EP3202925B1 - Tubes en acier inoxydable et leur procédé de production - Google Patents

Tubes en acier inoxydable et leur procédé de production Download PDF

Info

Publication number
EP3202925B1
EP3202925B1 EP16382042.6A EP16382042A EP3202925B1 EP 3202925 B1 EP3202925 B1 EP 3202925B1 EP 16382042 A EP16382042 A EP 16382042A EP 3202925 B1 EP3202925 B1 EP 3202925B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
stainless steel
casting
pretubular
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16382042.6A
Other languages
German (de)
English (en)
Other versions
EP3202925A1 (fr
Inventor
Alejandra LÓPEZ
Urbano Faina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tubacex SA
IBF SpA
Original Assignee
Tubacex SA
IBF SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tubacex SA, IBF SpA filed Critical Tubacex SA
Priority to EP16382042.6A priority Critical patent/EP3202925B1/fr
Priority to ES16382042T priority patent/ES2719701T3/es
Priority to RU2018130133A priority patent/RU2751207C2/ru
Priority to US16/074,671 priority patent/US20190040485A1/en
Priority to PCT/EP2017/052302 priority patent/WO2017134186A1/fr
Priority to BR112018015734-1A priority patent/BR112018015734B1/pt
Publication of EP3202925A1 publication Critical patent/EP3202925A1/fr
Application granted granted Critical
Publication of EP3202925B1 publication Critical patent/EP3202925B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • B21B17/06Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length in a discontinuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/063Friction heat forging
    • B21J5/066Flow drilling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies

Definitions

  • the present invention relates to the production of tubes made of stainless steel alloys, particularly austenitic-ferritic stainless steel alloys such as duplex and super-duplex stainless steel, and the method for production thereof.
  • a particular product prone to be exposed to severe conditions is a tube that, together with other tubes, forms a pipe for transferring substances like, for example, oil&gas extracted from the well.
  • these tubes must cope with high levels of pressures and stresses. These levels may even be higher when the tubes are underwater which may be the case in, for example, subsea equipment.
  • high pressure there are many corrosive and erosive agents in the sea that corrode the tubes, thus affecting their structural integrity and that may lead to the failure of the tubes.
  • Another example of an environment with similar extreme conditions are wells.
  • the tubes and pipes that are used or located in these adverse environments should feature, inter alia, high strength and high resistance to corrosion cracking and pitting.
  • a set of metals which may feature these characteristics are stainless steel alloys, and more specifically, austenitic-ferritic stainless steel alloys.
  • a common method for producing tubes is hot extrusion.
  • the length of tubes produced is largely limited by the maximum power of the ram pressing the workpiece on the die and the size of the extrusion press is large.
  • the productivity of the machinery is low and their efficiency is reduced.
  • U.S. patent no. 8,479,549 B1 relates to a method of producing cold-worked centrifugal cast tubular products in which the tubular workpiece casted of a corrosion resistant alloy, has material from its inner diameter removed, and then a metal forming process reduces the walls of the tubular workpiece.
  • the metal forming process is flowforming, the walls of the workpiece may be reduced with several passes because the workpiece is not able to process large reductions in one pass, hence the progressive reduction of walls may be provided with subsequent flowforming passes
  • WO2015/200325 discloses a method of forming stainless steel seamless tubes using the U-O method.
  • the tubes made of stainless steel and method for production thereof disclosed in the present invention intends to solve the shortcomings of the tubes and methods of the prior art.
  • a first aspect of the invention relates to a method for producing a tube of a stainless steel alloy.
  • the method comprises the steps:
  • a pretubular shaped workpiece is a tube or a workpiece with a tubular shape that is machined or conformed to obtain the final dimensions of the tube, whereas a cylindrical bar is a bar with a rounded cross-section that is, for example, circular or oval.
  • a hot working process plastically deforms a stainless steel casting into a pretubular shaped workpiece or cylindrical bar while changing the microstructure and, therefore, the properties of the casting.
  • the shape of the casting may resemble, for example, but not limited to, an ingot or a bar.
  • the shape may feature regular or irregular geometries such as, for instance, rectangular prisms, hexagonal prisms, round prisms, cylinders, etc.
  • the stainless steel casting is heated to a temperature preferably higher than its recrystallization temperature.
  • the casting is then plastically deformed so that its mechanical properties are enhanced for the production of tubes characterized by an elongated shape and reduced (i.e. thin) walls.
  • the internal structure of the casting typically features variable cavities, sizes of grains and segregations in the stainless steel that appear during its casting.
  • the different temperatures present throughout the material together with the effect of the gravity, generate a heterogeneous internal structure in the form of said cavities, grains with different size and shape, and macro-scale and/or micro-scale segregation of alloying elements.
  • the hot working process homogenizes the microstructure of the resulting workpiece or bar. Therefore, with hot working, the casting is compacted internally causing changes in the resulting microstructure. Particularly, the workpiece or bar may recrystallize, that is, a new inner structure of crystals may be formed, generating fine grains that improve the mechanical properties as the internal stresses disappear due to the deformation. A consequence of the hot working is that the workpiece or bar features a larger ductility and, at the end, higher cold reductions can be applied in a single step, thus leading to the production of longer tubes.
  • the effect of the hot working process on the microstructure may be estimated using a deformation ratio.
  • the ratio is defined as the original cross-section of the casting or workpiece divided by its cross-section after hot working. Reaching a deformation ratio of about 3 or greater may be advantageous in that an increase in the toughness and tensile strength of the workpiece or bar, in the longitudinal direction, is achieved.
  • a drilling or trepanning process removes a part of the bar with a hole that, generally, goes through the whole bar.
  • the part removed may substantially correspond to a central part of at least one face or side of the bar.
  • its inner diameter is machined.
  • a tubular workpiece After trepanning the bar or machining the inner diameter of the pretubular shaped workpiece, a tubular workpiece is obtained.
  • a cold working process reduces the section or area of the tubular workpiece so as to lengthen the tube to be produced.
  • the process redistributes the stainless steel: the part of the steel that is removed from the workpiece in the radial direction, generally corresponding to the walls of the produced tube, is added to the workpiece in the axial direction.
  • the cross section is reduced thereby elongating the pipe or tube.
  • the workpiece or bar Since the workpiece or bar has been hot-worked, its rather fine internal structure provides better conditions -compared to the conditions of the casting prior to the hot working- for the cold working. Consequently, the degree of reduction may be greater than if no hot working is performed. The reduction is directly related to the attainable length of the tube.
  • the method further comprises (d) quenching the workpiece or bar, and step (d) is performed after step (a).
  • Quenching the pretubular shaped workpiece or cylindrical bar with a liquid minimizes phase transformations, particularly on its surface.
  • the liquid may reduce, for example, the formation of a vapor phase on the surface of the workpiece or bar that prevents it from being rapidly cooled.
  • the workpiece or bar may maintain the mechanical properties it features after a hot working or solution annealing process, for example. Quenching takes place after hot working.
  • the workpiece or bar is quenched after being subject to hot working and a thermal treatment such as, for example, solution annealing.
  • quenching is performed with water at a temperature not higher than 50°C, and preferably not higher than 35°C.
  • the liquid used in the quenching step may be water at a temperature equal to or below than 50°C such that the workpiece or bar may be rapidly cooled.
