CH410904A - Process for preventing corrosion in urea synthesis - Google Patents

Process for preventing corrosion in urea synthesis

Info

Publication number
CH410904A
CH410904A CH847762A CH847762A CH410904A CH 410904 A CH410904 A CH 410904A CH 847762 A CH847762 A CH 847762A CH 847762 A CH847762 A CH 847762A CH 410904 A CH410904 A CH 410904A
Authority
CH
Switzerland
Prior art keywords
nitrogen oxide
dependent
reactor
synthesis
urea
Prior art date
Application number
CH847762A
Other languages
German (de)
Inventor
Pascal Dr Matile
Ernst Dr Peterhans
Werner Dr Zollinger
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Priority to CH847762A priority Critical patent/CH410904A/en
Publication of CH410904A publication Critical patent/CH410904A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • B01J2219/024Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  

  
 



  Verfahren zur Verhütung von Korrosionen bei der Harnstoffsynthese
Ziel der Erfindung ist die Verhütung von Korrosionen der   Anlage    aus rostfreiem Stahl bei der Harnstoffsynthese durch Passivierung der Innenfläche der Anlage.



   Ein weiteres Ziel der Erfindung ist die Verhütung von Korrosionen des Reaktors aus rostfreiem Stahl bei der Harnstoffsynthese durch Nitrieren der Reak  torinnenfläche.   



   Es ist bekannt, Harnstoff durch Erhitzen von Kohlendioxyd und Ammoniak bei Temperaturen von   17 (}-220     C und bei Drucken von   2W350    Atm. in Autoklaven aus rostfreiem Stahl herzustellen. Bei der Synthese treten aber Korrosionen des Autoklaven auf, weiche sich in einer starken Verfärbung der entstehenden Harnstofflösung zeigen.



   Es ist auch bekannt, dass man zur Verhütung der Korrosion des Reaktors aus rostfreiem Stahl bei der Harnstoffsynthese aus Ammoniak und Kohlendioxyd Sauerstoff bzw. sauerstoffhaltige Gase wie z.   R.    Luft in kleinen Mengen dem Ausgangsgas zusetzt. Der entstehende Harnstoff ist dann rein weiss. Dieses Verfahren verlangt aber eine dauernde regelmässige Kontrolle der Sauerstoffzugabe, um einerseits die Korrosion durch Sauerstoffmangel, anderseits eine Trübung der erzeugten Harnstofflösung durch Sauerstoffüberschuss zu vermeiden.



   Es wurde nun gefunden, dass die Korrosion bei der Harnstoffsynthese verhindert werden kann, wenn der Reaktor im Inneren mit einer dünnen Metall nitridschicht versehen wird.



   Die Erfindung betrifft ein Verfahren zur Verhütung von Korrosionen im Inneren des Reaktors aus rostfreiem Stahl bei der Synthese von Harnstoff aus Ammoniak und Kohlendioxyd unter Druck und bei erhöhter Temperatur und ist dadurch gekennzeichnet, dass an der   Reaktorinnenfläche    eine dünne   Metall-    nitridschicht erzeugt wird.



   Die   Metallnitridschicht    kann an der Innenfläche des Reaktors durch Einleiten von Stoffen, welche auf das Material des Reaktors oberflächlich nitrierend wirken, erzeugt werden. Vorzugsweise werden gasförmige Stoffe, wie z. B. Stickstoffoxydul, in den Reaktor frühestens vor und spätestens während der Synthese eingeleitet. Beim Erwärmen auf   170-220     C zersetzt sich das   Stickstoffoxydul;    der dabei frei werdende atomare Stickstoff bildet mit der Innenschicht des rostfreien Autoklaven eine dünne, geschlossene Nitridschicht, die den Werkstoff bei der Harnstoffsynthese vor Korrosionen schützt.

   Im Gegensatz zu den bekannten Verfahren ist die   Schutzwfrku'ng    von langer Dauer, so dass auch bei nur intermittierender Zugabe des   Passivierungsmitteis    ein ausreichender Schutz des Reaktors gewährleistet ist.



   Eine bevorzugte Ausführungsform der Erfindung besteht darin, dass man das   Stickstoffoxydul    dem Kohlendioxyd vor der Kompression zusetzt. Die Menge des zugesetzten Stickstoffoxyduls beträgt vorzugsweise   0,005-0,5      Vol.%,    bezogen auf CO2.



   Die Synthese findet zweckmässig in einem Autoklaven aus rostfreiem Stahl bei Drucken von 300 bis 350 Atm. und Temperaturen von   l96208O    C und einem Molverhältnis von CO2 zu   NH3    wie 1 zu etwa 4,5 statt.



   Beispiel 1
Ein Autoklav aus V4-A-Stahl wird mit flüssigem Ammoniak, das auf 600 C vorgewärmt wurde, und flüssigem   KoSendioxyd    im Molverhältnis   4,5 :1    beschickt. Im Autoklaven wird bei 320 Atm. unter dem Einfluss der exothermen Reaktion die Synthesetemperatur von   198-208     C erreicht. Dem   Kohlendioxyd    wird vor der Kompression   0,01-0,1      Vol. %    gasförmiges Stickstoffoxydul zugesetzt. Nach dem Umsatz wird die Reaktionslösung unter Entspannung in einen Entgasungsapparat geführt, der bei 10 Atm. und  1000 C betrieben wird. Die Ausbeute an Harnstoff, bezogen auf CO2, beträgt   77%.    Die erzeugte Harn  stofflösung    ist farblos und wasserklar.

