JPS61157105A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPS61157105A
JPS61157105A JP27797984A JP27797984A JPS61157105A JP S61157105 A JPS61157105 A JP S61157105A JP 27797984 A JP27797984 A JP 27797984A JP 27797984 A JP27797984 A JP 27797984A JP S61157105 A JPS61157105 A JP S61157105A
Authority
JP
Japan
Prior art keywords
reflecting mirror
radiator
focus
primary radiator
polarized wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27797984A
Other languages
Japanese (ja)
Inventor
Norio Watanabe
渡辺 紀百
Toshio Fujita
敏夫 藤田
Akira Mochizuki
亮 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DX Antenna Co Ltd
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
DX Antenna Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, DX Antenna Co Ltd, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP27797984A priority Critical patent/JPS61157105A/en
Publication of JPS61157105A publication Critical patent/JPS61157105A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • H01Q19/175Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements arrayed along the focal line of a cylindrical focusing surface

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To eliminate the need for adjustment of an elevating angle and also for a circularly-linearly polarized wave converting section and a waveguide-coaxial converting section and to attain low cost by using a parabolic columnar reflecting mirror whose focus is located on a straight line at a right angle to ground and providing a primary radiator having a directivity in the oblique direction on the focus. CONSTITUTION:The parabolic columnar reflecting mirror is formed as a cylindrical parabola, and its focus 16 is a point in the horizontal direction and a straight lineiin the vertical direction The primary radiator 14 is arranged on the focus 16 in the vertical direction. In the radiator 14, a metallic plate 20 being an earth face on the rear side of a dielectric base 18 is provided and a microstrip line antenna element 22 is placed on the same straight line through series arrangement on the surface. Further, the elements 22 are arranged to a feeding phase difference to the elements 22 in response to an incoming radio wave at a reception district to receive a radio wave incoming with an elevating angle to a broadcast satellite depending on the installing location of the antenna device in an excellent way. The primary radiator 14 converts a radio wave reflected and converged by the reflecting mirror as a left rotary circularly polarized wave into a linearly polarized wave, which is converted into a high frequency current and fed to a converter 24.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、アンテナ装置に関し、特にマイクロ波帯信
号、例えば衛星放送信号の受信用のアンテナ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an antenna device, and particularly to an antenna device for receiving microwave band signals, such as satellite broadcasting signals.

〈従来技術〉 従来、上記の衛星放送受信用アンテナ装置には、例えは
第8図に示すようなものがあった。同図において、2は
オフセット形パラボラ反射鏡で、この反射鏡2の焦点に
一次放射器4が配置されている。この−次放射器4は、
アンテナホーン部と、円−直線偏波変換部と、導波管−
同軸変換部とからなる。この−次放射器4にはコンバー
タ6が結合されている。−次放射器4及びコンバータ6
は腕8によって反射鏡2に取付けられており、反射鏡2
は支柱10によって支持されている。
<Prior Art> Conventionally, the above-mentioned antenna device for receiving satellite broadcasting includes one as shown in FIG. 8, for example. In the figure, reference numeral 2 denotes an offset parabolic reflecting mirror, and a primary radiator 4 is placed at the focal point of this reflecting mirror 2. This -order radiator 4 is
Antenna horn section, circular-linear polarization conversion section, and waveguide
It consists of a coaxial conversion section. A converter 6 is coupled to this -order radiator 4 . - secondary radiator 4 and converter 6;
is attached to the reflector 2 by the arm 8, and the reflector 2
is supported by struts 10.

放送衛星から送信された電波は、反射鏡2で反射されて
、−次放射器4を介してコンバータ6に供給される。
Radio waves transmitted from a broadcasting satellite are reflected by a reflecting mirror 2 and supplied to a converter 6 via a -order radiator 4 .

