EP3192164A1 - Système et procédé de commande d'une machine électrique asynchrone - Google Patents

Système et procédé de commande d'une machine électrique asynchrone

Info

Publication number
EP3192164A1
EP3192164A1 EP15778360.6A EP15778360A EP3192164A1 EP 3192164 A1 EP3192164 A1 EP 3192164A1 EP 15778360 A EP15778360 A EP 15778360A EP 3192164 A1 EP3192164 A1 EP 3192164A1
Authority
EP
European Patent Office
Prior art keywords
stator
park
rotor
pulsation
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15778360.6A
Other languages
German (de)
English (en)
Inventor
Abdelmalek Maloum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3192164A1 publication Critical patent/EP3192164A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control

Definitions

  • the invention relates to the technical field control of electrical machines, and in particular, the control of asynchronous electrical machines.
  • the asynchronous electric machine by its construction, is the most robust and cheapest electric machine on the market. Advances in the control of such machines and considerable technological advances, both in the field of power electronics and in microelectronics, have made it possible to install powerful controls for this machine, making it daunting competitor in the areas of variable speed and rapid torque control. However, many problems remain. The influence of variations in the parameters of the machine and the presence of mechanical sensors are all difficulties that have sharpened the curiosity of researchers and engineers.
  • the asynchronous cage machine whose rotor does not rotate at the speed of the rotating field and whose only electrical input is to the stator poses difficult problems for its control.
  • DSP Digital Signal Processor
  • Document FR 2800935 describes a robust control strategy with rotor flux orientation for an asynchronous machine.
  • the robustness of this strategy lies in taking into account the drop in the stator voltage.
  • the document FR 2779017 describes a method of control with the orientation of the rotor flux for an asynchronous motor.
  • the originality of this technique lies in the way in which the rotor flux is reconstituted and in the comparison of this reconstituted flow with flow mapping in nominal mode in order to obtain a fast action on the electric machine. Such an approach is different from that of the present invention.
  • EP 0884835 discloses a speed control method in which the rotor flux is also oriented for an asynchronous machine. Based on the characteristics of the machine, the electromotive forces and then the stator frequency ⁇ s are first calculated. This method has a major disadvantage because it depends on the physical parameters of the machine. It is well known that these are likely to evolve.
  • EP0840441 discloses control strategies with conventional rotor flux orientation for asynchronous machines. Their goal is not the command itself but rather the management of the saturation of these commands. As a result, the control method is triggered when the commands U d and U q reach predefined thresholds.
  • EP088351 1 discloses control instructions generated in the three-phase sinusoidal reference frame (a, b, c).
  • the setpoint block contains the rotor frequency and the amplitude of the currents as a function of the setpoint value of the desired torque. It is by imposing a rotor frequency, also called sliding frequency, that the frequency of the current instructions is imposed.
  • the invention relates to a method for controlling an asynchronous electric machine of a power unit of a motor vehicle with electric or hybrid traction.
  • the method comprises the following steps:
  • an operating point comprising a request for pulsation of the rotor and a request for the flow of the rotor as a function of the torque request of the driver,
  • stator current values are calculated in the reference frame of
  • stator voltages values are determined in the Park coordinate system as a function of the computed value of the rotor flux and of the computed value of the stator pulsation, the stator currents in the Park reference, of the request for pulsation of the rotor and the rotor flow request, and
  • the electric machine can be controlled by orienting the rotor flux by canceling the quadratic component of the flux in the Park mark.
  • the electric machine can be controlled by direct vector control by calculating the Park angle directly from the measured or estimated quantities.
  • the angle of Park can be determined through an observer.
  • the invention also relates to a control system of an electric machine asynchronous powertrain of a motor vehicle with electric or hybrid traction.
  • the system includes:
  • a means for determining the driver's will capable of determining a torque request from the driver
  • an operating point determining means capable of determining an operating point comprising a request for pulsation of the rotor and a request for flow of the rotor as a function of the torque request of the driver
  • calculation means capable of determining the mechanical rotation speed, and the instantaneous values of the stator supply currents in the three-phase reference
  • the calculation means may be able to calculate the Park angle directly from the measured or estimated quantities.
  • the calculation means may be able to apply an observer to the instantaneous values of the stator currents in the two-phase reference, to the instantaneous values of the stator voltages in the two-phase reference, and to the mechanical rotation speed in order to determine the angle of Park. , a calculated value of the rotor flux and a calculated value of the stator pulsation.
  • FIG. 1 illustrates the references of the three-phase quantities and the two-phase quantities
  • FIG. 2 illustrates the remarkable angles, a fixed reference with respect to the stator, a fixed reference with respect to the rotor and the Park mark,
  • FIG. 3 illustrates the main elements of a control system according to the invention
  • FIG. 4 illustrates the main steps of the control method according to the invention.
  • Clarke transformation rather than the Concordia transformation will preferably be used to pass three-phase quantities (a, b, c) to two-phase magnitudes ( ⁇ , ⁇ ).
  • Figure 1 illustrates these two landmarks.
  • This choice of non-standardized passage matrix makes it possible to facilitate control by processing direct quantities d or in quadrature q, for example the source currents I ds and I qs . This also makes it possible, for example, to directly estimate the modulus of the current which is absorbed by the electric machine, without having to go through a multiplying coefficient.
  • the reference (a s , ⁇ s ) is fixed and linked to the stator, the reference ( ⁇ r , ⁇ r ), meanwhile, is fixed to the rotor. Finally, the reference (d, q) is related to the rotating magnetic field.
  • ⁇ S the angle formed by the rotating field with respect to the reference (a s , ⁇ s ) fixed with respect to the stator
  • ⁇ r the angle formed by the rotating field with respect to the reference ( ⁇ r , ⁇ r ) fixed with respect to the rotor.
  • I ds the direct component d of the statoric current
  • I qs the quadrature component q of the stator current
  • I dr the direct component d of the rotor current
  • I qr the quadrature component q of the rotor current.
  • the electromagnetic torque C e is determined by applying the following equation:
  • stator pulsation ⁇ s is defined by the following equation:
  • V ds the direct component d of the voltage applied to the stator
  • V qs the quadrature component q of the voltage applied to the stator
  • R s represents the resistance of the stator of the machine
  • R r represents the rotor resistance of the machine
  • J the inertia of the electric machine.
  • the purpose of the vector control is to control the asynchronous machine as an independent excitation DC machine which includes a decoupling between the magnitude controlling the flux, the excitation current, and that related to the torque, the armature current. This decoupling is inherent to the design of the machine with independent excitation and makes it possible to obtain a very fast response of the torque during a command.
  • the vector control thus obtained is said to orient the rotor flux. It eliminates the influence of rotor and stator leakage reactances and gives better results than methods based on the orientation of the stator flux.
  • Equation Eq. 14 can be transposed to the control of the electric machine by fixing
