EP3202945A1 - Method for nitrocarburizing of metallic workpieces - Google Patents

Method for nitrocarburizing of metallic workpieces Download PDF

Info

Publication number
EP3202945A1
EP3202945A1 EP16154353.3A EP16154353A EP3202945A1 EP 3202945 A1 EP3202945 A1 EP 3202945A1 EP 16154353 A EP16154353 A EP 16154353A EP 3202945 A1 EP3202945 A1 EP 3202945A1
Authority
EP
European Patent Office
Prior art keywords
urea
furnace chamber
treatment
water
workpieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16154353.3A
Other languages
German (de)
French (fr)
Other versions
EP3202945B1 (en
Inventor
Heinrich-Peter Lankes
Peter Haase
Dirk Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iva Schmetz GmbH
Original Assignee
Iva Schmetz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iva Schmetz GmbH filed Critical Iva Schmetz GmbH
Priority to EP16154353.3A priority Critical patent/EP3202945B1/en
Publication of EP3202945A1 publication Critical patent/EP3202945A1/en
Application granted granted Critical
Publication of EP3202945B1 publication Critical patent/EP3202945B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the invention relates to a method for heat treating metallic workpieces in a furnace chamber, in particular for nitrocarburizing, wherein the workpieces are exposed to a treatment atmosphere at a treatment temperature during at least one treatment phase, with nitrogen and carbon diffusing into the workpieces.
  • Nitrocarburizing is a heat treatment process for surface hardening workpieces made of steel, in which the workpieces are heated in a furnace chamber of an industrial furnace in a heating phase and exposed to a treatment atmosphere during a holding phase at a treatment temperature of about 500 ° C to 600 ° C, wherein nitrogen and carbon atoms diffuse into the surface layer of the workpieces. This is followed by a cooling phase. This results in the edge region of the workpieces, a bonding layer and a diffusion layer. Nitrocarburizing focuses on the formation of the bonding layer. The two layers are relatively thin. The aim of this thermochemical process is to improve the wear resistance and corrosion resistance, in particular of unalloyed, low to medium-alloyed steels.
  • a treatment atmosphere customary in practice for the gas nitrocarburizing of metallic workpieces or components is a gas mixture of carbon dioxide (CO 2 ), ammonia (NH 3 ), hydrogen (H 2 ) and nitrogen (N 2 ).
  • the CO 2 serves as a carbon donor and the NH 3 as a nitrogen donor.
  • the treatment atmosphere is generated in practice in the furnace room of the industrial furnace.
  • gaseous ammonia (NH 3 ), carbon dioxide (CO 2 ) and nitrogen (N 2 ) are fed directly into the furnace chamber.
  • NH 3 gaseous ammonia
  • CO 2 carbon dioxide
  • N 2 nitrogen
  • H 2 hydrogen
  • the nitrogen and the carbon For introduction of nitrogen and carbon by diffusion into the edge region of workpieces made of steel or of steel components, the nitrogen and the carbon must be present in atomic form.
  • the generation of atomic nitrogen takes place under predetermined temperature and pressure conditions by cleavage of ammonia in the furnace chamber.
  • Ammonia (NH 3 ) in gaseous form is a very unpleasant-smelling, irritating and poisonous gas which can cause irritation, poisoning and asphyxiation. Occupational safety during the heat treatment is therefore in need of improvement. In addition, ammonia is relatively expensive, so that the heat treatment costs are high.
  • the object of the invention is therefore to improve a method for heat treating metallic workpieces, in particular for nitrocarburizing, in such a way that the aforementioned problems are avoided.
  • the object is achieved by a method according to claim 1.
  • the treatment atmosphere is produced from urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O).
  • Urea with the chemical formula CH 4 N 2 O, has a molecular weight of 60.06 g / mol and is water-soluble.
  • the invention is based on the finding that urea contains carbon and nitrogen and thus provides both necessary for the nitrocarburizing reactants C and N.
  • Urea unlike ammonia, is non-toxic and relatively inexpensive.
  • the urea decomposes into ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • Urea CH 4 N 2 O in combination with a metered addition of water (H 2 O) ideally creates a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ). This makes urea, in combination with water, ideal for nitrocarburizing.
  • the CO 2 is used during the heat treatment as a carbon donor and the NH 3 as a nitrogen donor.
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.
  • a preferred embodiment is characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed directly into the furnace chamber and the treatment atmosphere is generated directly in the furnace chamber.
  • the water (H 2 O) is fed in liquid form into the furnace chamber. But it is also possible to feed the water (H 2 O) in vapor form into the furnace chamber.
