EP3201550B1 - Installation pour la condensation de vapeur - Google Patents

Installation pour la condensation de vapeur Download PDF

Info

Publication number
EP3201550B1
EP3201550B1 EP14792731.3A EP14792731A EP3201550B1 EP 3201550 B1 EP3201550 B1 EP 3201550B1 EP 14792731 A EP14792731 A EP 14792731A EP 3201550 B1 EP3201550 B1 EP 3201550B1
Authority
EP
European Patent Office
Prior art keywords
support
installation
tube bundles
fan
condensing steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14792731.3A
Other languages
German (de)
English (en)
Other versions
EP3201550A1 (fr
Inventor
Alexander Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enexio Germany GmbH
Original Assignee
Enexio Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enexio Germany GmbH filed Critical Enexio Germany GmbH
Publication of EP3201550A1 publication Critical patent/EP3201550A1/fr
Application granted granted Critical
Publication of EP3201550B1 publication Critical patent/EP3201550B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid

Definitions

  • the invention relates to a plant for the condensation of steam with the features of claim 1.
  • Air-cooled condensers are used for the direct condensation of turbine exhaust. They can be considered as a special form of use of air-cooled heat exchangers. Air-cooled heat exchangers are used to cool fluids using ambient air in various processes in the chemical, petrochemical and power generation industries.
  • the heat exchangers essentially consist of heat exchanger tubes, which are provided on the outside with ribs due to the poor thermal conductivity of the air to improve the heat transfer.
  • the heat transfer to the cooling medium air using heat exchangers by heat conduction and convection is often referred to as dry cooling.
  • the heat exchanger tubes of air-cooled heat exchangers are combined into so-called bundles by welding them into flat, perforated, thick-walled metal sheets, which are also called tube sheets. These bundles are referred to as finned tube bundles or tube bundles.
  • the cooling medium air is conveyed through the heat exchanger bundles with the help of suction or blowing fans.
  • a common construction is the so-called roof construction method.
  • fans are in an oppressive arrangement below roof-shaped heat exchanger bundles.
  • the roof-shaped arranged heat exchanger bundles with the fans are supported by a support structure, the fans are supported by a fan bridge.
  • the adaptation of air-cooled condensation plants to the Abdampfmenge or turbine size and the operating and environmental conditions (air temperature) can be done in principle on the change of the heat exchanger surface and / or on the change of the cooling air flow.
  • fans in axial design are used in all air-cooled heat exchangers for industrial applications, since they are suitable to deliver the required large volume flows at low pressure differences.
  • a geometric basic pattern which is also referred to as a module, is produced depending on the design. If the modules or cells are arranged one behind the other (series connection), so-called multi-cell, single-row systems are created. Due to the air supply of Below, cells or modules in roof construction can also be produced by connecting several roof rows of air-cooled condensers in almost any size in parallel.
  • the main advantage of the roof construction method is the possibility of using the parallel and series connection of the individual cells to produce very large systems.
  • the fans arranged below the heat exchanger bundles must be provided with protective grids in the roof construction method for protection against falling parts or in the event of damage to the fan.
  • the fan race which is arranged to achieve defined flow conditions to the fan or fan, the air inlet height.
  • the support structure on which rest the heat exchanger bundles must be increased accordingly.
  • Another disadvantage may be due to recirculation of the heated cooling air. Due to the low hot air velocities in the roof construction of the capacitors, a so-called wind wall must be installed around the outer heat exchanger elements, which consist of an additional support structure with wind wall panels.
  • Heat exchanger bundles in V-arrangement with overhead fans can be built in a lower height, but are in heat exchanger bundles that are not self-supporting, very complex support structures required ( DE 103 23 791 A1 ). For this reason, heat exchangers in V-construction are mostly used only in the area of process coolers with horizontally arranged heat exchangers (water recooler, air-conditioning technology). There, the sizes are significantly or significantly smaller, whereby the support structure for the V-arrangement is economically feasible. The fans are also smaller and lighter. For larger systems, however, the support structure is always more complex and was previously considered uneconomical.
  • the DE 10 2007 012 539 B4 discloses to store at bottom fans and roof-shaped heat exchanger elements above a frame-like fan field on a reduced number of supports in order to reduce the steel construction cost. Below each fan field, at least one support is provided in the form of a column running vertically to the fan fields, with obliquely extending head struts, which extend to the corners of a fan field, adjoining the fan field and the column above the column. The fans themselves are mounted on or on the fan fields.
  • the plant according to the invention for the condensation of steam comprises tube bundles which are connected with their upper ends to steam distribution lines and with their lower ends are connected to condensate collector.
  • the tube bundles are thus flowed through from top to bottom by steam.
  • the tube bundles are arranged in a V-shape, so that the steam distribution lines of a pair of tube bundles are at a greater distance from each other than the condensate collector of the pair of tube bundles, which are arranged in the region of a lower vertex of the V-shaped arrangement.
  • At least one fan is arranged in the region between the steam distribution lines.