〈発明が解決しようとする問題点〉 しかし、上記のアンテナ装置では、反射鏡2か回転放物
面を用いたものであるので、焦点か一点だけで、衛星放
送を良好に受信するためには、反射鏡2の仰角及び方位
角を調整しなければならないという問題点があった。ま
た、そのため屋外に設置しなければならず、支柱10で
の支持が必要であり、装置の規模が大きくなるという問
題点もあった。さらに、アンテナが仰角方向に向いて屋
外に設置しているので、冬期には反射鏡2や一次放射器
4に着雪しやすく、良好に衛星放送が受信できないとい
う問題点もあった。また、−次枚射器4は、ホーン部と
、円−直線偏波変換部と、導波管−同軸変換部とからな
るので、構成が複雑で、価格も高くなるという問題点も
あった。   ゛この発明は、上記の各問題点を解決し
たアンテナ装置を提供することを目的とする。
<Problems to be Solved by the Invention> However, since the above antenna device uses the reflecting mirror 2 or a paraboloid of revolution, it is difficult to receive satellite broadcasting well with only one focal point. However, there was a problem in that the elevation angle and azimuth angle of the reflecting mirror 2 had to be adjusted. Further, it has to be installed outdoors and needs to be supported by a support column 10, resulting in a problem that the scale of the device becomes large. Furthermore, since the antenna is installed outdoors and facing in the elevation direction, snow tends to accumulate on the reflector 2 and the primary radiator 4 in the winter, making it difficult to receive satellite broadcasts satisfactorily. Furthermore, since the -order sheet radiator 4 consists of a horn section, a circular-to-linear polarization conversion section, and a waveguide-to-coaxial conversion section, there are problems in that the configuration is complicated and the price is high. .゛It is an object of the present invention to provide an antenna device that solves each of the above-mentioned problems.

く問題点を解決するための手段〉 上記の各問題点を解決するための手段は、従来のものと
同様に反射鏡と一次放射器とを備えるものであるか、反
射鏡は放物柱面からなり、−次放射器は、複数の放射素
子を直線上に配置し、上記各放射素子への給電位相差を
与えることにより斜め方向に指向性をもたせたマイクロ
スl−IJツブアレーアンテナからなり、これは反射鏡
の焦点軸線上に配置されている。
Means for Solving the Problems> Means for solving the above problems are either to be equipped with a reflector and a primary radiator like the conventional ones, or to have a reflector with a parabolic cylindrical surface. The -order radiator is a microsloth l-IJ tube array antenna that has diagonal directivity by arranging multiple radiating elements in a straight line and giving a phase difference in feeding to each of the radiating elements. This is located on the focal axis of the reflector.

く作  用〉 上記の手段によれば、垂直方向について反射鏡は放物柱
面からなるので、その焦点は大地に対して直角な方向に
伸びる直線となる。この焦点軸線上に斜め方向に指向性
を有する一次放射器が配置されているので、衛星放送を
受1gする場合、仰角の調整か不要で、方位角のみ調整
すれはよい。また、−次放射器は、マイクロストリップ
アレーアンテナからなるので、円−直線偏波変換部や導
波)管−同11Ql+変換部が不要である。
According to the above means, since the reflecting mirror in the vertical direction consists of a parabolic cylindrical surface, its focal point becomes a straight line extending in a direction perpendicular to the earth. Since a primary radiator having diagonal directivity is arranged on this focal axis, when receiving satellite broadcasting at 1g, it is not necessary to adjust the elevation angle, and only the azimuth angle is adjusted. Furthermore, since the -order radiator is composed of a microstrip array antenna, a circular-to-linear polarization converter and a waveguide-to-11Ql+ converter are not necessary.

〈実 施 例〉 この実施例は、第1図に示すように放物柱面反射鏡12
と一次放射器14とを備える。この反射鏡12は、水平
に配置した放物線をそのまま垂直方向に移動させた形状
である。すなわち反射鏡12はいわゆる筒状パラボラに
形成されている。従って、この反射鏡12の焦点16は
、第2図に示すように水平方向には点となるが、第3図
に示すように垂直方向には直線となる。
<Example> This example uses a parabolic cylindrical reflector 12 as shown in FIG.
and a primary radiator 14. This reflecting mirror 12 has a shape obtained by moving a horizontally arranged parabola in the vertical direction. That is, the reflecting mirror 12 is formed into a so-called cylindrical parabola. Therefore, the focal point 16 of this reflecting mirror 12 becomes a point in the horizontal direction as shown in FIG. 2, but becomes a straight line in the vertical direction as shown in FIG.