  • the urea (CH 4 N 2 O) can be introduced in solid form into the furnace chamber.
  • the inventive method is characterized in that the urea (CH 4 N 2 O) dissolved in the water (H 2 O) and the urea (CH 4 N 2 O) fed in the form of an aqueous solution in the furnace chamber, preferably sprayed, becomes.
  • urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in the furnace chamber can be introduced in order to change the composition of the treatment atmosphere.
  • a variant of the method is characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C, that the treatment atmosphere is generated in the presplitter and that the treatment atmosphere is passed from the presplitter into the furnace space.
  • a presplitter which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C, that the treatment atmosphere is generated in the presplitter and that the treatment atmosphere is passed from the presplitter into the furnace space.
  • the Vorspalter is produced by chemical reaction, the desired gaseous treatment atmosphere.
  • urea (CH 4 N 2 O) decomposes into isocyanic acid (HNCO) and ammonia (NH 3 ).
  • the carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas.
  • Carbon monoxide, carbon dioxide or propane, for example, can be used as additional gas.
  • the workpieces are exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C of the treatment atmosphere.
  • the holding phase is preceded by a warm-up phase.
  • the holding phase is followed by a cooling phase.
  • the workpieces At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.
  • nitrocarburizing workpieces made of steel are heated in a furnace chamber during a heating phase and exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C a gaseous treatment atmosphere.
  • the holding phase is followed by a cooling phase.
  • According to the treatment atmosphere of urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O) is generated directly in the furnace chamber.
  • Urea (CH 4 N 2 O) contains carbon and nitrogen and thus both necessary for the nitrocarburizing reactants C and N.
  • the urea (CH 4 N 2 O) is dissolved outside the furnace chamber in the water (H 2 O) and the urea ( CH 4 N 2 O) in the form of an aqueous solution sprayed directly into the furnace chamber at the beginning of the holding phase.
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.
  • the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) can also be changed, however only to a small extent.
  • the urea decomposes by thermolysis in ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ).
  • NH 3 + CO 2 ⁇ 2 [N] + 3H 2 + CO 2 is known per se and is therefore not described in detail.
  • the aqueous urea solution ideally reacts in the furnace chamber to a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ).
  • nitrogen and carbon atoms diffuse into the edge area of the workpieces.
  • the result is an outer connection layer and a diffusion layer.
  • Nitrocarburizing focuses on the formation of the bonding layer.
  • the carbon atoms only diffuse into the bonding layer.
  • the workpieces At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.
  • urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in order to increase the nitrogen availability of the treatment atmosphere.
  • the carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas into the furnace chamber.
  • the urea (CH 4 N 2 O) and the water (H 2 O) is fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C.
  • a presplitter which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Wärmebehandeln metallischer Werkstücke in einem Ofenraum, insbesondere zum Nitrocarburieren, wobei die Werkstücke während mindestens einer Behandlungsphase einer Behandlungsatmosphäre bei einer Behandlungstemperatur ausgesetzt sind, wobei Stickstoff und Kohlenstoff in die Werkstücke diffundieren. Erfindungsgemäß wird die Behandlungsatmosphäre unter Verwendung von Harnstoff (CH 4 N 2 O) und Wasser (H 2 O) erzeugt. Durch Thermolyse im Ofenraum bei Behandlungstemperaturen von 500°C bis 600°C zerfällt der Harnstoff in Ammoniak (NH 3 ) und Isocyansäure (HNCO). Diese wiederum reagiert mit Wasser (Molmasse 18,015 g/mol) durch Hydrolyse zu Ammoniak (NH 3 ) und Kohlenstoffdioxid (CO 2 ).The invention relates to a method for heat treating metallic workpieces in a furnace chamber, in particular for nitrocarburizing, wherein the workpieces are exposed to a treatment atmosphere at a treatment temperature during at least one treatment phase, with nitrogen and carbon diffusing into the workpieces. According to the invention, the treatment atmosphere is generated using urea (CH 4 N 2 O) and water (H 2 O). By thermolysis in the furnace chamber at treatment temperatures of 500 ° C to 600 ° C, the urea decomposes into ammonia (NH 3) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3) and carbon dioxide (CO 2).