  • the Park angle ⁇ S is calculated from the stator pulsation, which is itself reconstructed using the machine speed and the rotor pulsation ⁇ r .
  • the Park angle is calculated directly using measured or estimated magnitudes.
  • the vector control is called open loop if there is no flow control.
  • the flow is imposed in this case by the current I ds -The statoric pulsation can then only be estimated by the following relation:
  • f is a cartography function of the mechanical regime. The latter comes from an energy optimization of the machine
  • the vector control is called closed loop, if the stator pulsation is estimated from the value of the rotor flux or the magnetizing current.
  • the indirect vector control by orientation of the rotor flux essentially rests on two parameters, M and ⁇ r , which link the rotor flow and the current I ds that control it. These parameters also make it possible to calculate the angle ⁇ S that the rotating field forms with respect to the fixed reference ( ⁇ s , ⁇ s ).
  • the direct order is privileged.
  • the direct vector control by orientation of the rotor flux requires the reconstitution of the rotor flux, in order to be able to determine the angle ⁇ S accurately.
  • the determination of this angle is carried out by a flow observer, in particular that described in the patent application FR1453935 filed on April 30, 2014.
  • V ds and V qs stabilize the machine around a desired operating point. They are determined by applying the following equations:
  • Direct stator current setpoint values and in quadrature in the Park coordinate system are therefore calculated dynamically in the regulator of the control system according to the invention, at the same time as the calculation of the control voltages Vds and Vqs.
  • This makes it possible to have a regulation structure in cascade (to regulate the direct current it is first necessary to regulate the flow); this also allows the instantaneous taking into account possible voltage saturations (Vds and Vqs). The effect is to improve the accuracy of the control system.
  • FIG. 3 illustrates the main elements of a control system 1 able to determine the voltages (V as , V bs , V cs ) of supply of an asynchronous electric machine 2 for a direct vector control by orientation of the rotor flux.
  • a means for determining the will of the driver 4 such as an accelerator pedal depression sensor, issues a torque request according to the
  • the torque request is received at the input of a means 5 of
  • determining operating points able to determine an operating point comprising a request for pulsation of the rotor and a request for flow of the rotor
  • the reference flow is given by a mapping according to the mechanical regime. The latter comes from an energy optimization of the machine.
  • sensors 6 transmit different measurements such as raw measurements of currents and mechanical speed, to a calculation means 7 able to determine the mechanical rotation speed ⁇ , and the instantaneous values of the supply currents.
  • the stator as I, I bs, cs the marker in three-phase (a, b, c).
  • a means 8 for determining the stator currents in the two-phase reference ( ⁇ , ⁇ ) receives the instantaneous values of the power supply currents of the stator I as , I bs , 1 cs in the three-phase reference (a, b, c).
  • the determining means 8 applies the equations Eq. 1 in order to change from three-phase quantities to two-phase quantities.
  • a means 9 for determining the stator currents in the Park mark receives the instantaneous values of the stator currents in the two-phase reference (a, P).
  • the determining means 9 applies the equation Eq. 3 to switch from two-phase variables (I have, I ⁇ s) to quantities in the landmark Park (Id s, I qs).
  • a calculation means 10 applies an observer to the instantaneous values of the stator currents in the two-phase reference (a, ⁇ ), to the instantaneous values of the stator voltages in the two-phase reference ( ⁇ , ⁇ ), and to the mechanical rotation speed ⁇ in order to determine the angle ⁇ S formed by the rotating field with respect to the fixed reference (a s , ⁇ ⁇ ) relative to the stator, the calculated value of the rotor flux and the calculated value of the stator pulsation via
  • a calculation means 1 1 applies the equations Eq. 19 to the values emitted at the output of the means 5 for determining operating points, the means 9 for determining the stator currents in the Park mark and the observer calculation means 10.
  • the calculation means 1 1 determines values of stator voltages in the Park coordinate system (V ds , V qs ).
  • a means 12 for determining the values of the stator voltages in the two-phase reference system applies the equations Eq. 4 to go from the Park marker to the two-phase marker.
  • a means 13 for determining the voltage values of the stator in the three-phase reference system applies the equations Eq. 2 in order to go from the two-phase mark to the three-phase mark.
  • the three-phase stator voltages values thus determined are transmitted to the control means (not shown) of the power inverter of the electric machine 2 in order to generate the corresponding voltages. Its stator thus fed, the electric machine 2 generates a motor torque C e , which is transmitted to the wheel 3 in a conventional manner.
  • FIG. 4 illustrates the main steps of a control method making it possible to determine the power supply voltages (V as , V bs , V cs ) of an asynchronous electric machine 2 for direct vector control by orienting the rotor flux.
  • the driver's will is determined, for example by measuring the depression of the accelerator pedal, in order to determine a torque request. according to the will of the driver.
  • an operating point comprising a request for pulsation of the rotor is determined. and a request for rotor flux as a function of the torque request.
  • the mechanical speed of rotation ⁇ is determined, and the instantaneous values of the stator supply currents I as , I bs , l cs in the three-phase reference (a, b, c) according to sensor measurements.
  • stator currents in the two-phase reference ( ⁇ , ⁇ ) are determined as a function of the instantaneous values of the stator supply currents I as , I bs , I cs in the three-phase reference (a , b, c) by applying equations Eq. 1.
  • stator currents in the Park coordinate system are determined as a function of the instantaneous stator current values in the two-phase reference ( ⁇ , ⁇ ) by applying the equation Eq. 3.
  • the angle ⁇ S formed by the rotating field with respect to the reference (a s , ⁇ ⁇ ) fixed relative to the stator, the calculated value of the rotor flux and the computed value is determined.
  • stator voltage values in the Park coordinate system (V ds , V qs ) are determined as a function of the operating point values, stator currents in the Park landmark and determined by observer, applying the equations Eq. 19.
  • the values of the voltages of the stator in the two-phase reference mark are determined as a function of the stator voltage values in the Park coordinate system by applying equations Eq. 4.
  • the values of the voltages of the stator in the three-phase reference frame are determined as a function of the values of the voltages of the stator in the two-phase reference mark by application of the equations Eq. 2.
  • the three-phase stator voltages values thus determined are transmitted to the power inverter of the electric machine 2 in order to generate the corresponding voltages. Its stator thus fed, the electric machine 2 generates a motor torque C e , which is transmitted to the wheel 3 in a conventional manner.
  • the present method can be applied to other types of rotating machines with the use of a suitable reference change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Système de commande d'une machine électrique asynchrone pour véhicule automobile électrique ou hybride comprenant: -un moyen de détermination (4) d'une requête de couple du conducteur, -un moyen de détermination (5) d'un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple du conducteur, -un moyen de calcul (7) apte à déterminer la vitesse de rotation mécanique, et les courants d'alimentation du stator dans le repère triphasé, -un moyen de calcul (10) de l'angle de Park, du flux rotorique et de la pulsation statorique, -un moyen de calcul (11) des tensions du stator dans le repère de Park en fonction des valeurs calculées du flux rotorique et de la pulsation statorique, des courants de stator dans le repère de Park, de la requête de pulsation du rotor et de la requête de flux du rotor.

