JP2838569B2 - How to receive radio waves from geostationary satellites - Google Patents

How to receive radio waves from geostationary satellites

Info

Publication number
JP2838569B2
JP2838569B2 JP4892590A JP4892590A JP2838569B2 JP 2838569 B2 JP2838569 B2 JP 2838569B2 JP 4892590 A JP4892590 A JP 4892590A JP 4892590 A JP4892590 A JP 4892590A JP 2838569 B2 JP2838569 B2 JP 2838569B2
Authority
JP
Japan
Prior art keywords
received
primary radiator
polarization
radio waves
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4892590A
Other languages
Japanese (ja)
Other versions
JPH03249806A (en
Inventor
敏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEIETSUKUSU ANTENA KK
Original Assignee
DEIETSUKUSU ANTENA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEIETSUKUSU ANTENA KK filed Critical DEIETSUKUSU ANTENA KK
Priority to JP4892590A priority Critical patent/JP2838569B2/en
Publication of JPH03249806A publication Critical patent/JPH03249806A/en
Application granted granted Critical
Publication of JP2838569B2 publication Critical patent/JP2838569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、静止衛星からの電波を受信する方法に関
し、特に複数の静止衛星からの電波を1台のパラボラ反
射鏡に複数の一次放射器を設けて受信する方法に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for receiving radio waves from geosynchronous satellites, and more particularly, to a method for receiving radio waves from a plurality of geosynchronous satellites to a single parabolic reflector by using a plurality of primary radiators. And a method of receiving.

[従来の技術] 従来、複数の静止衛星からの電波を受信する場合、1
つのパラボラ反射鏡に1つの一次放射器を備えたパラボ
ラアンテナを、各静止衛星にそれぞれ対応させて設け、
各パラボラアンテナの方位角と仰角をそれぞれ対応する
静止衛星からの電波が良好に受信できるように調整し、
さらに交差偏波が最小となるように、偏波の調整を行な
っていた。ここで、偏波の調整とは、一次放射器に接続
されている導波管が交差偏波と直交することにより交差
成分を導波管内に導かれないように導波管を軸中心に回
転させ、主偏波出力を最大にまた交差偏波出力を最小に
することを言う。
[Related Art] Conventionally, when receiving radio waves from a plurality of geostationary satellites,
A parabolic antenna with one parabolic reflector and one primary radiator is provided for each geostationary satellite,
Adjust the azimuth and elevation of each parabolic antenna so that radio waves from the corresponding geostationary satellite can be received well,
Further, the polarization was adjusted so that the cross polarization was minimized. Here, the polarization adjustment means that the waveguide connected to the primary radiator is orthogonal to the cross polarization so that the cross component is not guided into the waveguide so that the waveguide is rotated about the axis. To maximize the main polarization output and minimize the cross polarization output.

[発明が解決しようとする課題] しかし、このような受信方法では、受信しようとする
静止衛星の数と同数のパラボラアンテナが必要であり、
しかも各パラボラアンテナを対応する静止衛星からの電
波を良好に受信できるように、方位角及び仰角を調整し
なければならず、広い設置場所が必要である上に、コス
トが高くなるという問題点があった。
[Problems to be Solved by the Invention] However, such a receiving method requires the same number of parabolic antennas as the number of geosynchronous satellites to be received.
In addition, the azimuth and elevation must be adjusted so that each parabolic antenna can receive radio waves from the corresponding geostationary satellite well. This requires a large installation area and increases the cost. there were.

[課題を解決するための手段] 上記の問題点を解決するために、本発明は、1つのパ
ラボラ反射鏡の焦点位置またはその近傍に固定された第
1の一次放射器によって、第1の静止衛星からの主偏波
信号を受信し、これが最大となるように、パラボラ反射
鏡の仰角及び方位角を調整する段階と、第1の静止衛星
からの交差偏波信号を受信し、これが最小になるように
受信偏波を調整すると共に、パラボラ反射鏡の仰角及び
方位角を微調整する段階と、第2の静止衛星からの電波
を受信できる位置である焦点位置の近傍位置に移動可能
に設けた第2の一次放射器で、第2の静止衛星からの交
差偏波信号を受信し、これが最小となるように受信偏波
を調整すると共に、第2の一次放射器の位置を調整する
段階とを、有するものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a first stationary radiator fixed at or near the focal position of one parabolic reflector, and a first stationary radiator. Receiving the main polarization signal from the satellite and adjusting the elevation and azimuth of the parabolic reflector to maximize it; and receiving the cross-polarization signal from the first geostationary satellite and minimizing it. Adjusting the reception polarization so that the elevation angle and the azimuth angle of the parabolic reflector are finely adjusted, and movably provided at a position near the focal point where radio waves from the second geostationary satellite can be received. Receiving the cross-polarized signal from the second geosynchronous satellite with the second primary radiator, adjusting the received polarization such that the cross-polarized signal is minimized, and adjusting the position of the second primary radiator. And