Description

Die Erfindung betrifft ein Verfahren zum Wärmebehandeln metallischer Werkstücke in einem Ofenraum, insbesondere zum Nitrocarburieren, wobei die Werkstücke während mindestens einer Behandlungsphase einer Behandlungsatmosphäre bei einer Behandlungstemperatur ausgesetzt sind, wobei Stickstoff und Kohlenstoff in die Werkstücke diffundieren.The invention relates to a method for heat treating metallic workpieces in a furnace chamber, in particular for nitrocarburizing, wherein the workpieces are exposed to a treatment atmosphere at a treatment temperature during at least one treatment phase, with nitrogen and carbon diffusing into the workpieces.

Das Nitrocarburieren ist ein Wärmebehandlungsverfahren zum Randschichthärten von Werkstücken aus Stahl, bei dem die Werkstücke in einem Ofenraum eines Industrieofens in einer Aufheizphase aufgeheizt und während einer Haltephase bei einer Behandlungstemperatur von ca. 500°C bis 600°C einer Behandlungsatmosphäre ausgesetzt sind, wobei Stickstoff- und Kohlenstoffatome in die Randschicht der Werkstücke eindiffundieren. Anschließend folgt eine Abkühlphase. Es entstehen im Randbereich der Werkstücke eine Verbindungsschicht und eine Diffusionsschicht. Beim Nitrocarburieren steht die Ausbildung der Verbindungsschicht im Vordergrund. Die beiden Schichten sind relativ dünn. Ziel dieses thermochemischen Verfahrens ist es, die Verschleißfestigkeit und die Korrosionsbeständigkeit, insbesondere von unlegierten, niedrig bis mittellegierten Stählen zu verbessern.Nitrocarburizing is a heat treatment process for surface hardening workpieces made of steel, in which the workpieces are heated in a furnace chamber of an industrial furnace in a heating phase and exposed to a treatment atmosphere during a holding phase at a treatment temperature of about 500 ° C to 600 ° C, wherein nitrogen and carbon atoms diffuse into the surface layer of the workpieces. This is followed by a cooling phase. This results in the edge region of the workpieces, a bonding layer and a diffusion layer. Nitrocarburizing focuses on the formation of the bonding layer. The two layers are relatively thin. The aim of this thermochemical process is to improve the wear resistance and corrosion resistance, in particular of unalloyed, low to medium-alloyed steels.

Eine in der Praxis übliche Behandlungsatmosphäre zum Gasnitrocarburieren von metallischen Werkstücken oder Bauteilen ist ein Gasgemisch aus Kohlenstoffdioxid (CO2), Ammoniak (NH3) Wasserstoff (H2) und Stickstoff (N2). Dabei dient das CO2 als Kohlenstoffspender und das NH3 als Stickstoffspender.A treatment atmosphere customary in practice for the gas nitrocarburizing of metallic workpieces or components is a gas mixture of carbon dioxide (CO 2 ), ammonia (NH 3 ), hydrogen (H 2 ) and nitrogen (N 2 ). The CO 2 serves as a carbon donor and the NH 3 as a nitrogen donor.

Die Behandlungsatmosphäre wird in der Praxis in dem Ofenraum des Industrieofens erzeugt. Dazu wird gasförmiges Ammoniak (NH3), Kohlenstoffdioxid (CO2) und Stickstoff (N2) direkt in den Ofenraum eingespeist. In bestimmten Fällen erfolgt aus regelungstechnischen Gründen zusätzlich eine Einspeisung von Wasserstoff (H2).The treatment atmosphere is generated in practice in the furnace room of the industrial furnace. For this purpose, gaseous ammonia (NH 3 ), carbon dioxide (CO 2 ) and nitrogen (N 2 ) are fed directly into the furnace chamber. In certain cases, for technical reasons, there is an additional supply of hydrogen (H 2 ).

Zum Einbringen von Stickstoff und Kohlenstoff durch Diffusion in den Randbereich von Werkstücken aus Stahl bzw. von Stahlbauteilen müssen der Stickstoff und der Kohlenstoff in atomarer Form vorliegen. Die Erzeugung von atomarem Stickstoff erfolgt unter vorbestimmten Temperatur- und Druckbedingungen durch Spaltung von Ammoniak im Ofenraum.For introduction of nitrogen and carbon by diffusion into the edge region of workpieces made of steel or of steel components, the nitrogen and the carbon must be present in atomic form. The generation of atomic nitrogen takes place under predetermined temperature and pressure conditions by cleavage of ammonia in the furnace chamber.