  • the basic geometrical pattern of tube bundles arranged in V-shape, the fans arranged above the pair of tube bundles, the associated steam distribution lines in the upper area and the condensate collectors in the lower area will also be referred to below as a cell or module. It is a unit in which the heat flow transmitted by the bundles and the cooling air volume flow absorbing this heat are in equilibrium.
  • the fan is carried by a central pillar extending from the fan to the crown. That is, the central pillar penetrates the triangular in cross-section interior, which widens from bottom to top in the direction of the fan.
  • the tube bundles themselves are mounted on a support bracket which extends in the longitudinal direction of the apex and is connected to the central support pillar.
  • the central pillar therefore not only takes the load of the fan, but on the support brackets, the load of the tube bundles and the support brackets themselves.
  • the tube bundles are self-supporting. This means that the tube bundles do not require an additional support structure to support the tube bundles against deflection, for example. It is sufficient if the tube bundles in the region of its lower end, that is, in the region of the apex have a support and are also fixed in the region of their upper ends.
  • Mutually adjacent tube bundles may, for example, be connected to one another via a common steam distribution line.
  • the fan is a relatively heavy component, wherein a fan in the context of the invention, both the drive unit and the associated gear unit and the fan blades themselves are understood.
  • This fan unit contributes significantly to the total weight of the condensation plant.
  • the weight of the fan is not transmitted via a fan console or fan platform, which in turn is mounted on the tube bundles, but the weight is introduced directly into the buttress.
  • the pillar itself is the central, load-bearing component that additionally absorbs the weight of the self-supporting tube bundles via the support brackets. Added to this is the weight of the condensate collector and the steam distribution lines, which are arranged on the upper side or underside of the tube bundle.
  • the entire weight of such a cell or such a module via a single buttress in the footprint, especially the ground, are derived. It is not necessary to provide a variety of foundations or supports per cell. It should be noted that usually several such modules are used in series or parallel connection. The cells or modules can therefore support each other laterally. Larger systems also get their stability through the plurality of modules or cells and the majority of central pillars. Preferably, units of at least four modules are mounted in a carafe arrangement.
  • the weight of the fan or the fan assembly can be derived particularly effective when the central pillar extends vertically below the fan to the support bracket.
  • the invention does not exclude that the central buttress for reasons of air flow or for reasons of design or design does not extend downwards centrally from the fan, but the central solution is considered to be the most appropriate solution.
  • the central support pillar preferably also has a lower portion, which is continued below the support bracket to the footprint of the system.
  • the abutment therefore has two sections which are loaded to different degrees.
  • the upper portion within the triangular prismatic area defined by the tube bundles carries the fan or fan assembly.
  • the lower Section of the central buttress also adds the weight of the tube bundles and the supply and discharge lines. So that the entire arrangement remains in equilibrium, the arrangement is preferably arranged symmetrically with regard to the central supporting pillar. This means that the support brackets are preferably the same length.
  • modules are stored on the crossbeams.
  • the cross members are preferably carried by the lower portions of the central pillars.
  • the cross members are dimensioned and arranged so that fewer pillars are required with a protruding up to the footprint lower length section are available as a total support pillars.
  • the connection between the cross members and the footprint may be via the pillars of only every other row of modules. If the buttresses which protrude to the footprint are not the pillars of the marginal ranks, then e.g. five rows of modules are stored on two buttresses below the second and fourth rows. With a number of n rows, therefore, n-3 pillars are sufficient for support on the installation surface.
  • cross member supports which are not congruent with the lower lengths of the central columns.
  • cross member supports may be additionally or alternatively provided to lower portions of the central columns.
  • the number of cross member supports is smaller than the number of central columns of the modules.
  • the adjacent tube bundles can also be referred to as a roof-shaped arrangement or roof row.
  • the respective outer tube bundles are without outside support by another tube bundle.
  • You can be connected by struts with the respective adjacent inner tube bundles.
  • Tensile and compressive forces are derived by means of struts over the adjacent cell.
  • the outer tube bundles are connected to their own steam distribution lines.
  • the cross sections of the outer rows of the steam distribution lines may be smaller than the cross sections of the inner steam distribution lines.
  • the sealing and support of a fan race surrounding the fan is provided by means of a secondary support structure.
  • the secondary support structure carries and includes in particular closed walls. These form, so to speak, the end or gable end of the V-shaped arrangement of tube bundles.
  • the secondary support structure comprises in particular a supporting structure of individual struts. This secondary support structure is self-supporting. It in turn rests on or on the primary support structure and there on the support brackets.
