EP3189934B1 - Device for cleaning a jet engine - Google Patents

Device for cleaning a jet engine Download PDF

Info

Publication number
EP3189934B1
EP3189934B1 EP17150138.0A EP17150138A EP3189934B1 EP 3189934 B1 EP3189934 B1 EP 3189934B1 EP 17150138 A EP17150138 A EP 17150138A EP 3189934 B1 EP3189934 B1 EP 3189934B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
engine
jet engine
compressor
turbofan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17150138.0A
Other languages
German (de)
French (fr)
Other versions
EP3189934A1 (en
Inventor
Holger Appel
Klaus Bräutigam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lufthansa Technik AG
Original Assignee
Lufthansa Technik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lufthansa Technik AG filed Critical Lufthansa Technik AG
Publication of EP3189934A1 publication Critical patent/EP3189934A1/en
Application granted granted Critical
Publication of EP3189934B1 publication Critical patent/EP3189934B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines

Definitions

  • the invention relates to a device and an arrangement for cleaning an aircraft jet engine.
  • Aircraft jet engines have one or more compressor stages, a combustion chamber and one or more turbine stages. In the turbine stages, the hot combustion gases from the combustion chamber give off part of their thermal and mechanical energy, which is used to drive the compressor stages. Jet engines of commercial airliners today predominantly have what is known as a turbofan, which is arranged upstream of the compressor stages and generally has a considerably larger diameter than the compressor stages. The turbofan is also driven by the turbine stages and lets a considerable part of the air flowing through the engine as a whole flow past the compressor stages, the combustion chamber and the turbine stages as a so-called secondary air flow. Such a bypass flow can significantly increase the efficiency of an engine and also improve the noise insulation of the engine.
  • Contamination of an aircraft jet engine can lead to a reduction in efficiency, which results in increased fuel consumption and thus increased environmental pollution.
  • the pollution can be caused, for example, by insects, dust, salt spray or other environmental pollution.
  • Parts of the engine can be contaminated by combustion residues from the combustion chamber. These contaminants form a coating on the parts of an aircraft engine through which air flows and impair the surface quality. This affects the thermodynamic efficiency of the engine. Particular mention should be made of the blades in the compressor stages, the contamination of which has a significant influence on the efficiency of the entire engine.
  • coal dust As an alternative to the use of water as a cleaning medium, the use of coal dust is known. Like water, the coal dust is fed into the engine through nozzles and removes contamination from surfaces due to abrasive effects. However, the surface of the engine parts is also attacked by the coal dust, which is why a cleaning medium such as coal dust is not suitable for the regular cleaning of aircraft engines. In addition, when cleaning with coal dust, undesired residues of the cleaning material remain in the engine.
  • WO 2009/132847 A1 discloses an apparatus and a method for cleaning jet engines using solid carbon dioxide as the cleaning medium.
  • the U.S. 7,445,677 describes the features of the preamble of claim 1 and discloses a device for cleaning jet engines which can be attached to the shaft of a jet engine.
  • the invention is based on the object of creating a device and an arrangement which enable aircraft engines to be cleaned in an improved manner.
  • the application also relates to a method for cleaning a jet engine with a cleaning medium that contains solids.
  • the solids are introduced into the engine by means of a carrier gas through at least one nozzle.
  • the cleaning medium thus comprises at least one carrier gas and solids, preferably exclusively carrier gas and solids.
  • a carrier gas is a medium which is gaseous at the application temperature, preferably compressed air can be used.
  • the solids can be solids stable at the application temperature such as plastic beads, glass beads or coal dust. However, preference is given to using thermolabile solids such as solid carbon dioxide and / or ice (water ice).
  • the claimed process parameters enable effective cleaning, in particular of the compressor or compressor of an engine.
  • the cleaning medium follows the flow in the compressor and achieves a cleaning effect in all stages of the compressor, especially in the rearmost stages.
  • thermolabile solids such as carbon dioxide or ice in particular do not give up all the kinetic energy and / or sublime or melt in the front stages of the compressor.
  • the parameters only give the solids a basic impulse that feeds them into the engine.
  • the solid matter is then carried along by the gas flow in the engine and thus also conveyed to the rearmost compressor stages.
  • the pressure of the carrier gas is therefore 1 to 5 bar, preferably 2 to 4 bar. A particularly preferred pressure is 3 bar.
  • the exit direction of the nozzle (this term denotes the main exit direction) should extend as far into the compressor as possible without this exit direction or its imaginary axis touches the walls of the compressor.
  • the outlet of the at least one nozzle is arranged at a radial distance from the axis of rotation of the engine which corresponds to 0.5 to 1.2 times, preferably 0.5 to 1 times the radius of the upstream inlet opening of the first compressor stage. The outlet is therefore closer to the outer compressor wall in the radial direction than to the axis of rotation of the engine or compressor.
  • the main exit direction of the nozzle is directed obliquely inwards towards the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis.
  • a particularly preferred compressor geometry has a curved flow channel, with a convex curvature of the flow channel arranged radially inwardly in the flow direction and a convex curvature of the flow channel arranged radially outwardly arranged behind it in the flow direction.
  • the term radially inwardly arranged convex curvature in the front in the flow direction denotes an inward curvature of the flow channel in the direction of the axis of rotation of the jet engine and the term of the radially outwardly arranged convex curvature arranged behind it in the flow direction refers to an outward curvature of the flow channel.
  • the main exit direction of the at least one nozzle can preferably enclose an angle with the axis of rotation of the engine which is between ⁇ and ⁇ ; where ⁇ is the angle between the axis of rotation of the engine and a first straight line, which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where ⁇ is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction.
  • the outlet of the at least one nozzle can preferably be arranged at a radial distance from the axis of rotation of the engine that lies between the radial distances of the intersection points of the first and second straight lines with the radial plane in which the outlet of the at least one nozzle is arranged.
  • the term radial plane denotes a plane arranged perpendicular to the axis of rotation.
  • the solids are preferably selected from the group consisting of solid carbon dioxide and water ice.
  • Solid carbon dioxide is particularly preferred.
  • Carbon dioxide and / or water ice can particularly preferably be used in the form of pellets. It is also possible to use water ice as crushed ice.
  • Pellets can be produced from liquid CO 2 in a so-called pelletiser and are easy to store. Provision can be made for a supply device to convey prefabricated pellets to the nozzle device with the aid of the carrier gas. It is also possible, however, for the supply device to have a device to produce solid carbon dioxide pellets or solid carbon dioxide snow from liquid carbon dioxide and to convey them to the nozzle device with the carrier gas. In both cases, the solid carbon dioxide emerges from the nozzles of the nozzle device and reaches the engine to be cleaned.
  • the technology for the production of CO 2 pellets is described. Pellets are obtained, for example, by compressing solid CO 2 (for example flakes) in a pelletiser or the like. The production of ice pellets (water ice) is familiar to the person skilled in the art and does not require any further explanation here.
  • the cleaning medium can have solid carbon dioxide and water ice in a mass ratio of 5: 1 to 1: 5, preferably 1: 2 to 2: 1.
  • WO 2012/123098 A1 it is already known ( WO 2012/123098 A1 ) to provide a mixture of pellets made of carbon dioxide and ice as a solid abrasive for cleaning surfaces. It has been shown, however, that this mixture can be used in a particularly advantageous manner for cleaning jet engines, since the greater part of the solid carbon dioxide already sublimes in the front area of the compressor and cleans it on the one hand through the kinetic energy of the collision and through thermal effects . Due to the heat-cold tension induced by the carbon dioxide, impurities are removed from peeled off the surfaces of the engine parts.
  • the ice added in the mixture has a higher hardness and longer shelf life than solid carbon dioxide. As a result, on the one hand, it improves the mechanical cleaning effect through the kinetic energy of the impact and is better able to penetrate the compressor as a whole up to the rear stages and also develop a cleaning effect there.
  • the mixture used causes, on the one hand, a largely complete and uniform cleaning of all stages of the compressor and, on the other hand, only introduces comparatively small amounts of water into the engine. This introduced water is generally transported away from the engine for the most part by the carrier gas used (preferably air) or by the air stream flowing through the engine during dry cranking.
  • the mean size of the pellets used is preferably in the range 1 to 10 mm, preferably it can be about 3 mm. If elongated pellets are used, their length can be, for example, 3 to 6 mm, the dimension transverse to the longitudinal extension, for example, about 3 mm.
  • the solids with a mass flow rate of 100 to 2000 kg / h, more preferably 200 to 1500 kg / h, more preferably 350 to 2000 kg / h, more preferably 400 to 2000 kg / h, more preferably 350 to 1200 kg / h are preferred , more preferably 400 to 1200 kg / h, more preferably 100 to 600 kg / h, more preferably 200 to 500 kg / h, more preferably 350 to 450 kg / h.
  • the duration of the cleaning process is preferably 1 to 15 minutes, more preferably 2 to 10 minutes min, more preferably 4 to 8 min.
  • 1.5 to 200 kg, preferably 35 to 200 kg, more preferably 40 to 200 kg, more preferably 40 to 120 kg, more preferably 1.5 to 50 kg can be used during a cleaning process , more preferably 3 to 35 kg, more preferably 7 to 25 kg of solids are introduced into the engine.
  • the nozzle or nozzles are preferably flat jet nozzles, for example flat jet nozzles with an opening angle of 1 °.
  • the dry cranking or rotation of the jet engine during the cleaning process is preferably carried out at a fan speed of 50 to 500 min -1 , preferably 100 to 300 min -1 , more preferably 120 to 250 min -1 .
  • a fan speed of between 150 and 250 min -1 is particularly preferred.
  • the cleaning can also take place when the engine is idling. The speed is then preferably 500 to 1500 min -1 .
  • the subject of the invention is a nozzle device with at least one nozzle which is designed for introducing cleaning medium containing solids into a jet engine, which has means for the rotationally fixed connection to the shaft of the turbo fan of a jet engine, and which has a rotary coupling to which a line connection can be connected .
  • a basic idea of the invention is that the lines for the cleaning medium from the rotary coupling to the outlet of the nozzle have transition angles or angles of curvature that are as gentle and not too large as possible, in order to enable the solids to be conveyed with as little friction as possible using the carrier gas.
  • the use of flexible hoses that can be dismantled enables the solids to be guided in a sufficiently gently curved manner.
  • the hoses ensure that the nozzle device is sufficiently small for storage and transport and not too bulky; in particular, the hoses can preferably be dismantled and transported or stored separately for transport and storage.
  • a line connection connects the nozzle device with a supply device, this supply device makes the cleaning medium available (for example in tanks) and can be provided with operating and drive devices, pumps, energy storage devices or the like be. It is preferably designed as a mobile, in particular a mobile unit.
  • the nozzle device has one or more nozzles. It is particularly preferred if the nozzle device has at least two nozzles.
  • the nozzle device can rotate with dry cranking, i.e. when the engine is slowly cranked without injection of kerosene.
  • rotary coupling between the nozzle device and the line connection is to be understood functionally and refers to any device that is suitable for producing a sufficiently stable, preferably pressure-resistant and tight connection between the stationary part of the line connection and the nozzle device rotating with the fan.
  • the purpose of the rotary coupling is to guide the cleaning medium from the stationary supply device into the rotating nozzle device and then to let it emerge from the nozzles.
  • the rotary coupling is preferably located in the front area of the nozzle device, ie in that area which, in the assembled state, points upstream, ie away from the inlet of the jet engine.
  • the outlet opening of the nozzles is accordingly provided in the axial end region of the nozzle device pointing away therefrom, that is to say in the downstream end region in the assembled state.
  • the outlet of the rotary coupling on the nozzle side is preferably located diametrically opposite the inlet.
  • the inlet preferably points in the axial direction and upstream, that is to say in the direction from which, in the assembled state of the nozzle device on an engine, the flow of the engine takes place.
  • the diametrically opposite outlet then also takes place downstream in the axial direction. In this way, the cleaning medium undergoes no or at most a slight change in the direction of flow within the rotary coupling, so that there is no undesirable friction of the solids due to bends or too narrow bends in the lines.
  • the nozzle or the nozzles are generally arranged in the radially outer region, while the rotary coupling is usually arranged in the axis of rotation or axis of rotation.
  • the rotary coupling which usually represents the upstream axial end of the nozzle device, is provided by the means for the rotationally fixed connection to the turbo fan shaft, which is usually represent the downstream end of the nozzle device according to the invention, has a sufficiently large axial distance, which allows or facilitates guidance of the lines from the rotary coupling to the nozzles with sufficiently large radii of curvature.
  • the axial distance between the rotary coupling and the said means for the rotationally fixed connection to the shaft of the turbofan is 0.2 to 2 m.
  • This distance can preferably be 0.5 to 2 m, more preferably 0.75 to 1.25 m.
  • the guidance of the cleaning medium from the inlet of the at least one nozzle to the nozzle outlet can be designed essentially in a straight line. The cleaning medium is therefore not deflected between the inlet and outlet within the actual nozzle.
  • the nozzle device is attached to the turbofan in such a way that its nozzles point through between the blades of the turbofan. This enables targeted cleaning of the compressor stages and then the combustion chamber or turbine stages.
  • the nozzles that rotate during dry cranking cover the first compressor stage evenly over the entire circumference.
  • the cleaning medium is not adversely affected by the turbofan arranged in front of it in the direction of flow, and the direction of spraying of the cleaning medium can thus be adapted to the angle of incidence of the blades of the first compressor stage.
  • the mass distribution of the nozzle device is preferably rotationally symmetrical about its axis of rotation.
  • the rotary coupling is preferably seated essentially centrally on the axis of rotation of the device according to the invention in the assembled state.
  • the nozzle device preferably has at least two or more nozzles, which are preferably rotationally symmetrical are distributed around the axis of rotation.
  • the nozzles are preferably designed as flat jet nozzles, which can preferably have an opening angle of 1 °, for example.
  • the radial distance of the nozzle outlet from the axis of rotation of the engine and thus also the nozzle device can be, for example, 200 to 800 mm, more preferably 400 to 750 mm, more preferably 600 to 700 mm, more preferably 200 to 400 mm, more preferably 230 to 300 mm , more preferably 260 to 280 mm. These values depend on the engine to be cleaned and can vary accordingly.
  • the preferred distance of 260 to 280 mm is suitable, for example, for cleaning the core engine of a CF6-50 engine.
  • the preferred distance of 600 to 700 mm is suitable, for example, for cleaning the core engine of a CF6-80 engine.
  • the jet plane or main exit direction of the nozzle (s) is preferably directed obliquely inward to the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis.
  • the stated values can vary depending on the engine to be cleaned and should be selected so that the main outlet direction of the nozzle (or its imaginary extension) protrudes as far into the compressor as possible without touching the inside or outside walls of the compressor.
  • the jet plane or main exit direction of the nozzle (s) can preferably enclose an angle between ⁇ and ⁇ with the axis of rotation of the engine; where ⁇ is the angle between the axis of rotation of the engine and a first one Straight line which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor, which is at the front in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where ⁇ is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction.
  • the means for the rotationally fixed connection to the shaft of the turbofan of the jet engine preferably comprise fastening means for fastening to the turbofan blades, such as, for example, suitably designed hooks with which the nozzle device can be hooked onto the trailing edges (the downstream edges) of the turbofan's blades.
  • the nozzle device can have a device for essentially positively fitting onto the shaft hub of the fan.
  • Turbofan engines usually have a conically curved hub on the upstream end of the turbofan's shaft, which is intended to improve the flow behavior of the air.
  • the corresponding means for a non-rotatable connection can be placed on this hub.
  • “Essentially form-fitting” in this context means that the shape of the shaft hub is used for the intended positioning of the nozzle device and for fixing it in the desired position. It does not mean, that the entire surface of the shaft hub must be enclosed in a form-fitting manner.
  • the device can have one or more ring parts with which it can be placed on the shaft hub.
  • these have a different diameter which is adapted to the diameter of the shaft hub in the corresponding areas.
  • two axially spaced rings of different diameters can be provided with which the nozzle device is positioned and centered on the shaft hub.
  • Tension ropes can preferably be provided for further fixation.
  • the nozzle device can be centered on the shaft hub of the fan by means of the ring parts and then tensioned with tensioning cables that are fixed to the rear edge of the turbo fan blades.
  • spring devices can be provided for pretensioning the tensioning cables so that the nozzle device is pressed against the shaft hub with a defined force.
  • the tension ropes are preferably fastened (for example by means of hooks) to the turbo fan blades, preferably to their rear edge.
  • a supply device for the cleaning medium preferably has storage tanks for the components of the cleaning medium and at least one pump for pressurizing the nozzle device with the cleaning medium.
  • a carrier gas preferably air
  • the carrier gas can be pretreated, for example it can be dried so that it absorbs and discharges as large a proportion as possible of the water introduced into the engine can. It can be provided that the carrier gas is cooled so that ice pellets and / or carbon dioxide pellets are as stable as possible in the carrier gas flow. Alternatively, however, it is also possible to heat the carrier gas stream, for example to about 80.degree. This initially seems evident for carbon dioxide pellets, for example, since it reduces the stability of the pellets.
  • the invention has recognized that the warm carrier gas flow supplies the inside of the engine with thermal energy which compensates for the cooling caused by the cleaning medium. This prevents the solid carbon dioxide from being able to develop an insufficient cleaning effect due to excessive cooling (due to the insufficient temperature difference). This can also prevent the water remaining inside the engine from freezing solid if water ice is used as the cleaning medium. Since the carrier gas only acts on the cold pellets for a very short period of time before they can develop their cleaning effect, the influence of the heated carrier gas on the pellets is negligible or negligible.
  • the invention also relates to an arrangement comprising a jet engine and a nozzle device according to the invention.
  • the arrangement is characterized in that the nozzle device is arranged such that its nozzle (s) is / are directed towards the inlet of the jet engine.
  • the jet plane or main exit direction of the nozzle (s) is preferably directed obliquely inward to the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis.
  • the outlet of the at least one nozzle is preferably arranged at a radial distance from the axis of rotation of the engine which corresponds to 0.5 to 1.2 times, preferably 0.5 to 1 times the radius of the upstream inlet opening of the first compressor stage.
  • the outlet is therefore closer to the outer compressor wall in the radial direction than to the axis of rotation of the engine or compressor.
  • the main outlet direction of the nozzle (s) can enclose an angle with the axis of rotation of the engine which lies between ⁇ and ⁇ ; where ⁇ is the angle between the axis of rotation of the engine and a first straight line, which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where ⁇ is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction.
  • the outlet of the at least one nozzle can preferably be arranged at a radial distance from the axis of rotation of the engine that lies between the radial distances of the intersection points of the first and second straight lines with the radial plane in which the outlet of the at least one nozzle is arranged.
  • the nozzle device is rotationally fixed to the shaft of the fan of the jet engine is connected, the axes of rotation of the fan of the jet engine and the nozzle device are arranged essentially concentrically, the nozzles of the nozzle device have a radial distance from the common axis of rotation of the jet engine and the device, which is 0.5 to 1.2 times, preferably 0.
  • the outlet openings of the nozzles are arranged in the axial direction behind the plane of the turbofan and / or the nozzles are arranged in the spaces between the turbofan blades and / or are aligned with the spaces between the turbofan blades, so that the nozzle jets essentially can pass unhindered through the plane of the turbofan.
  • the nozzle device has two ring elements 101, 102, with the aid of which the nozzle device is placed on a shaft hub of the turbofan of a jet engine. In the attached state, the ring elements 101, 102 enclose the shaft hub essentially in a form-fitting manner. To the details of the connection of the nozzle device to a shaft hub is on the WO 2009/132847 A1 referenced.
  • the two ring elements 101, 102 are connected to one another by radial struts 104.
  • At the upstream tip of the nozzle device (in relation to the direction of flow of the engine) there is a rotary coupling denoted as a whole by 105, which has an inlet 110.
  • the rotary coupling 105 can alternatively be designed separately from the branching with the pressure connections 106 and, for example, be connected to it by a short piece of hose, the flexibility of which helps compensate for possible axial deviations during assembly. From this rotary coupling 105 two pressure connections 106 extending axially downstream extend. Two pressure hoses 108 can be connected to the pressure connections 106 (in FIG Fig. 1 For the sake of clarity, only one pressure hose 108 is shown), the other end of which is connected to the inlet of the flat jet nozzles 107. The length and flexibility of these pressure hoses 108 is dimensioned such that, in the assembled state, they are designed in the curvatures so that they allow the blasting medium to be conveyed without interference.
  • the axial distance between the rotary coupling 105 and the outlet openings 109 of the nozzles 107 is approximately 1.2 m in the exemplary embodiment. This distance is sufficient for the pressure hoses 108 to reach the inlets of the nozzles 107 without excessive curvatures of these pressure hoses 108 with the outlets 106 the rotary coupling 105 can connect.
  • the radial distance between the nozzle outlet 109 and the axis of rotation is approximately 270 mm in the exemplary embodiment. It is designed for cleaning a CF6-50 engine.
  • the main exit direction of the nozzles 107 (this essentially corresponds to their longitudinal axis) forms an angle of 18 ° with the axis of rotation of the nozzle device.
  • the nozzle device is attached to the shaft hub of a turbofan by means of tension ropes, as detailed in WO 2009/132847 A1 described.
  • the nozzle device To clean a jet engine, the nozzle device is placed on the shaft hub of the turbofan and fixed to the turbofan's blades. The engine is set in rotation (dry-cranking).
  • the flat jet nozzles 107 are fed with cleaning medium from a supply device (not shown) via the rotary coupling 105 and the pressure hoses 108. This cleaning medium sweeps the inlet of the first compressor stage over its entire circumference and thus carries out the cleaning.
  • Figure 3 shows the schematic section of an engine with a particularly preferred compressor geometry.
  • a turbo fan blade 301 and the downstream inlet 303 of the compressor 304 relative to the axis of rotation 308 of the engine are shown.
  • the inlet 303 has an edge 305 arranged radially on the outside.
  • a radially inwardly arranged convex curvature 306 of the flow channel 302 of the compressor is arranged. This is an inward curve in the direction of the axis of rotation 308 of the engine.
  • Behind the curve 306 in the direction of flow a radially outwardly arranged convex curvature 307 of the flow channel 302.
  • the main exit direction of the nozzle (s) (in Fig.
  • is the angle between the axis of rotation 308 of the engine and a first straight line 310, which is a tangent to the radially inwardly arranged convex curvature 306 (at point B 1 ) of the flow channel of the compressor and to the one behind it in the direction of flow, radially outwardly arranged convex curvature 307 (at point B 2 ) of the flow channel 302 runs; and where ⁇ is the angle between the axis of rotation 308 of the engine and a second straight line 311, which is arranged as a tangent to the radially outer edge 305 of the inlet 303 of the compressor 304 (at point P) and to that arranged radially inward in the flow direction convex curvature 306 (at point A) of the flow channel.
  • the outlet of a nozzle can be arranged at a radial distance from the axis of rotation 308 of the engine, which is between the radial distances (x min , x max ) of the points of intersection (x 2 , x 1 ) of the first and second straight lines with that radial plane 309, in which the nozzle outlet (in Fig. 3 not shown) is arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning In General (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und eine Anordnung, zum Reinigen eines Flugzeugstrahltriebwerks.The invention relates to a device and an arrangement for cleaning an aircraft jet engine.