  • the liquid is at a temperature even lower than this value, such as equal to or below than 35°C, and hence cooling the workpiece or bar takes less time, and thereby its mechanical properties suffer less changes.
  • the method further comprises (e) casting the stainless steel casting. Further, in these embodiments, casting the stainless steel casting -step (e)- is performed prior to hot working the stainless steel casting into a workpiece or bar -step (a).
  • the casting that is hot-worked in some embodiments is casted by melting the stainless steel alloy and pouring it in a mold.
  • the dimensions of the produced casting both in terms of its length and section -or diameter-, determine the maximum dimensions of the tube that may be produced since the stainless steel in the casting will be redistributed so as to form the tube, even though a part of said alloy may be lost during the production of the tube, for instance, while trepanning, machining or cold working the workpiece.
  • the amount of stainless steel alloy necessary for the casting varies in accordance with the dimensions of the tube to be produced.
  • the stainless steel alloy is an austenitic-ferritic stainless steel alloy.
  • the austenitic-ferritic stainless steel including duplex stainless steel and super-duplex stainless steel, features greater strength than austenitic stainless steel and ferritic stainless steel. Also, austenitic-ferritic stainless steel is more resistant to pitting and crevice corrosion and stress corrosion cracking than austenitic or ferritic stainless steels. This makes austenitic-ferritic stainless steel convenient for products which are to be placed in environments with adverse conditions, particularly in wells and underwater (e.g. in the deep sea), where the level of pressure and the amount of corrosive substances or agents is high.
  • the austenitic-ferritic stainless steel features low ductility and, hence, forming products with this alloy requires larger forces than for forming products made of austenitic or ferritic stainless steel.
  • step (c) the microstructure of the austenitic-ferritic stainless steel alloys is controlled, so that at the end of the process the appropriate percentages of austenite and ferrite phases are present in the tubular workpiece or tube, because the mechanical properties and resistance to corrosion is largely determined by these phases.
  • the alloying elements are selected such that the alphagenous elements (which promote the formation of ferrite) and gammagenous elements (which promote the formation of austenite) are balanced. Besides, a correct thermic treatment temperature and a quick cooling stabilize both phases and prevent the formation of unwanted third phases.
  • the distance between the phases is also important for avoiding hydrogen induced stress cracking (HISC).
  • HISC hydrogen induced stress cracking
  • austenite spacing is, at most, 30 ⁇ m (i.e. microns or micrometers) having a presence of ferrite phase between 40% and 60% (the endpoints being included in the range of possible values).
  • the austenitic-ferritic stainless steel alloy is duplex stainless steel. In some other of these preferred embodiments, the austenitic-ferritic stainless steel alloy is super duplex stainless steel.
  • hot working comprises one of: rolling, forging, and a combination thereof.
  • Rolling the stainless steel casting homogenizes its inner structure in terms of the grain size, porosity, cavities, among others.
  • the rolling mills plastically deform the casting, which typically features grains that are larger in its interior than on its surface -the part in contact with the casting mold-.
  • the rolled workpiece may feature many different shapes such as, for example, cylindrical, rectangular, sheet-like, among others.
  • Continuous or reversible rolling mills known in the art may be used, for example, for plastically deforming a casting like, for instance, a bar or an ingot.
  • the stainless steel casting may also be forged during the hot working step, in which case the casting may be held -although not necessarily- with pliers, bars, or the like, and a hammer or a die delivers blows so as to deform it.
  • Forging may be performed by a user (e.g. a blacksmith) or by a machine (e.g. free forging). It is also possible to use a rotary forge press to deform the casting.
  • rolling and forging may be both performed on a casting sequentially.
  • the method further comprises (f) solution annealing the bar or workpiece, at a temperature between 1030°C and 1120°C (the endpoints being included in the range of possible values).
  • the bar or workpiece may be subject to solution annealing. Moreover, solution annealing may reduce internal stresses of the workpiece or bar as well.
  • the bar or workpiece is, thus, heated above its recrystallization temperature, maintained during some time at a temperature higher than said recrystallization temperature, and then it is rapidly cooled (e.g. quenching with water).
  • step (f) is performed on the pretubular shaped workpiece or cylindrical bar, that is, the solution annealing step may be performed after hot working the casting and before trepanning the bar or machining the pretubular-shaped workpiece such that the increase in ductility achieved with the plastic deformation is further improved.
  • solution annealing may take advantage of the quenching -step (d).
  • step (f) is performed on the tubular workpiece, that is, after trepanning and before cold working since with the increase in ductility, the wall reduction and lengthening of the tubular product during the cold working process may be enhanced and, thus, it is possible to apply a greater reduction in a single pass, and/or produce a longer workpiece or tube with the same applied forces, or a workpiece or tube with the same length than not having performed solution annealing but applying less force.
  • the solution annealing step may be performed after cold working as well so that it removes, at least partially, these inner stresses.
  • the workpiece may be quenched with a liquid such as water.
  • the method further comprises (g) heating the stainless steel casting to a temperature higher than 1000°C, and preferably higher than 1200°C. Further, in these embodiments, step (g) is performed prior to step (a).
  • the stainless steel casting is heated at a temperature higher than its recrystallization temperature, generally above 1000°C, so that it may be deformed, in the hot working step, at a high temperature. It is convenient to achieve a temperature of at least 1000°C because intermetallic phases (sigma delta or ferrite delta) may be formed in some stainless steel alloys (e.g. duplex stainless steel), in the temperature range between 600°C and 1000°C. These intermetallic phases may cause or generate cracks in the workpiece.
  • the temperature in the furnace is higher than or equal to 1200°C so as to perform a hot working process more efficiently and without the risk that the temperature of the casting -due to heat being transferred to the support (e.g. an anvil), the environment, etc.- goes below the recrystallization temperature and/or below 1000°C.
  • cold working comprises one of: flow forming and cold pilgering.
  • a flow forming machine which includes, inter alia, a mandrel and a plurality of rollers with, typically, three or four rollers, reduces the thickness of the walls of the workpiece and makes the workpiece longer.