  • the primary supporting structure also includes the central supporting pillar. For the secondary support structure of the support pillar is in particular a centering in the horizontal direction, so that the fan race is arranged concentrically to the fan.
  • This secondary support structure does not carry the load of the tube bundles, but serves to seal the triangular prism-shaped interior and to provide a floor on which the fan race is mounted.
  • the secondary support structure may be a truss structure in which struts have the supporting function and trim elements disposed thereon have a sealing function. But it is also possible that the secondary support structure has self-supporting, flat support elements, for example made of fiber-reinforced plastics, in particular of glass fiber reinforced plastics.
  • the fan race can be made of the same material as the support elements. It can be part of a fan cover that is the same as the upper end the cell forms.
  • the dreickeckförmigen side walls may have maintenance openings.
  • Support pillars of a single vertex that is, a single row
  • adjacent pillars of different rows of V-shaped arrangements to run towards each other and are also stored on a common foundation. It can therefore groups of two pillars or even groups of four pillars are combined and stored on a common foundation.
  • the cost of storage of the entire capacitor assembly can be reduced under certain conditions.
  • foundations or supports are not arranged vertically underneath the fans, horizontal forces arise that have to be absorbed.
  • adjacent pillars and / or tube bundles and / or support brackets can be connected to each other via struts. The exact arrangement results from the size and orientation of the horizontal forces and ultimately also from the design and location of the abutments and foundations.
  • the support bracket is a cantilever cantilevered to the buttress, comparable to a branch on a trunk.
  • the support bracket itself is not additionally supported compared to the footprint.
  • the forces that rest on the support brackets are taken up exclusively via the central pillar and discharged downwards.
  • support means in particular in the form of ropes or rods, can be provided which are fastened in particular to the distal ends of the support bracket and which extend from the upper end of the support pillar to the lower support pillar extend.
  • the pillars and / or the support brackets may be at least partially formed by trusses.
  • the buttress can be configured differently due to its load profile in its upper portion than in its lower portion.
  • the buttress may be at least partially tubular. It can be a concrete support tube or a steel tube. Tubular abutments have the advantage that the abutment itself can form a channel to direct cooling air from the bottom up to a drive unit of the fan. For pillars in the form of truss girders may be installed in the truss structure channels to direct the cooling air from the bottom up to a drive unit of the fan in the same way. In addition, a fan may be provided to suck or push the cooling air through the channel in the buttress.
  • Such a blower is only required if the suction pressure of the fan is insufficient.
  • a transmission and a drive for the fan below the support brackets that is, is arranged below the supports of the tube bundle within or on the central buttress and is connected via a very long drive shaft to the fan.
  • the central support pillar allows direct access to the maintenance of the fan group.
  • Tubular or pylon-like abutments can be provided with a corresponding climbing aid.
  • a walk-in cleaning stage In the area of the vertex, a walk-in cleaning stage can be mounted, so that the individual tube bundles are easily accessible and can be maintained.
  • the underlying structure of the invention and the combination of V-shaped heat exchanger arranged in several rows make it possible to produce systems for the condensation of steam, with sucking arrangement of the fan, in any required size particularly economical.
  • the lower height also causes the lengths of the steam-carrying pipelines to be reduced. Since very large cable cross-sections are used here, this difference is significant.
  • the arrangement of the central pillar further reduces the cost of materials for the primary support structure and fan support.
  • FIG. 1 shows a plant 1 for the condensation of steam.
  • the system 1 is shown purely schematically and is intended to illustrate only the constructive principle.
  • the plant 1 comprises tube bundles 2, which are connected with their upper ends 3 to steam distribution lines 4. With their lower ends 5, the pipes 2 are each connected to condensate collector 6.
  • the tube bundles 2 are arranged in a V-shape, so that the steam distribution lines 4 of a pair of tube bundles 2 run at a greater horizontal distance from each other than the condensate collector 6.
  • the condensate collector 6 extend in the representation of FIG. 1 in the Image plane in the longitudinal direction of a vertex 7 are below.
  • Above the pair of tube bundles 2 at least one fan 8 is arranged in the region between the steam distribution lines 4.
  • the fan 8 is mounted on a central support pillar 9, which extends from the fan 8 to the apex 7.
  • the supporting pillar 9 extends beyond the lower ends 5 and the condensate collector 6 in the direction of a footprint 10, on which the supporting pillar 9 is mounted.
  • An upper section 11 of the support pillar 9 therefore essentially carries the fan 8 or a fan group comprising a fan transmission, not shown in more detail, and a fan drive unit.
  • a lower portion 12 of the support pillar 9 additionally carries the tube bundles 2, which are mounted on support brackets 13 which extend in the longitudinal direction of the apex 7.
  • the support brackets 13 are narrow and only as wide as necessary.
  • the support brackets 13 are used only to absorb the forces from the tube bundles 2 and the connected lines, namely the steam distribution line 4 and the condensate collector 6. In the amount of the support bracket 13, there is no closed platform as in the roof construction.
