EP3188312B1 - Antennar system - Google Patents

Antennar system Download PDF

Info

Publication number
EP3188312B1
EP3188312B1 EP16207008.0A EP16207008A EP3188312B1 EP 3188312 B1 EP3188312 B1 EP 3188312B1 EP 16207008 A EP16207008 A EP 16207008A EP 3188312 B1 EP3188312 B1 EP 3188312B1
Authority
EP
European Patent Office
Prior art keywords
reflector
antennas
antennar
source
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16207008.0A
Other languages
German (de)
French (fr)
Other versions
EP3188312A1 (en
Inventor
Friedman Tchoffo Talom
Bertrand BOIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3188312A1 publication Critical patent/EP3188312A1/en
Application granted granted Critical
Publication of EP3188312B1 publication Critical patent/EP3188312B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • H01Q19/175Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements arrayed along the focal line of a cylindrical focusing surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device

Definitions

  • the present invention relates to an antenna system.
  • low-profile is understood to mean antenna systems having heights of less than 20 centimeters.
  • a conventional parabola having a symmetrical structure can be used.
  • “Symmetrical structuring” means a structure exhibiting rotational symmetry. This provides optimum performance in terms of gain and pattern.
  • a parabolic antenna of the multi-focal type is used making it possible to reach a height meeting the “low-profile” need.
  • the diagram presented by the antenna in this plane is the diagram of a parabola having a small diameter. Such a diagram does not comply with the normalization constraints relating to the radiation diagram.
  • a planar network of horns is also known, also referred to as the English term “horn box” literally meaning “box of horns”.
  • horn box literally meaning “box of horns”.
  • the invention proposes an antenna system according to claim 1.
  • the antenna system comprises one or more of the characteristics of claims 2 to 7 taken in isolation or in all technically possible combinations.
  • the figure 1 illustrates a first embodiment of an antenna system 10 not forming part of the invention.
  • the antenna system 10 is suitable for receiving and transmitting data within the framework of communication, in particular by satellites.
  • the antenna system 10 is intended to be installed, for example, on ground or airborne platforms.
  • the antenna system 10 comprises a source 12, a reflector 14 and an arm 16.
  • the source 12 comprises a transmission-reception surface 18 and antennas 20.
  • the transmission-reception surface 18 is planar.
  • the transmission-reception surface 18 is suitable for receiving the antennas 20.
  • the transceiver surface 18 has a rectangular shape having a length and a width.
  • a longitudinal direction corresponding to the length of the rectangular shape is defined.
  • the longitudinal direction is symbolized by an X axis on the figure 1 .
  • a first transverse direction corresponding to the width of the rectangular shape is also defined.
  • the first transverse direction is symbolized by a Y axis on the figure 1 .
  • a second transverse direction is also defined as being perpendicular to the longitudinal direction X and to the first transverse direction Y.
  • the second transverse direction is symbolized by an axis Z on the figure 1 .
  • the antennas 20 are arranged along two parallel lines L1 and L2.
  • the lines L1 and L2 are in the longitudinal direction X.
  • the antennas 20 have a rectangular type shape.
  • Each line L1 and L2 comprises four antennas 20 according to the example of the figure 1 .
  • the number of antennas 20 of each line L1 or L2 is, for example, a multiple of two, such as eight or sixteen while respecting the “low profile” character.
  • the antennas 20 of each line L1 or L2 are interconnected so as to form a linear array of antennas 22.
  • the antennas 20 of the first line L1 form a first linear array of antennas 22A while the antennas 20 of the first line L2 form a second linear array of antennas 22B.
  • Each linear network 22A and 22B is oriented along the longitudinal direction X.
  • Each linear array of antennas 22A and 22B is able to emit a beam belonging to a first frequency band and to receive a beam belonging to a second frequency band, the second frequency band being distinct from the first frequency band.
  • the frequency bands are selected from the group consisting of Ka, Ku and X bands.
  • the Ka band corresponds in transmission to frequencies comprised between 29 GHz and 31 GHz and, in reception, to frequencies comprised between 19.2 GHz and 21.2 GHz.
  • the Ku band corresponds to the part of the electromagnetic spectrum defined by the frequency band from 10 GHz to 15 GHz for satellite communications.
  • the X band corresponds to the part of the electromagnetic spectrum defined by a frequency band located around 8 GHz also for satellite communications.
  • each antenna array 22A and 22B comprises a plurality of elementary antennas and antenna processing electronics.
  • the elementary antennas are sized for the band or bands on which the antenna array 22A and 22B is capable of transmitting or receiving.
  • the elementary antennas are all identical.
  • the linear arrays of antennas 22A and 22B give the source 12 the property of being dual-band in that the source 12 makes it possible to perform the transmission and reception functions.
  • the source 12 is capable of operating on the Ka/Ku band.
  • the source 12 is capable of operating on the Ka/X band.
  • the reflector 14 is arranged to reflect each of the beams emitted by the two linear arrays of antennas 22A and 22B.
  • the reflector 14 has the shape of a parabolic cylinder.
  • a parabolic cylinder is a portion of a cylinder whose basic shape is a portion of a parabola.
  • a parabola is a plane curve each point of which is located at equal distance from a fixed point, called the focus, and from a fixed line, called the directrix.
  • the shape of the reflector 14 makes it possible to define two faces, a concave face and a convex face.
  • the face suitable for reflecting each of the beams emitted by the two linear arrays of antennas 22A and 22B is the concave face.
  • the shape of the reflector 14 makes it possible to define a focal distance for the reflector 14.
  • the focal length of the reflector 14 is between 10 centimeters and 20 centimeters.
  • the focal distance of the reflector 14 is equal to 15 centimeters.
  • the direction in which the intersection of any perpendicular plane with the direction with the parabolic cylinder is a parabola is called the first direction D1.
  • a median plane P is defined for the reflector 14.
  • the median plane P is the plane containing the first direction D1 and the directrix of the reflector 14.
  • the direction perpendicular to the median plane P is called second direction D2.
  • the reflector 14 is delimited by four planes, two planes along the first direction D1 and two planes along the second direction D2.
  • the reflector 14 thus extends along the first direction D1 between a lower side 24 and an upper side 26.
  • the reflector 14 also extends along the second direction D2 between a first end 28 and a second end 30.
  • any point located in the median plane P is located equidistant from the two ends 28 and 30.
  • any plane perpendicular to the median plane P is a plane whose intersection, when it exists, with the reflector 14 is a parabola.
  • the angle between the first direction D1 and the longitudinal direction X is less than or equal to 10° depending on the orientation of the antennae 20.
  • the first direction D1 is parallel to the longitudinal direction X.
  • first direction D1 and the longitudinal direction X are parallel while the second direction D2 and the second longitudinal direction Z are parallel.
  • each linear array of antennas 22A and 22B is symmetrical to one another with respect to the median plane P.
  • each linear array of antennas 22A, 22B is equidistant from the two ends 28 and 30 of reflector 14.
  • the reflector 14 is, for example, made of a reflective material which can be aluminum, carbon or metallized plastic allowing its mass to be reduced.
  • the reflector 14 has a first dimension H along the first direction D1.
  • the first dimension H corresponds to the distance measured along the first direction D1 between the lower side 24 and the upper side 26.
  • the first dimension H is between 10 centimeters and 20 centimeters.
  • the first dimension H is equal to 15 centimeters.
  • the first dimension H is equal to the length of the transmission-reception surface 18.
  • the reflector 14 has a second dimension E along the second direction D2.
  • the second dimension H corresponds to the distance measured along the second direction D2 between the two ends 28 and 30.
  • the second dimension E is between 30 centimeters and 50 centimeters.
  • the second dimension E is equal to 40 centimeters.
  • Arm 16 connects source 12 to reflector 14.
  • the connecting member 16 is in the form of a bar extending along the first transverse direction Y.
  • the arm 16 is connected to the reflector 14 by a pivot link connected to the lower side 24 of the reflector 14.
  • the arm 16 is articulated around the longitudinal direction X.
  • the arm 16 has a length such that the distance between the reflector 14 and the source 12 is between 10 centimeters and 30 centimeters.
  • the distance between the source 12 and the reflector 14 measured along the first transverse direction Y is equal to 20 centimeters.
  • the arm 16 is, for example, made of a material identical to the material forming the transmission-reception surface 18.
  • the source 12 emits a beam belonging to a first frequency band towards the reflector 14.
  • the beam is then reflected by the reflector 14.
  • the reflector 14 reflects the beam towards the source 12 whose antennas 20 receive the beam.
  • the transmission and reception operations are, for example, implemented simultaneously.
  • the antenna system 10 proposed makes it possible to benefit from dual-band operation.
  • the antenna system 10 is compact in particular since the first dimension H is less than 30 centimeters.
  • the antenna system 10 has good performance in terms of radiation and diagram.
  • the antenna system 10 makes it possible to easily integrate bipolarization operation into the design of the linear arrays of antennas 22A and 22B.
  • the antenna system 10 also has a large coverage capacity in terms of operating band.
  • the antenna system 10 has a low manufacturing cost.
  • an architecture comprising linear arrays of antennas 22A and 22B integrating duplexing in transmission and in reception while being associated with a reflector 14 of particular shape is easily achievable.
  • the antenna system 10 has an architecture suitable for multiple uses.
  • a second embodiment not forming part of the invention is illustrated by the picture 3 .
  • the reflector 14 of the second embodiment differs from the reflector of the first embodiment in that the reflector 14 of the picture 3 includes a primary reflector 32 and a secondary reflector 34.
  • the median plane P is defined for the reflector 14 of the picture 3 relative to the primary reflector 32.
  • the secondary reflector 34 has a shape identical to the primary reflector 36.
  • the secondary reflector 34 has reduced dimensions compared to the dimensions of the primary reflector 32.
  • the secondary reflector 34 has a second dimension of the same order as the height of the antennas 20 and a first dimension at most equal to 15% that of the parabolic reflector in order to minimize the blocking of radiation.
  • the primary reflector 32 and the secondary reflector 34 are positioned in Cassegrain configuration.
  • the primary reflector 32 and the secondary reflector 34 are positioned such that their generatrices are all parallel to each other and such that their respective concave faces C, C' are located opposite each other. More precisely, the guidelines of the primary reflector 32 and of the secondary reflector 34 coincide.
  • the primary reflector 32 and the secondary reflector 34 are located at a distance between 15 centimeters and 25 centimeters.
  • the source 12 is positioned between the primary reflector 32 and the secondary reflector 34, for example at a distance of less than 10 centimeters from the primary reflector 32.
  • the source 12 transmits a beam belonging to a first frequency band towards the secondary reflector 34.
  • the beam is then reflected towards the primary reflector 32 which then reflects the incident beam.
  • a beam belonging to a second incident frequency band arrives at the primary reflector 32.
  • the primary reflector 32 reflects the beam towards the secondary reflector 34 which reflects the beam towards the source 12 whose antennas 20 receive the beam.
  • the figure 4 illustrates a third embodiment of the antenna system 10 not forming part of the invention.
  • the source 12 differs from the source of the first embodiment in that the source 12 has two sources 40A and 40B conforming to the source 12 of the first embodiment.
  • each source 40A, 40B is positioned opposite a respective end 28, 30 of the reflector 14 so that at least one linear array of antennas 22A and 22B is positioned opposite an end 28 and 30.
  • the figure 5 illustrates a fourth embodiment of the antenna structure.
  • the reflector 14 comprises a primary reflector 32 and two secondary reflectors 34A and 34B capable of reflecting the beam towards the primary reflector 32, each of the primary 32 and secondary reflectors 34A and 34B having the shape of a parabolic cylinder.
  • each secondary reflector 34A and 34B is symmetrical with respect to the median plane P and each secondary reflector 34A and 34B is positioned facing a respective end 28 and 30 of the primary reflector 32.
  • the antenna structure 10 comprises a source 12 capable of emitting at least one beam, the source 12 comprising at least one linear array of antennas 22A and 22B 20B, each linear array 22A and 22B being specific to emitting a beam, the antenna structure 10 comprising a reflector 14 having the shape of a parabolic cylinder, the reflector 14 being arranged to reflect the at least one beam.
  • Such a configuration makes it possible to have an antenna system 10 having a reduced size in height with good performance in terms of gain and diagram.
  • the source 12 comprises more than two emission-reception surfaces 18 and a greater number of linear arrays of antennas.