[作用] 本発明の受信方法によれば、第1及び第2の一次放射
器は、第1の静止衛星からの主偏波を良好に受信できる
位置にパラボラ反射鏡の仰角及び方位角を調整すると、
第2の静止衛星からの主偏波も良好に受信できる位置に
最初から設置されている。そして、第1の静止衛星から
の主偏波信号を良好に受信できる位置にパラボラ反射鏡
の仰角及び方位角を調整し終ると、第1の一次放射器で
交差偏波信号を受信し、受信偏波の調整とパラボラ反射
鏡の方位角と仰角との微調整を行ない、主偏波信号のレ
ベルが低しないように交差偏波を最小とする。この状態
において、第2の静止衛星からの交差偏波信号を受信
し、第2の一次放射器の移動と、受信偏波の調整を行な
って、交差偏波信号を最小とする。
[Operation] According to the receiving method of the present invention, the first and second primary radiators adjust the elevation angle and the azimuth angle of the parabolic reflector to a position where the main polarized wave from the first geostationary satellite can be satisfactorily received. Then
The main polarization from the second geostationary satellite is also installed at a position where it can be well received. When the elevation and azimuth of the parabolic reflector have been adjusted to a position where the main polarized signal from the first geosynchronous satellite can be received well, the cross-polarized signal is received by the first primary radiator and received. The polarization is adjusted and the azimuth and elevation of the parabolic reflector are finely adjusted to minimize cross-polarization so that the level of the main polarization signal is not lowered. In this state, the cross-polarized signal from the second geosynchronous satellite is received, and the movement of the second primary radiator and the adjustment of the received polarization are performed to minimize the cross-polarized signal.