Flugzeugstrahltriebwerke besitzen eine oder mehrere Kompressorstufen, eine Brennkammer, sowie eine oder mehrere Turbinenstufen. In den Turbinenstufen geben die aus der Brennkammer stammenden heißen Verbrennungsgase einen Teil ihrer thermischen und mechanischen Energie ab, die zum Antrieb der Kompressorstufen genutzt wird. Strahltriebwerke von kommerziellen Verkehrsflugzeugen weisen heute überwiegend einen sogenannten Turbofan auf, der stromaufwärts von den Kompressorstufen angeordnet ist und in der Regel einen erheblich größeren Durchmesser als die Kompressorstufen aufweist. Der Turbofan wird ebenfalls durch die Turbinenstufen angetrieben und lässt einen erheblichen Teil der das Triebwerk insgesamt durchströmenden Luft als sogenannten Nebenluftstrom an den Kompressorstufen, der Brennkammer und den Turbinenstufen vorbeiströmen. Durch einen solchen Nebenstrom kann der Wirkungsgrad eines Triebwerks erheblich gesteigert und außerdem noch für eine verbesserte Geräuschdämmung des Triebwerks gesorgt werden.Aircraft jet engines have one or more compressor stages, a combustion chamber and one or more turbine stages. In the turbine stages, the hot combustion gases from the combustion chamber give off part of their thermal and mechanical energy, which is used to drive the compressor stages. Jet engines of commercial airliners today predominantly have what is known as a turbofan, which is arranged upstream of the compressor stages and generally has a considerably larger diameter than the compressor stages. The turbofan is also driven by the turbine stages and lets a considerable part of the air flowing through the engine as a whole flow past the compressor stages, the combustion chamber and the turbine stages as a so-called secondary air flow. Such a bypass flow can significantly increase the efficiency of an engine and also improve the noise insulation of the engine.