Description

La présente invention concerne un système antennaire.The present invention relates to an antenna system.

Les documents WO 2009/025458 A1 , US 2 471 284 A , US 3 267 472 A , JP S61 157105 A, l'article "Beam Squint Compensation in Circularly Polarized Offset Reflector Antennas Using a Sequentially Rotated Focal Plane Array" de Zamanifekri et al. , le mémoire de thèse intitulé "Ka-band integrated focal-plane arrays for two-way satellite communication" de Zamanifekri, JP 2000 082919 A , US 2011/156948 A1, l'article "Focal plane array with Ka-band Silicon transmitter on chip for VSAT application" de Zamanifekri et al. , US 2014/326903 A1 et US 2011/063179 A1 divulguent des systèmes antennaires.The documents WO 2009/025458 A1 , US 2,471,284A , US 3,267,472A , JP S61 157105 A, the article "Beam Squint Compensation in Circularly Polarized Offset Reflector Antennas Using a Sequentially Rotated Focal Plane Array" by Zamanifekri et al. , the thesis entitled "Ka-band integrated focal-plane arrays for two-way satellite communication" by Zamanifekri, JP 2000 082919 A , US 2011/156948 A1, the article "Focal plane array with Ka-band Silicon transmitter on chip for VSAT application" by Zamanifekri et al. , US 2014/326903 A1 and US 2011/063179 A1 disclose antenna systems.

