einem Bereich von dem Pfeil O in Richtung des Pfeils A über eine Länge von 0,5Z bis 2Z.
  • Optional kann auch ein Bereich C als unterer Umkehrbereich festgelegt werden. Ein solcher Umkehrbereich erstreckt sich vorzugsweise ausgehend von dem Pfeil U, welcher die Position des untersten Kolbenrings 34 im unteren Totpunkt kennzeichnet um 1Z bis 4Z nach oben, insbesondere um 2Z.
  • Insbesondere aus fertigungstechnischen Gründen kann es geeignet sein, die Umkehrbereiche A, C von dem mit O gekennzeichneten Bereich aus nach oben und/oder von dem mit U gekennzeichneten Bereich nach unten - ggf. bis an den oberen bzw. unteren Rand des Zylinders genauso zu bearbeiten wie in den jeweils angrenzenden Bereichen A bzw. C.
  • Der Mittelbereich B erstreckt sich in diesem Fall zwischen den Bereichen A und C.
  • Bezugszeichenliste
  • 10
    Hubkolbenbrennkraftmaschine
    12
    Bohrung
    14
    Zylinderlauffläche
    16
    Riefen
    18
    Plateaurillen
    20
    plateauartige Fläche / Plateau
    22
    Zylinder
    24
    Spitzen
    26
    Teilflächen
    28
    Kolben
    30
    erster Kolbenring
    32
    mittlerer Kolbenring
    34
    unterster Kolbenring (Ölabstreifring)
    α
    Überschneidungswinkel von Riefen
    β
    Überschneidungswinkel von Plateaurillen

Claims (10)

  1. Zylinderlauffläche eines Zylinders einer Hubkolbenmaschine mit Vertiefungen in Form von zueinander beabstandeten Riefen (16), wodurch zwischen benachbarten Riefen (16) Plateaus (20) gebildet sind und mit im Bereich der Plateaus (20) ausgebildeten Vertiefungen in Form von Plateaurillen (18), wobei die Riefen (16) gleichbleibend über die gesamte Arbeitshöhe (H) der Zylinderlauffläche mit dem gleichen Überschneidungswinkel (α) ausgebildet sind, wobei die Riefen (16) eine größere Tiefe aufweisen als die Plateaurillen (18) und wobei erste Plateaubereiche mit einer ersten Orientierung von Plateaurillen (18) ausgebildet sind,
    dadurch gekennzeichnet,
    dass mindestens zweite Plateaubereiche mit einer zweiten Orientierung von Plateaurillen (18) ausgebildet sind, wobei die erste Orientierung und die zweite Orientierung voneinander abweichen.
  2. Zylinderlauffläche nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass in den ersten Plateaubereichen und/oder in den zweiten Plateaubereichen sich in einem Überschneidungswinkel (β) überkreuzende Plateaurillen (18) ausgebildet sind.
  3. Zylinderlauffläche nach dem vorstehenden Anspruch, dadurch gekennzeichnet, dass in den ersten Plateaubereichen sich in einem Überschneidungswinkel (βA) kreuzende Plateaurillen (18) ausgebildet sind und in den zweiten Plateaubereichen sich in einem Überschneidungswinkel (βB) kreuzende Plateaurillen (18) ausgebildet sind, wobei die Überschneidungswinkel einen Abstand von mindestens 30° zueinander aufweisen.
  4. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Plateaubereiche in mindestens einem Umkehrbereich (A, C) des Zylinders (22) angeordnet sind und/oder dass die zweiten Plateaubereiche in einem von den Umkehrbereichen (A, C) abweichenden Mittelbereich (B) angeordnet sind.
  5. Zylinderlauffläche nach einem der beiden vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Plateaurillen (18) derart ausgebildet sind, dass sich ein stumpfer Überschneidungswinkel (βA) und/oder ein spitzer Überschneidungswinkel (βB) ergibt.
  6. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Orientierung der Plateaurillen (18) mindestens in einem Teilbereich des Zylinders (22) im Vergleich zu der Orientierung der diese Plateaurillen (18) unmittelbar umgebenden Riefen (16) zumindest teilweise abweichend ausgebildet ist.
  7. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Riefen (16) einen Flächenanteil von mindestens 20 Prozent an der gesamten Zylinderlauffläche (14) aufweisen.
  8. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Riefen (16) zumindest teilweise einen spitzen Überschneidungswinkel (α) aufweisen.
  9. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Riefen (16) und die Plateaurillen (18) in einem Mittelbereich (B) jeweils einen spitzen Überschneidungswinkel (α, β) aufweisen.
  10. Zylinderlauffläche nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Riefen (16) und/oder die Plateaurillen (18) durch honende Bearbeitung erzeugt sind.
EP17153819.2A 2016-02-05 2017-01-30 Zylinderlauffläche eines zylinders einer hubkolbenmaschine Active EP3203059B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016102079.6A DE102016102079A1 (de) 2016-02-05 2016-02-05 Zylinderlauffläche eines Zylinders einer Hubkolbenmaschine

Publications (2)