この焦点16上に垂直方向に溜って一次放射器14が配
置されている。この−次放射器14は、第4図及び第5
図に示すように、誘電体基板18の裏面にアース面とな
る金属板20を設け、誘電体基板18の表面にマイクロ
ストリップラインアンテナ素子22を同一直線上に位置
するように5つ直列に配列したものである。
A primary radiator 14 is arranged vertically above this focus 16. This -order radiator 14 is shown in FIGS.
As shown in the figure, a metal plate 20 serving as a ground plane is provided on the back surface of the dielectric substrate 18, and five microstrip line antenna elements 22 are arranged in series on the same straight line on the surface of the dielectric substrate 18. This is what I did.

各アンテナ素子22は、放送衛星からの右旋円偏波の電
波が反射鏡12で反射された際に左旋円偏波に反転され
るので、この反転された左旋円偏波を直線偏波に変換す
るような形状とされている。また、我1における放送衛
星に対する仰角が北海道北端で約30°、沖縄県南端で
約50°であるので、仰角30°乃至50’の範囲内に
おいて、このアンテナ装置の設置場所に応じた放送衛星
に対する仰角から到来する電波を良好に受信するために
、受信地域の到来電波に対応させて各アンテナ素子22
間に給電位相差を与えるように各アンテナ素子221ヨ
配列されている。また、第3図に点線aで示すように反
射鏡12の上端に到来した電波もi次放射器14に到達
するように、−次放射器14は反射鏡12より幾分下方
に下がって位置するように配置されている。各アンテナ
素子22のうち最上方に位置するものは、図には示して
いないがダミー抵抗器を介して終端されており、各アン
テナ素子22のうち最下方に位置するものには、直接コ
ンバータ24の入力に接続されている。すなわち最下方
のアンテナ素子22か給電点とされている。このように
最下方のアンテナ素子22を給電点としたのは、ブロッ
キングか生じないからである。なお、第6図に示すよう
にアンテナ素子22を構成し、中央部に位置するアンテ
ナ素子にコンバータ24を接続してもよい。
Each antenna element 22 converts the inverted left-handed circularly polarized wave into a linearly polarized wave because when the right-handed circularly polarized radio wave from the broadcasting satellite is reflected by the reflector 12, it is inverted to left-handed circularly polarized wave. It is said to have a shape that transforms. In addition, since the elevation angle with respect to the broadcasting satellite in I1 is approximately 30° at the northern tip of Hokkaido and approximately 50° at the southern tip of Okinawa, the broadcasting satellite can be used within the elevation angle range of 30° to 50' depending on the installation location of this antenna device. In order to receive well the radio waves arriving from the elevation angle, each antenna element 22 is
Each antenna element 221 is arranged so as to provide a feeding phase difference therebetween. Further, as shown by the dotted line a in FIG. 3, the -th order radiator 14 is positioned somewhat lower than the reflector 12 so that the radio waves arriving at the upper end of the reflector 12 also reach the i-th order radiator 14. It is arranged so that The antenna element 22 located at the top is terminated via a dummy resistor (not shown in the figure), and the antenna element 22 located at the bottom is terminated via a direct converter 24. is connected to the input of In other words, the lowest antenna element 22 is the feeding point. The reason why the lowest antenna element 22 is set as the feeding point is that blocking does not occur. Note that the antenna element 22 may be configured as shown in FIG. 6, and the converter 24 may be connected to the antenna element located in the center.

このようにすると、インピーダンスマツチングされた高
周波電流を一次放射器から直接出力でき、コンバータ2
4への接続を容易にできる。この場合、最上方及び最下
方のアンテナ素子をダミー抵抗器を介して終端する必要
がある。コンバータ24は、支持腕26によって反射鏡
12に取付けられている。
In this way, the impedance-matched high-frequency current can be output directly from the primary radiator, and the converter 2
4 can be easily connected. In this case, it is necessary to terminate the uppermost and lowermost antenna elements via dummy resistors. Converter 24 is attached to reflector 12 by support arm 26 .

このように構成したアンテナ装置は、第7図に示すよう
に家屋の軒先等に一次放射器14が大地に対して垂直と
なるように取付けられる。そして、その設置場所に応じ
た方位角に反射鏡12を調整する。
As shown in FIG. 7, the antenna device constructed in this manner is installed at the eaves of a house or the like so that the primary radiator 14 is perpendicular to the ground. Then, the reflecting mirror 12 is adjusted to an azimuth depending on the installation location.