[実施例] この実施例は、第4図に示すように、同一の衛星軌道
2上に、地球の中心から見て4゜間隔(日本における中
心部から見て約4.5゜の間隔)に位置する4つの静止衛
星A乃至Dのうち、隣接するB、Cからの電波を受信す
る場合に適用したもので、次のような構成の装置を使用
する。即ち、この装置は、1つのセンターフィード型ま
たはオフセットフィード型で正またはだ円のパラボラ反
射鏡4を有し、これは、その仰角及び方位角が変更でき
るように構成されており、その焦点位置Fの近傍には、
第1図乃至第3図に示すように焦点位置Fを挟んで位置
するように、2つの一次放射器6、8が設けらてれい
る。なお、第1図及び第3図は各静止衛星A乃至D側か
らパラボラ反射鏡4側から見たものである。一次放射器
6は、静止衛星Bからの電波を受信するためのものであ
り、一次放射器8は、静止衛星Cからの電波を受信する
ためのものである。一次放射器6は、パラボラ反射鏡4
の焦点位置Fが静止衛星B、Cの中間位置を向くよう
に、パラボラ反射鏡4の仰角及び方位角を調整した状態
において、静止衛星Bからの電波を良好に受信できる位
置に配置され、一次放射器8は同じく静止衛星Cからの
電波を良好に受信できる位置に配置されている。そのた
め、一次放射器6は、第1図に示すように水平面に対し
て上方に向ってθ傾斜した位置に配置されている。こ
れは第4図に示すように、静止衛星Bと静止衛星Cとを
結ぶ線と受信点の水平線とがなす角度がθであるた
め、静止衛星Cの電波の偏波面が静止衛星Bの電波の偏
差面よりもθだけずれているからである。さらに、一
次放射器6は、これと一次放射器8とをつなぐ直線a上
及びこの直線に対してほぼ直角な直線b方向に移動でき
るように構成されている。また、一次放射器8は、その
設置位置が移動しないように固定されている。さらに、
これら一次放射器6、8は、その受信偏波を調整できる
ように、即ち、これら一次放射器につながれている導波
管を回転させられるように構成されている。
[Embodiment] As shown in FIG. 4, this embodiment is located on the same satellite orbit 2 at an interval of 4 ° from the center of the earth (an interval of about 4.5 ° from the center in Japan). Among the four geostationary satellites A to D, the present invention is applied to the case where radio waves from adjacent B and C are received, and uses an apparatus having the following configuration. That is, the apparatus has one center-feed or offset-feed, positive or elliptical parabolic reflector 4, which is configured so that its elevation and azimuth can be changed, and its focal position. In the vicinity of F,
As shown in FIGS. 1 to 3, two primary radiators 6 and 8 are provided so as to sandwich the focal point position F therebetween. FIG. 1 and FIG. 3 are viewed from the parabola reflector 4 side from the respective geostationary satellites A to D side. The primary radiator 6 is for receiving radio waves from the geostationary satellite B, and the primary radiator 8 is for receiving radio waves from the geostationary satellite C. The primary radiator 6 is a parabolic reflector 4
In a state where the elevation angle and the azimuth angle of the parabolic reflector 4 are adjusted so that the focal position F of the satellite B points to the intermediate position between the geostationary satellites B and C, the radio wave from the geostationary satellite B can be satisfactorily received. The radiator 8 is similarly arranged at a position where radio waves from the geostationary satellite C can be satisfactorily received. Therefore, the primary radiator 6 is disposed in a position theta 1 inclined upwardly relative to the horizontal plane as shown in Figure 1. This is because, as shown in FIG. 4, since the angle formed by the horizontal line of the receiving point and a line connecting the geostationary satellite B and geostationary satellite C is theta 1, the polarization plane of the radio wave geostationary satellite C is geostationary satellite B because it is offset by theta 1 than radio waves deviation surface. Further, the primary radiator 6 is configured to be movable on a straight line a connecting the primary radiator 8 and the primary radiator 8 and in a direction of a straight line b substantially perpendicular to the straight line. The primary radiator 8 is fixed so that its installation position does not move. further,
These primary radiators 6, 8 are configured so that their received polarization can be adjusted, that is, the waveguides connected to these primary radiators can be rotated.

この装置を用い、静止衛星B、Cからの電波を受信す
る。即ち、一次放射器8によって静止衛星Cからの主偏
波信号を受信する。そして、これが最大となるように、
パラボラ反射鏡4の方位角及び仰角を調整する。この状
態において静止衛星Cからの交差偏波信号を受信し、受
信偏波を調整しながら、パラボラ反射鏡4の仰角及び方
位角を微小の範囲、例えば0.1゜乃至0.2゜の範囲で微調
整し、交差偏波成分を最小とする。
Using this device, radio waves from geostationary satellites B and C are received. That is, the primary radiator 8 receives the main polarization signal from the geostationary satellite C. And to maximize this,
The azimuth and elevation of the parabolic reflector 4 are adjusted. In this state, while receiving the cross-polarized signal from the geostationary satellite C and adjusting the received polarization, the elevation angle and the azimuth angle of the parabolic reflector 4 are finely adjusted in a minute range, for example, in the range of 0.1 ° to 0.2 °. , And minimize the cross polarization component.

この状態において、一次放射器6によって静止衛星B
からの主偏波の電波を受信できるか一応チェックする。
一次放射器8で静止衛星Cからの主偏波信号の最大に受
信できる位置にパラボラ反射鏡4の仰角及び方位角を調
整したとき、一次放射器6によって静止衛星Bからの主
偏波信号を良好に受信できる位置に一次放射器6は設置
されているので、静止衛星Bからの主偏波信号を良好に
受信するために、パラボラアンテナ4の仰角や方位角を
調整する必要はない。静止衛星Bからの主偏波信号を受
信できることがチェックできると、一次放射器6によっ
て静止衛星Bからの交差偏波信号を受信し、交差偏波成
分が最小になるように、一次放射器6を直線a、b方角
に沿って移動させると共に、受信偏波を調整する。
In this state, the geostationary satellite B is
Check if the main polarized wave from the receiver can be received.
When the elevation angle and the azimuth of the parabolic reflector 4 are adjusted to the position where the primary radiator 8 can receive the main polarization signal from the geostationary satellite C at the maximum, the primary radiator 6 converts the main polarization signal from the geostationary satellite B into the primary radiator 8. Since the primary radiator 6 is installed at a position where it can be well received, it is not necessary to adjust the elevation angle and azimuth of the parabolic antenna 4 in order to properly receive the main polarized signal from the geostationary satellite B. When it can be checked that the main polarization signal from the geostationary satellite B can be received, the primary radiator 6 receives the cross-polarization signal from the geostationary satellite B, and sets the primary radiator 6 so that the cross-polarization component is minimized. Is moved along the directions of the straight lines a and b, and the received polarization is adjusted.