Publication Number Publication Date
EP3203059A1 EP3203059A1 (de) 2017-08-09
EP3203059B1 true EP3203059B1 (de) 2020-11-18

Family

ID=57944323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17153819.2A Active EP3203059B1 (de) 2016-02-05 2017-01-30 Zylinderlauffläche eines zylinders einer hubkolbenmaschine

Country Status (3)

Country Link
EP (1) EP3203059B1 (de)
CN (1) CN107061038B (de)
DE (1) DE102016102079A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20185341A1 (en) * 2018-04-10 2019-10-11 Mirka Ltd Method and apparatus for forming a groove pattern on a cylinder surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196954A (ja) * 1983-04-22 1984-11-08 Riken Corp 内燃機関用シリンダおよびシリンダライナ
EP0565742B1 (de) * 1992-04-11 1995-03-01 Maschinenfabrik Gehring GmbH & Co. Verfahren zur Feinbearbeitung von Werkstück-Oberflächen
DE4316012C2 (de) * 1993-05-13 1998-09-24 Gehring Gmbh & Co Maschf Verfahren zur Feinbearbeitung von Werkstück-Oberflächen
DE19607774B4 (de) 1996-03-01 2005-07-14 Nagel Maschinen- Und Werkzeugfabrik Gmbh Verfahren zum Honen von Innenflächen eines Zylinders und Zylinder
JP2004176556A (ja) * 2002-11-25 2004-06-24 Toyota Motor Corp 内燃機関のシリンダ
DE102007032370A1 (de) 2007-07-06 2009-01-08 Elgan-Diamantwerkzeuge Gmbh & Co. Kg Verfahren zur Bearbeitung einer Innenfläche einer Bohrung in einem Werkstück, Bearbeitungsmaschine hierfür sowie Werkstück
CN102278225A (zh) * 2011-07-11 2011-12-14 南京航空航天大学 一种低摩擦轴向不等角度平台珩磨气缸套

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3203059A1 (de) 2017-08-09
DE102016102079A1 (de) 2017-08-10
CN107061038B (zh) 2020-10-13
CN107061038A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
EP1275864B2 (de) Werkstück mit einer tribologisch beanspruchbaren Fläche und Verfahren zur Herstellung einer solchen Fläche
DE4316012C2 (de) Verfahren zur Feinbearbeitung von Werkstück-Oberflächen
EP0565742B1 (de) Verfahren zur Feinbearbeitung von Werkstück-Oberflächen
EP2373898B1 (de) Kammkäfig für ein wälzlager, insbesondere ein doppelkammkäfig für ein zylinderrollenlager, wälzlager und verfahren zum herstellen eines kammkäfigs für ein wälzlager
EP2237913B9 (de) Bohrwerkzeug mit ausspitzung
DE102011112148B4 (de) Extruder und Verfahren zum Herstellen eines Extruders
DE102012214566A1 (de) Verfahren zur herstellung einer mit spitzen versehenen oberfläche zum erhalt eines thermischen spritzüberzugs und durch das verfahren hergestellte oberfläche
DE19654584B4 (de) Käfig für Nadellager und Verfahren zu dessen Herstellung
DE10358150B4 (de) Verfahren zum Honen von Bohrungen
EP2794167B1 (de) Kombinationswerkzeug und verfahren zur herstellung einer oberflächenstruktur mit hinterschnitten in einer oberfläche eines werkstücks
EP3203059B1 (de) Zylinderlauffläche eines zylinders einer hubkolbenmaschine
EP2855952A2 (de) Bereichsweises strukturieren von gleitflächen
EP3436215B1 (de) Verfahren zur herstellung rotationssymmetrischer, nicht zylindrischer bohrungen mit einem honwerkzeug
DE60110920T2 (de) Maschinenkolbenherstellung
DE3133266C2 (de) Gestanztes Strickwerkzeug für Strick- oder Wirkmaschinen
EP3587645B1 (de) Wirkwerkzeug und verfahren zur herstellung eines wirkwerkzeugs
DE102016113571A1 (de) Gewindebohrer und Verfahren
DE10127389B4 (de) Hydrostatisches Fluidlager mit Zellen und Verfahren zu seiner Herstellung
EP3660344B1 (de) Verfahren zur herstellung eines pendelrollenlagerkäfigs und eines nach dem verfahren hergestellten wälzlagerkäfigs
EP3266919B1 (de) Filznadel und verfahren zum herstellen zumindest einer filznadel
EP4015692B1 (de) Nähmaschinennadel mit ausnehmung
DE2619485A1 (de) Kolbenring mit einer chrom-gefuellten nut und verfahren zu seiner herstellung
DE102018114138A1 (de) Tieflochbohrer mit mehreren Spanformern und Mulden in der Spanfläche
DE102018101817A1 (de) Mechanische aufrauungsprofilmodifizierung
DE102008049515A1 (de) Verfahren zur spanenden Bearbeitung von Werkstückflächen an Werkstücken, insbesondere an Kurbelwellen, sowie Schneidplatte zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200619

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008221

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1336038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008221

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1336038

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 8

Ref country code: GB

Payment date: 20240123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240125

Year of fee payment: 8