  • FIG. 1 shows several identically designed modules 14. In this embodiment, there are four modules 14. The arrangement can also be referred to as VVVV arrangement, which can be continued in this form as desired.
  • FIG. 3 shows in a second side view that four such modules 14 are connected in series one behind the other and are fed via a common steam distribution line 4.
  • the steam distribution lines 4 extending between two modules 14 supply the mutually adjacent tube bundles 2 (FIG. FIG. 1 ).
  • the adjacent tube bundles 2 are arranged in this area A-shaped or roof-shaped. she are connected to each other on the steam side. In the area of the lower ends 5, however, the individual tube bundles 2 open into separate condensate collectors 6. Only the peripheral tube bundles 2 are connected via their own steam distribution lines 4 to the steam supply.
  • FIG. 1 shows, moreover, that for static reasons, the marginal tube bundle 2 are connected in the region of their upper ends 3 via horizontally acting struts 15 with the adjacent tube bundle 2. As a result, the outer tube bundle 2 are fixed.
  • the inner tube bundle 2 do not have to be braced against each other. They lean against each other and are in particular coupled to each other via their tube plates, not shown, in the region of the steam distribution lines 4.
  • FIG. 2 shows the arrangement of FIG. 1 of the page. Overall, it should be at FIG. 1 so act to an array of 4 x 4 modules 14. Exemplary are in FIG. 3 two rows 16 of modules 14 are shown. The number of rows 16 can be increased as well as the length of the rows 16 in the direction of the apex 7.
  • central supports 9 are arranged vertically below the fan 8 in the region of the apex 7 and, according to the number of modules 14, only 8 supporting pillars 9 are required in order to support the entire system 1.
  • FIGS. 1 to 3 introduced reference numerals are retained in the other figures to designate functionally identical components.
  • FIGS. 4 and 5 show further details of a possible embodiment of a condensation plant. Unlike the FIGS. 1 to 3 was dispensed with the representation of the tube bundle and instead a secondary support structure 17 is shown, which will be described below with reference to FIGS. 6 to 7 is explained.
  • FIG. 4 The structure of Appendix 1 in FIG. 4 is very similar to the one of Figures 1 and 2 , There are support pillars 9 can be seen with a lower portion 12 which is formed in each case in the form of a lattice girder. It joins at the lower portion 12 of the upper portion 11, which is in the form of a central tube to a Fan bottom 18 extends, which is part of the secondary support structure 17. Above the fan base 18 are the steam distribution lines. 4
  • FIG. 5 It can be seen that the diameter of the steam distribution lines 4 gradually decreases in one direction. Steam is increasingly diverted downwards over the individual tube bundles 2. Consequently, the cross section of the steam distribution lines 4 can be reduced continuously or stepwise.
  • the page presentation of the FIG. 5 shows that the support brackets 13 of a single module 14 are identically configured and formed as a lattice girder. They point in the diametrical direction along the apex 7. They are located below the secondary support structure 17, which extends above the support brackets 13 to the steam distribution lines 4.
  • the structure of the secondary support structure 17 can be seen. It encloses the triangular prismatic interior of the module 14. Two legs of the secondary support structure 17 extend parallel to the tube bundles 2. The legs carry a fan bottom 18, which forms the upper end of the secondary support structure 17. The triangular end faces of the interior are also spanned by the secondary support structure 17 in timber frame construction.
  • the fan bottom 18 carries a fan ring, not shown, which surrounds the fan blades of the fan for reasons of air flow.
  • the entire module 14, as it is in FIG. 6 is shown, of self-supporting components.
  • the secondary support structure 17 is self-supporting with its truss-like structure and the fan base 18.
  • the steam distribution lines 4 are mounted on self-supporting tube bundles 2.
  • the front steam dividing duct 4 has a smaller diameter than the rear steam distribution duct. This is because the rear steam distribution line 4 is provided to supply tube bundle 2 of another module.
  • the front steam distribution line 4 supplies only the illustrated tube bundle 2.
  • the support brackets 13 are as self-supporting as the central pillar 9. Overall, it is therefore possible to provide with reduced material costs and high vertical integration preconfigured modules available, which are mounted with less installation effort on site can.
  • FIG. 7 shows the module of FIG. 6 in the plan view.
  • the lower steam distribution line 4 is shown shortened.
  • the fan base 18 has stiffeners in the corner, as well as struts 21, which extend from the upper edges of the two legs to the central pillar 9. About this struts 21 of the fan bottom 18 is centered.
  • the secondary support structure 17 is substantially windproof dressed in the region of their triangular end faces.
  • FIGS. 8 to 10 is different from the one of FIG. 4 in that the central supporting pillar 9 is not formed in its lower portion 12 as a lattice girder, but is tubular. Also, its upper portion 11 is tubular. The central pillar 9 can thereby also be referred to as a tubular mast. However, due to the different load situation, there is a gradation in diameter above the support brackets 13.
  • the support pillar 9 is made slimmer in its upper portion 11 than in its lower portion 12.
  • the support brackets 13 via support means 19 with an upper end 20 of the support pillar. 9 connected.
  • the support brackets 13 are thereby less burdened to bending.
  • the overall height of the support brackets 13 can be reduced, in particular in the connection area to the central support pillar 9 (FIG. FIG. 9 ).