Ammoniak (NH3) ist in gasförmiger Form ein stark unangenehm riechendes, reizendes und giftiges Gas, welches zu Reizungen, Vergiftungen und Erstickungen führen kann. Die Arbeitssicherheit während der Wärmebehandlung ist daher verbesserungsbedürftig. Zudem ist Ammoniak relativ teuer, so dass die Wärmebehandlungskosten hoch sind.Ammonia (NH 3 ) in gaseous form is a very unpleasant-smelling, irritating and poisonous gas which can cause irritation, poisoning and asphyxiation. Occupational safety during the heat treatment is therefore in need of improvement. In addition, ammonia is relatively expensive, so that the heat treatment costs are high.

Die Aufgabe der Erfindung besteht demgemäß darin, ein Verfahren zum Wärmebehandeln metallischer Werkstücke, insbesondere zum Nitrocarburieren, dahingehend zu verbessern, dass die vorgenannten Problematiken vermieden werden.The object of the invention is therefore to improve a method for heat treating metallic workpieces, in particular for nitrocarburizing, in such a way that the aforementioned problems are avoided.

Gemäß der Erfindung wird die Aufgabe durch ein Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß wird die Behandlungsatmosphäre aus Harnstoff bzw. Kohlensäurediamid (CH4N2O) und Wasser (H2O) erzeugt. Harnstoff, mit der chemische Summenformel CH4N2O, hat eine Molmasse von 60,06 g/mol und ist wasserlöslich. Der Erfindung liegt die Erkenntnis zugrunde, dass Harnstoff Kohlenstoff und Stickstoff enthält und somit beide für das Nitrocarburieren notwendige Reaktionspartner C und N liefert. Harnstoff ist im Gegensatz zu Ammoniak ungiftig und relativ preisgünstig. Durch Thermolyse im Ofenraum bei Behandlungstemperaturen von 500°C bis 600°C zerfällt der Harnstoff in Ammoniak (NH3) und Isocyansäure (HNCO). Diese wiederum reagiert mit Wasser (Molmasse 18,015 g/mol) durch Hydrolyse zu Ammoniak (NH3) und Kohlenstoffdioxid (CO2).According to the invention, the object is achieved by a method according to claim 1. According to the invention, the treatment atmosphere is produced from urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O). Urea, with the chemical formula CH 4 N 2 O, has a molecular weight of 60.06 g / mol and is water-soluble. The invention is based on the finding that urea contains carbon and nitrogen and thus provides both necessary for the nitrocarburizing reactants C and N. Urea, unlike ammonia, is non-toxic and relatively inexpensive. By thermolysis in the furnace chamber at treatment temperatures of 500 ° C to 600 ° C, the urea decomposes into ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ).

Die ablaufenden Reaktionen sind:

         CH4N2O → NH3 + HNCO

         HNCO + H2O → NH3 + CO2

         CH4N2O + H2O → 2NH3 + CO2

The ongoing reactions are:

CH 4 N 2 O → NH 3 + HNCO

HNCO + H 2 O → NH 3 + CO 2

CH 4 N 2 O + H 2 O → 2NH 3 + CO 2

Harnstoff (CH4N2O) erzeugt in Verbindung mit einer dosierten Zugabe von Wasser (H2O) idealerweise eine Behandlungsatmosphäre aus 66 % Ammoniak (NH3) und 33 % Kohlenstoffdioxid (CO2). Damit ist Harnstoff in Kombination mit Wasser zum Nitrocarburieren ideal verwendbar. Das CO2 dient während der Wärmebehandlung als Kohlenstoffspender und das NH3 als Stickstoffspender.Urea (CH 4 N 2 O) in combination with a metered addition of water (H 2 O) ideally creates a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ). This makes urea, in combination with water, ideal for nitrocarburizing. The CO 2 is used during the heat treatment as a carbon donor and the NH 3 as a nitrogen donor.

Vorzugsweise beträgt das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) etwa 1 zu 1.Preferably, the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.

Eine bevorzugte Ausführungsvariante ist dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) und das Wasser (H2O) unmittelbar in den Ofenraum eingespeist werden und die Behandlungsatmosphäre direkt in dem Ofenraum erzeugt wird.A preferred embodiment is characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed directly into the furnace chamber and the treatment atmosphere is generated directly in the furnace chamber.