Description

Système et procédé de commande d'une machine électrique
asynchrone
L'invention a pour domaine technique la commande de machines électriques, et en particulier, la commande de machines électriques asynchrones.
La machine électrique asynchrone, de par sa construction, est la machine électrique la plus robuste et la moins chère du marché. Les progrès concernant la commande de telles machines et les avancées technologiques considérables, tant dans le domaine de l'électronique de puissance que dans celui de la micro-électronique, ont rendu possible l'implantation de commandes performantes de cette machine faisant d'elle un concurrent redoutable dans les secteurs de la vitesse variable et du contrôle rapide du couple. Cependant de nombreux problèmes demeurent. L'influence des variations des paramètres de la machine et la présence de capteurs mécaniques sont autant de difficultés qui ont aiguisé la curiosité des chercheurs et ingénieurs.
La machine asynchrone à cage dont le rotor ne tourne pas à la vitesse du champ tournant et dont la seule entrée électrique est au stator pose des problèmes difficiles pour sa commande. Pour contrôler le couple, la vitesse (ou la position de la machine), il a été proposé des techniques différentes. Il a notamment été proposé des méthodes scalaires, mais ces méthodes ont pour inconvénient de ne pas pouvoir garantir le couple à l'arrêt ou d'être suffisamment dynamiques et précises.
Il a également été proposé des méthodes vectorielles, plus dynamiques et précises que les méthodes scalaires. L'utilisation de microcontrôleurs et de dispositifs de traitement de signal (« DSP : Digital Signal Processor » en langue anglaise) a permis l'implémentation des méthodes vectorielles.
Cette méthode présente néanmoins certains problèmes, notamment lorsque l'on cherche à obtenir des performances élevées. De l'état de la technique, on connaît les documents suivants.
Le document FR 2800935 décrit une stratégie de commande robuste avec orientation du flux rotorique pour une machine asynchrone. La robustesse de cette stratégie réside dans la prise en compte de la chute de la tension statorique.
Le document FR 2779017 décrit une méthode de contrôle avec l'orientation du flux rotorique pour un moteur asynchrone. L'originalité de cette technique réside dans la manière dont le flux rotorique est reconstitué et dans la comparaison de ce flux reconstitué avec une cartographie de flux en régime nominal afin d'obtenir une action rapide sur la machine électrique. Une telle approche est différente de celle de la présente invention.
Le document EP 0884835 décrit un procédé de régulation de la vitesse dans lequel le flux rotorique est également orienté pour une machine asynchrone. En se basant sur les caractéristiques de la machine, on calcule d'abord les forces électromotrices puis la fréquence statorique ωs. Cette méthode possède un inconvénient majeur, car elle est tributaire des paramètres physiques de la machine. Il est bien connu que ces derniers sont susceptibles d'évoluer.
Le document EP0840441 divulgue des stratégies de commande avec orientation du flux rotorique classiques pour les machines asynchrones. Leur objectif n'est pas la commande en elle-même mais plutôt la gestion de la saturation de ces commandes. De ce fait, le procédé de commande se déclenche quand les commandes Ud et Uq atteignent des seuils prédéfinis.
Le document EP088351 1 décrit des consignes de commande générées dans le repère de référence sinusoïdal triphasé (a,b,c). Le bloc des consignes contient la fréquence de rotor et l'amplitude des courants en fonction de la valeur de la consigne du couple souhaitée. C'est en imposant une fréquence de rotor, également appelée fréquence de glissement, que la fréquence des consignes de courants est imposée.
Les documents EP0617505, EP04615 1 1 et EP0047893 divulguent des stratégies de commande à flux orienté pour des machines asynchrones, différentes de l'objet de la présente invention. Il demeure un problème technique lié à la simplicité d'implantation et à la robustesse vis-à-vis des variations de paramètres d'un procédé de commande d'une machine asynchrone.
L'invention a pour objet un procédé de commande d'une machine électrique asynchrone d'un groupe motopropulseur d'un véhicule automobile à traction électrique ou hybride. Le procédé comprend les étapes suivantes :
- on détermine une requête de couple du conducteur,
- on détermine un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple du conducteur,
- on détermine la vitesse de rotation mécanique, et les valeurs instantanées des courants d'alimentation du stator dans le repère triphasé,
- on calcule des valeurs de courant du stator dans le repère de
Park,
- on détermine l'angle de Park, le flux rotorique et la pulsation statorique,
- on détermine des valeurs de tensions du stator dans le repère de Park en fonction de la valeur calculée du flux rotorique et de la valeur calculée de la pulsation statorique, des courants de stator dans le repère de Park, de la requête de pulsation du rotor et de la requête de flux du rotor, et
- on calcule des valeurs de tensions du stator dans le repère triphasé.
On peut commander la machine électrique par orientation du flux rotorique en annulant la composante quadratique du flux dans le repère de Park.