Pour les communications satellites, il est souhaitable d'intégrer sur des plateformes sol ou aéroportées des systèmes antennaires dits « low-profile » (ce qui se traduit littéralement par « profil bas » en français).For satellite communications, it is desirable to integrate on ground or airborne platforms so-called “low-profile” antenna systems (which literally means “low profile” in French).

Par l'expression « low-profile », il est entendu des systèmes antennaires présentant des hauteurs inférieures à 20 centimètres.The expression “low-profile” is understood to mean antenna systems having heights of less than 20 centimeters.

Il est connu dans ce contexte de communication d'utiliser un système antennaire passif de type parabolique.It is known in this communication context to use a passive antenna system of the parabolic type.

Par exemple, une parabole classique présentant une structuration symétrique est utilisable. Par « structuration symétrique », il est entendu une structure présentant une symétrie de révolution. Cela permet d'obtenir des performances optimales en termes de gain et de diagramme.For example, a conventional parabola having a symmetrical structure can be used. “Symmetrical structuring” means a structure exhibiting rotational symmetry. This provides optimum performance in terms of gain and pattern.

Par contre, du fait de la structuration symétrique, la hauteur atteinte ne permet pas de répondre au besoin « low-profile ».On the other hand, due to the symmetrical structuring, the height reached does not make it possible to meet the "low-profile" need.

Selon un autre exemple, il est utilisé une antenne parabolique de type multi-foyers permettant d'atteindre une hauteur répondant au besoin « low-profile ».According to another example, a parabolic antenna of the multi-focal type is used making it possible to reach a height meeting the “low-profile” need.

Toutefois, le contrôle du diagramme dans le plan de la hauteur est difficile. Le diagramme présenté par l'antenne dans ce plan est le diagramme d'une parabole ayant un diamètre faible. Un tel diagramme n'est pas conforme aux contraintes de normalisation relatives au diagramme de rayonnement.However, controlling the diagram in the height plane is difficult. The diagram presented by the antenna in this plane is the diagram of a parabola having a small diameter. Such a diagram does not comply with the normalization constraints relating to the radiation diagram.

Il est également connu un réseau planaire de cornets aussi désigné sous le terme anglais « horn box » signifiant littéralement « boîte de cornets ». Avec un tel réseau, le diagramme de rayonnement est aisément contrôlable à l'aide d'une loi d'alimentation choisie pour le réseau et le nombre de cornet(s) associé permet de garantir la contrainte « low profile » dans le plan désiré.A planar network of horns is also known, also referred to as the English term “horn box” literally meaning “box of horns”. With such a grating, the radiation pattern is easily controllable using a power law chosen for the grating and the number of associated horn(s) makes it possible to guarantee the “low profile” constraint in the desired plane.

En revanche, dans le plan où on ne cherche pas à être low-profile, si l'augmentation du nombre d'éléments rayonnants au-delà de 30 ou 40 permet de réduire l'ouverture, celle-ci ne permet plus d'augmenter le gain. De fait, un tel réseau n'est intéressant que pour des dimensions du réseau planaire ayant une longueur inférieure à 40 fois la longueur d'onde .On the other hand, in the plan where one does not seek to be low-profile, if the increase in the number of radiating elements beyond 30 or 40 makes it possible to reduce opening, this no longer allows the gain to be increased. In fact, such a grating is interesting only for dimensions of the planar grating having a length less than 40 times the wavelength.

Il existe donc un besoin pour un système antennaire présentant un encombrement réduit en hauteur (« low profile ») avec des bonnes performances en termes de gain et de diagramme.There is therefore a need for an antenna system having reduced overall height (“low profile”) with good performance in terms of gain and diagram.

A cet effet, l'invention propose un système antennaire selon la revendication 1.To this end, the invention proposes an antenna system according to claim 1.

Suivants des modes particuliers, le système antennaire comprend une ou plusieurs des caractéristiques des revendications 2 à 7 prise(s) isolément ou suivant toutes les combinaisons techniquement possibles.According to particular embodiments, the antenna system comprises one or more of the characteristics of claims 2 to 7 taken in isolation or in all technically possible combinations.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit du mode de réalisation de l'invention, donnée à titre d'exemple uniquement et en référence aux dessins qui sont :

  • figure 1, une représentation schématique en perspective d'un premier exemple de système antennaire ne faisant pas partie de l'invention;
  • figure 2, une vue de haut du système antennaire de la figure 1;
  • figure 3, une vue de haut d'un deuxième exemple de système antennaire ne faisant pas partie de l'invention;
  • figure 4, une vue de haut d'un troisième exemple de système antennaire ne faisant pas partie de l'invention, et
  • figure 5, une vue de haut d'un quatrième exemple de système antennaire.
Other characteristics and advantages of the invention will appear on reading the following description of the embodiment of the invention, given by way of example only and with reference to the drawings which are:
  • figure 1 , a schematic representation in perspective of a first example of an antenna system not forming part of the invention;
  • figure 2 , a top view of the antenna system of the figure 1 ;
  • picture 3 , a top view of a second example of an antenna system not forming part of the invention;
  • figure 4 , a top view of a third example of an antenna system not forming part of the invention, and
  • figure 5 , a top view of a fourth example of an antenna system.

La figure 1 illustre un premier mode de réalisation d'un système antennaire 10 ne faisant pas partie de l'invention.The figure 1 illustrates a first embodiment of an antenna system 10 not forming part of the invention.

Le système antennaire 10 est propre à recevoir et émettre des données dans le cadre de communication, notamment par satellites.The antenna system 10 is suitable for receiving and transmitting data within the framework of communication, in particular by satellites.

Le système antennaire 10 est destiné à être installé, par exemple, sur des plateformes sol ou aéroportées.The antenna system 10 is intended to be installed, for example, on ground or airborne platforms.

Le système antennaire 10 comprend une source 12, un réflecteur 14 et un bras 16.The antenna system 10 comprises a source 12, a reflector 14 and an arm 16.

Dans l'exemple illustré, la source 12 comporte une surface d'émission-réception 18 et des antennes 20.In the example illustrated, the source 12 comprises a transmission-reception surface 18 and antennas 20.

La surface d'émission-réception 18 est planaire.The transmission-reception surface 18 is planar.

La surface d'émission-réception 18 est propre à recevoir les antennes 20.The transmission-reception surface 18 is suitable for receiving the antennas 20.

Plus précisément, dans l'exemple de la figure 1, la surface d'émission-réception 18 présente une forme rectangulaire ayant une longueur et une largeur.More specifically, in the example of the figure 1 , the transceiver surface 18 has a rectangular shape having a length and a width.

Il est défini une direction longitudinale correspondant à la longueur de la forme rectangulaire. La direction longitudinale est symbolisée par un axe X sur la figure 1.A longitudinal direction corresponding to the length of the rectangular shape is defined. The longitudinal direction is symbolized by an X axis on the figure 1 .