Eine Verschmutzung eines Flugzeugstrahltriebwerks kann zu einer Reduktion des Wirkungsgrades führen, was einen erhöhten Kraftstoffverbrauch und damit eine erhöhte Umweltbelastung zur Folge hat. Die Verschmutzung kann beispielsweise durch Insekten, Staub, Salznebel oder sonstigen Umweltverunreinigungen hervorgerufen werden. Teile des Triebwerks können durch Verbrennungsrückstände der Brennkammer kontaminiert werden. Diese Verunreinigungen bilden einen Belag auf den mit Luft durchströmten Teilen eines Flugzeugtriebwerks und beeinträchtigen die Oberflächengüte. Damit wird der thermodynamische Wirkungsgrad des Triebwerks beeinträchtigt. Hierbei sind insbesondere die Schaufeln in den Kompressorstufen zu nennen, deren Verschmutzung einen erheblichen Einfluss auf den Wirkungsgrad des gesamten Triebwerks hat.Contamination of an aircraft jet engine can lead to a reduction in efficiency, which results in increased fuel consumption and thus increased environmental pollution. The pollution can be caused, for example, by insects, dust, salt spray or other environmental pollution. Parts of the engine can be contaminated by combustion residues from the combustion chamber. These contaminants form a coating on the parts of an aircraft engine through which air flows and impair the surface quality. This affects the thermodynamic efficiency of the engine. Particular mention should be made of the blades in the compressor stages, the contamination of which has a significant influence on the efficiency of the entire engine.

Zur Beseitigung von Verunreinigungen ist bekannt, ein Triebwerk mit einer Reinigungsflüssigkeit, in der Regel heißes Wasser, zu reinigen. Aus der WO 2005/120953 ist eine Anordnung bekannt, bei der eine Mehrzahl von Reinigungsdüsen stromaufwärts des Turbofans bzw. der Kompressorstufen angeordnet werden. Die Reinigungsflüssigkeit wird dann in das Triebwerk gesprüht. Das Triebwerk kann sich dabei im sogenannten Dry-Cranking, d.h. die Schaufeln des Triebwerks rotieren, ohne dass in der Brennkammer Kerosin verbrannt wird, drehen. Durch die in das Triebwerk eingebrachte Reinigungsflüssigkeit sollen Verschmutzungen von den Oberflächen der Triebwerkskomponenten abgewaschen werden.To remove contamination, it is known to clean an engine with a cleaning fluid, usually hot water. From the WO 2005/120953 an arrangement is known in which a plurality of cleaning nozzles are arranged upstream of the turbofan or the compressor stages. The cleaning fluid is then sprayed into the engine. The engine can rotate in so-called dry cranking, ie the blades of the engine rotate without kerosene being burned in the combustion chamber. The cleaning fluid introduced into the engine is intended to wash off dirt from the surfaces of the engine components.

Alternativ zur Verwendung von Wasser als Reinigungsmedium ist die Verwendung von Kohlenstaub bekannt. Der Kohlenstaub wird dabei wie das Wasser durch Düsen in das Triebwerk eingebracht und trägt Verunreinigungen von Oberflächen aufgrund von abrasiven Effekten ab. Allerdings wird durch den Kohlenstaub auch die Oberfläche der Triebwerksteile angegriffen, weshalb ein Reinigungsmedium wie Kohlenstaub sich nicht für die regelmäßige Reinigung von Flugzeugtriebwerken eignet. Außerdem bleiben beim Reinigen mit Kohlenstaub ungewünschte Reste des Reinigungsmaterials im Triebwerk zurück.As an alternative to the use of water as a cleaning medium, the use of coal dust is known. Like water, the coal dust is fed into the engine through nozzles and removes contamination from surfaces due to abrasive effects. However, the surface of the engine parts is also attacked by the coal dust, which is why a cleaning medium such as coal dust is not suitable for the regular cleaning of aircraft engines. In addition, when cleaning with coal dust, undesired residues of the cleaning material remain in the engine.

WO 2009/132847 A1 offenbart eine Vorrichtung und ein Verfahren zum Reinigen von Strahltriebwerken unter Verwendung von festem Kohlendioxid als Reinigungsmedium. Die US 7, 445, 677 beschreibt die Merkmale des Oberbegriffes des Anspruchs 1 und offenbart eine Vorrichtung zum Reinigen von Strahltriebwerken, welche an der Welle eines Strahltriebwerks befestigt werden kann. WO 2009/132847 A1 discloses an apparatus and a method for cleaning jet engines using solid carbon dioxide as the cleaning medium. The U.S. 7,445,677 describes the features of the preamble of claim 1 and discloses a device for cleaning jet engines which can be attached to the shaft of a jet engine.

Der Erfindung liegt die Aufgabe zugrunde eine Vorrichtung und eine Anordnung zu schaffen, die eine verbesserte Reinigung von Flugzeugtriebwerken ermöglichen.The invention is based on the object of creating a device and an arrangement which enable aircraft engines to be cleaned in an improved manner.

Diese Aufgabe wird gelöst durch eine Düseneinrichtung gemäß Anspruch 1 und eine Anordnung gemäß Anspruch 11. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by a nozzle device according to claim 1 and an arrangement according to claim 11. Advantageous developments result from the dependent claims.

Die Anmeldung betrifft zudem ein Verfahren zum Reinigen eines Strahltriebwerks mit einem Reinigungsmedium, das Feststoffe enthält. Die Feststoffe werden mittels eines Trägergases durch wenigstens eine Düse in das Triebwerk eingebracht. Das Reinigungsmedium umfasst somit zumindest ein Trägergas sowie Feststoffe, bevorzugt ausschließlich Trägergas und Feststoffe. Ein Trägergas ist ein bei der Anwendungstemperatur gasförmiges Medium, bevorzugt kann Druckluft verwendet werden. Bei den Feststoffen kann es sich um bei der Anwendungstemperatur stabile Feststoffe wie beispielsweise Kunststoffperlen, Glasperlen oder Kohlenstaub handeln. Bevorzugt werden jedoch thermolabile Feststoffe wie beispielsweise festes Kohlendioxid und/oder Eis (Wassereis) verwendet.The application also relates to a method for cleaning a jet engine with a cleaning medium that contains solids. The solids are introduced into the engine by means of a carrier gas through at least one nozzle. The cleaning medium thus comprises at least one carrier gas and solids, preferably exclusively carrier gas and solids. A carrier gas is a medium which is gaseous at the application temperature, preferably compressed air can be used. The solids can be solids stable at the application temperature such as plastic beads, glass beads or coal dust. However, preference is given to using thermolabile solids such as solid carbon dioxide and / or ice (water ice).

Durch die beanspruchten Verfahrensparameter ist eine wirksame Reinigung insbesondere des Kompressors oder Verdichters eines Triebwerks möglich. Das Reinigungsmedium folgt der Strömung im Verdichter und erzielt einen Reinigungseffekt in sämtlichen Stufen des Verdichters, insbesondere auch in den hintersten Stufen. Insbesondere wird erreicht, dass thermolabile Feststoffe wie insbesondere Kohlendioxid oder Eis nicht bereits in den vorderen Stufen des Verdichters sämtliche kinetische Energie abgeben und/oder sublimieren oder schmelzen. Stattdessen wird durch die Parameter den Feststoffen lediglich ein Grundimpuls mitgegeben, der sie in das Triebwerk fördert. Anschließend wird der Feststoff vom Gasstrom im Triebwerk mitgenommen und so auch in die hintersten Verdichterstufen gefördert. Der Druck des Trägergases beträgt daher 1 bis 5 bar, vorzugsweise 2 bis 4 bar. Ein besonders bevorzugter Druck ist 3 bar.The claimed process parameters enable effective cleaning, in particular of the compressor or compressor of an engine. The cleaning medium follows the flow in the compressor and achieves a cleaning effect in all stages of the compressor, especially in the rearmost stages. In particular, it is achieved that thermolabile solids such as carbon dioxide or ice in particular do not give up all the kinetic energy and / or sublime or melt in the front stages of the compressor. Instead, the parameters only give the solids a basic impulse that feeds them into the engine. The solid matter is then carried along by the gas flow in the engine and thus also conveyed to the rearmost compressor stages. The pressure of the carrier gas is therefore 1 to 5 bar, preferably 2 to 4 bar. A particularly preferred pressure is 3 bar.

Um die gewünschte Mitnahme der Feststoffe durch den Luftstrom im Verdichter zu ermöglichen, ohne dass die Feststoffe vorzeitig gegen die innere oder äußere Verdichterwand stoßen, sollte die Austrittsrichtung der Düse (dieser Begriff bezeichnet die Hauptaustrittsrichtung) möglichst weit in den Verdichter hineinreichen, ohne dass diese Austrittsrichtung bzw. ihre gedachte Achse die Wände des Verdichters berührt. Zu diesem Zweck ist vorgesehen, dass der Austritt der wenigstens einen Düse in einem Radialabstand von der Rotationsachse des Triebwerks angeordnet wird, der dem 0,5 bis 1,2fachen, vorzugsweise dem 0,5 bis lfachen des Radius der stromauf gerichteten Eintrittsöffnung der ersten Kompressorstufe entspricht. Der Austritt liegt somit in Radialrichtung näher an der äußeren Verdichterwand als an der Rotationsachse des Triebwerks bzw. Verdichters. Die Hauptaustrittsrichtung der Düse ist schräg nach innen zur Rotationsachse des Triebwerks hin gerichtet und schließt mit dieser Achse einen Winkel von 10 bis 30°, vorzugsweise 12 bis 25°, weiter vorzugsweise 16 bis 19° ein.In order to enable the desired entrainment of the solids by the air flow in the compressor without the solids hitting the inner or outer compressor wall prematurely, the exit direction of the nozzle (this term denotes the main exit direction) should extend as far into the compressor as possible without this exit direction or its imaginary axis touches the walls of the compressor. To this end it is provided that the outlet of the at least one nozzle is arranged at a radial distance from the axis of rotation of the engine which corresponds to 0.5 to 1.2 times, preferably 0.5 to 1 times the radius of the upstream inlet opening of the first compressor stage. The outlet is therefore closer to the outer compressor wall in the radial direction than to the axis of rotation of the engine or compressor. The main exit direction of the nozzle is directed obliquely inwards towards the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis.

Die Kombination dieser Verfahrensparameter erlaubt eine wirkungsvolle Reinigung des Verdichters (Core Engine) von Strahltriebwerken über deren gesamte Länge, insbesondere auch in den in Strömungsrichtung hinteren Stufen.The combination of these process parameters allows an effective cleaning of the compressor (core engine) of jet engines over their entire length, in particular also in the rear stages in the direction of flow.

Eine besonders bevorzugte Kompressorgeometrie weist einen gekrümmten Strömungskanal auf, mit einer in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung des Strömungskanals und einer in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung des Strömungskanals. Der Begriff der in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung bezeichnet eine Einwärtskrümmung des Strömungskanals in Richtung der Rotationsachse des Strahltriebwerks und der Begriff der in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung eine Auswärtskrümmung des Strömungskanals. In einer für diese besonders bevorzugte Kompressorgeometrie vorteilhaften Variante des Verfahrens kann die Hauptaustrittsrichtung der wenigstens einen Düse mit der Rotationsachse des Triebwerks vorzugsweise einen Winkel einschließen, der zwischen β und α liegt; wobei β der Winkel ist zwischen der Rotationsachse des Triebwerks und einer ersten Geraden, die als Tangente an der in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung des Strömungskanals des Kompressors und an der in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung des Strömungskanals verläuft; und wobei α der Winkel ist zwischen der Rotationsachse des Triebwerks und einer zweiten Geraden, die als Tangente an dem radial außen angeordneten Rand des Einlaufs des Kompressors (Verdichters) und an der in Strömungsrichtung dahinter angeordneten, radial innen angeordneten konvexen Krümmung des Strömungskanals verläuft. Ferner kann der Austritt der wenigstens einen Düse vorzugsweise in einem Radialabstand von der Rotationsachse des Triebwerks angeordnet werden, der zwischen den Radialabständen der Schnittpunkte der ersten und zweiten Geraden mit derjenigen Radialebene liegt, in der der Austritt der wenigstens einen Düse angeordnet ist. Der Begriff Radialebene bezeichnet eine senkrecht zur Rotationsachse angeordnete Ebene.A particularly preferred compressor geometry has a curved flow channel, with a convex curvature of the flow channel arranged radially inwardly in the flow direction and a convex curvature of the flow channel arranged radially outwardly arranged behind it in the flow direction. The term radially inwardly arranged convex curvature in the front in the flow direction denotes an inward curvature of the flow channel in the direction of the axis of rotation of the jet engine and the term of the radially outwardly arranged convex curvature arranged behind it in the flow direction refers to an outward curvature of the flow channel. In a compressor geometry that is particularly preferred for them In an advantageous variant of the method, the main exit direction of the at least one nozzle can preferably enclose an angle with the axis of rotation of the engine which is between β and α; where β is the angle between the axis of rotation of the engine and a first straight line, which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where α is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction. Furthermore, the outlet of the at least one nozzle can preferably be arranged at a radial distance from the axis of rotation of the engine that lies between the radial distances of the intersection points of the first and second straight lines with the radial plane in which the outlet of the at least one nozzle is arranged. The term radial plane denotes a plane arranged perpendicular to the axis of rotation.