  • the tubular workpiece may be subject either to forward flow forming or reverse flow forming.
  • the tubular workpiece is attached to the mandrel by means of the hole, for instance formed with the trepanning or machining of step (b).
  • the mandrel may move the workpiece in a movement direction of the rollers.
  • the rollers apply forces to the workpiece in the axial, longitudinal and tangential directions.
  • the compressive force in a radial direction reduces the wall thickness, which combined with the forces in the other two directions results in a lengthening of the workpiece or tube.
  • Flow forming may improve the grain structure of the tubular workpiece or tube making the inner structure more homogeneous throughout the whole workpiece, and which may enhance its mechanical properties.
  • a pilger mill may reshape the workpiece into an elongated tube with thinner walls.
  • the ring dies of the mill which may be ring-shaped, compress the workpiece in a radial direction and, thus, reduce its outer diameter.
  • the mandrel which may secure the workpiece using a hole of the workpiece -for instance formed with the trepanning or machining of step (b)- moves and rotates the workpiece, and may also reshape the inner diameter of the workpiece or tube.
  • the mandrel feeds and rotates the workpiece successively while two ring dies deform the workpiece, thereby causing a reduction of both the outer diameter and the thickness of the walls.
  • the workpiece is first rotated coarsely (i.e. large angle variations, for example, about 60°) so as to deform the section that is currently processed by the dies, and then rotated finely (i.e. small angle variations, for example, about 20°) to adjust the shape of the section such that it features a polished circular section, that is, a substantially rounded outer diameter.
  • Pilgering is a semi-continuous process that is particularly efficient in long run productions.
  • the tubular workpiece may be fed, in a forward motion, at a rate between 2 and 50 mm/s (the endpoints being included in the range of possible values), whereas the feed rate or forward motion rate of the flow forming machine may be between 0.5 mm/s and 10 mm/s (the endpoints being included in the range of possible values).
  • the feed rate in the flow forming machine may be lower than in the pilgering one, a lower number of passes may be necessary to produce a tube with flow forming.
  • flow forming or pilgering at least reduces the workpiece's wall thickness between 25% and 35% (the endpoints being included in the range of possible values).
  • flow forming or pilgering at least reduces thickness of walls of the workpiece between 35% and 50% (the endpoints being included in the range of possible values).
  • flow forming or pilgering at least reduces thickness of walls of the tubular workpiece between 50% and 75% (the endpoints being included in the range of possible values).
  • the cold working comprises flow forming, and the flow forming at least reduces thickness of walls of the tubular workpiece by 70% in one pass.
  • the workpiece may support a wall reduction between 65% and 70% (the endpoints being included in the range of possible values) in a single pass.
  • the flow forming machine takes less time to process the workpiece and reduce the number of passes needed to achieve the desired thickness. This is even more significant considering that cold working progressively reduces the ductility of the workpiece after each pass or deformation produced and, hence, the forces necessary to further deform the workpiece increase.
  • Another aspect relates to stainless steel tubes produced with the method described above with respect to the first aspect of the invention.
  • the tube comprises
  • the tube preferably comprises an austenitic-ferritic stainless steel alloy and more preferably one of a duplex stainless steel and a super-duplex stainless steel;
  • the tubes comprise an austenite spacing less than 30 microns (micrometers).
  • Austenitic-ferritic stainless steel tubes featuring austenite spacings that are below 30 ⁇ m (microns) are particularly resistant to HISC.
  • the tubes comprise a ferrite content greater than or equal to 40%, and less than or equal to 60%.
  • Figure 1A is a flowchart 100 depicting the steps carried on a method of an embodiment of the invention.
  • a stainless steel casting is hot worked into a pretubular-shaped workpiece or cylindrical bar, namely, the casting is plastically deformed in an environment that has a temperature higher than the casting's recrystallization temperature so that its internal structure is altered.
  • the casting has a microstructure including differently-sized grains, material segregations, and cavities that appear during its casting.
  • Hot working that is, plastically deforming the casting, reduces the aforementioned defects within the resulting workpiece or bar since a new crystalline structure may be formed.
  • This structure may be characterized by a more homogeneous distribution of grains, and a lower presence of cavities and/or alloy segregations. Consequently, the amount of internal stresses is lower, which improves some mechanical properties of the workpiece or bar; the ductility, for instance, may increase due to the hot working of step 101.
  • hot working are forging, rolling and drawing.
  • the bar When the casting is hot-worked into a cylindrical bar, the bar is trepanned in step 102.
  • a drilling or cutting machine drills a hole into the cylindrical bar, preferably a through hole with circular cross section.
  • the workpiece is subject to a machining process of its inner diameter in step 103. After step 102 or step 103, a tubular workpiece is obtained.
  • step 104 the tubular workpiece is subject to cold working: the workpiece is plastically deformed at a temperature below its recrystallization temperature. Particularly, in step 104 the walls of the workpiece are reduced and the length of the tube produced is increased.
  • Some non-limiting examples of cold working are pilgering and flow forming.
  • the mandrel of the flow forming or pilgering machine holds the workpiece by means of the hole formed in step 102 or machined in step 103 so that the tubular workpiece may be subject to the deformations produced by the machine.
  • Figure 1B is a flowchart 110 that depicts the steps of a method for producing a tube in accordance with another embodiment.
  • the flowchart 110 comprises steps 101, 102, 103 and 104 corresponding to hot working, trepanning, machining and cold working, respectively, as described above with respect to flowchart 100.
  • the method of Figure 1B further comprises step 105: casting, by which a stainless steel alloy is melt and poured in a mold.
  • the stainless steel is left to dry forming the casting, which may take the shape of, for example, an ingot or a bar.
  • the volume of stainless steel in the casting may determine the maximum amount of steel which may be used for producing the tube since, generally, no steel is added afterwards, rather, some steel is removed during one or more of the successive steps 101-104 of the method.
  • the casting is at least subject to hot working (step 101), trepanning (step 102) or machining of the inner diameter (step 103), and cold working (step 104).