Vorzugsweise wird das Wasser (H2O) in flüssiger Form in den Ofenraum eingespeist. Es ist aber auch möglich, das Wasser (H2O) in dampfförmiger Form in den Ofenraum einzuspeisen.Preferably, the water (H 2 O) is fed in liquid form into the furnace chamber. But it is also possible to feed the water (H 2 O) in vapor form into the furnace chamber.

Im Rahmen der Erfindung kann der Harnstoff (CH4N2O) in fester Form in den Ofenraum eingebracht werden. Alternativ ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) in dem Wasser (H2O) gelöst und der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingespeist, vorzugsweise eingesprüht, wird.In the context of the invention, the urea (CH 4 N 2 O) can be introduced in solid form into the furnace chamber. Alternatively, the inventive method is characterized in that the urea (CH 4 N 2 O) dissolved in the water (H 2 O) and the urea (CH 4 N 2 O) fed in the form of an aqueous solution in the furnace chamber, preferably sprayed, becomes.

Je nach Anforderung kann in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form eingebracht werden, um die Zusammensetzung der Behandlungsatmosphäre zu verändern.Depending on requirements, urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in the furnace chamber can be introduced in order to change the composition of the treatment atmosphere.

Eine Verfahrensvariante ist dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) und das Wasser (H2O) in einen Vorspalter eingespeist werden, der auf eine Temperatur von mindestens 130°C, vorzugsweise mindestens 140°C, beheizt ist, dass die Behandlungsatmosphäre in dem Vorspalter erzeugt wird und dass die Behandlungsatmosphäre von dem Vorspalter in den Ofenraum geleitet wird. In dem Vorspalter wird durch chemische Reaktion die gewünschte gasförmige Behandlungsatmosphäre erzeugt. Beim Erhitzen über den Schmelzpunkt von 406 K zerfällt Harnstoff (CH4N2O) in Isocyansäure (HNCO) und Ammoniak (NH3).A variant of the method is characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C, that the treatment atmosphere is generated in the presplitter and that the treatment atmosphere is passed from the presplitter into the furnace space. In the Vorspalter is produced by chemical reaction, the desired gaseous treatment atmosphere. When heated above the melting point of 406 K, urea (CH 4 N 2 O) decomposes into isocyanic acid (HNCO) and ammonia (NH 3 ).

Die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre kann mittels Zugabe eines kohlenstoffhaltigen Zusatzgases erhöht werden. Als Zusatzgas kann beispielsweise Kohlenmonoxid, Kohlendioxid oder Propan verwendet werden.The carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas. Carbon monoxide, carbon dioxide or propane, for example, can be used as additional gas.

Vorzugsweise werden die Werkstücke während einer Haltephase bei einer Behandlungstemperatur von 500°C bis 600°C der Behandlungsatmosphäre ausgesetzt. Der Haltephase geht eine Aufheizphase voraus. Ferner schließt sich an die Haltephase eine Abkühlphase an. Am Ende der Wärmebehandlung weisen die Werkstücke eine gesteigerte Oberflächenhärte und eine gute Korrosionsbeständigkeit auf.Preferably, the workpieces are exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C of the treatment atmosphere. The holding phase is preceded by a warm-up phase. Furthermore, the holding phase is followed by a cooling phase. At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.

Die Erfindung wird im Folgenden anhand eines bevorzugten Ausführungsbeispiels näher erläutert.The invention will be explained in more detail below with reference to a preferred embodiment.

Beim Nitrocarburieren werden Werkstücke aus Stahl in einem Ofenraum während einer Aufheizphase aufgeheizt und während einer Haltephase bei einer Behandlungstemperatur von 500°C bis 600°C einer gasförmigen Behandlungsatmosphäre ausgesetzt. An die Haltephase schließt sich eine Abkühlphase an. Erfindungsgemäß wird die Behandlungsatmosphäre aus Harnstoff bzw. Kohlensäurediamid (CH4N2O) und Wasser (H2O) direkt im Ofenraum erzeugt. Harnstoff (CH4N2O) enthält Kohlenstoff und Stickstoff und somit beide für das Nitrocarburieren notwendigen Reaktionspartner C und N. Der Harnstoff (CH4N2O) wird außerhalb des Ofenraums in dem Wasser (H2O) gelöst und der Harnstoff (CH4N2O) in Form einer wässrigen Lösung zu Beginn der Haltephase direkt in den Ofenraum gesprüht. Das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) beträgt etwa 1 zu 1. Das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) kann auch verändert werden, allerdings nur in einem geringen Maß.In nitrocarburizing workpieces made of steel are heated in a furnace chamber during a heating phase and exposed during a holding phase at a treatment temperature of 500 ° C to 600 ° C a gaseous treatment atmosphere. The holding phase is followed by a cooling phase. According to the treatment atmosphere of urea or carbonic acid diamide (CH 4 N 2 O) and water (H 2 O) is generated directly in the furnace chamber. Urea (CH 4 N 2 O) contains carbon and nitrogen and thus both necessary for the nitrocarburizing reactants C and N. The urea (CH 4 N 2 O) is dissolved outside the furnace chamber in the water (H 2 O) and the urea ( CH 4 N 2 O) in the form of an aqueous solution sprayed directly into the furnace chamber at the beginning of the holding phase. The molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1. The molar ratio of urea (CH 4 N 2 O) to water (H 2 O) can also be changed, however only to a small extent.