Die Feststoffe sind bevorzugt ausgewählt aus der Gruppe bestehend aus festem Kohlendioxid und Wassereis. Besonders bevorzugt ist festes Kohlendioxid. Kohlendioxid und/oder Wassereis können besonders bevorzugt in Form von Pellets verwendet werden. Ebenfalls möglich ist die Verwendung von Wassereis als zerkleinertes Eis (sog. crushed ice).The solids are preferably selected from the group consisting of solid carbon dioxide and water ice. Solid carbon dioxide is particularly preferred. Carbon dioxide and / or water ice can particularly preferably be used in the form of pellets. It is also possible to use water ice as crushed ice.

Pellets können in einem sog. Pelletiser aus flüssigem CO2 hergestellt werden und sind gut lagerungsfähig. Es kann vorgesehen sein, dass eine Versorgungseinrichtung bereits vorgefertigte Pellets mit Hilfe des Trägergases zur Düseneinrichtung befördert. Es ist aber auch möglich, dass die Versorgungseinrichtung eine Vorrichtung aufweist, um aus flüssigem Kohlendioxid feste Kohlendioxidpellets bzw. festen Kohlendioxidschnee herzustellen, und diese mit dem Trägergas zur Düseneinrichtung befördert. In beiden Fällen tritt das feste Kohlendioxid aus den Düsen der Düseneinrichtung aus und gelangt in das zu reinigende Triebwerk. In dem Dokument "Carbon Dioxide Blasting Operations" der US-Streitkräfte ist die Technik zur Herstellung von CO2 - Pellets beschrieben. Pellets werden bspw. durch eine Verdichtung von festem CO2 (bspw. Flocken) in einem Pelletiser oder dergleichen gewonnen. Die Herstellung von Eispellets (Wassereis) ist dem Fachmann geläufig und bedarf hier keiner näheren Erläuterung.Pellets can be produced from liquid CO 2 in a so-called pelletiser and are easy to store. Provision can be made for a supply device to convey prefabricated pellets to the nozzle device with the aid of the carrier gas. It is also possible, however, for the supply device to have a device to produce solid carbon dioxide pellets or solid carbon dioxide snow from liquid carbon dioxide and to convey them to the nozzle device with the carrier gas. In both cases, the solid carbon dioxide emerges from the nozzles of the nozzle device and reaches the engine to be cleaned. In the document "Carbon Dioxide Blasting Operations" of the US armed forces, the technology for the production of CO 2 pellets is described. Pellets are obtained, for example, by compressing solid CO 2 (for example flakes) in a pelletiser or the like. The production of ice pellets (water ice) is familiar to the person skilled in the art and does not require any further explanation here.

In einer Variante des Verfahrens kann das Reinigungsmedium festes Kohlendioxid und Wassereis im Massenverhältnis 5:1 bis 1:5, vorzugsweise 1:2 bis 2:1 aufweisen. Grundsätzlich ist es zwar bereits bekannt ( WO 2012/123098 A1 ), eine Mischung von Pellets aus Kohlendioxid und Eis als festes Strahlmittel zur Reinigung von Oberflächen vorzusehen. Es hat sich jedoch gezeigt, dass diese Mischung in besonders vorteilhafter Weise zur Reinigung von Strahltriebwerken eingesetzt werden kann, da der größere Teil des festen Kohlendioxid bereits im vorderen Bereich des Kompressors sublimiert und diesen zum einen durch die kinetische Energie der Kollision und durch thermische Effekte reinigt. Aufgrund der durch das Kohlendioxid induzierten Wärme-Kälte-Spannung werden Verunreinigungen von den Oberflächen der Triebwerksteile abgelöst. Das in der Mischung zugesetzte Eis weist eine höhere Härte und längere Haltbarkeit auf als festes Kohlendioxid. Dadurch verbessert es zum einen den mechanischen Reinigungseffekt durch die kinetische Energie des Aufpralls und ist besser in der Lage, den Kompressor insgesamt bis zu den hinteren Stufen zu durchdringen und auch dort noch eine Reinigungswirkung zu entfalten. Die eingesetzte Mischung bewirkt zum einen eine weitgehend vollständige und gleichmäßige Reinigung aller Stufen des Kompressors und trägt zum anderen nur vergleichsweise geringe Mengen Wasser in das Triebwerk ein. Dieses eingetragene Wasser wird in der Regel durch das eingesetzte Trägergas (vorzugsweise Luft) bzw. durch den beim Dry-Cranking durch das Triebwerk strömenden Luftstrom größtenteils aus dem Triebwerk abtransportiert.In a variant of the method, the cleaning medium can have solid carbon dioxide and water ice in a mass ratio of 5: 1 to 1: 5, preferably 1: 2 to 2: 1. Basically it is already known ( WO 2012/123098 A1 ) to provide a mixture of pellets made of carbon dioxide and ice as a solid abrasive for cleaning surfaces. It has been shown, however, that this mixture can be used in a particularly advantageous manner for cleaning jet engines, since the greater part of the solid carbon dioxide already sublimes in the front area of the compressor and cleans it on the one hand through the kinetic energy of the collision and through thermal effects . Due to the heat-cold tension induced by the carbon dioxide, impurities are removed from peeled off the surfaces of the engine parts. The ice added in the mixture has a higher hardness and longer shelf life than solid carbon dioxide. As a result, on the one hand, it improves the mechanical cleaning effect through the kinetic energy of the impact and is better able to penetrate the compressor as a whole up to the rear stages and also develop a cleaning effect there. The mixture used causes, on the one hand, a largely complete and uniform cleaning of all stages of the compressor and, on the other hand, only introduces comparatively small amounts of water into the engine. This introduced water is generally transported away from the engine for the most part by the carrier gas used (preferably air) or by the air stream flowing through the engine during dry cranking.

Die mittlere Größe der verwendeten Pellets liegt bevorzugt im Bereich 1 bis 10 mm, bevorzugt kann sie etwa 3 mm betragen. Wenn längliche Pellets verwendet werden, kann deren Länge beispielsweise 3 bis 6 mm betragen, die Abmessung quer zur Längserstreckung beispielsweise etwa 3 mm. Bevorzugt werden die Feststoffe mit einem Massenstrom von 100 bis 2000 kg/h, weiter vorzugsweise 200 bis 1500 kg/h, weiter vorzugsweise 350 bis 2000 kg/h, weiter vorzugsweise 400 bis 2000 kg/h, weiter vorzugsweise 350 bis 1200 kg/h, weiter vorzugsweise 400 bis 1200 kg/h, weiter vorzugsweise 100 bis 600 kg/h, weiter vorzugsweise 200 bis 500 kg/h, weiter vorzugsweise 350 bis 450 kg/h eingebracht. Die Dauer des Reinigungsvorgangs (reine Strahlzeit ohne Pausen) beträgt bevorzugt 1 bis 15 min, weiter vorzugsweise 2 bis 10 min, weiter vorzugsweise 4 bis 8 min. Somit kann beispielsweise während eines Reinigungsvorgangs 1,5 bis 200 kg, vorzugsweise 35 bis 200 kg, weiter vorzugsweise 40 bis 200 kg, weiter vorzugsweise 40 bis 120 kg, weiter vorzugsweise 1,5 bis 50 kg, weiter vorzugsweise 3 bis 35 kg, weiter vorzugsweise 7 bis 25 kg Feststoff in das Triebwerk eingebracht werden.The mean size of the pellets used is preferably in the range 1 to 10 mm, preferably it can be about 3 mm. If elongated pellets are used, their length can be, for example, 3 to 6 mm, the dimension transverse to the longitudinal extension, for example, about 3 mm. The solids with a mass flow rate of 100 to 2000 kg / h, more preferably 200 to 1500 kg / h, more preferably 350 to 2000 kg / h, more preferably 400 to 2000 kg / h, more preferably 350 to 1200 kg / h are preferred , more preferably 400 to 1200 kg / h, more preferably 100 to 600 kg / h, more preferably 200 to 500 kg / h, more preferably 350 to 450 kg / h. The duration of the cleaning process (pure blasting time without breaks) is preferably 1 to 15 minutes, more preferably 2 to 10 minutes min, more preferably 4 to 8 min. Thus, for example, 1.5 to 200 kg, preferably 35 to 200 kg, more preferably 40 to 200 kg, more preferably 40 to 120 kg, more preferably 1.5 to 50 kg can be used during a cleaning process , more preferably 3 to 35 kg, more preferably 7 to 25 kg of solids are introduced into the engine.

Bevorzugt ist die Düse bzw. sind die Düsen Flachstrahldüsen, beispielsweise Flachstrahldüsen mit einem Öffnungswinkel von 1°.The nozzle or nozzles are preferably flat jet nozzles, for example flat jet nozzles with an opening angle of 1 °.

Das Dry-Cranking bzw. Rotierenlassen des Strahltriebwerks während des Reinigungsvorgangs erfolgt bevorzugt mit einer Fan-Drehzahl von 50 bis 500 min-1, vorzugsweise 100 bis 300 min-1, weiter vorzugsweise 120 bis 250 min-1. Besonders bevorzugt ist eine Fan-Drehzahl zwischen 150 und 250 min-1. Das Reinigen kann auch im Leerlaufbetrieb des Triebwerks stattfinden. Die Drehzahl beträgt dann bevorzugt 500 bis 1500 min-1.The dry cranking or rotation of the jet engine during the cleaning process is preferably carried out at a fan speed of 50 to 500 min -1 , preferably 100 to 300 min -1 , more preferably 120 to 250 min -1 . A fan speed of between 150 and 250 min -1 is particularly preferred. The cleaning can also take place when the engine is idling. The speed is then preferably 500 to 1500 min -1 .

Gegenstand der Erfindung ist eine Düseneinrichtung mit wenigstens einer Düse, die zum Einbringen von Reinigungsmediums enthaltend Feststoffe in ein Strahltriebwerk ausgebildet ist, die Mittel zur drehfesten Verbindung mit der Welle des Turbofans eines Strahltriebwerks aufweist, und die eine Drehkupplung aufweist, an die eine Leitungsverbindung anschließbar ist.The subject of the invention is a nozzle device with at least one nozzle which is designed for introducing cleaning medium containing solids into a jet engine, which has means for the rotationally fixed connection to the shaft of the turbo fan of a jet engine, and which has a rotary coupling to which a line connection can be connected .

Ein Grundgedanke der Erfindung ist es, dass die Leitungen für das Reinigungsmedium von der Drehkupplung bis zum Austritt der Düse möglichst sanfte und nicht zu große Übergangswinkel bzw. Krümmungswinkel aufweisen, um so eine möglichst reibungsarme Förderung der Feststoffe mittels des Trägergases zu ermöglichen. Bei der Erfindung ermöglicht die Verwendung von bevorzugt demontierbaren Schläuchen durch deren Flexibilität eine hinreichend sanft gekrümmte Führung der Feststoffe. Auf der anderen Seite sorgen die Schläuche dafür, dass die Düseneinrichtung für die Lagerung und den Transport hinreichend klein und nicht zu ausladend ist, insbesondere können für Transport und Lagerung die Schläuche bevorzugt demontiert und separat transportiert oder aufbewahrt werden.A basic idea of the invention is that the lines for the cleaning medium from the rotary coupling to the outlet of the nozzle have transition angles or angles of curvature that are as gentle and not too large as possible, in order to enable the solids to be conveyed with as little friction as possible using the carrier gas. In the invention, the use of flexible hoses that can be dismantled enables the solids to be guided in a sufficiently gently curved manner. On the other hand, the hoses ensure that the nozzle device is sufficiently small for storage and transport and not too bulky; in particular, the hoses can preferably be dismantled and transported or stored separately for transport and storage.