  • the casting and/or workpiece subject to the methods described with respect to flowcharts 100, 110 comprise a stainless steel alloy, the stainless steel alloy being an austenitic-ferritic stainless steel alloy that is, preferably, duplex stainless steel or super-duplex stainless steel.
  • Figure 1C shows flowchart 120 corresponding to a method in accordance with another embodiment of the invention.
  • the embodiment comprises steps 101, 102, 103 and 104 corresponding to hot working, trepanning, machining and cold working, respectively, and further comprises quenching -step 106- which takes place after step 101, and before step 102 or step 103.
  • step 106 the pretubular shaped workpiece or cylindrical bar is rapidly cooled so that the internal structure obtained in step 101 is largely maintained. Therefore, quenching reduces the amount of phase transformations that may occur throughout the workpiece or bar and, particularly, on its surface after hot working.
  • FIG. 1D is a flowchart 130 in accordance with another embodiment of the invention.
  • a stainless steel casting is casted -step 105-.
  • the casting With hot working -step 101-, the casting is deformed such that its microstructure changes and, consequently, its mechanical properties are altered as well.
  • the resulting workpiece is quenched -step 105- so as to maintain the altered mechanical properties, and then trepanned -step 102- so as to form a hole inside or machined -step 103- so as to reshape the hole inside.
  • the tubular workpiece obtained is then deformed in a cold working process by reducing the walls and increasing the length of the tube -step 104.
  • the tubes produced in some of these embodiments feature a length longer than 5 m. In some of these embodiments, the length of the tubes produced is longer than 10 m. And in some of these embodiments, the length of the tubes produced is longer than 12 m.
  • These tubes may feature an outer diameter greater than or equal to 252 mm, preferably greater than or equal to 200 mm, and preferably greater than or equal to 250mm; they may also feature an average wall thickness greater than or equal to 2.8 mm, and less than or equal to 70 mm, and preferably greater than or equal to 12 mm and less than or equal to 39 mm.
  • Figure 2 shows a flow forming machine 200.
  • a workpiece 201 having a tubular geometry is placed on the mandrel 202 of the machine, and held in place with a jaw chuck 203.
  • the jaw chuck 203 makes the workpiece 201 rotate in accordance with the rotary motion of the mandrel 202 -an engine (not illustrated) provides said rotary motion-.
  • the machine 200 further comprises a carriage 204 in which a plurality of rollers 205a-205d are arranged in an equidistant configuration with a progressive 90° phase difference between the rollers 205a-205d.
  • Both the mandrel 202 and the plurality of rollers 205a-205d feature rotary movements during the operation of the machine 200 such that the workpiece 201, as it goes through the set of rollers 205a-205d, has its outer diameter reduced, which in turn causes a reduction of the thickness of its walls, and its length increased-along the Y axis illustrated in the figure.
  • the flow forming machine comprises two, three, six or more rollers and, consequently, the machine may feature more or less degrees of freedom.
  • the rollers may also arranged following constant phase differences with respect to an imaginary circumference along which the rollers are distributed; the constant phase differences correspond to 360° divided by the number of rollers in the carriage.
  • the carriage 204 moves towards the jaw chuck 203, and the rollers 205a-205d, which rotate in a direction contrary to the rotary movement of the mandrel 202 and the workpiece 201, provide forces in the axial, radial and tangential directions.
  • the rollers apply a compressive force on the workpiece 201
  • the carriage 204 must cope with and resist the forces applied by the rollers 205a-205d.
  • these forces -mainly those in the axial and radial directions, since the tangential component is much smaller than the other two-determine the structural requirements of the carriage 204.
  • the rollers can be offset axially to each other which allows three different roll configurations, depending on the requirements of the process.
  • An axial offset to zero-line allows faster forming feed rates.
  • An axial offset that is four times different, one for each roller, allows higher accuracy and perfect surface qualities combined with high reduction rates.
  • the middle way, a pair wise axial offset allows stronger flow forming operations which means higher reductions, because each forming roller of the pair works as a counter-bearing and takes the force of the opposite roller. The result is a perfect run-out at high feed rates.
  • Figure 3 shows a flow forming machine 300 in a 2D view.
  • the mandrel 302 holds the workpiece 301, and the jaw chuck 303 also holding the workpiece 301 makes the workpiece rotate in accordance with the rotating motion of the mandrel 302.
  • rollers 305a, 305b apply a compressive force to the workpiece 301 and incrementally produce a tube longer and with thinner walls.
  • a computer numerical control manages the whole process and operation such that the produced tubes feature, throughout their whole volume, the mechanical and microstructural properties sought in the lower number of passes possible.
  • the computer numerical control may adjust the parameters related to the aforementioned degrees of freedom so that the axial and radial forces of the rollers 305a, 305b plastically deform the inner part of the workpiece 201 so as to generate compressive forces within its structure.
  • the angle of attack 310 of the rollers 305a, 305b may range between 6° and 45° (the endpoints being included in the range of possible values). Too pronounced angles of attack may also result in irregular deformations of the workpiece 301.
  • the end of the workpiece 301 that will be first in contact with the rollers 305a, 305b has the edges of its opening chamfered so that the rollers do not deform the workpiece irregularly, which could render the tube unusable since the mechanical properties of that part of the tube may differ from the rest of the tube.
  • the flow forming not only reshapes the workpiece, it also changes its microstructure: the resulting grains may be oriented and have a homogeneous fine size, both of which provide improved mechanical properties.
  • Figure 4 shows the microstructure of a tube produced with a method in accordance with an embodiment of the invention.
  • the tube comprises an austenitic-ferritic stainless steel alloy with an austenite phase 401 and a ferrite phase 402.
  • the austenitic-ferritic stainless steel alloy is a duplex stainless steel. In some other embodiments, the austenitic-ferritic stainless steel alloy is a super-duplex stainless steel.
  • the spacing of the austenite phases 401 is about 30 microns or less, which is convenient for resisting HISC phenomena. Such spacing may be observed using the illustrated segment 403, which is equivalent to 30 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Metal Extraction Processes (AREA)
  • Extrusion Of Metal (AREA)