Il est également défini une première direction transversale correspondant à la largueur de la forme rectangulaire. La première direction transversale est symbolisée par un axe Y sur la figure 1.A first transverse direction corresponding to the width of the rectangular shape is also defined. The first transverse direction is symbolized by a Y axis on the figure 1 .

Une deuxième direction transversale est aussi définie comme étant perpendiculaire à la direction longitudinale X et à la première direction transversale Y. La deuxième direction transversale est symbolisée par un axe Z sur la figure 1.A second transverse direction is also defined as being perpendicular to the longitudinal direction X and to the first transverse direction Y. The second transverse direction is symbolized by an axis Z on the figure 1 .

Dans l'exemple de la figure 1, les antennes 20 sont agencées le long de deux lignes L1 et L2 parallèles.In the example of the figure 1 , the antennas 20 are arranged along two parallel lines L1 and L2.

Selon l'exemple de la figure 1, les lignes L1 et L2 sont selon la direction longitudinale X.According to the example of figure 1 , the lines L1 and L2 are in the longitudinal direction X.

Selon un mode de réalisation, les antennes 20 présentent une forme de type rectangulaire.According to one embodiment, the antennas 20 have a rectangular type shape.

Chaque ligne L1 et L2 comporte quatre antennes 20 selon l'exemple de la figure 1.Each line L1 and L2 comprises four antennas 20 according to the example of the figure 1 .

En variante, le nombre d'antennes 20 de chaque ligne L1 ou L2 est, par exemple, un multiple de deux, comme huit ou seize tout en respectant le caractère « low profile ».As a variant, the number of antennas 20 of each line L1 or L2 is, for example, a multiple of two, such as eight or sixteen while respecting the “low profile” character.

Les antennes 20 de chaque ligne L1 ou L2 sont reliées entre elles de manière à former un réseau linéaire d'antennes 22.The antennas 20 of each line L1 or L2 are interconnected so as to form a linear array of antennas 22.

Les antennes 20 de la première ligne L1 forment un premier réseau linéaire d'antennes 22A tandis que les antennes 20 de la première ligne L2 forment un deuxième réseau linéaire d'antennes 22B.The antennas 20 of the first line L1 form a first linear array of antennas 22A while the antennas 20 of the first line L2 form a second linear array of antennas 22B.

Chaque réseau linéaire 22A et 22B est orienté selon la direction longitudinale X.Each linear network 22A and 22B is oriented along the longitudinal direction X.

Chaque réseau linéaire d'antennes 22A et 22B est propre à émettre un faisceau appartenant à une première bande de fréquence et à recevoir un faisceau appartenant à une deuxième bande de fréquence, la deuxième bande de fréquence étant distincte de la première bande de fréquence.Each linear array of antennas 22A and 22B is able to emit a beam belonging to a first frequency band and to receive a beam belonging to a second frequency band, the second frequency band being distinct from the first frequency band.

Les bandes de fréquences sont choisies parmi dans le groupe constitué des bandes Ka, Ku et X.The frequency bands are selected from the group consisting of Ka, Ku and X bands.

Pour les télécommunications par liaison satellitaire, la bande Ka correspond en émission à des fréquences comprises entre 29 GHz et 31 GHz et, en réception, à des fréquences comprises entre 19,2 GHz et 21,2 GHz.For telecommunications by satellite link, the Ka band corresponds in transmission to frequencies comprised between 29 GHz and 31 GHz and, in reception, to frequencies comprised between 19.2 GHz and 21.2 GHz.

La bande Ku correspond à la partie du spectre électromagnétique définie par la bande de fréquence de 10 GHz à 15 GHz pour les communications satellitaires.The Ku band corresponds to the part of the electromagnetic spectrum defined by the frequency band from 10 GHz to 15 GHz for satellite communications.

La bande X correspond à la partie du spectre électromagnétique définie par une bande de fréquence située aux alentours de 8 GHz également pour les communications satellitaires.The X band corresponds to the part of the electromagnetic spectrum defined by a frequency band located around 8 GHz also for satellite communications.

Pour cela, chaque réseau antennaire 22A et 22B comporte une pluralité d'antennes élémentaires et une électronique de traitement des antennes.For this, each antenna array 22A and 22B comprises a plurality of elementary antennas and antenna processing electronics.

Les antennes élémentaires sont dimensionnées pour la ou les bandes sur lesquelles le réseau antennaire 22A et 22B est propre à émettre ou recevoir.The elementary antennas are sized for the band or bands on which the antenna array 22A and 22B is capable of transmitting or receiving.

Selon un exemple particulier, pour faciliter la fabrication des réseaux antennaires 20A et 20B, les antennes élémentaires sont toutes identiques.According to a particular example, to facilitate the manufacture of the antenna arrays 20A and 20B, the elementary antennas are all identical.

Les réseaux linéaires d'antennes 22A et 22B confèrent à la source 12 la propriété d'être bi-bande en cela que la source 12 permet d'assurer les fonctions d'émission et de réception.The linear arrays of antennas 22A and 22B give the source 12 the property of being dual-band in that the source 12 makes it possible to perform the transmission and reception functions.

A titre d'illustration, la source 12 est propre à fonctionner sur la bande Ka/Ku.By way of illustration, the source 12 is capable of operating on the Ka/Ku band.

Selon une variante, la source 12 est propre à fonctionner sur la bande Ka/X.According to a variant, the source 12 is capable of operating on the Ka/X band.

Le réflecteur 14 est agencé pour réfléchir chacun des faisceaux émis par les deux réseaux linéaires d'antennes 22A et 22B.The reflector 14 is arranged to reflect each of the beams emitted by the two linear arrays of antennas 22A and 22B.

Le réflecteur 14 présente la forme d'un cylindre parabolique.The reflector 14 has the shape of a parabolic cylinder.

Par définition, un cylindre parabolique est une portion de cylindre dont la forme de base est une portion de parabole.By definition, a parabolic cylinder is a portion of a cylinder whose basic shape is a portion of a parabola.

Autrement formulé, cela signifie qu'il existe une direction selon laquelle l'intersection, lorsqu'elle existe, de tout plan, chaque plan étant perpendiculaire avec la direction, avec le cylindre parabolique est une parabole.Otherwise formulated, it means that there is a direction along which the intersection, when it exists, of any plane, each plane being perpendicular with the direction, with the parabolic cylinder is a parabola.

Une parabole est une courbe plane dont chacun des points est situé à égale distance d'un point fixe, appelé le foyer, et d'une droite fixe, appelée la directrice.A parabola is a plane curve each point of which is located at equal distance from a fixed point, called the focus, and from a fixed line, called the directrix.