On peut commander la machine électrique par commande vectorielle directe en calculant l'angle de Park directement à partir des grandeurs mesurées ou estimées.
On peut déterminer l'angle de Park par l'intermédiaire d'un observateur. L'invention a également pour objet un système de commande d'une machine électrique asynchrone d'un groupe motopropulseur d'un véhicule automobile à traction électrique ou hybride. Le système comprend :
- un moyen de détermination de la volonté du conducteur apte à déterminer une requête de couple du conducteur,
- un moyen de détermination de points de fonctionnement apte à déterminer un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple du conducteur,
- un moyen de calcul apte à déterminer la vitesse de rotation mécanique, et les valeurs instantanées des courants d'alimentation du stator dans le repère triphasé,
-des moyens de calcul des valeurs de courant du stator dans le repère de Park,
- un moyen de calcul de l'angle de Park, du flux rotorique et de la pulsation statorique,
- un moyen de calcul des valeurs de tensions du stator dans le repère de Park en fonction de la valeur calculée du flux rotorique et de la valeur calculée de la pulsation statorique, des courants de stator dans le repère de Park, de la requête de pulsation du rotor et de la requête de flux du rotor, et
-des moyens de calcul des valeurs de tensions du stator dans le repère triphasé.
Le moyen de calcul peut être apte à calculer l'angle de Park directement à partir des grandeurs mesurées ou estimées.
Le moyen de calcul peut être apte à appliquer un observateur aux valeurs instantanées des courants de stator dans le repère diphasé, aux valeurs instantanées des tensions de stator dans le repère diphasé , et à la vitesse de rotation mécanique afin de déterminer l'angle de Park, une valeur calculée du flux rotorique et une valeur calculée de la pulsation statorique.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
- la figure 1 illustre les repères des grandeurs triphasées et des grandeurs diphasées,
- la figure 2 illustre les angles remarquables, un repère fixe par rapport au stator, un repère fixe par rapport au rotor et le repère de Park,
- la figure 3 illustre les principaux éléments d'un système de commande selon l'invention, et
- la figure 4 illustre les principales étapes du procédé de commande selon l'invention.
Pour la suite de la description on utilisera de préférence la transformation de Clarke plutôt que celle de Concordia pour passer des grandeurs triphasées (a,b,c) aux grandeurs diphasées (α,β). La figure 1 illustre ces deux repères. Ce choix de matrice de passage non normée permet de faciliter la commande en traitant des grandeurs directes d ou en quadrature q, par exemple les courants de source Ids et Iqs. Cela permet également, par exemple, d'estimer directement le module du courant qui est absorbé par la machine électrique, sans avoir à passer par un coefficient multiplicateur.
Les équations suivantes décrivent le passage entre le repère des grandeurs triphasées (a,b,c) et le repère diphasé (α,β).
Les équations suivantes décrivent le passage entre le repère diphasé (α,β) et le repère de Park (d,q).
Dans ce qui suit, le repère (as, βs) est fixe et lié au stator, le repère (αr, βr), quant à lui, est fixé au rotor. Enfin, le repère (d, q) est lié au champ magnétique tournant.
Il apparaît clairement ensuite que le repère de la transformation de Park des grandeurs statoriques et celles des grandeurs rotoriques doivent coïncider pour simplifier les équations.
Ceci se fait en liant les angles θS et θr par la relation : θS = θ + θr (Eq. 5) avec :
θS : l'angle que forme le champ tournant par rapport au repère (as, βs) fixe par rapport au stator,
θ : l'angle mécanique, et
θr : l'angle que forme le champ tournant par rapport au repère (αr, βr) fixe par rapport au rotor.
Ces angles sont illustrés par la figure 2
Les flux dans ce système d'axes s'écrivent de la façon suivante :
M : l'inductance mutuelle,
Ids : la composante directe d du courant statorique,
Iqs : la composante en quadrature q du courant statorique, Idr : la composante directe d du courant rotorique, et
Iqr : la composante en quadrature q du courant rotorique.
Le couple électromagnétique Ce est déterminé par application de l'équation suivante :
avec p= nombre de paires de pôles
La commande de la machine électrique peut être décrite dans un référentiel lié au champ tournant. Dans ce cas, la pulsation statorique ωs est définie par l'équation suivante :
On peut alors écrire :
Avec :
Vds : la composante directe d de la tension appliquée au stator, Vqs : la composante en quadrature q de la tension appliquée au stator,
Rs représente la résistance du stator de la machine, et Rr représente la résistance du rotor de la machine.
L'avantage d'utiliser ce référentiel, est d'avoir des grandeurs constantes en régime permanent. Il est alors plus aisé d'en faire la régulation.
La commande de la machine électrique peut être décrite dans un référentiel lié au stator. Dans ce cas les repères (ass) et (d,q) sont confondus. On a alors le système d'équations suivant :
En combinant les équations Eq. 1 1 et Eq. 12, on peut écrire le système d'équations suivant :
On ajoute par ailleurs l'équation mécanique suivante :
Avec :
Cr : le couple résistant
J : l'inertie de la machine électrique.
En modélisant la machine de cette manière, on réduit le nombre de grandeurs dont on a besoin de connaître la valeur pour pouvoir commander le fonctionnement de la machine. En effet, seules les valeurs instantanées des tensions statoriques doivent être déterminées pour les imposer à la machine. Il n'est donc pas nécessaire de connaître la valeur des autres grandeurs telles que la pulsation statorique ou le glissement comme dans d'autres modèles, notamment celui lié à un référentiel tournant au synchronisme (Eq. 8, Eq. 9 et Eq. 10).
Pour commander des machines asynchrones, il est possible d'utiliser une commande dite vectorielle. Le but de la commande vectorielle est de commander la machine asynchrone comme une machine à courant continu à excitation indépendante laquelle comprend un découplage entre la grandeur commandant le flux, le courant d'excitation, et celle liée au couple, le courant d'induit. Ce découplage est inhérent à la conception de la machine à excitation indépendante et permet d'obtenir une réponse très rapide du couple lors d'une commande.
Pour cela, on oriente le repère de Park d-q de sorte que l'axe d soit en phase avec le flux, c'est-à-dire :
La commande vectorielle ainsi obtenue est dite à orientation du flux rotorique. Elle permet d'éliminer l'influence des réactances de fuite rotorique et statorique et donne de meilleurs résultats que les méthodes basées sur l'orientation du flux statorique.
Les conditions de l'équation Eq. 14 peuvent être transposées à la commande de la machine électrique en fixant
Les équations de la machine dans un référentiel lié au champ tournant (Eq. 13) deviennent alors :
Avec :
τr : la constante de temps rotorique.
Par ailleurs, il existe des méthodes de commande vectorielle directes et indirectes.
Dans la commande indirecte, l'angle de Park θS est calculé à partir de la pulsation statorique, elle-même reconstituée à l'aide de la vitesse de la machine et de la pulsation rotorique ωr.
En ce qui concerne la commande directe, l'angle de Park est calculé directement à l'aide des grandeurs mesurées ou estimées.
La commande vectorielle est dite à boucle ouverte s'il n'y a pas de régulation de flux. Le flux est imposé dans ce cas par le courant Ids -La pulsation statorique peut alors uniquement être estimée par la relation suivante :
On note que f est une cartographie fonction du régime mécanique. Cette dernière est issue d'une optimisation énergétique de la machine
La commande vectorielle est dite à boucle fermée, si la pulsation statorique est estimée à partir de la valeur du flux rotorique ou du courant magnétisant.
La commande vectorielle indirecte par orientation du flux rotorique repose essentiellement deux paramètres, M et τr, qui lient le flux rotorique et le courant Ids qui le contrôle. Ces paramètres permettent également de calculer l'angle θS que forme le champ tournant par rapport au repère fixe (αs, βs).
Une surestimation ou une sous-estimation de la constante de temps rotorique τr conduisent respectivement à une surexcitation ou à une sous-excitation de la machine. Dans les deux cas, l'amplitude et la phase du flux rotorique ne sont pas celles que l'on voudrait imposer, il en résulte une dégradation des performances, voir une instabilité du système.
En partant de ce constat, la commande directe est privilégiée.
La commande vectorielle directe par orientation du flux rotorique nécessite la reconstitution du flux rotorique, afin de pouvoir déterminer l'angle θS de façon précise. La détermination de cet angle est réalisée par un observateur de flux, notamment celui décrit dans la demande de brevet FR1453935 déposée le 30 avril 2014.
En orientant le flux rotorique, on obtient le modèle suivant :
Les tensions Vds et Vqs stabilisent la machine autour d'un point de fonctionnement désiré. Elles sont déterminées par application des équations suivantes :
Avec
fonctionnement de référence ;
valeurs calculées par l'intermédiaire
l'observateur.
Les valeurs de consignes de courants statoriques directe et en quadrature dans le repère de Park sont donc calculées dynamiquement dans le régulateur du système de commande selon l'invention, en même temps que le calcul des tensions de commande Vds et Vqs. Cela permet d' avoir une structure de régulation en cascade (pour réguler le courant direct il faut d'abord réguler le flux) ; ceci permet aussi la prise en compte instantanée d'éventuelles saturations de tensions (Vds et Vqs). L'effet est d'améliorer la précision du système de commande.
La figure 3 illustre les principaux éléments d'un système de commande 1 apte à déterminer les tensions (Vas,Vb s,Vcs) d'alimentation d'une machine électrique asynchrone 2 pour une commande vectorielle directe par orientation du flux rotorique.
Pour cela, un moyen de détermination de la volonté du conducteur 4, tel un capteur d'enfoncement de la pédale d'accélérateur, émet une requête de couple en fonction de la
volonté du conducteur.
La requête de couple est reçue en entrée d'un moyen 5 de
détermination de points de fonctionnement apte à déterminer un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor Le flux de référence est donné par une cartographie en fonction du régime mécanique. Cette dernière est issue d'une optimisation énergétique de la machine.
En parallèle, des capteurs 6 transmettent différentes mesures telles que les mesures brutes des courants et de la vitesse mécanique, à destination d'un moyen de calcul 7 apte à déterminer la vitesse de rotation mécanique Ω, et les valeurs instantanées des courants d'alimentation du stator Ias, Ib s, lcs dans le repère triphasé (a,b,c).
Un moyen de détermination 8 des courants de stator dans le repère diphasé (α,β) reçoit les valeurs instantanées des courants d'alimentation du stator Ias, Ibs, lcs dans le repère triphasé (a,b,c). Le moyen de détermination 8 applique les équations Eq. 1 afin de passer de grandeurs triphasées à des grandeurs diphasées.
Un moyen de détermination 9 des courants de stator dans le repère de Park reçoit les valeurs instantanées des courants de stator dans le repère diphasé (a,P).Le moyen de détermination 9 applique l'équation Eq. 3 afin de passer de grandeurs diphasées (Ias,Iβs) à des grandeurs dans le repère de Park (Ids, Iqs).
Un moyen de calcul 10 applique un observateur aux valeurs instantanées des courants de stator dans le repère diphasé (a,β),aux valeurs instantanées des tensions de stator dans le repère diphasé (α,β), et à la vitesse de rotation mécanique Ω afin de déterminer l'angle θS que forme le champ tournant par rapport au repère (as, ββ) fixe par rapport au stator, la valeur calculée du flux rotorique et la valeur calculée de la pulsation statorique par l'intermédiaire de
l'observateur.
Un moyen de calcul 1 1 applique les équations Eq. 19 aux valeurs émises en sortie du moyen 5 de détermination de points de fonctionnement, du moyen de détermination 9 des courants de stator dans le repère de Park et du moyen de calcul 10 par observateur.
Le moyen de calcul 1 1 détermine des valeurs de tensions du stator dans le repère de Park (Vds,Vqs).
Un moyen de détermination 12 des valeurs de tensions du stator dans le repère diphasé applique les équations Eq. 4 afin de passer du repère de Park au repère diphasé. Un moyen de détermination 13 des valeurs de tensions du stator dans le repère triphasé applique les équations Eq. 2 afin de passer du repère diphasé au repère triphasé. Les valeurs de tensions triphasées du stator ainsi déterminées sont transmises au moyen de commande (non représenté) de l'onduleur d'alimentation de la machine électrique 2 afin de générer les tensions correspondantes. Son stator ainsi alimenté, la machine électrique 2 génère une couple moteur Ce, qui est transmis à la roue 3 de façon classique.
La figure 4 illustre les principales étapes d'un procédé de commande permettant de déterminer les tensions (Vas,Vb s,Vcs) d'alimentation d'une machine électrique asynchrone 2 pour une commande vectorielle directe par orientation du flux rotorique.
Pour cela, au cours d'une première étape 14, on détermine la volonté du conducteur, par exemple par mesure de l'enfoncement de la pédale d'accélérateur, afin de déterminer une requête de couple en fonction de la volonté du conducteur.
Au cours d'une deuxième étape 15, on détermine un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple .
En parallèle, au cours d'une troisième étape 16, on détermine à la vitesse de rotation mécanique Ω, et les valeurs instantanées des courants d'alimentation du stator Ias, Ib s, lcs dans le repère triphasé (a,b,c) en fonction de mesures de capteurs.
Au cours d'une quatrième étape 17, on détermine des courants de stator dans le repère diphasé (α,β) en fonction des valeurs instantanées des courants d'alimentation du stator Ias, Ib s, lcs dans le repère triphasé (a,b,c) par application des équations Eq. 1.
Au cours de l'étape suivante 18, on détermine les courants de stator dans le repère de Park en fonction des valeurs instantanées des courants de stator dans le repère diphasé (α,β) par application de l'équation Eq. 3.
Au cours d'une étape suivante 19, on détermine l'angle θS que forme le champ tournant par rapport au repère (as, ββ) fixe par rapport au stator, la valeur calculée du flux rotorique et la valeur calculée de la pulsation statorique par l'intermédiaire d'un observateur choisi en fonction des valeurs instantanées des courants de stator dans le repère diphasé (α,β), des valeurs instantanées des tensions de stator dans le repère diphasé (α,β), et de la vitesse de rotation mécanique Ω.
Au cours d'une étape suivante 20, on détermine des valeurs de tensions du stator dans le repère de Park (Vds,Vqs) en fonction des valeurs du point de fonctionnement, des courants de stator dans le repère de Park et des valeurs déterminées par observateur, en appliquant les équations Eq. 19.
Au cours d'une étape 21 , on détermine les valeurs de tensions du stator dans le repère diphasé en fonction des valeurs de tensions du stator dans le repère de Park par application des équations Eq. 4.
Au cours d'une étape 22, on détermine les valeurs de tensions du stator dans le repère triphasé en fonction des valeurs de tensions du stator dans le repère diphasé par application des équations Eq. 2.
On transmet les valeurs de tensions triphasées du stator ainsi déterminées à l'onduleur d'alimentation de la machine électrique 2 afin de générer les tensions correspondantes. Son stator ainsi alimenté, la machine électrique 2 génère une couple moteur Ce, qui est transmis à la roue 3 de façon classique.
Le présent procédé peut être appliqué à d'autres types de machines tournantes moyennant l'emploi d'un changement de repère adapté.

Claims

REVENDICATIONS
1. Procédé de commande d'une machine électrique asynchrone d'un groupe motopropulseur d'un véhicule automobile à traction électrique ou hybride comprenant les étapes suivantes :
- on détermine une requête de couple du conducteur,
- on détermine un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple du conducteur,
- on détermine la vitesse de rotation mécanique, et les valeurs instantanées des courants d'alimentation du stator dans un repère triphasé,
- on calcule des valeurs de courant du stator dans le repère de
Park,
- on détermine l'angle de Park, le flux rotorique et la pulsation statorique,
- on détermine des valeurs de tensions du stator dans le repère de Park,
- on calcule des valeurs de tensions du stator dans le repère triphasé à partir desdites valeurs de tensions du stator déterminées dans le repère de Park,
ledit procédé étant caractérisé en ce qu'on détermine des valeurs de tensions du stator dans le repère de Park en fonction de la valeur calculée du flux rotorique et de la valeur calculée de la pulsation statorique, des courants du stator dans le repère de Park, et de valeurs de courants statoriques de consigne déterminées en fonction de la requête de pulsation du rotor, de la requête de flux du rotor, et de la valeur calculée du flux rotorique.
2. Procédé selon la revendication 1 , dans lequel on commande la machine électrique par orientation du flux rotorique en annulant la composante quadratique du flux dans le repère de Park.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel on commande la machine électrique par commande vectorielle directe en calculant l'angle de Park directement à partir des grandeurs mesurées ou estimées.
4. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel on détermine l'angle de Park, le flux rotorique et la pulsation statorique par l'intermédiaire d'un observateur.
5. Système de commande d'une machine électrique asynchrone d'un groupe motopropulseur d'un véhicule automobile à traction électrique ou hybride comprenant:
- un moyen de détermination de la volonté du conducteur (4) apte à déterminer une requête de couple du conducteur,
- un moyen de détermination (5) de points de fonctionnement apte à déterminer un point de fonctionnement comprenant une requête de pulsation du rotor et une requête de flux du rotor en fonction de la requête de couple du conducteur,
- un moyen de calcul (7) apte à déterminer la vitesse de rotation mécanique, et les valeurs instantanées des courants d'alimentation du stator dans un repère triphasé,
-des moyens (8,9) de calcul des valeurs de courant du stator dans le repère de Park,
- un moyen de calcul (10) de l'angle de Park, du flux rotorique et de la pulsation statorique,
- un moyen de calcul (1 1) des valeurs de tensions du stator dans le repère de Park,
- des moyens (12, 13) de calcul des valeurs de tensions du stator dans le repère triphasé en fonction des valeurs fournies par ledit moyen de calcul des valeurs de tensions du stator dans le repère de Park,
ledit système étant caractérisé en ce que ledit moyen de calcul des valeurs de tensions du stator dans le repère de Park utilise
-la valeur du flux rotorique et la valeur de la pulsation statorique calculées par ledit moyen de calcul de l'angle de Park, du flux rotorique et de la pulsation statorique, - les valeurs de courant du stator dans le repère de Park calculées par lesdits moyens de calcul des valeurs de courant du stator dans le repère de Park,
- et des valeurs de courants statoriques de consigne déterminées en fonction de la requête de pulsation du rotor et de la requête de flux du rotor déterminées par ledit moyen de détermination de points de fonctionnement, et en fonction de la valeur de flux rotorique calculée par ledit moyen de calcul de l'angle de Park, du flux rotorique et de la pulsation statorique.
6. Système selon la revendication 5, dans lequel le moyen de calcul (10) est apte à calculer l'angle de Park directement à partir des grandeurs mesurées ou estimées.
7. Système selon la revendication 5, dans lequel le moyen de calcul (10) est apte à appliquer un observateur aux valeurs instantanées des courants de stator dans le repère diphasé, aux valeurs instantanées des tensions de stator dans le repère diphasé, et à la vitesse de rotation mécanique afin de déterminer l'angle de Park, une valeur calculée du flux rotorique et une valeur calculée de la pulsation statorique.
EP15778360.6A 2014-09-08 2015-09-08 Système et procédé de commande d'une machine électrique asynchrone Withdrawn EP3192164A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1458382A FR3025672B1 (fr) 2014-09-08 2014-09-08 Systeme et procede de commande d'une machine electrique asynchrone
PCT/FR2015/052385 WO2016038296A1 (fr) 2014-09-08 2015-09-08 Système et procédé de commande d'une machine électrique asynchrone

Publications (1)

Publication Number Publication Date
EP3192164A1 true EP3192164A1 (fr) 2017-07-19

Family

ID=52358864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15778360.6A Withdrawn EP3192164A1 (fr) 2014-09-08 2015-09-08 Système et procédé de commande d'une machine électrique asynchrone

Country Status (3)

Country Link
EP (1) EP3192164A1 (fr)
FR (1) FR3025672B1 (fr)
WO (1) WO2016038296A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3053183B1 (fr) * 2016-06-22 2018-06-22 Renault S.A.S Procede d'estimation de la position et de la vitesse du rotor d'une machine a courant alternatif pour vehicule automobile et systeme correspondant
CN109444539B (zh) * 2018-11-29 2020-07-07 西南交通大学 一种基于克拉克变换的同步相量测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3034252A1 (de) * 1980-09-11 1982-04-15 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum feldorientierten betrieb einer umrichtergespeisten asynchronmaschine
FR2614481B1 (fr) * 1987-02-13 1990-08-31 Pk I Procede de commande d'un moteur asynchrone et entrainement electrique mettant ce procede en application
FI87501C (fi) * 1990-06-12 1993-01-11 Kone Oy Foerfarande foer reglering av en asynkronmotor
DE4309011A1 (de) * 1993-03-20 1994-09-22 Marquardt Gmbh Schaltungsanordnung zur Drehzahlregelung von Elektromotoren
DE19608039A1 (de) * 1996-03-02 1997-09-04 Bosch Gmbh Robert Regelungsvorrichtung für eine Asynchronmaschine, insbesondere als Antrieb für Elektrofahrzeuge
EP0840441B1 (fr) * 1996-11-04 1999-05-12 Siemens Aktiengesellschaft Régulation à orientation de champ en limite de tension pour une machine à champ tournant
DE19648534A1 (de) * 1996-11-24 1998-05-28 Innotas Gmbh Antriebs Und Sich Verfahren zur rotorflußorientierten Regelung eines Asynchronantriebs
DE19724946B4 (de) * 1997-06-12 2005-09-15 Siemens Ag Verfahren und Vorrichtung zur Drehzahlregelung einer geberlosen, feldorientiert betriebenen Asynchronmaschine
FR2779017B1 (fr) * 1998-05-20 2000-06-23 Inst Nat Polytech Grenoble Systeme de regulation de moteur asynchrone a energie minimale par commande a flux oriente
DE19928481B4 (de) * 1999-06-22 2009-12-10 Robert Bosch Gmbh Verfahren zur vereinfachten feldorientierten Regelung von Asynchronmaschinen
JP4411796B2 (ja) * 2001-04-27 2010-02-10 富士電機システムズ株式会社 速度センサを持たない誘導モータドライブの制御システム、オブザーバ及び制御方法
CA2760288C (fr) * 2009-04-27 2015-05-05 Mitsubishi Electric Corporation Dispositif de conversion de puissance
FR2976746B1 (fr) * 2011-06-15 2015-08-07 Renault Sa Procede et dispositif de commande d'un groupe motopropulseur electrique a commandes decouplees

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016038296A1 *

Also Published As

Publication number Publication date
FR3025672A1 (fr) 2016-03-11
FR3025672B1 (fr) 2016-11-04
WO2016038296A1 (fr) 2016-03-17

Similar Documents

Publication Publication Date Title
EP2246973B1 (fr) Procédé de détermination de la position du vecteur de flux d'un moteur
EP2684289B1 (fr) Procede de commande mis en oeuvre dans un convertisseur de puissance pour identifier des parametres lies a la saturation magnetique d'un moteur electrique
FR3062762A1 (fr) Procede d'estimation de la position angulaire d’un rotor d’un systeme d’entrainement electrique
WO2015071576A1 (fr) Procede et systeme de commande d'une machine electrique triphasee de vehicule automobile alimentee par des tensions hachees
EP2870018B1 (fr) Procédé de commande d'un groupe motopropulseur et système correspondant
EP3192164A1 (fr) Système et procédé de commande d'une machine électrique asynchrone
EP1233506B1 (fr) Procédé et dispositif de commande de régulation d'une machine électrique tournante à courant alternatif, en particulier synchrone
EP3981068A1 (fr) Procédé d'estimation du couple électromagnétique d'une machine électrique synchrone
WO2009007416A1 (fr) Procede de commande d'un moteur synchrone a aimants permanents enterres
EP3284168A1 (fr) Procédé de contrôle du couple d'une machine électrique synchrone
WO2015166173A2 (fr) Procede d'estimation de l'angle electrique d'une machine electrique asynchrone pour vehicule automobile
EP3300544B1 (fr) Procédé et système de commande d'une machine électrique asynchrone d'un groupe motopropulseur d'un véhicule automobile à traction électrique ou hybride
EP3012962A1 (fr) Procédé de commande d'une machine électrique triphasée synchrone à rotor bobiné
EP2756593B1 (fr) Procede et dispositif de commande d'un groupe motopropulseur
FR3036556A1 (fr) Procede et systeme de commande d'une machine electrique asynchrone pour vehicule automobile.
EP2783461B1 (fr) Procede de commande d'un groupe motopropulseur et systeme de commande correspondant
EP3529889B1 (fr) Procedes et dispositifs relatifs a l'estimation d'une position angulaire d'un rotor
EP3175544B1 (fr) Procédé et dispositif de commande du couple électromagnétique d'un groupe motopropulseur
EP2992602B1 (fr) Procede de verification du fonctionnement d'un groupe motopropulseur equipant un vehicule automobile et systeme correspondant
EP2416490B1 (fr) Chaîne de traction pour un véhicule de transport, notamment ferroviaire, et procédé de commande d'une telle chaîne
FR3128598A1 (fr) Procédé de calage automatique d'un capteur de position angulaire
FR2978888A3 (fr) Systeme et procede de commande d'une machine electrique a rejection d'harmoniques.
FR3021821A1 (fr) Commande du couple electromagnetique d'une machine a reluctance commutee variable

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

INTG Intention to grant announced

Effective date: 20230710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231121