Bei Behandlungstemperaturen von 500°C bis 600°C im Ofenraum zerfällt der Harnstoff durch Thermolyse in Ammoniak (NH3) und Isocyansäure (HNCO). Diese wiederum reagiert mit Wasser (Molmasse 18,015 g/mol) durch Hydrolyse zu Ammoniak (NH3) und Kohlenstoffdioxid (CO2). Die daraufhin folgende Spaltung des Ammoniaks im Ofenraum nach der Formel

         2NH3 + CO2 → 2[N] + 3H2 + CO2

ist an sich bekannt und wird daher nicht näher beschrieben.
At treatment temperatures of 500 ° C to 600 ° C in the furnace chamber, the urea decomposes by thermolysis in ammonia (NH 3 ) and isocyanic acid (HNCO). This in turn reacts with water (molar mass 18.015 g / mol) by hydrolysis to ammonia (NH 3 ) and carbon dioxide (CO 2 ). The subsequent cleavage of the ammonia in the furnace chamber according to the formula

2NH 3 + CO 2 → 2 [N] + 3H 2 + CO 2

is known per se and is therefore not described in detail.

Die wässrige Harnstofflösung reagiert im Ofenraum idealerweise zu einer Behandlungsatmosphäre aus 66% Ammoniak (NH3) und 33 % Kohlenstoffdioxid (CO2).The aqueous urea solution ideally reacts in the furnace chamber to a treatment atmosphere of 66% ammonia (NH 3 ) and 33% carbon dioxide (CO 2 ).

Während der Haltephase diffundieren Stickstoff- und Kohlenstoffatome in den Randbereich der Werkstücke. Es entsteht eine äußere Verbindungsschicht und eine Diffusionsschicht. Beim Nitrocarburieren steht die Ausbildung der Verbindungsschicht im Vordergrund. Die Kohlenstoffatome diffundieren nur in die Verbindungsschicht. Am Ende der Wärmebehandlung weisen die Werkstücke eine gesteigerte Oberflächenhärte und eine gute Korrosionsbeständigkeit auf.During the holding phase, nitrogen and carbon atoms diffuse into the edge area of the workpieces. The result is an outer connection layer and a diffusion layer. Nitrocarburizing focuses on the formation of the bonding layer. The carbon atoms only diffuse into the bonding layer. At the end of the heat treatment, the workpieces have an increased surface hardness and good corrosion resistance.

Je nach Anforderung besteht im Rahmen der Erfindung die Möglichkeit, in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form einzubringen, um die Stickstoffverfügbarkeit der Behandlungsatmosphäre zu erhöhen.Depending on the requirement, within the scope of the invention it is possible to introduce urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) in solid form in order to increase the nitrogen availability of the treatment atmosphere.

Im Rahmen der Erfindung kann die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre mittels Zugabe eines kohlenstoffhaltigen Zusatzgases in den Ofenraum erhöht werden.In the context of the invention, the carbon availability of the treatment atmosphere can be increased by adding a carbon-containing additional gas into the furnace chamber.

Bei einer Verfahrensvariante wird der Harnstoff (CH4N2O) und das Wasser (H2O) in einen Vorspalter eingespeist, der auf eine Temperatur von mindestens 130°C, vorzugsweise mindestens 140°C, beheizt ist. Durch die Temperatureinwirkung entsteht in dem Vorspalter die gasförmige Behandlungsatmosphäre, welche aus dem Vorspalter in den Ofenraum geleitet wird.In one process variant, the urea (CH 4 N 2 O) and the water (H 2 O) is fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably at least 140 ° C. As a result of the effect of temperature, the gaseous treatment atmosphere which is conducted from the presplitter into the furnace space is produced in the presplitter.