   Der daraus gewonnene Harnstoff enthält weniger als 1 ppm Eisen und ist deshalb für alle Verwendungszwecke geeignet.



   Beispiel 2
2. Die Synthese wird unter denselben Bedingungen wie in Beispiel 1 durchgeführt, wobei aber der Stickstoffoxydulzusatz nach 6 Std. unterbrochen wird. Die anfallende Harnstofflösung ist 12 Std. nach der Unterbrechung des   Sdckstoffoxydulzusatzes    noch immer klar und farblos. Der daraus gewonnene Harnstoff ist rein weiss und enthält weniger als 1 ppm Eisen.   



  
 



  Process for the prevention of corrosion in urea synthesis
The aim of the invention is to prevent corrosion of the system made of stainless steel during urea synthesis by passivating the inner surface of the system.



   Another object of the invention is to prevent corrosion of the stainless steel reactor during urea synthesis by nitriding the inner surface of the reactor.



   It is known that urea can be produced from stainless steel by heating carbon dioxide and ammonia at temperatures of 17 (} -220 ° C. and at pressures of 2W350 atmospheres in autoclaves show the resulting urea solution.



   It is also known that to prevent corrosion of the stainless steel reactor in the synthesis of urea from ammonia and carbon dioxide, oxygen or oxygen-containing gases such as. Usually air is added to the starting gas in small amounts. The resulting urea is then pure white. However, this process requires constant, regular monitoring of the addition of oxygen in order to avoid corrosion due to lack of oxygen on the one hand and turbidity of the urea solution generated due to excess oxygen on the other.



   It has now been found that corrosion during urea synthesis can be prevented if the reactor is provided with a thin metal nitride layer on the inside.



   The invention relates to a method for preventing corrosion inside the stainless steel reactor during the synthesis of urea from ammonia and carbon dioxide under pressure and at elevated temperature and is characterized in that a thin metal nitride layer is produced on the inner surface of the reactor.



   The metal nitride layer can be produced on the inner surface of the reactor by introducing substances which have a surface nitriding effect on the material of the reactor. Preferably, gaseous substances, such as. B. nitrogen oxide, introduced into the reactor at the earliest before and at the latest during the synthesis. When heated to 170-220 C, the nitrogen oxide decomposes; The atomic nitrogen released in the process forms a thin, closed nitride layer with the inner layer of the rust-free autoclave, which protects the material from corrosion during urea synthesis.

   In contrast to the known processes, the protective effect is of a long duration, so that sufficient protection of the reactor is ensured even with only intermittent addition of the passivating agent.



   A preferred embodiment of the invention consists in adding the nitrogen oxide to the carbon dioxide before compression. The amount of nitrogen oxide added is preferably 0.005-0.5% by volume, based on CO2.



   The synthesis takes place conveniently in a stainless steel autoclave at pressures of 300 to 350 atm. and temperatures of 196208O C and a mole ratio of CO2 to NH3 such as 1 to about 4.5 take place.



   example 1
An autoclave made of V4-A steel is charged with liquid ammonia, which has been preheated to 600 ° C., and liquid carbon dioxide in a molar ratio of 4.5: 1. In the autoclave is at 320 atm. reached the synthesis temperature of 198-208 C under the influence of the exothermic reaction. Before compression, 0.01-0.1% by volume of gaseous nitrogen oxide is added to the carbon dioxide. After the conversion, the reaction solution is passed into a degassing apparatus, which is operated at 10 atm. and 1000 C is operated. The urea yield, based on CO2, is 77%. The urea solution produced is colorless and water-clear.

   The urea obtained from it contains less than 1 ppm iron and is therefore suitable for all purposes.