La forme du réflecteur 14 permet de définir deux faces, une face concave et une face convexe. La face adaptée pour réfléchir chacun des faisceaux émis par les deux réseaux linéaires d'antennes 22A et 22B est la face concave.The shape of the reflector 14 makes it possible to define two faces, a concave face and a convex face. The face suitable for reflecting each of the beams emitted by the two linear arrays of antennas 22A and 22B is the concave face.

La forme du réflecteur 14 permet de définir une distance focale pour le réflecteur 14.The shape of the reflector 14 makes it possible to define a focal distance for the reflector 14.

La distance focale du réflecteur 14 est comprise entre 10 centimètres et 20 centimètres.The focal length of the reflector 14 is between 10 centimeters and 20 centimeters.

Selon l'exemple illustré, la distance focale du réflecteur 14 est égale à 15 centimètres.According to the example illustrated, the focal distance of the reflector 14 is equal to 15 centimeters.

Dans la suite, la direction selon laquelle l'intersection de tout plan perpendiculaire avec la direction avec le cylindre parabolique est une parabole est appelée première direction D1.In the following, the direction in which the intersection of any perpendicular plane with the direction with the parabolic cylinder is a parabola is called the first direction D1.

Un plan médian P est défini pour le réflecteur 14.A median plane P is defined for the reflector 14.

Par définition, le plan médian P est le plan contenant la première direction D1 et la directrice du réflecteur 14.By definition, the median plane P is the plane containing the first direction D1 and the directrix of the reflector 14.

La direction perpendiculaire au plan médian P est appelée deuxième direction D2.The direction perpendicular to the median plane P is called second direction D2.

Le réflecteur 14 est délimité par quatre plans, deux plans selon la première direction D1 et deux plans selon la deuxième direction D2.The reflector 14 is delimited by four planes, two planes along the first direction D1 and two planes along the second direction D2.

Le réflecteur 14 s'étend ainsi selon la première direction D1 entre un côté inférieur 24 et un côté supérieur 26.The reflector 14 thus extends along the first direction D1 between a lower side 24 and an upper side 26.

Le réflecteur 14 s'étend également selon la deuxième direction D2 entre une première extrémité 28 et une deuxième extrémité 30.The reflector 14 also extends along the second direction D2 between a first end 28 and a second end 30.

Par construction, tout point situé dans le plan médian P est situé à équidistance des deux extrémités 28 et 30.By construction, any point located in the median plane P is located equidistant from the two ends 28 and 30.

Par construction, tout plan perpendiculaire avec le plan médian P est un plan dont l'intersection, lorsqu'elle existe, avec le réflecteur 14 est une parabole.By construction, any plane perpendicular to the median plane P is a plane whose intersection, when it exists, with the reflector 14 is a parabola.

Selon l'exemple de la figure 1, l'angle entre la première direction D1 et la direction longitudinale X est inférieur ou égal à 10° en fonction de l'orientation des antennes 20.According to the example of figure 1 , the angle between the first direction D1 and the longitudinal direction X is less than or equal to 10° depending on the orientation of the antennae 20.

Dans le cas particulier de la figure 1, la première direction D1 est parallèle à la direction longitudinale X.In the particular case of the figure 1 , the first direction D1 is parallel to the longitudinal direction X.

Cela signifie, en particulier, que la première direction D1 et la direction longitudinale X sont parallèles tandis que la deuxième direction D2 et la deuxième direction longitudinale Z sont parallèles.This means, in particular, that the first direction D1 and the longitudinal direction X are parallel while the second direction D2 and the second longitudinal direction Z are parallel.

De plus, selon l'exemple de la figure 1, chaque réseau linéaire d'antennes 22A et 22B est symétrique l'un de l'autre par rapport au plan médian P.Moreover, according to the example of the figure 1 , each linear array of antennas 22A and 22B is symmetrical to one another with respect to the median plane P.

Dans l'exemple représenté, chaque réseau linéaire d'antennes 22A, 22B est à équidistance des deux extrémités 28 et 30 du réflecteur 14.In the example shown, each linear array of antennas 22A, 22B is equidistant from the two ends 28 and 30 of reflector 14.

Le réflecteur 14 est, par exemple, réalisé en un matériau réfléchissant pouvant être de l'aluminium, du carbone ou du plastique métallisé permettant de réduire sa masse.The reflector 14 is, for example, made of a reflective material which can be aluminum, carbon or metallized plastic allowing its mass to be reduced.

Comme visible à la figure 1, le réflecteur 14 présente une première dimension H selon la première direction D1.As seen at figure 1 , the reflector 14 has a first dimension H along the first direction D1.

La première dimension H correspond à la distance mesurée selon la première direction D1 entre le côté inférieur 24 et le côté supérieur 26.The first dimension H corresponds to the distance measured along the first direction D1 between the lower side 24 and the upper side 26.

La première dimension H est comprise entre 10 centimètres et 20 centimètres.The first dimension H is between 10 centimeters and 20 centimeters.

Selon l'exemple illustré, la première dimension H est égale à 15 centimètres.According to the example illustrated, the first dimension H is equal to 15 centimeters.

La première dimension H est égale à la longueur de la surface d'émission-réception 18.The first dimension H is equal to the length of the transmission-reception surface 18.

Comme visible à la figure 2, le réflecteur 14 présente une deuxième dimension E selon la deuxième direction D2.As seen at picture 2 , the reflector 14 has a second dimension E along the second direction D2.

La deuxième dimension H correspond à la distance mesurée selon la deuxième direction D2 entre les deux extrémités 28 et 30.The second dimension H corresponds to the distance measured along the second direction D2 between the two ends 28 and 30.

La deuxième dimension E est comprise entre 30 centimètres et 50 centimètres.The second dimension E is between 30 centimeters and 50 centimeters.

Selon l'exemple illustré, la deuxième dimension E est égale à 40 centimètres.According to the example illustrated, the second dimension E is equal to 40 centimeters.

Le bras 16 relie la source 12 au réflecteur 14.Arm 16 connects source 12 to reflector 14.

L'organe de liaison 16 se présente sous la forme d'une barre s'étendant le long de la première direction transversale Y.The connecting member 16 is in the form of a bar extending along the first transverse direction Y.

Le bras 16 est relié au réflecteur 14 par une liaison pivot raccordée au côté inférieur 24 du réflecteur 14.The arm 16 is connected to the reflector 14 by a pivot link connected to the lower side 24 of the reflector 14.

Le bras 16 est articulé autour de la direction longitudinale X.The arm 16 is articulated around the longitudinal direction X.

Le bras 16 présente une longueur telle que la distance entre le réflecteur 14 et la source 12 est comprise entre 10 centimètres et 30 centimètres.The arm 16 has a length such that the distance between the reflector 14 and the source 12 is between 10 centimeters and 30 centimeters.

Selon l'exemple illustrée, la distance entre la source 12 et le réflecteur 14 mesurée selon la première direction transversale Y est égale à 20 centimètres.According to the example illustrated, the distance between the source 12 and the reflector 14 measured along the first transverse direction Y is equal to 20 centimeters.