このアンテナ装置では、放送衛星からの電波は、第2図
及び第3図に点線で示すように反射鏡12によって反則
され、直線上の焦点16上に配置された−次放射器14
に集束される。−次放射器14は、反射鏡によって反射
され集束され九左旋円偏波となった電波を直線偏波に変
換して高周波電流となしコンバータ24に供給する。
In this antenna device, radio waves from a broadcasting satellite are reflected by a reflecting mirror 12 as shown by dotted lines in FIGS.
focused on. The -order radiator 14 converts the radio wave reflected and focused by the reflecting mirror into a nine-left circularly polarized wave into a linearly polarized wave, and supplies the linearly polarized wave to a high frequency current to the annular converter 24 .

上記の実施例では、マイクロストリップラインアンテナ
素子22を誘電体基板18上に設けて一次放射器14を
構成したか、これに代えて円形や方形等の開放形平面回
路による共振素子を放射素子とするマイクロストリップ
アンテナまたはマイクロストリップ化されたスロットア
ンテナ等を用いることもできる。また、上記の実施例で
は、−次放射器14に直接にコンバータ24を取付けた
が、ブロッキングが生じないように給電線を配置すれば
、コンバータ24を一次放射器14に直接に取付ける必
要はない。また、このアンテナ装置は本来仰角方向の指
向性の調整を無用とするものであるが、なおわずかに調
整したい場合には位相か大きくかわらない範囲で一次放
射器14をわずかに傾けてもよい。
In the above embodiment, the microstrip line antenna element 22 is provided on the dielectric substrate 18 to constitute the primary radiator 14, or instead, a resonant element formed by an open planar circuit such as a circular or rectangular shape is used as the radiating element. It is also possible to use a microstrip antenna or a microstriped slot antenna. Further, in the above embodiment, the converter 24 is attached directly to the -order radiator 14, but if the feeder line is arranged so that blocking does not occur, it is not necessary to attach the converter 24 directly to the primary radiator 14. . Further, although this antenna device originally makes it unnecessary to adjust the directivity in the elevation angle direction, if a slight adjustment is desired, the primary radiator 14 may be tilted slightly within a range that does not significantly change the phase.

く効  果〉 この発明は、焦点が大地に対して直角な直線上に位置す
る放物柱面反射鏡を用い、その焦点上に斜め方向に指向
性を持たせた一次放射器を設けているので、方位角だけ
を調整すればよい。また、それゆえに家屋の軒先等に設
置でき、取付に要する補助部材を簡略化でき、小型化で
きる。さらに、家屋の軒先等に設置できるうえに、反射
鏡が放物柱面すなわち筒状パラボラに形成されているの
で、着雪しに<<、良好に衛星放送を受信できる。また
、−次放射器はマイクロストリップアレーアンテナから
なり、直接給電できるので、円−直線偏波変換部や導波
管−同軸変換部が不要で、従って安価に製造できる。
Effect> This invention uses a parabolic cylindrical reflector whose focal point is located on a straight line perpendicular to the ground, and a primary radiator with diagonal directivity is provided on the focal point. Therefore, only the azimuth angle needs to be adjusted. Moreover, it can therefore be installed at the eaves of a house, the auxiliary members required for installation can be simplified, and the size can be reduced. Furthermore, since it can be installed at the eaves of a house, etc., and the reflecting mirror is formed into a parabolic column, that is, a cylindrical parabola, satellite broadcasting can be received well even when snow is falling. Further, since the -order radiator is composed of a microstrip array antenna and can be directly fed with power, there is no need for a circular-to-linear polarization conversion section or a waveguide-to-coaxial conversion section, and therefore it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるアンテナ装置の一実施例の斜視
図、第2図は同実施例の平面図、第3図は同実施例の縦
断側面図、第4図は同実施例に用いる一次放射器の正面
図、第5図は同実施例に用いる一次放射器の底面図、第
6図は同実施例に用いる一次放射器の他の例の正面図、
第7図は同実施例の取付状態を示す斜視図、第8図は従
来のアンテナ装置の一例を示す斜視図である。 12・・・反射鏡、14・・・−次放射器。 特許出願人  ディエックスアンテナ株式会社同  日
本放送協会 代 理 人 清  水   哲 はか2名″kA1図 1図      第3図 第4図 粥5014 ”it’i6図
Fig. 1 is a perspective view of an embodiment of the antenna device according to the present invention, Fig. 2 is a plan view of the embodiment, Fig. 3 is a vertical side view of the embodiment, and Fig. 4 is a primary antenna used in the embodiment. A front view of the radiator, FIG. 5 is a bottom view of the primary radiator used in the same example, and FIG. 6 is a front view of another example of the primary radiator used in the same example.
FIG. 7 is a perspective view showing the attached state of the same embodiment, and FIG. 8 is a perspective view showing an example of a conventional antenna device. 12...Reflector, 14...-order radiator. Patent Applicant: Diex Antenna Co., Ltd. Japan Broadcasting Corporation Representative: Satoshi Shimizu Haka2 ``kA1 Figure 1 Figure 3 Figure 4 Congee 5014 ``it'i6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1)複数の放射素子を直線上に配置し、上記各放射素子
への給電位相差を与えることにより斜め方向に指向性を
持たせたマイクロストリップアレーアンテナから成る一
次放射器を、放物柱面からなる反射鏡の焦点軸線上に配
置してなるアンテナ装置。
1) A primary radiator consisting of a microstrip array antenna in which a plurality of radiating elements are arranged in a straight line and has directivity in an oblique direction by giving a phase difference in feeding to each of the radiating elements is arranged on a parabolic cylindrical surface. Antenna device arranged on the focal axis of a reflecting mirror consisting of.
JP27797984A 1984-12-28 1984-12-28 Antenna system Pending JPS61157105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27797984A JPS61157105A (en) 1984-12-28 1984-12-28 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27797984A JPS61157105A (en) 1984-12-28 1984-12-28 Antenna system