   Example 2
2. The synthesis is carried out under the same conditions as in Example 1, but the addition of nitrogen oxide is interrupted after 6 hours. The urea solution obtained is still clear and colorless 12 hours after the interruption of the addition of nitrogen oxide. The urea obtained from it is pure white and contains less than 1 ppm iron.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Verhütung von Korrosionen im Inneren des Reaktors aus rostfreiem Stahl bei der Synthese von Harnstoff aus Ammoniak und Kohlendioxyd unter Druck und bei erhöhter Temperatur, dadurch gekennzeichnet, dass an der Reaktorinnent fläche eine dünne Metallnitridschicht erzeugt wird. PATENT CLAIM Process for preventing corrosion inside the stainless steel reactor during the synthesis of urea from ammonia and carbon dioxide under pressure and at elevated temperature, characterized in that a thin metal nitride layer is produced on the inner surface of the reactor. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch, dadurch gekennzeichnet, dass die Metailnitridschlcht an der Re aktorinneufläche frühestens vor und spätestens während der Synthese erzeugt wird. SUBCLAIMS 1. The method according to claim, characterized in that the Metailnitridschlcht is generated on the Re aktorinneufläche earliest before and at the latest during the synthesis. 2. Verfahren nach Patentanspruch und Unteranspruch 1, dadurch gekennzeichnet, dass die Bildung der Metallnitridschicht an der Reaktorinnenfläche durch Einleiten von Stickstoffoxydul erzeugt wird. 2. The method according to claim and dependent claim 1, characterized in that the formation of the metal nitride layer on the inner surface of the reactor is produced by introducing nitrogen oxide. 3. Verfahren nach Patentanspruch und Unteransprüchen 1 und 2, dadurch gekennzeichnet, dass das Stickstoffoxydul in den auf 170-220 C erwärmten Reaktor eingeleitet wird. 3. The method according to claim and dependent claims 1 and 2, characterized in that the nitrogen oxide is introduced into the reactor heated to 170-220 C. 4. Verfahren nach Patentanspruch und Unteransprüchen 1 bis 3, dadurch gekennzeichnet, dass das Stickstoffoxydul zusammen mit den Ausgangsgasen in den Reaktor eingeleitet wird. 4. The method according to claim and dependent claims 1 to 3, characterized in that the nitrogen oxide is introduced into the reactor together with the starting gases. 5. Verfahren nach Patentanspruch und Unteransprüchen 1 bis 4, dadurch gekennzeichnet, dass das Stickstoffoxydul dem Kohlendioxyd vor der Kompression zugesetzt wird. 5. The method according to claim and dependent claims 1 to 4, characterized in that the nitrogen oxide is added to the carbon dioxide before compression. 6. Verfahren nach Patentanspruch und Unteransprüchen 1 bis 5, dadurch gekennzeichnet, dass Stickstoffoxydul in Mengen von 0,005-0,5 Vol.%, bezogen auf CO2, verwendet wird. 6. The method according to claim and dependent claims 1 to 5, characterized in that nitrogen oxide is used in amounts of 0.005-0.5% by volume, based on CO2. 7. Verfahren nach Patentanspruch und Unteransprüchen 1 bis 6, dadurch gekennzeichnet, dass die Stickstoffoxydulzugabe während der Harnstoffsynthese intermittierend erfolgt. 7. The method according to claim and dependent claims 1 to 6, characterized in that the addition of nitrogen oxide takes place intermittently during urea synthesis.
CH847762A 1962-07-12 1962-07-12 Process for preventing corrosion in urea synthesis CH410904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH847762A CH410904A (en) 1962-07-12 1962-07-12 Process for preventing corrosion in urea synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH847762A CH410904A (en) 1962-07-12 1962-07-12 Process for preventing corrosion in urea synthesis

Publications (1)

Publication Number Publication Date
CH410904A true CH410904A (en) 1966-04-15

Family

ID=4340970

Family Applications (1)

Application Number Title Priority Date Filing Date
CH847762A CH410904A (en) 1962-07-12 1962-07-12 Process for preventing corrosion in urea synthesis

Country Status (1)

Country Link
CH (1) CH410904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089885A2 (en) * 1982-03-23 1983-09-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of surface-hardening metallic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089885A2 (en) * 1982-03-23 1983-09-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of surface-hardening metallic parts
EP0089885A3 (en) * 1982-03-23 1984-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of surface-hardening metallic parts
US4531984A (en) * 1982-03-23 1985-07-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Surface hardening process for metal parts

Similar Documents

Publication Publication Date Title
US3746528A (en) Utilization of urea production effluents
US3997607A (en) Recycling process for the preparation of cyclohexanone oxime
CH410904A (en) Process for preventing corrosion in urea synthesis
US3488293A (en) Prevention of corrosion due to urea fertilizer effluent
DE449051C (en) Process for the production of urea from ammonia and carbonic anhydride
DE2116267A1 (en) Method for producing urea
DE2116201A1 (en) Process for increasing the corrosion resistance of austenitic chromium-nickel steels
DE2059582B2 (en) Circular process for the production of cyclohexanone oxime
DE597304C (en) Process for the preparation of alkali cyanide
DE936389C (en) Process for the production of hydrocyanic acid
DE1288082B (en) Process for the production of calcium cyanamide
DE476662C (en) Process for the preparation of hydrogen cyanide
DE565155C (en) Process for the synthetic production of ammonia from its elements
DE2116552A1 (en) Process for urea synthesis
AT332879B (en) METHOD OF MANUFACTURING MELON
EP3202945B1 (en) Method for nitrocarburizing of metallic workpieces
DE593369C (en) Method and device for carrying out catalytic exothermic gas reactions
DE944010C (en) Process for the production of nitrogen oxide through the decomposition of aqueous ammonium nitrate solutions
DE1814493C3 (en) Process for removing phenyl azide from gases
DE2314148A1 (en) PROCESS FOR OBTAINING UREA
DE512700C (en) Process for the preparation of alkali cyanides
CH342944A (en) Process for the continuous production of formamide and N-substituted formamides
DE1271119B (en) Process for the preparation of hexamethylenetetramine
DE1068265B (en)
DE1076104B (en) Process for the production of hydrocyanic acid from hexamethylenetetramine