Le bras 16 est, par exemple, réalisé dans un matériau identique au matériau formant la surface d'émission-réception 18.The arm 16 is, for example, made of a material identical to the material forming the transmission-reception surface 18.

Le fonctionnement du système antennaire 10 selon l'exemple de la figure 1 est maintenant décrit en émission et en réception.The operation of the antenna system 10 according to the example of figure 1 is now described in transmission and in reception.

En émission, la source 12 émet un faisceau appartenant à une première bande de fréquence vers le réflecteur 14.In emission, the source 12 emits a beam belonging to a first frequency band towards the reflector 14.

Le faisceau est ensuite réfléchi par le réflecteur 14.The beam is then reflected by the reflector 14.

En réception, un faisceau appartenant à une deuxième bande de fréquence incident arrive sur le réflecteur 14.In reception, a beam belonging to a second incident frequency band arrives at the reflector 14.

Le réflecteur 14 réfléchit le faisceau vers la source 12 dont les antennes 20 reçoivent le faisceau.The reflector 14 reflects the beam towards the source 12 whose antennas 20 receive the beam.

Les fonctionnements en émission et en réception sont, par exemple, mis en œuvre simultanément.The transmission and reception operations are, for example, implemented simultaneously.

Par conséquent, le système antennaire 10 proposé permet de bénéficier d'un fonctionnement bi-bande.Consequently, the antenna system 10 proposed makes it possible to benefit from dual-band operation.

Le système antennaire 10 est compact notamment puisque la première dimension H est inférieure à 30 centimètres.The antenna system 10 is compact in particular since the first dimension H is less than 30 centimeters.

De plus, le système antennaire 10 présente de bonnes performances en termes de rayonnement et de diagramme.In addition, the antenna system 10 has good performance in terms of radiation and diagram.

En outre, le contrôle du diagramme de rayonnement selon la direction longitudinale X est facilité du fait de la petite dimension du système antennaire 10.In addition, the control of the radiation pattern along the longitudinal direction X is facilitated due to the small size of the antenna system 10.

En outre, le système antennaires 10 selon l'invention permet de facilement intégrer un fonctionnement en bipolarisation dans la conception des réseaux linéaires d'antennes 22A et 22B.Furthermore, the antenna system 10 according to the invention makes it possible to easily integrate bipolarization operation into the design of the linear arrays of antennas 22A and 22B.

Le système antennaire 10 présente également une grande capacité de couverture en termes de bande de fonctionnement.The antenna system 10 also has a large coverage capacity in terms of operating band.

Par ailleurs, le système antennaire 10 présente un faible coût de fabrication. De fait, une architecture comprenant des réseaux linéaires d'antennes 22A et 22B intégrant un duplexage en émission et en réception tout en étant associés à un réflecteur 14 de forme particulière est aisément réalisable.Furthermore, the antenna system 10 has a low manufacturing cost. In fact, an architecture comprising linear arrays of antennas 22A and 22B integrating duplexing in transmission and in reception while being associated with a reflector 14 of particular shape is easily achievable.

De plus, le système antennaire 10 présente une architecture adaptée à de multiples usages.In addition, the antenna system 10 has an architecture suitable for multiple uses.

D'autres modes de réalisation du système antennaire 10 sont à présents présentés.Other embodiments of the antenna system 10 are now presented.

Un deuxième mode de réalisation ne faisant pas partie de l'invention est illustré par la figure 3.A second embodiment not forming part of the invention is illustrated by the picture 3 .

Dans ce qui suit, les éléments identiques au premier mode de réalisation présenté aux figures 1 et 2 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.In what follows, the elements identical to the first embodiment presented to the figures 1 and 2 are not described again. Only the differences are highlighted.

Le réflecteur 14 du deuxième mode de réalisation diffère du réflecteur du premier mode de réalisation par le fait que le réflecteur 14 de la figure 3 comprend un réflecteur primaire 32 et un réflecteur secondaire 34.The reflector 14 of the second embodiment differs from the reflector of the first embodiment in that the reflector 14 of the picture 3 includes a primary reflector 32 and a secondary reflector 34.

Les remarques et définitions concernant le réflecteur 14 de la figure 1 s'appliquent aussi au réflecteur 14 de la figure 3 en négligeant la présence du réflecteur secondaire 34.The remarks and definitions concerning the reflector 14 of the figure 1 also apply to reflector 14 of the picture 3 neglecting the presence of the secondary reflector 34.

De fait, à titre d'exemple, le plan médian P est défini pour le réflecteur 14 de la figure 3 par rapport au réflecteur primaire 32.In fact, by way of example, the median plane P is defined for the reflector 14 of the picture 3 relative to the primary reflector 32.

Le réflecteur secondaire 34 présente une forme identique au réflecteur primaire 36.The secondary reflector 34 has a shape identical to the primary reflector 36.

Le réflecteur secondaire 34 présente des dimensions réduites par rapport aux dimensions du réflecteur primaire 32.The secondary reflector 34 has reduced dimensions compared to the dimensions of the primary reflector 32.

A titre d'illustration, le réflecteur secondaire 34 présente une deuxième dimension du même ordre que la hauteur des antennes 20 et une première dimension au maximum égale à 15 % celle du réflecteur parabolique afin de minimiser les blocages du rayonnement.By way of illustration, the secondary reflector 34 has a second dimension of the same order as the height of the antennas 20 and a first dimension at most equal to 15% that of the parabolic reflector in order to minimize the blocking of radiation.

Le réflecteur primaire 32 et le réflecteur secondaire 34 sont positionnés en configuration Cassegrain.The primary reflector 32 and the secondary reflector 34 are positioned in Cassegrain configuration.

Le réflecteur primaire 32 et le réflecteur secondaire 34 sont positionnés de telle sorte que leurs génératrices sont toutes parallèles entre elles et de sorte que leurs faces concaves respectives C, C' sont situées en vis-à-vis. Plus précisément, les directrices du réflecteur primaire 32 et du réflecteur secondaire 34 sont confondues.The primary reflector 32 and the secondary reflector 34 are positioned such that their generatrices are all parallel to each other and such that their respective concave faces C, C' are located opposite each other. More precisely, the guidelines of the primary reflector 32 and of the secondary reflector 34 coincide.

Par exemple, le réflecteur primaire 32 et le réflecteur secondaire 34 sont situés à une distance comprise entre 15 centimètres et 25 centimètres.For example, the primary reflector 32 and the secondary reflector 34 are located at a distance between 15 centimeters and 25 centimeters.

La source 12 est positionnée entre le réflecteur primaire 32 et le réflecteur secondaire 34, par exemple à une distance inférieure à 10 centimètres du réflecteur primaire 32.The source 12 is positioned between the primary reflector 32 and the secondary reflector 34, for example at a distance of less than 10 centimeters from the primary reflector 32.