Claims (10)

Verfahren zum Wärmebehandeln metallischer Werkstücke in einem Ofenraum, insbesondere zum Nitrocarburieren, wobei die Werkstücke während mindestens einer Behandlungsphase einer Behandlungsatmosphäre bei einer Behandlungstemperatur ausgesetzt sind, wobei Stickstoff und Kohlenstoff in die Werkstücke diffundieren,
dadurch gekennzeichnet,
dass die Behandlungsatmosphäre unter Verwendung von Harnstoff (CH4N2O) und Wasser (H2O) erzeugt wird.
Method for heat treating metal workpieces in a furnace chamber, in particular for nitrocarburizing, wherein the workpieces are exposed to a treatment atmosphere at a treatment temperature during at least one treatment phase, nitrogen and carbon diffusing into the workpieces,
characterized,
that the treatment atmosphere using urea (CH 4 N 2 O) is produced and water (H 2 O).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass das molare Verhältnis von Harnstoff (CH4N2O) zu Wasser (H2O) etwa 1 zu 1 beträgt.
Method according to claim 1,
characterized in that the molar ratio of urea (CH 4 N 2 O) to water (H 2 O) is about 1 to 1.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) und das Wasser (H2O) unmittelbar in den Ofenraum eingespeist werden und die Behandlungsatmosphäre in dem Ofenraum erzeugt wird.
Method according to at least one of the preceding claims,
characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed directly into the furnace chamber and the treatment atmosphere is generated in the furnace chamber.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass das Wasser (H2O) in flüssiger Form in den Ofenraum eingespeist wird.
Method according to at least one of the preceding claims,
characterized in that the water (H 2 O) is fed in liquid form into the furnace chamber.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) in fester Form in den Ofenraum eingebracht wird.
Method according to at least one of the preceding claims,
characterized in that the urea (CH 4 N 2 O) is introduced in solid form into the furnace chamber.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) in dem Wasser (H2O) gelöst und der Harnstoff (CH4N2O) in Form einer wässrigen Lösung in den Ofenraum eingespeist, vorzugsweise eingesprüht, wird.
Method according to at least one of the preceding claims 1 to 4,
characterized in that the urea (CH 4 N 2 O) dissolved in the water (H 2 O) and the urea (CH 4 N 2 O) is fed in the form of an aqueous solution in the furnace chamber, preferably sprayed, is.
Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass in den Ofenraum Harnstoff (CH4N2O) in Form einer wässrigen Lösung und zusätzlich Harnstoff (CH4N2O) in fester Form eingebracht wird, um die Stickstoffverfügbarkeit der Behandlungsatmosphäre zu erhöhen.
Method according to claim 6,
characterized in that in the furnace chamber urea (CH 4 N 2 O) in the form of an aqueous solution and additionally urea (CH 4 N 2 O) is introduced in solid form in order to increase the nitrogen availability of the treatment atmosphere.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Harnstoff (CH4N2O) und das Wasser (H2O) in einen Vorspalter eingespeist werden, der auf eine Temperatur von mindestens 130°C, vorzugsweise 140°C, beheizt ist, dass die Behandlungsatmosphäre in dem Vorspalter erzeugt wird und dass die Behandlungsatmosphäre von dem Vorspalter in den Ofenraum geleitet wird.
Method according to claim 1 or 2,
characterized in that the urea (CH 4 N 2 O) and the water (H 2 O) are fed into a presplitter, which is heated to a temperature of at least 130 ° C, preferably 140 ° C, that the treatment atmosphere in the Preswitch is generated and that the treatment atmosphere is passed from the presplitter in the furnace chamber.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass die Kohlenstoffverfügbarkeit der Behandlungsatmosphäre mittels Zugabe eines kohlenstoffhaltigen Zusatzgases erhöht wird.
Method according to at least one of the preceding claims,
characterized in that the carbon availability of the treatment atmosphere is increased by adding a carbon-containing additional gas.
Verfahren nach wenigstens einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass die Werkstücke während einer Behandlungssphase in Form einer Haltephase bei einer Behandlungstemperatur von 500°C bis 600°C der Behandlungsatmosphäre ausgesetzt sind und dass der Haltephase eine Aufheizphase vorausgeht und eine Abkühlphase anschließt.
Method according to at least one of the preceding claims,
characterized in that the workpieces are exposed during a treatment phase in the form of a holding phase at a treatment temperature of 500 ° C to 600 ° C of the treatment atmosphere and that the holding phase precedes a heating phase and followed by a cooling phase.
EP16154353.3A 2016-02-04 2016-02-04 Method for nitrocarburizing of metallic workpieces Active EP3202945B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16154353.3A EP3202945B1 (en) 2016-02-04 2016-02-04 Method for nitrocarburizing of metallic workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16154353.3A EP3202945B1 (en) 2016-02-04 2016-02-04 Method for nitrocarburizing of metallic workpieces