Publications (1)

Publication Number Publication Date
JPS61157105A true JPS61157105A (en) 1986-07-16

Family

ID=17590931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27797984A Pending JPS61157105A (en) 1984-12-28 1984-12-28 Antenna system

Country Status (1)

Country Link
JP (1) JPS61157105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172650B1 (en) 1998-07-02 2001-01-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Antenna system
FR3046301A1 (en) * 2015-12-28 2017-06-30 Thales Sa ANTENNA SYSTEM
WO2023018613A1 (en) * 2021-08-10 2023-02-16 Hughes Network Systems, Llc Shared transmit and receive aperture linear array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172650B1 (en) 1998-07-02 2001-01-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Antenna system
FR3046301A1 (en) * 2015-12-28 2017-06-30 Thales Sa ANTENNA SYSTEM
EP3188312A1 (en) * 2015-12-28 2017-07-05 Thales Antennar system
WO2023018613A1 (en) * 2021-08-10 2023-02-16 Hughes Network Systems, Llc Shared transmit and receive aperture linear array

Similar Documents

Publication Publication Date Title
US20090121957A1 (en) Antenna
US7006053B2 (en) Adjustable reflector system for fixed dipole antenna
KR20110005258A (en) Circularly polarized loop reflector antenna and associated methods
US5434586A (en) Multibeam antenna for receiving satellite waves
AU2020204437B2 (en) Wide Band Log Periodic Reflector Antenna for Cellular and Wifi
WO1987007772A1 (en) Array antenna
JP3380240B2 (en) Radio frequency antenna equipment
JPS61157105A (en) Antenna system
KR100194120B1 (en) Directional Gain Variable Antenna
JP3190270B2 (en) Multi-beam antenna
JPS60111503A (en) Array antenna device
KR20020041769A (en) KU(X)-BAND Microstrip patch array antenna
JPS6121851Y2 (en)
CN221305009U (en) Broadband UHF band top-passing blind compensating antenna
JPH0936655A (en) Multi-beam antenna
JP2531780Y2 (en) Primary radiator support device
JP3300860B2 (en) Antenna device and receiving method
KR980012712A (en) Dual polarized circular or elliptical polarized mobile communication antenna
JPS6017923Y2 (en) Portable millimeter wave band wireless device
JPH0614484Y2 (en) Parabolic antenna device
JP2001298310A (en) Antenna attaching device
JPH089930Y2 (en) Parabolic antenna device
KR940016991A (en) Plate Dipole Antenna
JP2838569B2 (en) How to receive radio waves from geostationary satellites
JP2005341376A (en) Opposite phase power supply antenna device