第5図は、このようにして調整した後の一次放射器
6、8の主偏波信号と交差偏波信号の受信レベルを示し
たもので、実線が一次放射器6の主偏波信号、一点鎖線
が一次放射器6の交差偏波信号、点線が一次放射器8の
主偏波信号、二点鎖線が一次放射器8の交差偏波信号で
ある。これから明らかなように、仰角及び方位角の調整
は、一台の静止衛星に対してのみ行なうだけ、2つの静
止衛星B、Cからの主偏波信号を良好に受信できる上
に、交差偏波信号を最小とすることができる。
FIG. 5 shows the reception levels of the main polarization signal and the cross polarization signal of the primary radiators 6 and 8 after the adjustment as described above, and the solid line indicates the main polarization signal of the primary radiator 6, The dashed line is the cross-polarized signal of the primary radiator 6, the dotted line is the main polarized signal of the primary radiator 8, and the two-dot chain line is the cross-polarized signal of the primary radiator 8. As is apparent from the above, the elevation and azimuth adjustments are performed only for one geostationary satellite, so that the main polarization signals from the two geostationary satellites B and C can be satisfactorily received. The signal can be minimized.

上記の実施例では、2つの静止衛星からの電波を受信
する場合であったので、一次放射器6、8はパラボラ反
射鏡4の焦点Fの近傍に設けたが、3つの静止衛星、例
えばB、C、Dからの電波を受信する場合には、静止衛
星Cからの電波を受信するための一次放射器を焦点Fに
固定し、静止衛星B、Dからの電波を受信するための一
次放射器を焦点Fの両側にその位置を変更可能に設けれ
ばよい。
In the above embodiment, since the radio waves from two geostationary satellites are received, the primary radiators 6 and 8 are provided near the focal point F of the parabolic reflector 4, but three geostationary satellites, for example, B , C and D, the primary radiator for receiving the radio waves from the geostationary satellite C is fixed at the focal point F, and the primary radiator for receiving the radio waves from the geostationary satellites B and D is used. What is necessary is just to provide a container on both sides of the focal point F so that the position can be changed.

[発明の効果] 以上のように、本発明の受信方法によれば、一つの一
次放射器を固定し、他の一次放射器を可動とする構成に
より、1台のパラボラ反射鏡に複数の一次放射器を設け
たパラボラアンテナでも、各静止衛星からの各主偏波を
それぞれ最大レベルで受信できる上に、各交差偏波をそ
れぞれ最小とすることができる。従って、このようなパ
ラボラアンテナを使用して、複数の静止衛星からの電波
を良好に受信できるので、設置スペースを縮小すること
ができる上にコストを引き下げることができる。
[Effects of the Invention] As described above, according to the receiving method of the present invention, one primary radiator is fixed, and the other primary radiator is movable. Even with a parabolic antenna provided with a radiator, each of the main polarized waves from each of the geostationary satellites can be received at the maximum level, and each of the cross-polarized waves can be minimized. Therefore, radio waves from a plurality of geosynchronous satellites can be satisfactorily received using such a parabolic antenna, so that the installation space can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による受信方法の1実施例に使用するパ
ラボラアンテナの部分省略拡大正面図、第2図は同パラ
ボラアンテナの平面図、第3図は同パラボラアンテナの
正面図、第4図は各静止衛星の軌道上の位置と第1図の
パラボラアンテナとの関係を示す図、第5図は第1図の
示すパラボラアンテナの特性図である。 4……パラボラ反射鏡、6、8……一次放射器。
FIG. 1 is an enlarged front view of a part of a parabolic antenna used in an embodiment of a receiving method according to the present invention, FIG. 2 is a plan view of the parabolic antenna, FIG. 3 is a front view of the parabolic antenna, FIG. FIG. 5 is a diagram showing the relationship between the orbital position of each geostationary satellite and the parabolic antenna shown in FIG. 1, and FIG. 5 is a characteristic diagram of the parabolic antenna shown in FIG. 4 ... parabolic reflector, 6, 8 ... primary radiator.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01Q 3/00 - 3/46 H01Q 15/00 - 19/32──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01Q 3/00-3/46 H01Q 15/00-19/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1つのパラボラ反射鏡の焦点位置またはそ
の近傍に固定された第1の一次放射器によって第1の静
止衛星からの主偏波信号を受信し、これが最大となるよ
うに上記パラボラ反射鏡の仰角及び方位角を調整する段
階と、第1の静止衛星からの交差偏波信号を受信し、こ
れが最小になるように受信偏波を調整すると共に上記パ
ラボラ反射鏡の仰角及び方位角を微調整する段階と、第
2の静止衛星からの電波を受信できる位置である上記焦
点位置の近傍位置に移動可能に設けた第2の一次放射器
で第2の静止衛星からの交差偏波信号を受信し、これが
最小となるように受信偏波を調整すると共に第2の一次
放射器の位置を調整する段階とを、有する静止衛星から
の電波の受信方法。
1. A main polarized signal from a first geosynchronous satellite is received by a first primary radiator fixed at or near a focal position of one parabolic reflector, and the parabolic signal is maximized. Adjusting the elevation and azimuth of the reflector; receiving the cross-polarized signal from the first geostationary satellite, adjusting the received polarization so as to minimize the cross-polarized signal, and adjusting the elevation and azimuth of the parabolic reflector; And a second primary radiator movably provided at a position near the focal position, which is a position where radio waves from the second geostationary satellite can be received. Receiving the signal, adjusting the received polarization such that the signal is minimized, and adjusting the position of the second primary radiator.
JP4892590A 1990-02-27 1990-02-27 How to receive radio waves from geostationary satellites Expired - Lifetime JP2838569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4892590A JP2838569B2 (en) 1990-02-27 1990-02-27 How to receive radio waves from geostationary satellites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4892590A JP2838569B2 (en) 1990-02-27 1990-02-27 How to receive radio waves from geostationary satellites

Publications (2)

Publication Number Publication Date
JPH03249806A JPH03249806A (en) 1991-11-07
JP2838569B2 true JP2838569B2 (en) 1998-12-16

Family

ID=12816835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4892590A Expired - Lifetime JP2838569B2 (en) 1990-02-27 1990-02-27 How to receive radio waves from geostationary satellites

Country Status (1)

Country Link
JP (1) JP2838569B2 (en)

Also Published As

Publication number Publication date
JPH03249806A (en) 1991-11-07

Similar Documents

Publication Publication Date Title
US4604624A (en) Phased array antenna employing linear scan for wide-angle arc coverage with polarization matching
US7492322B2 (en) Multi-satellite access antenna system
US20150381265A1 (en) Systems and methods for polarization control
US5543809A (en) Reflectarray antenna for communication satellite frequency re-use applications
US4482897A (en) Multibeam segmented reflector antennas
US11101553B2 (en) Antenna system with active array on tracking pedestal
US5434586A (en) Multibeam antenna for receiving satellite waves
US6323817B1 (en) Antenna cluster configuration for wide-angle coverage
US4853702A (en) Radio wave receiving system
US3680143A (en) Shaped beam antenna
Kreutel et al. Antenna technology for frequency reuse satellite communications
WO1988009066A1 (en) Microwave lens and array antenna
CA2535998A1 (en) Communication satellite cellular coverage pointing correction using uplink beacon signal
US6175340B1 (en) Hybrid geostationary and low earth orbit satellite ground station antenna
TW405279B (en) Antenna for communicating with low earth orbit satellite
US11223126B1 (en) Combined cross-link and communication-link phased array for satellite communication
JP2838569B2 (en) How to receive radio waves from geostationary satellites
JP2649096B2 (en) Method of receiving radio waves from geostationary satellites and parabolic antenna used therefor
US7102585B2 (en) Integrated feed horn device
Murata et al. A self-steering planar array antenna for satellite broadcast reception
US5023619A (en) Satellite communications system
JP2871536B2 (en) Mobile satellite communication system
JPH0653738A (en) Antenna for satellite
Densmore et al. K-and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal
JPH02290306A (en) Plane antenna for receiving satellite broadcast

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081016

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091016

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101016

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101016