Publications (2)

Publication Number Publication Date
EP3202945A1 true EP3202945A1 (en) 2017-08-09
EP3202945B1 EP3202945B1 (en) 2019-04-24

Family

ID=55345697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16154353.3A Active EP3202945B1 (en) 2016-02-04 2016-02-04 Method for nitrocarburizing of metallic workpieces

Country Status (1)

Country Link
EP (1) EP3202945B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521167A1 (en) * 1966-06-18 1969-07-31 Bbc Brown Boveri & Cie Process for soft nitriding steel with gases
DE19719225C1 (en) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Method and apparatus for controlling a nitriding or nitro-carburising atmosphere

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB311588A (en) * 1928-07-04 1929-05-16 Julius Leonard Fox Vogel Improvements in the hardening of molybdenum irons or steels
DE2647668C2 (en) * 1975-12-15 1982-10-21 Ford-Werke AG, 5000 Köln Process for nitriding metal parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521167A1 (en) * 1966-06-18 1969-07-31 Bbc Brown Boveri & Cie Process for soft nitriding steel with gases
DE19719225C1 (en) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Method and apparatus for controlling a nitriding or nitro-carburising atmosphere

Also Published As

Publication number Publication date
EP3202945B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
CN102471864A (en) Method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburising
DE2521903C2 (en) Process for keeping the cyanide content low in molten salt baths with cyanate anions as the active ingredient
EP3202945B1 (en) Method for nitrocarburizing of metallic workpieces
DE69902169T2 (en) METHOD FOR LOW PRESSURE NITROCARBURING METAL WORKPIECES
DE2116267C3 (en) Process for the production of urea
DE3853064T2 (en) Treatment method for a liquid waste containing cyanide.
DE2652382B2 (en) Process for carbonitriding steel and pig iron products
DE4442328C1 (en) Pretreating chrome or nickel alloy steels prior to nitro:carburisation in a salt bath
DE2133284A1 (en) Heat treatment of steel and cast iron in a gas atmosphere
DE1233836B (en) Process for the production of ammonia gas
DE2000060A1 (en) Accelerating carburization of steel workpie - ces with generator carrier gas
EP1230415B1 (en) Method for nitro-carburization of metal workpieces
RU2600612C1 (en) Method of carbonitriding parts made from structural and tool steels
DD156877A3 (en) REGENERATIVE FOR NITRIERSALZBAEDER
DE102006048434A1 (en) Procedure for the production of a protective gas- or treatment atmosphere in a heat treatment furnace, comprises vaporizing ethanol by electrically heated evaporator, introducing ethanol and carbon dioxide into the furnace
DE299141C (en)
DE936566C (en) Process for the production of hydrogen cyanide
DE335240C (en) Process for the production of ammonia from cyanides
DE2041624A1 (en) Vanadium carbonitride and/or nitride prepn
DE569485C (en) Process for the production of calcium cyanide
DE2228746A1 (en) Low temp carbonitrided coatings - on iron alloys using partly dissociated ammonia at mos
CH410904A (en) Process for preventing corrosion in urea synthesis
DE936389C (en) Process for the production of hydrocyanic acid
SU1694690A1 (en) Compound for gaseous nitriding-carburizing of steel products
CH332227A (en) Process for cementing iron and steel and their alloys in a gas atmosphere

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/74 20060101ALI20181120BHEP

Ipc: C21D 1/06 20060101ALI20181120BHEP

Ipc: C23C 8/32 20060101AFI20181120BHEP

Ipc: C21D 1/76 20060101ALI20181120BHEP

INTG Intention to grant announced

Effective date: 20181217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190313

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004293

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004293

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200204

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240117

Year of fee payment: 9