Eine Leitungsverbindung verbindet die Düseneinrichtung mit einer Versorgungseinrichtung, diese Versorgungseinrichtung stellt das Reinigungsmedium zur Verfügung (beispielsweise in Tanks) und kann mit Bedienungs- und Antriebseinrichtungen, Pumpen, Energiespeichern oder dergleichen versehen sein. Sie ist vorzugsweise als mobile, insbesondere fahrbare Einheit ausgebildet.A line connection connects the nozzle device with a supply device, this supply device makes the cleaning medium available (for example in tanks) and can be provided with operating and drive devices, pumps, energy storage devices or the like be. It is preferably designed as a mobile, in particular a mobile unit.

Die Düseneinrichtung weist eine oder mehrere Düsen auf. Besonders bevorzugt ist es, wenn die Düseneinrichtung wenigstens zwei Düsen aufweist.The nozzle device has one or more nozzles. It is particularly preferred if the nozzle device has at least two nozzles.

Durch die drehfeste Verbindung mit der Welle kann die Düseneinrichtung beim Dry-Cranking, d.h. beim langsamen Durchdrehen des Triebwerks ohne Einspritzung von Kerosin, mitrotieren.Due to the non-rotatable connection with the shaft, the nozzle device can rotate with dry cranking, i.e. when the engine is slowly cranked without injection of kerosene.

Der Begriff der Drehkupplung zwischen Düseneinrichtung und der Leitungsverbindung ist funktionell zu verstehen und bezeichnet jegliche Einrichtung, die sich zum Herstellen einer hinreichend stabilen, bevorzugt druckfesten und dichten Verbindung zwischen dem stationärem Teil der Leitungsverbindung und der mit dem Fan mitrotierenden Düseneinrichtung eignet. Zweck der Drehkupplung ist es, das Reinigungsmedium aus der stationären Versorgungseinrichtung in die mitdrehende Düseneinrichtung zu leiten und dann aus den Düsen austreten zu lassen.The term rotary coupling between the nozzle device and the line connection is to be understood functionally and refers to any device that is suitable for producing a sufficiently stable, preferably pressure-resistant and tight connection between the stationary part of the line connection and the nozzle device rotating with the fan. The purpose of the rotary coupling is to guide the cleaning medium from the stationary supply device into the rotating nozzle device and then to let it emerge from the nozzles.

Die Drehkupplung befindet sich bevorzugt im vorderen Bereich der Düseneinrichtung, d.h. in demjenigen Bereich, der im montierten Zustand stromaufwärts, also weg vom Einlass des Strahltriebwerks, weist. Die Austrittsöffnung der Düsen ist dementsprechend im davon wegweisenden axialen Endbereich der Düseneinrichtung vorgesehen, also im montierten Zustand in dem stromabwärts liegenden Endbereich. Diese Anordnung ermöglicht es, die Düsen bei der Montage auf der Welle des Fans eines Turbofan-Triebwerks entweder durch die Zwischenräume der Schaufeln hindurchzustecken, so dass sie unmittelbar vor der ersten Kompressorstufe angeordnet sind, oder aber zumindest gezielt so auszurichten, dass sie durch die Zwischenräume der Schaufeln des Turbofans hindurch direkt auf die erste Kompressorstufe sprühen.The rotary coupling is preferably located in the front area of the nozzle device, ie in that area which, in the assembled state, points upstream, ie away from the inlet of the jet engine. The outlet opening of the nozzles is accordingly provided in the axial end region of the nozzle device pointing away therefrom, that is to say in the downstream end region in the assembled state. This arrangement makes it possible to either insert the nozzles through the spaces between the blades when they are mounted on the shaft of the fan of a turbofan engine, so that they are arranged directly in front of the first compressor stage, or at least to be aligned in such a way that they spray directly onto the first compressor stage through the spaces between the blades of the turbofan.

Bevorzugt liegt der düsenseitige Auslass der Drehkupplung diametral gegenüber dem Einlass. Der Einlass weist bevorzugt in Axialrichtung und stromauf, also in diejenige Richtung, aus der im montierten Zustand der Düseneinrichtung an einem Triebwerk der Anstrom des Triebwerks erfolgt. Der diametral gegenüberliegende Auslass erfolgt dann ebenfalls in Axialrichtung stromab. Auf diese Art und Weise erfährt das Reinigungsmedium innerhalb der Drehkupplung keine oder allenfalls eine geringfügige Änderung der Strömungsrichtung, so dass es zu keiner unerwünschten Reibung der Feststoffe durch Krümmungen bzw. zu enge Krümmungen der Leitungen kommt.The outlet of the rotary coupling on the nozzle side is preferably located diametrically opposite the inlet. The inlet preferably points in the axial direction and upstream, that is to say in the direction from which, in the assembled state of the nozzle device on an engine, the flow of the engine takes place. The diametrically opposite outlet then also takes place downstream in the axial direction. In this way, the cleaning medium undergoes no or at most a slight change in the direction of flow within the rotary coupling, so that there is no undesirable friction of the solids due to bends or too narrow bends in the lines.

Bei der erfindungsgemäßen Düseneinrichtung sind die Düse oder die Düsen in der Regel im radial äußeren Bereich angeordnet, während die Drehkupplung üblicherweise in der Drehachse bzw. Rotationsachse angeordnet ist. Um eine Führung des Reinigungsmediums durch Leitungen bzw. flexible Schläuche mit geringen Krümmungen zu ermöglichen, ist es vorteilhaft, wenn die Drehkupplung, die üblicherweise das stromauf gerichtete axiale Ende der Düseneinrichtung darstellt, von den Mitteln zur drehfesten Verbindung mit der Welle des Turbofans, die üblicherweise das stromab gerichtete Ende der erfindungsgemäßen Düseneinrichtung darstellen, einen hinreichend großen axialen Abstand aufweist, der eine Führung der Leitungen von der Drehkupplung zu den Düsen mit hinreichend großen Krümmungsradien erlaubt bzw. erleichtert. Erfindungsgemäß beträgt der axiale Abstand der Drehkupplung von den genannten Mitteln zur drehfesten Verbindung mit der Welle des Turbofans 0,2 bis 2 m. Vorzugsweise kann dieser Abstand 0,5 bis 2 m, weiter vorzugsweise 0,75 bis 1,25 m betragen. Ferner kann die Führung des Reinigungsmediums vom Einlass der wenigstens einen Düse bis zum Düsenaustritt im wesentlichen geradlinig ausgebildet sein. Innerhalb der eigentlichen Düse erfolgt somit keine Umlenkung des Reinigungsmediums zwischen Eintritt und Austritt.In the nozzle device according to the invention, the nozzle or the nozzles are generally arranged in the radially outer region, while the rotary coupling is usually arranged in the axis of rotation or axis of rotation. In order to enable the cleaning medium to be guided through lines or flexible hoses with slight curvatures, it is advantageous if the rotary coupling, which usually represents the upstream axial end of the nozzle device, is provided by the means for the rotationally fixed connection to the turbo fan shaft, which is usually represent the downstream end of the nozzle device according to the invention, has a sufficiently large axial distance, which allows or facilitates guidance of the lines from the rotary coupling to the nozzles with sufficiently large radii of curvature. According to the invention, the axial distance between the rotary coupling and the said means for the rotationally fixed connection to the shaft of the turbofan is 0.2 to 2 m. This distance can preferably be 0.5 to 2 m, more preferably 0.75 to 1.25 m. Furthermore, the guidance of the cleaning medium from the inlet of the at least one nozzle to the nozzle outlet can be designed essentially in a straight line. The cleaning medium is therefore not deflected between the inlet and outlet within the actual nozzle.

Es kann vorgesehen sein, dass die Düseneinrichtung so am Turbofan befestigt ist, dass ihre Düsen zwischen den Schaufeln des Turbofans hindurchweisen. Dadurch wird eine gezielte Reinigung der Kompressorstufen und daran anschließend der Brennkammer bzw. Turbinenstufen erreicht. Die beim Dry-Cranking mitdrehenden Düsen bestreichen dabei die erste Kompressorstufe gleichmäßig über den gesamten Umfang. Das Reinigungsmedium unterliegt dabei keiner Beeinträchtigung durch den in Strömungsrichtung davor angeordneten Turbofan und die Sprührichtung des Reinigungsmediums kann so an den Anstellwinkel der Schaufeln der ersten Kompressorstufe angepasst werden.It can be provided that the nozzle device is attached to the turbofan in such a way that its nozzles point through between the blades of the turbofan. This enables targeted cleaning of the compressor stages and then the combustion chamber or turbine stages. The nozzles that rotate during dry cranking cover the first compressor stage evenly over the entire circumference. The cleaning medium is not adversely affected by the turbofan arranged in front of it in the direction of flow, and the direction of spraying of the cleaning medium can thus be adapted to the angle of incidence of the blades of the first compressor stage.

Die Massenverteilung der Düseneinrichtung ist bevorzugt rotationssymmetrisch um deren Drehachse. Auf diese Weise wird beim Mitrotieren der Düseneinrichtung keine wesentliche zusätzliche Unwucht eingebracht. Die Drehkupplung sitzt zu diesem Zweck bevorzugt im Wesentlichen zentrisch auf der Drehachse der erfindungsgemäßen Vorrichtung im montierten Zustand. Bevorzugt weist die Düseneinrichtung wenigstens zwei oder mehr Düsen auf, die bevorzugt rotationssymmetrisch um die Drehachse verteilt sind. Die Düsen sind bevorzugt als Flachstrahldüsen ausgebildet, die bevorzugt beispielsweise einen Öffnungswinkel von 1° aufweisen können.The mass distribution of the nozzle device is preferably rotationally symmetrical about its axis of rotation. In this way, when the nozzle device rotates with it, no significant additional imbalance is introduced. For this purpose, the rotary coupling is preferably seated essentially centrally on the axis of rotation of the device according to the invention in the assembled state. The nozzle device preferably has at least two or more nozzles, which are preferably rotationally symmetrical are distributed around the axis of rotation. The nozzles are preferably designed as flat jet nozzles, which can preferably have an opening angle of 1 °, for example.

Der radiale Abstand des Düsenaustritts von der Rotationsachse des Triebwerks und damit auch der Düseneinrichtung kann erfindungsgemäß beispielsweise 200 bis 800 mm, weiter vorzugsweise 400 bis 750 mm, weiter vorzugsweise 600 bis 700 mm, weiter vorzugsweise 200 bis 400 mm, weiter vorzugsweise 230 bis 300 mm, weiter vorzugsweise 260 bis 280 mm betragen. Diese Werte hängen vom zu reinigenden Treibwerk ab und können dementsprechend variieren. Der bevorzugte Abstand von 260 bis 280 mm ist beispielsweise geeignet, die Core-Engine eines CF6-50-Triebwerks zu reinigen. Der bevorzugte Abstand von 600 bis 700 mm ist beispielsweise geeignet, die Core-Engine eines CF6-80-Triebwerks zu reinigen. Bei montierter Düseneinrichtung befindet sich der Düsenaustritt dann im Bereich des radial äußeren Rands des Eintritts des Verdichters.According to the invention, the radial distance of the nozzle outlet from the axis of rotation of the engine and thus also the nozzle device can be, for example, 200 to 800 mm, more preferably 400 to 750 mm, more preferably 600 to 700 mm, more preferably 200 to 400 mm, more preferably 230 to 300 mm , more preferably 260 to 280 mm. These values depend on the engine to be cleaned and can vary accordingly. The preferred distance of 260 to 280 mm is suitable, for example, for cleaning the core engine of a CF6-50 engine. The preferred distance of 600 to 700 mm is suitable, for example, for cleaning the core engine of a CF6-80 engine. When the nozzle device is installed, the nozzle outlet is then located in the area of the radially outer edge of the compressor inlet.

Die Strahlebene bzw. Hauptaustrittsrichtung der Düse(n) ist bevorzugt schräg nach innen zur Rotationsachse des Triebwerks hin gerichtet und schließt mit dieser Achse einen Winkel von 10 bis 30°, vorzugsweise 12 bis 25°, weiter vorzugsweise 16 bis 19° ein. Die genannten Werte können abhängig vom zu reinigenden Treibwerk variieren und sollten so gewählt werden, dass die Hauptaustrittsrichtung der Düse (bzw. deren gedachte Verlängerung) möglichst weit in den Verdichter hineinragt, ohne Innen- oder Außenwände des Verdichters zu berühren.The jet plane or main exit direction of the nozzle (s) is preferably directed obliquely inward to the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis. The stated values can vary depending on the engine to be cleaned and should be selected so that the main outlet direction of the nozzle (or its imaginary extension) protrudes as far into the compressor as possible without touching the inside or outside walls of the compressor.