Le fonctionnement du système antennaire 10 selon l'exemple de la figure 3 est maintenant décrit en émission et en réception.The operation of the antenna system 10 according to the example of picture 3 is now described in transmission and in reception.

En émission, la source 12 émet un faisceau appartenant à une première bande de fréquence vers le réflecteur secondaire 34.In transmission, the source 12 transmits a beam belonging to a first frequency band towards the secondary reflector 34.

Le faisceau est ensuite réfléchi vers le réflecteur primaire 32 qui réfléchit alors le faisceau incident.The beam is then reflected towards the primary reflector 32 which then reflects the incident beam.

En réception, un faisceau appartenant à une deuxième bande de fréquence incident arrive sur le réflecteur primaire 32.In reception, a beam belonging to a second incident frequency band arrives at the primary reflector 32.

Le réflecteur primaire 32 réfléchit le faisceau vers le réflecteur secondaire 34 qui réfléchit le faisceau vers la source 12 dont les antennes 20 reçoivent le faisceau.The primary reflector 32 reflects the beam towards the secondary reflector 34 which reflects the beam towards the source 12 whose antennas 20 receive the beam.

Les mêmes avantages que pour le premier mode de réalisation s'appliquent également pour le deuxième mode de réalisation.The same advantages as for the first embodiment also apply for the second embodiment.

La figure 4 illustre un troisième mode de réalisation du système antennaire 10 ne faisant pas partie de l'invention.The figure 4 illustrates a third embodiment of the antenna system 10 not forming part of the invention.

Dans ce qui suit, les éléments identiques au premier mode de réalisation présenté aux figures 1 et 2 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.In what follows, the elements identical to the first embodiment presented to the figures 1 and 2 are not described again. Only the differences are highlighted.

La source 12 diffère de la source du premier mode de réalisation par le fait que la source 12 présente deux sources 40A et 40B conforme à la source 12 du premier mode de réalisation.The source 12 differs from the source of the first embodiment in that the source 12 has two sources 40A and 40B conforming to the source 12 of the first embodiment.

De plus, chaque source 40A, 40B est positionnée en regard d'une extrémité 28, 30 respective du réflecteur 14 de sorte qu'au moins un réseau linéaire d'antennes 22A et 22B est positionné en regard d'une extrémité 28 et 30.In addition, each source 40A, 40B is positioned opposite a respective end 28, 30 of the reflector 14 so that at least one linear array of antennas 22A and 22B is positioned opposite an end 28 and 30.

Les remarques concernant le fonctionnement et les avantages du premier mode de réalisation s'appliquent également pour le troisième mode de réalisation.The remarks concerning the operation and the advantages of the first embodiment also apply to the third embodiment.

La figure 5 illustre un quatrième mode de réalisation de la structure antennaire.The figure 5 illustrates a fourth embodiment of the antenna structure.

Dans ce qui suit, les éléments identiques au troisième mode de réalisation présenté à la figure 4 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.In what follows, the elements identical to the third embodiment presented in figure 4 are not described again. Only the differences are highlighted.

Dans le cas de la figure 5, le réflecteur 14 comporte un réflecteur primaire 32 et deux réflecteurs secondaires 34A et 34B propre à réfléchir le faisceau vers le réflecteur primaire 32, chacun des réflecteurs primaire 32 et secondaires 34A et 34B ayant la forme d'un cylindre parabolique.In the case of the figure 5 , the reflector 14 comprises a primary reflector 32 and two secondary reflectors 34A and 34B capable of reflecting the beam towards the primary reflector 32, each of the primary 32 and secondary reflectors 34A and 34B having the shape of a parabolic cylinder.

Des remarques analogues au deuxième mode de réalisation s'appliquent pour le réflecteur 14 de la figure 5. Ces remarques ne sont pas répétées.Comments similar to the second embodiment apply for the reflector 14 of the figure 5 . These remarks are not repeated.

Dans le cas de la figure 5, chaque réflecteur secondaire 34A et 34B est symétrique par rapport au plan médian P et chaque réflecteur secondaire 34A et 34B est positionné en regard d'une extrémité 28 et 30 respective du réflecteur primaire 32.In the case of the figure 5 , each secondary reflector 34A and 34B is symmetrical with respect to the median plane P and each secondary reflector 34A and 34B is positioned facing a respective end 28 and 30 of the primary reflector 32.

Les remarques concernant le fonctionnement et les avantages du deuxième mode de réalisation s'appliquent également pour le quatrième mode de réalisation.The remarks concerning the operation and the advantages of the second embodiment also apply to the fourth embodiment.

Dans tous les modes de réalisation présentés, la structure antennaire 10 comprend une source 12 propre à émettre au moins un faisceau, la source 12 comprenant au moins un réseau linéaire d'antennes 22A et 22B 20B, chaque réseau linéaire 22A et 22B étant propre à émettre un faisceau, la structure antennaire 10 comportant un réflecteur 14 ayant la forme d'un cylindre parabolique, le réflecteur 14 étant agencé pour réfléchir le au moins un faisceau.In all the embodiments presented, the antenna structure 10 comprises a source 12 capable of emitting at least one beam, the source 12 comprising at least one linear array of antennas 22A and 22B 20B, each linear array 22A and 22B being specific to emitting a beam, the antenna structure 10 comprising a reflector 14 having the shape of a parabolic cylinder, the reflector 14 being arranged to reflect the at least one beam.

Une telle configuration permet de disposer d'un système antennaire 10 présentant un encombrement réduit en hauteur avec des bonnes performances en termes de gain et de diagramme.Such a configuration makes it possible to have an antenna system 10 having a reduced size in height with good performance in terms of gain and diagram.

D'autres modes de réalisation sont envisageables.Other embodiments are possible.

En particulier, dans certains cas, la source 12 comporte plus de deux surfaces d'émission-réception 18 et un nombre plus grand de réseaux linéaire d'antennes.In particular, in certain cases, the source 12 comprises more than two emission-reception surfaces 18 and a greater number of linear arrays of antennas.