Claims (12)

  1. Méthode (100, 110, 120, 130) pour produire un tube en alliage d'acier inoxydable, la méthode comprenant les étapes suivantes :
    (a) usiner à chaud (101) une pièce moulée en acier inoxydable en une pièce de forme pré-tubulaire ou en une barre cylindrique, la pièce de forme pré-tubulaire ayant une forme tubulaire ;
    (b) forer (102) la barre cylindrique ou usiner (103) le diamètre interne de la pièce de forme pré-tubulaire afin obtenir une pièce tubulaire (201, 301) ; et
    (c) usiner à froid (104) la pièce tubulaire (201, 301).
  2. Méthode (120, 130) selon la revendication 1, dans laquelle :
    la méthode comprend en outre l'étape suivante : (d) tremper (106) la pièce de forme pré-tubulaire ou la barre cylindrique ; et
    (d) est réalisée après (a).
  3. Méthode (120, 130) selon la revendication 2, dans laquelle l'étape (d) de trempage (106) de la pièce de forme pré-tubulaire ou de la barre cylindrique est réalisée avec de l'eau à une température non supérieure à 50 °C, et de préférence non supérieure à 35 °C.
  4. Méthode (110, 130) selon l'une quelconque des revendications précédentes, dans laquelle :
    la méthode comprend en outre l'étape (e) de moulage (105) de la pièce moulée en acier inoxydable ; et
    (e) est réalisée avant (a).
  5. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications précédentes, dans laquelle l'alliage d'acier inoxydable est un alliage d'acier inoxydable austénitique-ferritique.
  6. Méthode (100, 110, 120, 130) selon la revendication 5, dans laquelle l'alliage d'acier inoxydable est un acier inoxydable duplex ou un acier inoxydable super duplex.
  7. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications précédentes, dans laquelle l'usinage à chaud comprend l'un parmi : le laminage, le forgeage et leur combinaison.
  8. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications précédentes, comprenant en outre (f) l'hypertrempe de la pièce de forme pré-tubulaire ou d'une barre cylindrique à une température comprise entre 1 030°C et 1 120°C.
  9. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications 1 à 7, comprenant en outre (f) l'hypertrempe de la pièce tubulaire (201, 301) et dans laquelle (f) est réalisée dans au moins l'une des hypothèses suivantes : après (b) et avant (c) et après (c).
  10. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications précédentes, dans laquelle :
    la méthode comprend en outre (g) chauffer la pièce moulée en acier inoxydable à une température supérieure à 1 000 °C et de préférence supérieure à 1 200°C ; et
    (g) est réalisée avant (a).
  11. Méthode (100, 110, 120, 130) selon l'une quelconque des revendications précédentes, dans laquelle l'usinage à froid (104) comprend l'un parmi : le fluotournage et le laminage.
  12. Méthode (100, 110, 120, 130) selon la revendication 11, dans laquelle l'usinage à froid (104) comprend le fluotournage, et le fluotournage réduit au moins l'épaisseur des parois de la pièce (201, 301) de 70 % en une passe.
EP16382042.6A 2016-02-02 2016-02-02 Tubes en acier inoxydable et leur procédé de production Active EP3202925B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16382042.6A EP3202925B1 (fr) 2016-02-02 2016-02-02 Tubes en acier inoxydable et leur procédé de production
ES16382042T ES2719701T3 (es) 2016-02-02 2016-02-02 Tubos de acero inoxidable y método para su producción
RU2018130133A RU2751207C2 (ru) 2016-02-02 2017-02-02 Трубы из нержавеющей стали и способ их изготовления
US16/074,671 US20190040485A1 (en) 2016-02-02 2017-02-02 Stainless steel tubes and method for production thereof
PCT/EP2017/052302 WO2017134186A1 (fr) 2016-02-02 2017-02-02 Tubes en acier inoxydable et leur procédé de production
BR112018015734-1A BR112018015734B1 (pt) 2016-02-02 2017-02-02 Método de fabricação de tubos de aço inoxidável