  • FIG. 10 shows in a further side view that two support means 19 are indeed brought together in the region of the upper end 20 of the support pillar 9, but are guided in the region of the support brackets 13 to the respective outer corners of the support brackets 13 and thus at a distance from the apex 7. This improves the torsional rigidity of the support brackets 13 in the direction of the apex 7.
  • the axis of the apex 7 extends into the image plane of the FIG. 10 into and lies in the transition region from the thicker lower portion 12 of the buttress 9 to the slender upper portion 11 of the buttress 9.
  • FIG. 10 clearly shows the structure of the secondary support structure 17, which limits the substantially triangular prismatic interior and the fan base 18 carries in the upper area.
  • the fan bottom 18 is configured square in this embodiment and has in the plane of the fan base 18 extending Truss struts with diagonal stiffeners in the corner area of the fan base 18. The number of struts is as small as possible in order to keep the air resistance as low as possible. Only for centering the fan base 18 relative to the upper end 20 of the central pillar 9, four struts 21 are provided, with which the fan base 18 is connected in the horizontal direction with the support pillars 9.
  • the embodiment of the FIG. 12 is different from the one of FIGS. 8 to 11 in that the support pillar 9 is formed in the region of its lower portion 12 as a tube with a larger diameter than in the embodiment of the FIG. 8 , This may in particular be a concrete pipe.
  • This lower portion 12 extends in contrast to the embodiment of FIGS. 8 to 9 not through the support brackets 13 therethrough.
  • the support brackets 13 are mounted on the lower portion 12.
  • the upper portion 11 therefore does not start above the support brackets 13, but at the lower height range of the support brackets 13. This is due to the different material compositions of the support pillar 9.
  • the support pillar 9 is therefore not necessarily a material unit integral component. It can be constructed in several parts as well as composed of different materials.
  • the supporting pillar 9 can therefore be a hybrid component consisting of concrete or reinforced concrete in its lower section 12 and consisting of steel in the form of a lattice structure or a tubular structure in its upper section 11.
  • the anchoring means 19 as they are in particular FIG. 13 can be seen on the explanations of the FIGS. 8 to 11 Referenced.
  • FIG. 14 is very similar to the one of FIG. 1 so that reference can be made to the reference numbers introduced there and the explanation there.
  • the lower portion 12 of the supporting pillar 9 is arranged at an angle W to a horizontal plane H, which deviates from 90 °.
  • the horizontal plane is defined by the footprint 10 or defined by the plane in which the support brackets 13 of the individual modules 14 extend.
  • the lower ends 22 of adjacent rows 16 (FIG. FIG. 16 ) stored in a common foundation 23.
  • the angle W is in this case transversely to the longitudinal extent of Rows 16 measured.
  • FIG. 15 shows that the supporting pillars 9 are otherwise arranged at an angle W1 of 90 ° to the horizontal plane H.
  • FIG. 17 shows that the supporting pillars 9 are arranged in the direction of the end faces of the individual rows 16 at a 90 ° angle W1 to the horizontal plane H.
  • FIG. 17 shows that the lower portions 12 of the supporting pillars 9 with the horizontal plane H an angle W ( FIG. 18 ) not equal to 90 ° and as in the embodiment of FIG. 14 are combined in a common Lost Office 23.
  • FIG. 19 shows that the said foundations 23 are located directly below the respective apex 7 of the rows 16 of modules 14. Even with this arrangement, only four central foundations 23 are required to store a total of eight modules 14.
  • FIG. 20 shows an embodiment in which the pillars 9 occupy with their lower ends 22 both in the direction of the apex 7 and in the direction transverse to the apex 7 an angle W of not equal to 90 ° to the horizontal plane H.
  • FIG. 23 shows a possible example of how the individual pillars 9 can be connected via lateral struts 24 with adjacent buttresses 9. These struts 24 may be crossed and extend from the lower ends 22 of the pillars 9 to or into the region of the support brackets 13. Together with struts 15 in the upper region of the tube bundle 2 and struts 25 in the support brackets 13 results in a truss-like stiffened composite, which can also accommodate high lateral wind loads at relatively low cost of materials.
  • FIG. 24 shows an alternative embodiment that is applied to the crossing struts 24 (FIG. FIG. 23 ) waived.
  • FIG. 25 shows an embodiment in which an additional cross member 26 is arranged transversely to the rows of modules 14.
  • the cross member 26 engages under all modules 14. It belongs to the primary support structure. It is located at the level of the support brackets 13.
  • the support brackets 13 extend as in the other embodiments in the direction of the apex 7 and thus in the image plane. In this schematic representation, the support brackets 13 are located at the upper edge of the cross member 26.
  • the supports 9 of each second module 14 extend through the cross member 26 therethrough.
  • the supports 9 of the other modules 14 have only one upper portion 11.
  • the supports 9 of the peripheral rows 16 have no lower portion.
  • the edge-side rows 16 are supported by the cross members 26 of the supports 9 of the adjacent inner row 16. For a total of seven rows 16, therefore, only three supports 9 with lower sections 12 are required, which protrude to the footprint 10.
  • the tube bundles 2 are configured so that the plant 1 comprises at least one DC capacitor, in which steam and condensate flow in the same direction and at least one countercurrent condenser (dephlegmator), in which the condensate flows against the steam.
  • the countercurrent condenser is connected to an upper suction chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supports For Pipes And Cables (AREA)

Claims (16)

  1. Installation pour la condensation de vapeur avec les caractéristiques suivantes :
    1.1 respectivement deux faisceaux tubulaires (2) sont raccordés, au niveau de leurs extrémités supérieures (3), à des conduites de distribution de vapeur (4) pour introduire de la vapeur dans les faisceaux tubulaires (2) et, au niveau de leurs extrémités inférieures (5), à des récupérateurs de condensat (6) pour recevoir le condensat des faisceaux tubulaires (2) ;
    1.2 les faisceaux tubulaires (2) sont disposés en forme de V, de telle sorte que les conduites de distribution de vapeur (4) d'une paire de faisceaux tubulaires (2) s'étendent à une plus grande distance les unes des autres que les récupérateurs de condensat (6) de la paire de faisceaux tubulaires (2), de telle sorte que les récupérateurs de condensat (6) sont disposés dans la zone d'un sommet (7) situé en bas de la disposition en forme de V ;
    1.3 au moins un ventilateur aspirant (8) est disposé au-dessus de la paire de faisceaux tubulaires (2) dans la zone entre les conduites de distribution de vapeur (4) ;
    1.4 le ventilateur (8) est supporté par un pilier central (9) qui s'étend du ventilateur (8) au sommet (7) ;
    1.5 les faisceaux tubulaires (2) sont logés sur une console support (13), qui s'étend dans la direction longitudinale du sommet (7) et qui est reliée au pilier central (9), de telle sorte que le pilier (9) reçoit la charge de la console support (13) et des faisceaux tubulaires (2) ;
    1.6 les faisceaux tubulaires (2) sont autoportants.
  2. Installation pour la condensation de vapeur selon la revendication 1, caractérisée en ce que le pilier central (9) s'étend verticalement sous le ventilateur (8) jusqu'à la console support (13).
  3. Installation pour la condensation de vapeur selon la revendication 1 ou 2, caractérisée en ce que le pilier central (9) dispose d'une section inférieure (12), qui s'étend de sous la console support (13) jusqu'à une surface de pose de l'installation (1).
  4. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 3, caractérisée en ce que dans le cas de plusieurs rangées (16) de faisceaux tubulaires (2), les faisceaux tubulaires (2) adjacents l'un l'autre dans une disposition en forme de V sont raccordés, au niveau de leurs extrémités supérieures (3), à une conduite de distribution de vapeur (4) commune.
  5. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 4, caractérisée en ce que des piliers (9) adjacents dans le sens longitudinal du sommet (7) et/ou des piliers (9) de rangées de tubes (16) en forme de V adjacentes l'une à l'autre s'étendent sous les consoles support (13) au moins sur une portion de leur longueur selon un angle (W) divergeant de 90° par rapport à un plan horizontal (H).
  6. Installation pour la condensation de vapeur selon la revendication 5, caractérisée en ce que des piliers (9) adjacents, s'étendant en oblique au moins par section sous les consoles support (13) sont logés sur une fondation commune (23).
  7. Installation pour la condensation de vapeur selon la revendication 6, caractérisée en ce que respectivement des groupes de deux piliers (9) obliques adjacents ou dans le cas d'installations à plusieurs rangées, des groupes de quatre piliers (9) obliques adjacents sont logés sur une fondation commune (23).
  8. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 7, caractérisée en ce que des piliers (9) adjacents et/ou des faisceaux tubulaires (2) et/ou des consoles support (13) sont reliés l'un à l'autre par le biais d'entretoises (15, 24, 25).
  9. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la console support (13) est tenue par des moyens de support (19), qui s'étendent du pilier (9) jusqu'à la console support (13) située plus bas.
  10. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'une structure support autoportante (17), qui supporte le poids d'une piste de roulement de ventilateur séparément du pilier (9), est disposée sur la console support (13).
  11. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 10, caractérisée en ce que les piliers (9) et/ou les consoles support (13) sont formés au moins en partie de supports en treillis.
  12. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 11, caractérisée en ce que le pilier (9) est réalisé au moins en partie sous forme de tube.
  13. Installation pour la condensation de vapeur selon l'une quelconque des revendications 1 à 12, caractérisée en ce que le pilier (9) possède ou forme un canal pour conduire l'air de refroidissement du bas vers le haut jusqu'à une unité d'entrainement du ventilateur (8).
  14. Installation pour la condensation de vapeur selon la revendication 13, caractérisée en ce qu'une soufflante est prévue pour aspirer ou presser l'air de refroidissement à travers le canal.
  15. Installation pour la condensation de vapeur selon l'une quelconque des revendications 4 à 14, caractérisée en ce que plusieurs rangées adjacentes (16) de faisceaux tubulaires (2) disposés l'un à côté de l'autre sont logés dans une disposition en forme de V sur au moins une traverse (26), qui s'étend transversalement au sommet (7), dans laquelle la traverse (26) est logée sur au moins un pilier (9) et/ou au moins un support de traverse.
  16. Installation pour la condensation de vapeur selon la revendication 15, caractérisée en ce que le nombre de piliers (9) et/ou de supports de traverse, qui portent la traverse (26), est inférieur au nombre de rangées (16), qui sont portées par la traverse (26).
EP14792731.3A 2014-09-29 2014-09-29 Installation pour la condensation de vapeur Active EP3201550B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2014/100345 WO2016050228A1 (fr) 2014-09-29 2014-09-29 Installation pour la condensation de vapeur

Publications (2)

Publication Number Publication Date
EP3201550A1 EP3201550A1 (fr) 2017-08-09
EP3201550B1 true EP3201550B1 (fr) 2018-06-20

Family

ID=51845261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14792731.3A Active EP3201550B1 (fr) 2014-09-29 2014-09-29 Installation pour la condensation de vapeur

Country Status (6)

Country Link
US (1) US9995182B2 (fr)
EP (1) EP3201550B1 (fr)
KR (1) KR101863016B1 (fr)
CN (1) CN106716036B (fr)
WO (1) WO2016050228A1 (fr)
ZA (1) ZA201702814B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683530A1 (fr) * 2019-01-18 2020-07-22 Hamon Thermal Europe S.A. Échangeur thermique à refroidissement à air

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355356B2 (en) 2014-07-14 2019-07-16 Palo Alto Research Center Incorporated Metamaterial-based phase shifting element and phased array
US10060686B2 (en) * 2015-06-15 2018-08-28 Palo Alto Research Center Incorporated Passive radiative dry cooling module/system using metamaterials
ES2761695T3 (es) * 2016-08-24 2020-05-20 Spg Dry Cooling Belgium Condensador enfriado por aire de tiro inducido
US11796255B2 (en) * 2017-02-24 2023-10-24 Holtec International Air-cooled condenser with deflection limiter beams
BE1024229B1 (fr) * 2017-10-31 2019-05-27 Hamon Thermal Europe S.A. Unité de refroidissement, installation et procédé
EP3480548B1 (fr) * 2017-11-07 2020-05-27 SPG Dry Cooling Belgium Échangeur de chaleur à trois étages pour un condenseur refroidi par air
CN108148934B (zh) * 2018-02-28 2023-06-13 中冶赛迪工程技术股份有限公司 可更换水渣蒸汽回收装置及其安装方法
PL3550245T3 (pl) * 2018-04-06 2020-11-02 Ovh Zespół wymiennika ciepła
EP3550244B1 (fr) 2018-04-06 2023-03-01 Ovh Ensemble de refroidissement et procédé pour son installation
KR102077730B1 (ko) * 2019-01-11 2020-02-14 두산중공업 주식회사 먼지집진부를 포함하는 콘덴서
WO2021046251A1 (fr) * 2019-09-05 2021-03-11 The Babcock & Wilcox Company Système de condensation de vapeur d'eau à collecteur de condensat intégré
CN114272714A (zh) * 2021-12-29 2022-04-05 司少龙 一种利用空气冷却器的脱苯塔苯蒸汽冷凝冷却系统
CN114307216A (zh) * 2021-12-29 2022-04-12 司少龙 一种利用空气冷却器的蒸氨塔氨汽冷凝冷却系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707185A (en) * 1971-03-25 1972-12-26 Modine Mfg Co Modular air cooled condenser
DE19937800B4 (de) 1999-08-10 2005-06-16 Gea Energietechnik Gmbh Anlage zur Kondensation von Dampf
DE10323791A1 (de) 2003-05-23 2004-12-09 Gea Energietechnik Gmbh Luftbeaufschlagter Trockenkühler zum Kondensieren von Wasserdampf
DE102007012539B4 (de) 2007-03-13 2011-03-03 Gea Energietechnik Gmbh Kondensationsanlage
US8235363B2 (en) 2008-09-30 2012-08-07 Spx Cooling Technologies, Inc. Air-cooled heat exchanger with hybrid supporting structure
CN202304469U (zh) * 2011-09-26 2012-07-04 山东源和电站工程技术有限公司 一种散热单元装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683530A1 (fr) * 2019-01-18 2020-07-22 Hamon Thermal Europe S.A. Échangeur thermique à refroidissement à air

Also Published As

Publication number Publication date
CN106716036A (zh) 2017-05-24
US20170234168A1 (en) 2017-08-17
CN106716036B (zh) 2018-10-16
KR101863016B1 (ko) 2018-05-30
US9995182B2 (en) 2018-06-12
KR20170059457A (ko) 2017-05-30
WO2016050228A1 (fr) 2016-04-07
EP3201550A1 (fr) 2017-08-09
ZA201702814B (en) 2018-07-25

Similar Documents

Publication Publication Date Title
EP3201550B1 (fr) Installation pour la condensation de vapeur
DE19937800B4 (de) Anlage zur Kondensation von Dampf
DE202014104666U1 (de) Anlage zur Kondensation von Dampf
DE102007024934B4 (de) Rohrbündelreaktoren mit Druckflüssigkeitskühlung
EP2877654B1 (fr) Mât modulaire d'une éolienne
DE102018101344A1 (de) Kühleinheit, Anlage und Verfahren
DE102007012539B4 (de) Kondensationsanlage
EP2932095A1 (fr) Élément de transition destiné à être disposé entre des portions exécutées différemment d'une tour d'éolienne et tour d'éolienne équipée dudit élément de transition
DE2846549A1 (de) Waermeaustauscher mit rohrschlangen, die zwischen zwei tragwaenden angeordnet sind
EP3728975B1 (fr) Installation de condenseur à refroidissement par air
DE1501618B2 (de) Wärmeübertrager
DE102014112707A1 (de) Anlage zur Kondensation von Dampf
EP1876391A1 (fr) Échangeur de chaleur et méthode pour sa fabrication
DE3008020A1 (de) Kuehlturm-mantel
DE2832162C2 (de) Naturzug-Trockenkühlturm
DE1939245C3 (de) Luftgekühlter Kondensator für das Kopf produkt einer Destillier- oder Rektifizier-Kolonne
DE2020046A1 (de) Halterung fuer eine bestimmte Menge schmelzbaren,in festem Zustand befindlichen Materials in einer Kondensatorkammer
EP1864067A2 (fr) Tour de refroidissement par voie humide
DE4222663C2 (de) Heizregister, insbesondere für Trockeneinrichtungen
EP4384766A1 (fr) Installation de condensation
DE2431851A1 (de) Trockener querstrom-kuehlturm
DE68905402T2 (de) Waermeaustauscher zwischen einem gas und einer fluessigkeit mit erhoehten thermischen austauschfaehigkeiten.
EP2853852B1 (fr) Elément d'intégration pour un dispositif de traitement d'un fluide utile au moyen d'un fluide de travail
EP3907404B1 (fr) Dispositif de fourniture de fluide et/ou d'énergie
WO2021058351A1 (fr) Accumulateur de chaleur de grande taille, doté de couvercle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014008619

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28B0001060000

Ipc: F01K0009000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28B 1/06 20060101ALI20180117BHEP

Ipc: F01K 9/00 20060101AFI20180117BHEP

INTG Intention to grant announced

Effective date: 20180207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008619

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008619

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180929

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140929

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010745

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008619

Country of ref document: DE

Owner name: ENEXIO ACC GMBH, DE

Free format text: FORMER OWNER: ENEXIO GERMANY GMBH, 44651 HERNE, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: ENEXIO ACC GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ENEXIO GERMANY GMBH

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 10

Ref country code: BE

Payment date: 20230920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 10

Ref country code: CH

Payment date: 20231001

Year of fee payment: 10