Claims (7)

  1. An antennar system (10) comprising:
    - a source (12) able to emit at least one beam, the source (12) comprising at least one linear network of antennas (22A, 22B), each linear network (22A, 22B) being able to emit a beam, and
    - a reflector (14) laid out for reflecting at least the beam,
    characterized in that the reflector (14) comprises a primary reflector (32) and two secondary reflectors (34, 34A, 34B) able to reflect the beam towards the primary reflector (32), each of the primary (32) and secondary (34, 34A, 34B) reflectors having the shape of a parabolic cylinder,
    a median plane (P) being defined for the reflector (14), each secondary reflector (34A, 34B) being symmetrical relatively to the median plane (P),
    two ends (28, 30) being defined for the primary reflector (32),
    each secondary reflector (34A, 34B) being positioned facing one respective end (28, 30) of the primary reflector (32).
  2. The antennar system according to claim 1, wherein a first direction (D1) is defined for the reflector (14), each linear network of antennas (22A, 22B) being oriented along a longitudinal direction (X) and the angle between the first direction (D1) and the longitudinal direction (X) being less than or equal to 15°.
  3. The antennar system according to claim 1 or 2, wherein a first direction (D1) is defined for the reflector (14), each linear network of antennas (22A, 22B) being oriented along a longitudinal direction (X) and the angle between the first direction (D1) and the longitudinal direction (X) being less than or equal to 5°.
  4. The antennar system according to any one of claims 1 to 3, wherein each linear network of antennas (20A, 20B) being symmetrical with each other relatively to the median plane.
  5. The antennar system (10) according to any one of claims 1 to 4, wherein each linear network of antennas (22A, 22B) is able to emit a beam belonging to a first frequency band and to receive a beam belonging to a second frequency band, the second frequency band being distinct from the first frequency band.
  6. The antennar system (10) according to claim 5, wherein the frequency bands are operating bands for satellite communication applications and are selected from among the group consisting of the Ka, Ku and X bands.
  7. The antennar system according to any one of claims 1 to 6, wherein each linear network of antennas (22A, 22B) being positioned facing one end (28, 30) or at equidistance from both ends (28, 30).
EP16207008.0A 2015-12-28 2016-12-27 Antennar system Active EP3188312B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1502701A FR3046301B1 (en) 2015-12-28 2015-12-28 ANTENNA SYSTEM

Publications (2)

Publication Number Publication Date
EP3188312A1 EP3188312A1 (en) 2017-07-05
EP3188312B1 true EP3188312B1 (en) 2022-11-30

Family

ID=55862837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16207008.0A Active EP3188312B1 (en) 2015-12-28 2016-12-27 Antennar system

Country Status (3)

Country Link
EP (1) EP3188312B1 (en)
ES (1) ES2939371T3 (en)
FR (1) FR3046301B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482322B (en) * 2017-07-26 2020-03-17 西安电子科技大学 Expandable parabolic cylinder antenna based on tension structure
EP4068517A1 (en) * 2021-03-30 2022-10-05 Nokia Solutions and Networks Oy Antenna apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082919A (en) * 1998-07-02 2000-03-21 Toyota Central Res & Dev Lab Inc Antenna device
US20110063179A1 (en) * 2009-09-15 2011-03-17 Guler Michael G Mechanically Steered Reflector Antenna
US20110156948A1 (en) * 2007-03-16 2011-06-30 Mobile Sat Ltd. Vehicle mounted antenna and methods for transmitting and/or receiving signals
US20140326903A1 (en) * 2011-12-29 2014-11-06 Quantrill Estate Inc Universal device for energy concentration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471284A (en) * 1945-05-25 1949-05-24 Bell Telephone Labor Inc Directive antenna system
US3267472A (en) * 1960-07-20 1966-08-16 Litton Systems Inc Variable aperture antenna system
JPS61157105A (en) * 1984-12-28 1986-07-16 Dx Antenna Co Ltd Antenna system
KR100894909B1 (en) * 2007-08-21 2009-04-30 한국전자통신연구원 Reconfigurable hybrid antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082919A (en) * 1998-07-02 2000-03-21 Toyota Central Res & Dev Lab Inc Antenna device
US20110156948A1 (en) * 2007-03-16 2011-06-30 Mobile Sat Ltd. Vehicle mounted antenna and methods for transmitting and/or receiving signals
US20110063179A1 (en) * 2009-09-15 2011-03-17 Guler Michael G Mechanically Steered Reflector Antenna
US20140326903A1 (en) * 2011-12-29 2014-11-06 Quantrill Estate Inc Universal device for energy concentration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABOLGHASEM ZAMANIFEKRI: "Ka-band integrated focal-plane arrays for two-way satellite communication", 30 June 2015 (2015-06-30), XP055721326, Retrieved from the Internet <URL:https://pure.tue.nl/ws/files/11271441/20151230_Zamanifekri.pdf> [retrieved on 20200810] *
ZAMANIFEKRI A ET AL: "Beam Squint Compensation in Circularly Polarized Offset Reflector Antennas Using a Sequentially Rotated Focal-Plane Array", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol. 14, 24 December 2014 (2014-12-24), pages 815 - 818, XP011576232, ISSN: 1536-1225, [retrieved on 20150318], DOI: 10.1109/LAWP.2014.2386308 *
ZAMANIFEKRI A ET AL: "Focal plane array with a Ka-band Silicon transmitter on chip for VSAT applications", THE 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2014), EUROPEAN ASSOCIATION ON ANTENNAS AND PROPAGATION, 6 April 2014 (2014-04-06), pages 253 - 256, XP032643040, DOI: 10.1109/EUCAP.2014.6901737 *

Also Published As

Publication number Publication date
FR3046301A1 (en) 2017-06-30
EP3188312A1 (en) 2017-07-05
FR3046301B1 (en) 2019-05-31
ES2939371T3 (en) 2023-04-21

Similar Documents

Publication Publication Date Title
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
EP2664030A1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
FR2845829A1 (en) MULTI-BAND RING FIREPLACE DUAL REFLECTOR ANTENNA SYSTEM
EP3188312B1 (en) Antennar system
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
FR3069713B1 (en) ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS
CA3141789C (en) Space vehicle, launcher and stack of space vehicles
FR2814614A1 (en) DIVERGENT DOME LENS FOR MICROWAVE WAVES AND ANTENNA COMPRISING SUCH A LENS
EP3340369B1 (en) Architecture for deployable source block, compact antenna and satellite comprising such an architecture
FR2835356A1 (en) RECEIVING ANTENNA FOR MULTI-BEAM COVERING
FR3068523A1 (en) TRANSMITTER NETWORK ANTENNA COMPRISING A MECHANISM FOR REORIENTATION OF THE DIRECTION OF THE BEAM
EP3220181B1 (en) Hybrid optical system with reduced size for imaging array antenna
EP3155689B1 (en) Flat antenna for satellite communication
EP3264531A1 (en) Microwave antenna with dual reflector
EP2351148B1 (en) Deployable structure and antenna system with membranes comprising such a structure
EP3075032B1 (en) Compact antenna structure for satellite telecommunications
EP4220861A1 (en) Quasi-optical waveguide beamformer with parallel stacked plates
EP4194344A1 (en) Ttc antenna arrangement for flat satellite
EP3157094A1 (en) Compact antenna with modular beam aperture
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
EP3506426A1 (en) Beam pointing device for antenna system, associated antenna system and platform
FR2596208A1 (en) Two-frequency antenna with independent steerable beams
EP3075031A2 (en) Arrangement of antenna structures for satellite telecommunications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170622

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200917

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1535395

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016076579

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2939371

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230228

Year of fee payment: 8

Ref country code: ES

Payment date: 20230309

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1535395

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016076579

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221227

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 8

Ref country code: DE

Payment date: 20231208

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130