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16382042.6A EP3202925B1 (fr) 2016-02-02 2016-02-02 Tubes en acier inoxydable et leur procédé de production

Publications (2)

Publication Number Publication Date
EP3202925A1 EP3202925A1 (fr) 2017-08-09
EP3202925B1 true EP3202925B1 (fr) 2019-01-09

Family

ID=55456737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16382042.6A Active EP3202925B1 (fr) 2016-02-02 2016-02-02 Tubes en acier inoxydable et leur procédé de production

Country Status (6)

Country Link
US (1) US20190040485A1 (fr)
EP (1) EP3202925B1 (fr)
BR (1) BR112018015734B1 (fr)
ES (1) ES2719701T3 (fr)
RU (1) RU2751207C2 (fr)
WO (1) WO2017134186A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488890B1 (ko) * 2021-04-27 2023-01-18 주식회사 코우 스티어링 샤프트 및 그 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2132246C1 (ru) * 1998-06-26 1999-06-27 Селиванов Николай Павлович Способ получения заготовок и изделий (варианты), способ получения чугуна и стали, способ получения чугуна и способ получения агломерата
JP4019772B2 (ja) * 2002-04-18 2007-12-12 住友金属工業株式会社 継目無管の製造方法
JP4400058B2 (ja) * 2003-02-13 2010-01-20 Jfeスチール株式会社 スピニング加工性に優れたフェライト系ステンレス鋼溶接管
RU2257271C1 (ru) * 2004-03-03 2005-07-27 ООО "Специальные Стали и Сплавы" Способ производства длинномерных передельных труб большого и среднего диаметров из центробежно-литых полых заготовок и слитков электрошлакового переплава стали марок 08х10н20т2 и 08х10н16t2 для выдвижных систем (перископов подводных лодок) с обеспечением ударной вязкости kcu более 100 дж/см2
CN101376204B (zh) * 2007-08-30 2010-07-28 北京首宏钢科技开发有限公司 一种无缝钢管的生产新工艺
EP2388341B1 (fr) * 2009-01-19 2018-10-31 Nippon Steel & Sumitomo Metal Corporation Procédé de production de tuyau en acier inoxydable duplex
US8479549B1 (en) 2009-08-17 2013-07-09 Dynamic Flowform Corp. Method of producing cold-worked centrifugal cast tubular products
US9574684B1 (en) * 2009-08-17 2017-02-21 Ati Properties Llc Method for producing cold-worked centrifugal cast composite tubular products
US9375771B2 (en) * 2009-08-17 2016-06-28 Ati Properties, Inc. Method of producing cold-worked centrifugal cast tubular products
RU2537413C2 (ru) * 2013-03-12 2015-01-10 Открытое акционерное общество "Челябинский трубопрокатный завод" СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ РАЗМЕРОМ 273×9-60 мм ДЛЯ ПАРОВЫХ КОТЛОВ, ПАРОПРОВОДОВ И КОЛЛЕКТОРОВ УСТАНОВОК С ВЫСОКИМИ И СВЕРХКРИТИЧЕСКИМИ ПАРАМЕТРАМИ ПАРА ИЗ СЛИТКОВ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА СТАЛИ МАРКИ 10Х9МФБ-Ш
RU2542142C1 (ru) * 2013-08-13 2015-02-20 Открытое акционерное общество "Челябинский трубопрокатный завод" Способ производства холоднокатаных товарных труб размером 150х2х1200 мм повышенной точности по диаметру и стенке из стали марки 12х12м1фбру-ш (эп 450у-ш) для реакторов нового поколения на быстрых нейтронах
RU2550041C2 (ru) * 2013-08-20 2015-05-10 Открытое акционерное общество "Челябинский трубопрокатный завод" СПОСОБ ПРОИЗВОДСТВА ПЕРЕДЕЛЬНЫХ ГОРЯЧЕКАТАНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 325×12 мм С ПОВЫШЕННОЙ ТОЧНОСТЬЮ ПО ДИАМЕТРУ И СТЕНКЕ ИЗ СТАЛЕЙ МАРОК 12Х12М1БФРУ-Ш, 16Х12МВСФБР-Ш, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПЕРЕКАТА НА СТАНАХ ХПТ 450 И ХПТ 250 В ПЕРЕДЕЛЬНЫЕ ТРУБЫ-ЗАГОТОВКИ РАЗМЕРОМ 202±1,2×3,5+0,3/-0,2 мм И ПОСЛЕДУЮЩЕГО ПРОФИЛИРОВАНИЯ В ШЕСТИГРАННЫЕ ТРУБЫ-ЗАГОТОВКИ РАЗМЕРОМ "ПОД КЛЮЧ" 181,8±0,4×3,5+0,3/-0,2×3750+20/-0 мм И 175±0,4×2,5+0,3/-0,2×2680+20/-0 мм ДЛЯ РЕАКТОРОВ НОВОГО ПОКОЛЕНИЯ НА БЫСТРЫХ НЕЙТРОНАХ
SG11201610814RA (en) * 2014-06-27 2017-01-27 Ati Properties Llc Flowforming corrosion resistant alloy tubes and tube manufactured thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112018015734A2 (pt) 2019-01-08
RU2018130133A3 (fr) 2020-05-21
WO2017134186A1 (fr) 2017-08-10
EP3202925A1 (fr) 2017-08-09
US20190040485A1 (en) 2019-02-07
BR112018015734B1 (pt) 2022-08-30
RU2018130133A (ru) 2020-02-20
ES2719701T3 (es) 2019-07-12
RU2751207C2 (ru) 2021-07-12