Bei einer bevorzugten Ausführungsform kann die Strahlebene bzw. Hauptaustrittsrichtung der Düse(n) mit der Rotationsachse des Triebwerks vorzugsweise einen Winkel einschließen, der zwischen β und α liegt; wobei β der Winkel ist zwischen der Rotationsachse des Triebwerks und einer ersten Geraden, die als Tangente an der in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung des Strömungskanals des Kompressors und an der in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung des Strömungskanals verläuft; und wobei α der Winkel ist zwischen der Rotationsachse des Triebwerks und einer zweiten Geraden, die als Tangente an dem radial außen angeordneten Rand des Einlaufs des Kompressors (Verdichters) und an der in Strömungsrichtung dahinter angeordneten, radial innen angeordneten konvexen Krümmung des Strömungskanals verläuft.In a preferred embodiment, the jet plane or main exit direction of the nozzle (s) can preferably enclose an angle between β and α with the axis of rotation of the engine; where β is the angle between the axis of rotation of the engine and a first one Straight line which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor, which is at the front in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where α is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction.

Die Mittel zur drehfesten Verbindung mit der Welle des Turbofans des Strahltriebwerks umfassen bevorzugt Befestigungsmittel zur Befestigung an den Turbofanschaufeln, wie beispielsweise geeignet ausgebildete Haken, mit denen die Düseneinrichtung an den Hinterkanten (die stromabwärts liegenden Kanten) der Schaufeln des Turbofans eingehakt werden kann.The means for the rotationally fixed connection to the shaft of the turbofan of the jet engine preferably comprise fastening means for fastening to the turbofan blades, such as, for example, suitably designed hooks with which the nozzle device can be hooked onto the trailing edges (the downstream edges) of the turbofan's blades.

Die Düseneinrichtung kann zur drehfesten Fixierung mit der Welle des Turbofans eine Einrichtung zum im Wesentlichen formschlüssigen Aufsetzen auf die Wellennabe des Fans aufweisen. Turbofan-Triebwerke weisen nämlich in der Regel auf dem stromaufwärts gelegenen Ende der Welle des Turbofans eine konisch gekrümmte Nabe auf, die das Anströmverhalten der Luft verbessern soll. Auf diese Nabe können die entsprechenden Mittel zur drehfesten Verbindung aufgesetzt werden. "Im Wesentlichen formschlüssig" bedeutet in diesem Zusammenhang, dass die Form der Wellennabe genutzt wird zur beabsichtigten Positionierung der Düseneinrichtung und zur Fixierung in der gewünschten Position. Es bedeutet nicht, dass die gesamte Fläche der Wellennabe formschlüssig umschlossen sein muss.For the rotationally fixed fixing with the shaft of the turbofan, the nozzle device can have a device for essentially positively fitting onto the shaft hub of the fan. Turbofan engines usually have a conically curved hub on the upstream end of the turbofan's shaft, which is intended to improve the flow behavior of the air. The corresponding means for a non-rotatable connection can be placed on this hub. “Essentially form-fitting” in this context means that the shape of the shaft hub is used for the intended positioning of the nozzle device and for fixing it in the desired position. It does not mean, that the entire surface of the shaft hub must be enclosed in a form-fitting manner.

Beispielsweise kann die Einrichtung ein oder mehrere Ringteile aufweisen, mit denen sie auf die Wellennabe aufgesetzt werden kann. Bei einer Mehrzahl von Ringteilen weisen diese einen unterschiedlichen Durchmesser auf, der angepasst ist an den Durchmesser der Wellennabe in den entsprechenden Bereichen. Beispielsweise können zwei axial beabstandete Ringe unterschiedlichen Durchmessers vorgesehen sein, mit denen die Düseneinrichtung auf der Wellennabe positioniert und zentriert wird.For example, the device can have one or more ring parts with which it can be placed on the shaft hub. In the case of a plurality of ring parts, these have a different diameter which is adapted to the diameter of the shaft hub in the corresponding areas. For example, two axially spaced rings of different diameters can be provided with which the nozzle device is positioned and centered on the shaft hub.

Spannseile können vorzugsweise zur weiteren Fixierung vorgesehen sein. Beispielsweise kann die Düseneinrichtung mittels der Ringteile auf der Wellennabe des Fans zentriert werden und dann mit Spannseilen, die an der Hinterkante der Turbofanschaufeln fixiert werden, verspannt werden. Erfindungsgemäß können Federeinrichtungen zum Vorspannen der Spannseile vorgesehen sein, damit die Düseneinrichtung mit einer definierten Kraft an die Wellennabe angedrückt wird. Die Spannseile sind bevorzugt (beispielsweise mittels Haken) an den Turbofanschaufeln, bevorzugt an deren Hinterkante, befestigt.Tension ropes can preferably be provided for further fixation. For example, the nozzle device can be centered on the shaft hub of the fan by means of the ring parts and then tensioned with tensioning cables that are fixed to the rear edge of the turbo fan blades. According to the invention, spring devices can be provided for pretensioning the tensioning cables so that the nozzle device is pressed against the shaft hub with a defined force. The tension ropes are preferably fastened (for example by means of hooks) to the turbo fan blades, preferably to their rear edge.

Eine Versorgungseinrichtung für das Reinigungsmedium weist bevorzugt Vorratstanks für die Bestandteile des Reinigungsmediums und wenigstens eine Pumpe zur Druckbeaufschlagung der Düseneinrichtung mit dem Reinigungsmedium auf. Es wird ein Trägergas, vorzugsweise Luft, eingesetzt. Das Trägergas kann vorbehandelt sein, beispielsweise kann es getrocknet werden, damit es einen möglichst großen Anteil von in das Triebwerk eingetragenen Wassers aufnehmen und abführen kann. Es kann vorgesehen sein, dass Trägergas zu kühlen, damit Eispellets und/oder Kohlendioxidpellets im Trägergasstrom möglichst beständig sind. Alternativ ist es jedoch auch möglich, den Trägergasstrom zu erwärmen, beispielsweise auf etwa 80 °C. Dies erscheint bspw. für Kohlendioxidpellets zunächst widersinnig, da es die Beständigkeit der Pellets vermindert. Die Erfindung hat jedoch erkannt, dass der warme Trägergasstrom dem Triebwerksinneren Wärmeenergie zuführt, die die Abkühlung durch das Reinigungsmedium ausgleicht. Dies verhindert, dass durch zu starke Abkühlung das feste Kohlendioxid nur noch eine unzureichende Reinigungswirkung entfalten kann (aufgrund des zu geringen Temperaturunterschieds). Auch kann so verhindert werden, dass im Triebwerksinneren verbleibendes Wasser im Fall der Verwendung von Wassereis als Reinigungsmedium fest friert. Da das Trägergas nur über einen sehr kurzen Zeitraum auf die kalten Pellets einwirkt, bevor diese ihre Reinigungswirkung entfalten können, fällt der Einfluss des erwärmten Trägergases auf die Pellets nicht oder kaum ins Gewicht.A supply device for the cleaning medium preferably has storage tanks for the components of the cleaning medium and at least one pump for pressurizing the nozzle device with the cleaning medium. A carrier gas, preferably air, is used. The carrier gas can be pretreated, for example it can be dried so that it absorbs and discharges as large a proportion as possible of the water introduced into the engine can. It can be provided that the carrier gas is cooled so that ice pellets and / or carbon dioxide pellets are as stable as possible in the carrier gas flow. Alternatively, however, it is also possible to heat the carrier gas stream, for example to about 80.degree. This initially seems absurd for carbon dioxide pellets, for example, since it reduces the stability of the pellets. However, the invention has recognized that the warm carrier gas flow supplies the inside of the engine with thermal energy which compensates for the cooling caused by the cleaning medium. This prevents the solid carbon dioxide from being able to develop an insufficient cleaning effect due to excessive cooling (due to the insufficient temperature difference). This can also prevent the water remaining inside the engine from freezing solid if water ice is used as the cleaning medium. Since the carrier gas only acts on the cold pellets for a very short period of time before they can develop their cleaning effect, the influence of the heated carrier gas on the pellets is negligible or negligible.

Gegenstand der Erfindung ist ferner eine Anordnung aus einem Strahltriebwerk und einer erfindungsgemäßen Düseneinrichtung. Die Anordnung ist dadurch gekennzeichnet, dass die Düseneinrichtung so angeordnet ist, dass ihre Düse(n) auf den Einlauf des Strahltriebwerks gerichtet ist/sind.The invention also relates to an arrangement comprising a jet engine and a nozzle device according to the invention. The arrangement is characterized in that the nozzle device is arranged such that its nozzle (s) is / are directed towards the inlet of the jet engine.

Die Strahlebene bzw. Hauptaustrittsrichtung der Düse(n) ist bevorzugt schräg nach innen zur Rotationsachse des Triebwerks hin gerichtet und schließt mit dieser Achse einen Winkel von 10 bis 30°, vorzugsweise 12 bis 25°, weiter vorzugsweise 16 bis 19° ein.The jet plane or main exit direction of the nozzle (s) is preferably directed obliquely inward to the axis of rotation of the engine and forms an angle of 10 to 30 °, preferably 12 to 25 °, more preferably 16 to 19 ° with this axis.

Bevorzugt ist der Austritt der wenigstens einen Düse in einem Radialabstand von der Rotationsachse des Triebwerks angeordnet, der dem 0,5 bis 1,2fachen, vorzugsweise dem 0,5 bis lfachen des Radius der stromauf gerichteten Eintrittöffnung der ersten Kompressorstufe entspricht. Der Austritt liegt somit in Radialrichtung näher an der äußeren Verdichterwand als an der Rotationsachse des Triebwerks bzw. Verdichters.The outlet of the at least one nozzle is preferably arranged at a radial distance from the axis of rotation of the engine which corresponds to 0.5 to 1.2 times, preferably 0.5 to 1 times the radius of the upstream inlet opening of the first compressor stage. The outlet is therefore closer to the outer compressor wall in the radial direction than to the axis of rotation of the engine or compressor.

Bei einer bevorzugten Ausführungsform kann die Hauptaustrittsrichtung der Düse(n) mit der Rotationsachse des Triebwerks einen Winkel einschließen, der zwischen β und α liegt; wobei β der Winkel ist zwischen der Rotationsachse des Triebwerks und einer ersten Geraden, die als Tangente an der in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung des Strömungskanals des Kompressors und an der in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung des Strömungskanals verläuft; und wobei α der Winkel ist zwischen der Rotationsachse des Triebwerks und einer zweiten Geraden, die als Tangente an dem radial außen angeordneten Rand des Einlaufs des Kompressors (Verdichters) und an der in Strömungsrichtung dahinter angeordneten, radial innen angeordneten konvexen Krümmung des Strömungskanals verläuft. Ferner kann der Austritt der wenigstens einen Düse vorzugsweise in einem Radialabstand von der Rotationsachse des Triebwerks angeordnet werden, der zwischen den Radialabständen der Schnittpunkte der ersten und zweiten Geraden mit derjenigen Radialebene liegt, in der der Austritt der wenigstens einen Düse angeordnet ist.In a preferred embodiment, the main outlet direction of the nozzle (s) can enclose an angle with the axis of rotation of the engine which lies between β and α; where β is the angle between the axis of rotation of the engine and a first straight line, which runs as a tangent to the radially inwardly arranged convex curvature of the flow channel of the compressor in the flow direction and to the radially outwardly arranged convex curvature of the flow channel arranged behind it in the flow direction; and where α is the angle between the axis of rotation of the engine and a second straight line which runs as a tangent to the radially outer edge of the inlet of the compressor (compressor) and to the radially inner convex curvature of the flow channel arranged behind it in the flow direction. Furthermore, the outlet of the at least one nozzle can preferably be arranged at a radial distance from the axis of rotation of the engine that lies between the radial distances of the intersection points of the first and second straight lines with the radial plane in which the outlet of the at least one nozzle is arranged.

Es kann bevorzugt vorgesehen sein, dass die Düseneinrichtung drehfest mit der Welle des Fans des Strahltriebwerks verbunden ist, die Drehachsen des Fans des Strahltriebwerks und der Düseneinrichtung im wesentlichen konzentrisch angeordnet sind, die Düsen der Düseneinrichtung einen radialen Abstand von der gemeinsamen Drehachse des Strahltriebwerks und der Vorrichtung aufweisen, der dem 0,5 bis 1,2fachen, vorzugsweise dem 0,5 bis lfachen des Radius der ersten Kompressorstufe entspricht, und die Austrittsöffnungen der Düsen in Axialrichtung hinter der Ebene des Turbofans angeordnet und/oder die Düsen in den Zwischenräumen der Turbofanschaufeln angeordnet und/oder auf Zwischenräume der Turbofanschaufeln ausgerichtet sind, so dass die Düsenstrahlen im wesentlichen ungehindert durch die Ebene des Turbofans hindurchtreten können.It can preferably be provided that the nozzle device is rotationally fixed to the shaft of the fan of the jet engine is connected, the axes of rotation of the fan of the jet engine and the nozzle device are arranged essentially concentrically, the nozzles of the nozzle device have a radial distance from the common axis of rotation of the jet engine and the device, which is 0.5 to 1.2 times, preferably 0. 5 to 1 times the radius of the first compressor stage, and the outlet openings of the nozzles are arranged in the axial direction behind the plane of the turbofan and / or the nozzles are arranged in the spaces between the turbofan blades and / or are aligned with the spaces between the turbofan blades, so that the nozzle jets essentially can pass unhindered through the plane of the turbofan.

Ein Ausführungsbeispiel der Erfindung wird im Folgenden anhand der Zeichnungen erläutert. Darin zeigen:

Fig. 1
eine erste Ansicht einer erfindungsgemäßen Düseneinrichtung;
Fig. 2
eine zweite Ansicht einer erfindungsgemäßen Düseneinrichtung;
Fig. 3
eine Ansicht einer besonders bevorzugten Kompressorgeometrie.
An exemplary embodiment of the invention is explained below with reference to the drawings. Show in it:
Fig. 1
a first view of a nozzle device according to the invention;
Fig. 2
a second view of a nozzle device according to the invention;
Fig. 3
a view of a particularly preferred compressor geometry.

Die Düseneinrichtung weist zwei Ringelemente 101, 102 auf, mit deren Hilfe die Düseneinrichtung auf eine Wellennabe des Turbofans eines Strahltriebwerks aufgesetzt wird. Im aufgesetzten Zustand umschließen die Ringelemente 101, 102 die Wellennabe im Wesentlichen formschlüssig. Zu den Details der Verbindung der Düseneinrichtung mit einer Wellennabe wird auf die WO 2009/132847 A1 verwiesen. Die beiden Ringelemente 101, 102 sind durch Radialstreben 104 miteinander verbunden. An der stromauf weisenden Spitze der Düseneinrichtung (bezogen auf die Strömungsrichtung des Triebwerks) ist eine insgesamt mit 105 bezeichnete Drehkupplung angeordnet, die einen Einlass 110 aufweist. Die Drehkupplung 105 kann alternativ von der Verzweigung mit den Druckanschlüssen 106 getrennt ausgebildet sein und bspw. durch ein kurzes Schlauchstück damit verbunden sein, dessen Flexibilität mögliche Achsabweichungen bei der Montage ausgleichen hilft. Von dieser Drehkupplung 105 erstrecken sich zwei axial stromab führende Druckanschlüsse 106. An die Druckanschlüsse 106 können zwei Druckschläuche 108 angeschlossen werden (in Fig. 1 ist der Übersichtlichkeit halber nur ein Druckschlauch 108 dargestellt), deren jeweils anderes Ende mit dem Eingang der Flachstrahldüsen 107 verbunden wird. Die Länge und Flexibilität dieser Druckschläuche 108 ist so bemessen, dass diese im montierten Zustand in den Krümmungen so ausgebildet sind, dass diese eine störungsfreie Förderung des Strahlmediums erlauben. Aufgrund der großen Krümmungsradien können Feststoffe und insbesondere Pellets vom Eingang der Drehkupplung 105 bis zum Düsenaustritt 109 der Flachstrahldüsen 107 reibungsarm transportiert werden. Die beiden Flachstrahldüsen 107 werden so mit Reinigungsmedium gespeist.The nozzle device has two ring elements 101, 102, with the aid of which the nozzle device is placed on a shaft hub of the turbofan of a jet engine. In the attached state, the ring elements 101, 102 enclose the shaft hub essentially in a form-fitting manner. To the details of the connection of the nozzle device to a shaft hub is on the WO 2009/132847 A1 referenced. The two ring elements 101, 102 are connected to one another by radial struts 104. At the upstream tip of the nozzle device (in relation to the direction of flow of the engine) there is a rotary coupling denoted as a whole by 105, which has an inlet 110. The rotary coupling 105 can alternatively be designed separately from the branching with the pressure connections 106 and, for example, be connected to it by a short piece of hose, the flexibility of which helps compensate for possible axial deviations during assembly. From this rotary coupling 105 two pressure connections 106 extending axially downstream extend. Two pressure hoses 108 can be connected to the pressure connections 106 (in FIG Fig. 1 For the sake of clarity, only one pressure hose 108 is shown), the other end of which is connected to the inlet of the flat jet nozzles 107. The length and flexibility of these pressure hoses 108 is dimensioned such that, in the assembled state, they are designed in the curvatures so that they allow the blasting medium to be conveyed without interference. Due to the large radii of curvature, solids and in particular pellets can be transported with little friction from the inlet of the rotary coupling 105 to the nozzle outlet 109 of the flat jet nozzles 107. The two flat jet nozzles 107 are thus fed with cleaning medium.

Der axiale Abstand der Drehkupplung 105 von den Austrittsöffnungen 109 der Düsen 107 beträgt im Ausführungsbeispiel etwa 1,2 m. Dieser Abstand ist hinreichend, dass die Druckschläuche 108 die Einlässe der Düsen 107 ohne zu große Krümmungen dieser Druckschläuche 108 mit den Auslässen 106 der Drehkupplung 105 verbinden können. Der radiale Abstand des Düsenaustritts 109 von der Rotationsachse beträgt im Ausführungsbeispiel etwa 270 mm. Er ist abgestimmt auf die Reinigung eines CF6-50-Triebwerks. Die Hauptaustrittsrichtung der Düsen 107 (diese entspricht im wesentlichen ihrer Längsachse) schließt mit der Rotationsachse der Düseneinrichtung einen Winkel von 18° ein.The axial distance between the rotary coupling 105 and the outlet openings 109 of the nozzles 107 is approximately 1.2 m in the exemplary embodiment. This distance is sufficient for the pressure hoses 108 to reach the inlets of the nozzles 107 without excessive curvatures of these pressure hoses 108 with the outlets 106 the rotary coupling 105 can connect. The radial distance between the nozzle outlet 109 and the axis of rotation is approximately 270 mm in the exemplary embodiment. It is designed for cleaning a CF6-50 engine. The main exit direction of the nozzles 107 (this essentially corresponds to their longitudinal axis) forms an angle of 18 ° with the axis of rotation of the nozzle device.

Die Befestigung der Düseneinrichtung an der Wellennabe eines Turbofans erfolgt mittels Spannseilen, wie detailliert in WO 2009/132847 A1 beschrieben.The nozzle device is attached to the shaft hub of a turbofan by means of tension ropes, as detailed in WO 2009/132847 A1 described.

Zum Reinigen eines Strahltriebwerks wird die Düseneinrichtung auf die Wellennabe des Turbofans aufgesetzt und an den Schaufeln des Turbofans fixiert. Das Triebwerk wird in Drehung versetzt (dry-cranking). Über die Drehkupplung 105 und die Druckschläuche 108 werden die Flachstrahldüsen 107 mit Reinigungsmedium aus einer nicht dargestellten Versorgungseinrichtung gespeist. Dieses Reinigungsmedium überstreicht den Einlass der ersten Kompressorstufe über deren gesamten Umfang und führt so die Reinigung aus.To clean a jet engine, the nozzle device is placed on the shaft hub of the turbofan and fixed to the turbofan's blades. The engine is set in rotation (dry-cranking). The flat jet nozzles 107 are fed with cleaning medium from a supply device (not shown) via the rotary coupling 105 and the pressure hoses 108. This cleaning medium sweeps the inlet of the first compressor stage over its entire circumference and thus carries out the cleaning.

Figur 3 zeigt den schematischen Ausschnitt eines Triebwerks mit einer besonders bevorzugten Kompressorgeometrie. Abgebildet sind eine Turbofanschaufel 301 und der stromabwärts angeordnete Einlauf 303 des Kompressors 304 relativ zur Rotationsachse 308 des Triebwerks. Der Einlauf 303 weist einen radial außen angeordneten Rand 305 auf. In Strömungsrichtung hinter dem Rand 305 ist eine radial innen angeordnete konvexe Krümmung 306 des Strömungskanals 302 des Kompressors angeordnet. Hierbei handelt es sich um eine Einwärtskrümmung in Richtung der Rotationsachse 308 des Triebwerks. In Strömungsrichtung hinter der Krümmung 306 ist eine radial außen angeordnete konvexe Krümmung 307 des Strömungskanals 302. Die Hauptaustrittsrichtung der Düse(n) (in Fig. 3 nicht gezeigt)können mit der Rotationsachse 308 des Triebwerks vorzugsweise einen Winkel einschließen, der zwischen den Winkeln β und α liegt; wobei β der Winkel ist zwischen der Rotationsachse 308 des Triebwerks und einer ersten Geraden 310, die als Tangente an der in Strömungsrichtung vorderen, radial innen angeordneten konvexen Krümmung 306 (an Punkt B1) des Strömungskanals des Kompressors und an der in Strömungsrichtung dahinter angeordneten, radial außen angeordneten konvexen Krümmung 307 (an Punkt B2) des Strömungskanals 302 verläuft; und wobei α der Winkel ist zwischen der Rotationsachse 308 des Triebwerks und einer zweiten Geraden 311, die als Tangente an dem radial außen angeordneten Rand 305 des Einlaufs 303 des Kompressors 304 (an Punkt P) und an der in Strömungsrichtung dahinter angeordneten, radial innen angeordneten konvexen Krümmung 306 (an Punkt A)des Strömungskanals verläuft. Ferner kann der Austritt einer (nicht gezeigten) Düse in einem Radialabstand von der Rotationsachse 308 des Triebwerks angeordnet sein, der zwischen den Radialabständen (xmin, xmax) der Schnittpunkte (x2, x1) der ersten und zweiten Geraden mit derjenigen Radialebene 309 liegt, in der der Austritt der Düse (in Fig. 3 nicht gezeigt) angeordnet ist. Figure 3 shows the schematic section of an engine with a particularly preferred compressor geometry. A turbo fan blade 301 and the downstream inlet 303 of the compressor 304 relative to the axis of rotation 308 of the engine are shown. The inlet 303 has an edge 305 arranged radially on the outside. In the direction of flow behind the edge 305, a radially inwardly arranged convex curvature 306 of the flow channel 302 of the compressor is arranged. This is an inward curve in the direction of the axis of rotation 308 of the engine. Behind the curve 306 in the direction of flow a radially outwardly arranged convex curvature 307 of the flow channel 302. The main exit direction of the nozzle (s) (in Fig. 3 not shown) can preferably enclose an angle with the axis of rotation 308 of the engine which lies between the angles β and α; where β is the angle between the axis of rotation 308 of the engine and a first straight line 310, which is a tangent to the radially inwardly arranged convex curvature 306 (at point B 1 ) of the flow channel of the compressor and to the one behind it in the direction of flow, radially outwardly arranged convex curvature 307 (at point B 2 ) of the flow channel 302 runs; and where α is the angle between the axis of rotation 308 of the engine and a second straight line 311, which is arranged as a tangent to the radially outer edge 305 of the inlet 303 of the compressor 304 (at point P) and to that arranged radially inward in the flow direction convex curvature 306 (at point A) of the flow channel. Furthermore, the outlet of a nozzle (not shown) can be arranged at a radial distance from the axis of rotation 308 of the engine, which is between the radial distances (x min , x max ) of the points of intersection (x 2 , x 1 ) of the first and second straight lines with that radial plane 309, in which the nozzle outlet (in Fig. 3 not shown) is arranged.

Claims (15)

  1. Nozzle installation having at least one nozzle, which is configured for introducing a cleaning medium containing solids into a jet engine, which has means (101, 102, 104) for connecting in a rotationally fixed manner to the shaft of the turbofan of a jet engine, and which has a rotary coupling (105) to which a line connection is able to be connected, wherein the connection of the nozzle-proximal outlet (106) of the rotary coupling (105) to the inlet of the at least one nozzle (107) is established by means of a flexible hose (108), characterized in that the rotary coupling (105) is spaced apart from the means (101, 102, 104) for the rotationally fixed connection to the shaft of the turbofan of a jet engine by 0.2 to 2 m, wherein curvatures present in the flexible hose (108) are configured such that a solid can follow a flow through the flexible hose (108) without hindrance and does not precipitate or sublimate on walls of the flexible hose (108) by virtue of excessively tight curvature radii.
  2. Nozzle installation according to Claim 1, characterized in that the nozzle-proximal outlet (106) of the rotary coupling (105) lies diametrically opposite the inlet (110).
  3. Nozzle installation according to one of Claims 1 to 2, characterized in that the rotary coupling is spaced apart from the means for the rotationally fixed connection to the shaft of the turbofan of a jet engine by 0.5 to 2 m, preferably 0.75 to 1.25 m.
  4. Nozzle installation according to one of Claims 1 to 3, characterized in that the routing of the cleaning medium from the inlet of the at least one nozzle to the nozzle exit is configured so as to be substantially rectilinear.
  5. Nozzle installation according to one of Claims 1 to 4, characterized in that said nozzle installation is configured for introducing the cleaning medium into the compressor stages of the jet engine.
  6. Nozzle installation according to one of Claims 1 to 5, characterized in that said nozzle installation has at least one nozzle (107).
  7. Nozzle installation according to one of Claims 1 to 6, characterized in that said nozzle installation has flat-spray nozzles.
  8. Nozzle installation according to one of Claims 1 to 7, characterized in that the radial spacing of the nozzle exit from the rotation axis of the engine is 200 to 800 mm, preferably 400 to 750 mm, furthermore preferably 600 to 700 mm, furthermore preferably 200 to 400 mm, preferably 230 to 300 mm, furthermore preferably 260 to 280 mm.
  9. Nozzle installation according to one of Claims 1 to 8, characterized in that the plane of the spray conjointly with the rotation axis of the jet engine encloses an angle which is preferably 10 to 30°, furthermore preferably 12 to 25°, furthermore preferably 16 to 19°.
  10. Nozzle installation according to one of Claims 1 to 9, characterized by the following features:
    the plane of the spray conjointly with the rotation axis of the jet engine encloses an angle which is between β and α; wherein
    β is the angle between the rotation axis of the engine and a first straight line which runs as a tangent on that convex curvature of the flow duct of the compressor that in the flow direction is at the front and is disposed so as to be radially inward, and on that convex curvature of the flow duct that in the flow direction is disposed behind the former and so as to be radially outward;
    α is the angle between the rotation axis of the engine and a second straight line which runs as a tangent on that periphery of the inlet of the compressor that is disposed so as to be radially outward, and on that convex curvature of the flow duct that in the flow direction is disposed behind the former and so as to be radially inward.
  11. Assembly of a jet engine and a nozzle installation according to one of Claims 1 to 10, characterized in that the nozzle installation is disposed such that the nozzle(s) (107) thereof is/are directed toward the inlet of the jet engine such that the cleaning medium can make its way into the jet engine.
  12. Assembly according to Claim 11, characterized in that the main exit direction of the at least one nozzle (107) in relation to the rotation axis of the jet engine encloses an angle of 10 to 30°, preferably of 15 to 25°, furthermore preferably of 16 to 19°.
  13. Assembly according to Claim 11 or 12, characterized in that the exit of the at least one nozzle (107) is disposed at a radial spacing from the rotation axis of the engine which corresponds to 0.5 to 1.2 times, preferably to 0.5 to 1 times, the radius of the entry opening of the first compressor stage that is directed upstream.
  14. Assembly according to one of Claims 11 to 13, characterized by the following features:
    the main exit direction of the at least one nozzle (107) in relation to the rotation axis of the jet engine encloses an angle which is between β and α;
    wherein
    β is the angle between the rotation axis of the engine and a first straight line which runs as a tangent on that convex curvature of the flow duct of the compressor that in the flow direction is at the front and is disposed so as to be radially inward, and on that convex curvature of the flow duct that in the flow direction is disposed behind the former and so as to be radially outward;
    α is the angle between the rotation axis of the engine and a second straight line which runs as a tangent on that periphery of the inlet of the compressor that is disposed so as to be radially outward, and on that convex curvature of the flow duct that in the flow direction is disposed behind the former and so as to be radially inward;
    the exit (109) of the at least one nozzle (107) is disposed at a radial spacing from the rotation axis of the engine which lies between the radial spacings of the intersection points of the first and the second straight line with that radial plane in which the exit (109) is disposed.
  15. Assembly according to one of Claims 11 to 14, characterized by the following features:
    a) the nozzle installation is connected in rotationally fixed manner to the shaft of the turbofan of the jet engine;
    b) the rotation axes of the turbofan of the jet engine and of the nozzle installation are disposed so as to be substantially concentric;
    c) the nozzles (107) of the nozzle installation have a radial spacing from the common rotation axis of the jet engine and of the nozzle installation that corresponds to 0.5 to 1.2 times, preferably to 0.5 to 1 times, the radius of the entry opening of the first compressor stage;
    d) the exit openings (109) of the nozzles (107) in the axial direction are disposed behind the plane of the turbofan, and/or the nozzles (107) are disposed in the intermediate spaces of the blades of the turbofan and/or directed toward intermediate spaces of the blades of the turbofan such that the nozzle jets may pass through the plane of the turbofan substantially without hindrance.
EP17150138.0A 2013-11-29 2014-11-28 Device for cleaning a jet engine Active EP3189934B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013224639.0A DE102013224639A1 (en) 2013-11-29 2013-11-29 Method and device for cleaning a jet engine
EP14806234.2A EP3074181B1 (en) 2013-11-29 2014-11-28 Method for cleaning a jet engine
PCT/EP2014/075981 WO2015079032A1 (en) 2013-11-29 2014-11-28 Method and device for cleaning a jet engine

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP14806234.2A Division EP3074181B1 (en) 2013-11-29 2014-11-28 Method for cleaning a jet engine
EP14806234.2A Division-Into EP3074181B1 (en) 2013-11-29 2014-11-28 Method for cleaning a jet engine

Publications (2)

Publication Number Publication Date
EP3189934A1 EP3189934A1 (en) 2017-07-12
EP3189934B1 true EP3189934B1 (en) 2021-04-07

Family

ID=52003757

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17150138.0A Active EP3189934B1 (en) 2013-11-29 2014-11-28 Device for cleaning a jet engine
EP14806234.2A Active EP3074181B1 (en) 2013-11-29 2014-11-28 Method for cleaning a jet engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14806234.2A Active EP3074181B1 (en) 2013-11-29 2014-11-28 Method for cleaning a jet engine

Country Status (6)

Country Link
US (2) US9903223B2 (en)
EP (2) EP3189934B1 (en)
CN (1) CN106102997B (en)
CA (1) CA2931952C (en)
DE (1) DE102013224639A1 (en)
WO (1) WO2015079032A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209994A1 (en) * 2015-05-29 2016-12-15 Lufthansa Technik Ag Method and device for cleaning a jet engine
DE102018119092A1 (en) * 2018-08-06 2020-02-06 Lufthansa Technik Ag Device and method for cleaning the core engine of a jet engine
DE102018119094A1 (en) * 2018-08-06 2020-02-06 Lufthansa Technik Ag Device, method and arrangement for cleaning the core engine of a jet engine
GB201906541D0 (en) * 2019-05-09 2019-06-26 Rolls Royce Plc Washing tool, washing system and a method of washing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981329A (en) * 1975-10-20 1976-09-21 Maurice Wohlwend Swivel type fluid coupling
US4065322A (en) * 1976-02-23 1977-12-27 General Electric Company Contamination removal method
US6585569B2 (en) * 2000-12-28 2003-07-01 General Electric Company Method of cleaning gas turbine compressors using crushed, solid material capable of sublimating
WO2005077554A1 (en) * 2004-02-16 2005-08-25 Gas Turbine Efficiency Ab Method and apparatus for cleaning a turbofan gas turbine engine
EP2196394B1 (en) 2004-06-14 2012-12-05 Pratt & Whitney Line Maintenance Services, Inc. Method for collecting and treating waste water from engine washing
US9790808B2 (en) * 2005-04-04 2017-10-17 Ecoservices, Llc Mobile on-wing engine washing and water reclamation system
GB0614874D0 (en) * 2006-07-27 2006-09-06 Rolls Royce Plc Aeroengine washing system and method
US8197609B2 (en) * 2006-11-28 2012-06-12 Pratt & Whitney Line Maintenance Services, Inc. Automated detection and control system and method for high pressure water wash application and collection applied to aero compressor washing
EP1970133A1 (en) * 2007-03-16 2008-09-17 Lufthansa Technik AG Device and method for cleaning the core engine of a turbojet engine
DE102008019892A1 (en) * 2008-04-21 2009-10-29 Mtu Aero Engines Gmbh Method for cleaning an aircraft engine
DE102008021746A1 (en) 2008-04-30 2009-11-19 Lufthansa Technik Ag Method and device for cleaning a jet engine
US7445677B1 (en) * 2008-05-21 2008-11-04 Gas Turbine Efficiency Sweden Ab Method and apparatus for washing objects
DE102008047493B4 (en) * 2008-09-17 2016-09-22 MTU Aero Engines AG Method for cleaning an engine
DE102010020619A1 (en) * 2009-05-26 2011-02-24 Ohe, Jürgen von der, Dr.-Ing. Method for cleaning metallic or non-metallic surfaces of e.g. turbine blade in steam turbine, involves loading flow of compressed air with carbon dioxide pellets, hardened pellets, water ice particles and fragmented pellets
DE102010045869A1 (en) * 2010-08-03 2012-02-23 Mtu Aero Engines Gmbh Cleaning a turbo machine stage
DE102011004923A1 (en) * 2011-03-01 2012-09-06 Wilfried Böhm Method and device for producing a dry ice water ice mixture
DE102011119826A1 (en) 2011-03-14 2012-09-20 Jürgen von der Ohe Method for producing a blasting abrasive, method for blasting, blasting abrasive, apparatus for producing a blasting abrasive, apparatus for blasting
DE102011086496B4 (en) * 2011-09-01 2013-04-11 Cornel Thorma Metallverarbeitungs Gmbh RADIANT AND A METHOD FOR PRODUCING THE RADIANT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015079032A1 (en) 2015-06-04
EP3189934A1 (en) 2017-07-12
US20170114663A1 (en) 2017-04-27
DE102013224639A1 (en) 2015-06-03
CA2931952A1 (en) 2015-06-04
US10247033B2 (en) 2019-04-02
US20160298488A1 (en) 2016-10-13
EP3074181B1 (en) 2020-04-22
EP3074181A1 (en) 2016-10-05
CN106102997A (en) 2016-11-09
CN106102997B (en) 2018-10-16
CA2931952C (en) 2022-06-28
US9903223B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
EP2280872B1 (en) Method and device for cleaning a jet engine using solid carbon dioxide
EP1993744B1 (en) Device and method for cleaning the core engine of a jet engine
EP3189934B1 (en) Device for cleaning a jet engine
DE102018119091A1 (en) Method, device and arrangement for cleaning the core engine of a jet engine
EP3302833B1 (en) Method and device for cleaning a jet engine
EP3833492B1 (en) Device, process and arrangement for cleaning of the core engine of a jet engine
DE102013202616B4 (en) Device for cleaning the core engine of a jet engine
EP1917421B1 (en) Compressor, compressor wheel, cleaning attachment and exhaust turbocharger
EP1735579A1 (en) Method for cleaning the pipes of a heat exchanger by means of an abrasive, and corresponding device
DE102016206246A1 (en) Method and device for cleaning turbine blades
DE102011015252A1 (en) Cleaning lance and method for cleaning engines
EP3241998A1 (en) Turbofan engine and a method for exhausting breather air of an oil separator in a turbofan engine
EP2251091A2 (en) Rotor nozzle
DE102009052314A1 (en) Sealing arrangement for a gas turbine and such a gas turbine
DE102013002636A1 (en) Device for jet cleaning of unit, particularly of gas turbine jet engines of airplane, has jet nozzle with introduction stop, which limits depth of insertion of jet nozzle into opening, where twist element is arranged to introduction stop
DE102013224635A1 (en) Method and device for cleaning a jet engine
DE102010005421B4 (en) Device and method for cleaning a front seal of a jet engine
WO2005049972A1 (en) Cleaning device
DE102012213590B4 (en) Apparatus and method for cleaning a jet engine
EP3833491B1 (en) Device and arrangement for cleaning of the core engine of a jet engine
WO2004002684A1 (en) Pipe cleaning nozzle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3074181

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/00 20060101ALI20201118BHEP

Ipc: B64F 5/00 20170101ALI20201118BHEP

Ipc: B24C 5/04 20060101ALI20201118BHEP

Ipc: B24C 1/00 20060101AFI20201118BHEP

INTG Intention to grant announced

Effective date: 20201217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3074181

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014015475

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014015475

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141128

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231121

Year of fee payment: 10

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: FI

Payment date: 20231120

Year of fee payment: 10

Ref country code: DE

Payment date: 20231120

Year of fee payment: 10

Ref country code: CH

Payment date: 20231201

Year of fee payment: 10

Ref country code: AT

Payment date: 20231117

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407