Similar Documents

Publication Publication Date Title
US10774411B2 (en) Nickel-based alloy tubes and method for production thereof
RU2387501C2 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ГОРЯЧЕДЕФОРМИРОВАННЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ ДИАМЕТРОМ 530-550 мм ИЗ КОРРОЗИОННО-СТОЙКИХ ТРУДНОДЕФОРМИРУЕМЫХ МАРОК СТАЛИ И СПЛАВОВ НА ТПУ 8-16" С ПИЛИГРИМОВЫМИ СТАНАМИ
TWI633949B (zh) 製造無縫複合管狀產品之方法,及管狀组件
US8479549B1 (en) Method of producing cold-worked centrifugal cast tubular products
US9375771B2 (en) Method of producing cold-worked centrifugal cast tubular products
Zhang et al. Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure
EP3202925B1 (fr) Tubes en acier inoxydable et leur procédé de production
JP4603707B2 (ja) 継目無管の製造方法
RU2563566C2 (ru) Способ изготовления холоднодеформированных бесшовных труб и жаропрочная бесшовная труба, изготовленная этим способом
RU2638265C1 (ru) Способ производства бесшовных механически обработанных труб размером 610х21-27 мм из стали марки 08х18н10т-ш
RU2638264C1 (ru) Способ производства бесшовных механически обработанных труб размером 610х15-20 мм из стали марки 08х18н10т-ш
RU2638263C1 (ru) Способ производства бесшовных механически обработанных труб размером 610х28-32 мм из стали марки 08х18н10т-ш
Lazorkin et al. New technologies of forging of ingots and blanks by four dies in open-die forging presses
RU2386499C2 (ru) Способ производства судовых длинномерных полых валов большого и среднего диаметров из маломагнитных коррозионно-стойких сталей
RU2614478C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ РАЗМЕРОМ 426Х17-19 мм ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш
RU2615400C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 530х13-17 мм ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш
RU2617080C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 610х10-14 мм ИЗ СТАЛИ МАРКИ 08Х18Н10Т-Ш
RU2615399C1 (ru) Способ производства бесшовных механически обработанных труб размером 530х18-22 мм из стали марки 08х18н10-ш
RU2530430C1 (ru) ЗАГОТОВКА-СЛИТОК ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА ПОД ПРОШИВКУ И ПОСЛЕДУЮЩУЮ РАСКАТКУ ЕЕ НА ДВУХВАЛКОВОМ СТАНЕ ПОПЕРЕЧНО- ВИНТОВОЙ ПРОКАТКИ В ПЕРЕДЕЛЬНЫЕ ГИЛЬЗЫ-ЗАГОТОВКИ ДЛЯ ПРОИЗВОДСТВА МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 610×36,53×3200-3550 мм ИЗ СТАЛИ МАРКИ 08Х18Н10Т ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ
RU2620204C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ГОРЯЧЕКАТАНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 530х13-18 мм ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш
RU2615918C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 530х23-28 мм ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш
RU2615926C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ РАЗМЕРОМ 426х23-25 мм ДЛЯ ОБЪЕКТОВ АТОМНОЙ ЭНЕРГЕТИКИ ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш
RU2617084C1 (ru) Способ производства бесшовных труб размером 426х11-13 мм для объектов атомной энергетики из стали марки 08х18н10-ш
RU2558319C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ГОРЯЧЕДЕФОРМИРОВАННЫХ КОТЕЛЬНЫХ И ПАРОПРОВОДНЫХ ТРУБ РАЗМЕРОМ 530×30-75 мм ИЗ ЖАРОПРОЧНОЙ СТАЛИ МАРКИ 10Х9К3В2МФБР-Ш ДЛЯ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ С СУПЕРСВЕРХКРИТИЧЕСКИМИ ПАРАМЕТРАМИ ПАРА
RU2615921C1 (ru) СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ МЕХАНИЧЕСКИ ОБРАБОТАННЫХ ТРУБ РАЗМЕРОМ 530х8-12 мм ИЗ СТАЛИ МАРКИ 08Х18Н10-Ш

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20180308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180725

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1087345

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016009207

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2719701

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1087345

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016009207

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 8

Ref country code: ES

Payment date: 20230301

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230227

Year of fee payment: 8

Ref country code: IT

Payment date: 20230221

Year of fee payment: 8

Ref country code: GB

Payment date: 20230217

Year of fee payment: 8

Ref country code: DE

Payment date: 20230223

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG