TW405279B - Antenna for communicating with low earth orbit satellite - Google Patents

Antenna for communicating with low earth orbit satellite Download PDF

Info

Publication number
TW405279B
TW405279B TW87120120A TW87120120A TW405279B TW 405279 B TW405279 B TW 405279B TW 87120120 A TW87120120 A TW 87120120A TW 87120120 A TW87120120 A TW 87120120A TW 405279 B TW405279 B TW 405279B
Authority
TW
Taiwan
Prior art keywords
antenna
earth orbit
low earth
satellite
communication
Prior art date
Application number
TW87120120A
Other languages
Chinese (zh)
Inventor
Osamu Yamamoto
Ryuichi Iwata
Original Assignee
Nippon Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co filed Critical Nippon Electric Co
Application granted granted Critical
Publication of TW405279B publication Critical patent/TW405279B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/132Horn reflector antennas; Off-set feeding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

To provide an antenna for communicating with a low earth orbit (LEO) satellite which is small-sized and light and can track a LEO satellite at high speed at a small-sized earth station using a LEO satellite, the above antenna uses an offset parabolic antenna-type reflector and a primary feed is installed in the focal position of the parabolic of revolution forming the reflector. The quantity of an offset of an offset parabolic antenna is selected so that antenna gain is maximum at the minimum operational elevation. The primary feed is mechanically independent of the mobile reflector, is attached and fixed to a radiator supporting part. In the meantime, the reflector is turned based upon an azimuth axis and an elevation axis according to AZ-EL mount.

Description

五、發明說明(1) 【發明之背景】 發明之領域 本發明係關於一種與低地球軌道衛星通信用之天線, 尤有關一種使用於有複數的低地球軌道(L E 0 )衛星繞著地 球旋轉的一衛星通信系統之地面站,用以與低地球軌道衛 星通信而自動追蹤各衛星的天線。 習用技術之描述 近來有人提出一種經由複數的LEO衛星使用一種Ka帶 (2 0至3 0 G Η z )之高頻信號,提供給全世界的使用者大約數 個Mbps至數十個Mbps的高速資料之計畫。 在諸如此類的一種使用複數LEO衛星之衛星通信系統 中,因為當從一小型地面站觀看時,每個衛星會在相當短 的時間脫離視界,所以需要在大範圍内作追蹤。 迄今為止,對於一種用以追蹤衛星之天線而言,如同 給靜止衛星與移動衛星使用之地面站天線之多數技術已廣 為人知。 對於追蹤方法而言,舉例言之,有下列三種習知方 ’ 法:(一)單脈衝追蹤法,用以連續偵測天線是否在波束中 心追蹤衛星,並控制天線之放射圖型方向始終等於衛星方 向;(二)步近追蹤法,用以在一固定的時間間隔使天線轉 移一些角度並調整其方位,其接收位準為最大;以及(三) 程式追蹤法,基於衛星軌道之估計資訊,用以改變天線之 方位。 對於一種支持移動式天線之方法而言,有下列兩種習V. Description of the invention (1) [Background of the invention] Field of the invention The present invention relates to an antenna for communication with low earth orbit satellites, and more particularly to a low earth orbit (LE 0) satellite used to rotate around the earth. The ground station of a satellite communication system is used to communicate with low earth orbit satellites and automatically track the antenna of each satellite. Description of Conventional Technology Recently, a high-frequency signal using a Ka band (20 to 30 G Η z) via a plurality of LEO satellites has been proposed to provide users around the world with high speeds ranging from several Mbps to several tens of Mbps. Data plan. In such a satellite communication system using a plurality of LEO satellites, since each satellite will be out of sight in a relatively short time when viewed from a small ground station, it needs to be tracked over a wide range. To date, most of the techniques for an antenna used to track satellites, such as ground station antennas for stationary and mobile satellites, are well known. As for the tracking method, for example, there are three conventional methods: (a) single-pulse tracking method, which is used to continuously detect whether the antenna is tracking the satellite at the center of the beam, and to control the direction of the radiation pattern of the antenna always equal to Satellite direction; (2) Step-by-step tracking method, which is used to shift the antenna at a fixed time interval and adjust its azimuth, and its receiving level is the maximum; and (C) program tracking method, based on satellite orbit estimation information To change the orientation of the antenna. For a method that supports mobile antennas, there are two practices

405279 五、發明說明(2) 知之方法:(一)AZ-EL支架,用以轉移移動式天線之方位 與仰角;以及(二)X Y支架,用以將移動式天線轉移一個 垂直於衛星轨道的方向。AZ-EL支架係為目前最常採用的 方法,於其中安置一軸(方位角軸線)垂直於地面,而安置 另一轴(仰角軸線)成水平。在XY支架中,與地面成水平的 X軸係垂直於y軸,且y轴係與X軸一起轉動。XY支架適合在 高速下追蹤靠近天頂移動之L E 0衛星,然而,因為此兩軸 係位於從地面上的高位置,所以X Y支架具有機械缺陷。 接著,參考附圖詳細說明用以追蹤衛星之一種傳統型 實際地面站之天線的衛星追蹤技術。 圖1 1顯示一種用以追蹤衛星之地面站傳統型天線之構 造。圖1 1係顯示一種用以追蹤衛星之地面站的大型天線之 一例,且其主反射鏡係為直徑1 3公尺的卡塞格倫 (Cassegrain)天線。此種天線係使用一種依據AZ-EL支架 之驅動機構以追蹤衛星,且其方位角軸線與仰角轴線兩者 皆受一種螺旋起重機驅動機構所驅動。為簡化結構,在方 位角軸線方向僅於土 1 0度的範圍内,可允許驅動機構連續 驅動,並採用一種限制驅動方法,於其中,當天線需要在 另一方向指向較大角度時,即鬆掉一固定螺絲,以使天線 慢慢轉動。對於仰角軸線而言,可在〇至9 0度間作連續驅 動。一 1次發射器係裝設至主反射鏡並與主反射鏡一起受 驅動。 圖1 2顯示另一種用以追蹤衛星之地面站傳統型天線, 而一種用以追蹤衛星之地面站小型天線亦為吾人所知悉,405279 5. Description of the invention (2) Known methods: (1) AZ-EL bracket to transfer the azimuth and elevation angle of the mobile antenna; and (2) XY bracket to transfer the mobile antenna to a satellite orbit perpendicular to the satellite orbit direction. The AZ-EL bracket is the most commonly used method. One axis (azimuth axis) is placed perpendicular to the ground, and the other axis (elevation axis) is placed horizontally. In the XY bracket, the X-axis system horizontal to the ground is perpendicular to the y-axis, and the y-axis system rotates together with the X-axis. The XY bracket is suitable for tracking the LE0 satellite moving near the zenith at high speeds. However, because the two axes are located at a high position from the ground, the X Y bracket has mechanical defects. Next, a satellite tracking technique of an antenna of a conventional actual ground station for tracking satellites will be described in detail with reference to the drawings. Figure 11 shows the construction of a conventional antenna for a ground station for tracking satellites. Figure 11 shows an example of a large antenna for a ground station for tracking satellites. The main reflector is a Cassegrain antenna with a diameter of 13 meters. This antenna uses a driving mechanism based on the AZ-EL bracket to track the satellite, and both its azimuth axis and elevation axis are driven by a spiral crane driving mechanism. In order to simplify the structure, the driving mechanism may be allowed to continuously drive in the range of the azimuth axis direction only within 10 degrees of soil, and a limited driving method is adopted. When the antenna needs to be pointed at a larger angle in the other direction, that is, Loosen a set screw to turn the antenna slowly. For the elevation axis, continuous drive is possible from 0 to 90 degrees. The primary transmitter is mounted to the main mirror and is driven together with the main mirror. Figure 12 shows another conventional ground station antenna for tracking satellites, and a small ground station antenna for tracking satellites is also known to me.

五、發明說明(3) ^ 於其中,雖使用一開口天線作為上述大型天線,但仍可達 到小型化與輕量化。 圖12係顯示使用於依國際海事衛星組織(INMARSAT)標 準A之船舶地面站之一種拋物面天線,且一交又雙極 (c r 〇 s s d i ρ ο 1 e )與一反射板係設於旋轉拋物面反射鏡之焦 點,用以作為1次發射器。於此天線中,反射鏡與發射器 係結合成一體。為了追蹤衛星,上述拋物面天線係使用4 軸支架(藉由組合上述AZ-EL支架與XY支架所得到)而驅 動。 以上技術係記載於''海事衛星通信入門",佐藤敏雄 著,昭和6 1年7月2 5日,日本通信學會發行。 如上所述,使用傳統型天線作為衛星通信之用以追蹤 衛星之技術,可有效地應用到極小追縱範圍之情況(與靜 止衛星比較而言),然而,上述傳統型天線並不適合於上 述用以追蹤並與LEO衛星通信之天線,其理由如下: 換言之,在作為衛星通信之傳統型天線中,因1次發 射器與反射鏡係結合在一起,並在追蹤衛星時旋轉一天 線,而所欲旋轉的天線較重,驅動系統亦較大,所以難以 作高速追蹤,並使罩覆天線之天線罩的面積增大。在使用 LEO衛星之衛星通信系統中,考慮到很多小型地面站係安 裝於每個家庭,所需要的整個天線的尺寸儘可能小型化與 輕量化,然而,小型化與輕量化係為一大難題。 再者,因1次發射器與反射鏡係結合在一起並轉動一 天線,所以為求能在旋轉期間亦使饋電至1次發射器的狀V. Description of the invention (3) ^ In it, although an open-ended antenna is used as the above-mentioned large antenna, miniaturization and weight reduction can still be achieved. Figure 12 shows a parabolic antenna used in a ship's ground station in accordance with INMARSAT Standard A, and a cross-pole and bipolar (cr 〇ssdi ρ ο 1 e) and a reflecting plate are set on the rotating parabolic reflection The focal point of the mirror is used as a primary transmitter. In this antenna, the reflector and the transmitter are integrated. In order to track satellites, the parabolic antenna is driven using a 4-axis bracket (obtained by combining the AZ-EL bracket and the XY bracket). The above technology is described in "Introduction to Maritime Satellite Communications", by Toshio Sato, published on July 25, 2011, by the Japan Institute of Communications. As mentioned above, the use of traditional antennas as satellite communication technology for tracking satellites can be effectively applied to the case of extremely small tracking ranges (compared to geostationary satellites). However, the above-mentioned conventional antennas are not suitable for the above-mentioned applications. The reason for tracking and communicating with LEO satellites is as follows: In other words, in the traditional antennas for satellite communications, because the transmitter and the mirror system are combined together, and an antenna is rotated when tracking the satellite, the The antenna to be rotated is heavy and the driving system is large, so it is difficult to track at high speed, and the area of the radome covering the antenna is increased. In a satellite communication system using LEO satellites, considering that many small ground stations are installed in each home, the size of the entire antenna required is as small and light as possible. However, miniaturization and light weight are a major problem. . In addition, since the primary transmitter is combined with the mirror system and an antenna is rotated, in order to be able to feed the primary transmitter also during the rotation,

五、發明說明(4) 況穩定,設有饋電系統的射頻(RF)送/收信部諸如低雜訊 放大器與高頻功率放大器亦需要靠近於1次發射器而安 裝。然而,於此情況下,天線的重量亦增加了 R F送/收信 部的重量。 於此狀況下,亦可理解R F送/收信部係從反射鏡分離 出來並被固定,然而,為維持獨立於藉由旋轉饋電部所造 成位移之穩定連接,饋電線必須具有彈性,必須使用一種 旋轉接頭與其餘旋轉接頭,所以,其問題為:用以作衛星 通信用之天線係為複雜且高價位的。 如上所述,本發明之目的係提供一種與低地球軌道衛 星通信用之天線,其乃使用於一小型地面站,用以與複數 的LEO衛星通信,此種天線係可達到小型化與輕量化,並 可以高速追蹤一 LEO衛星。 【發明之綜合說明】 為達成上述目的,依本發明之一種與低地球軌道衛星 通信用之天線,係基於一種與低地球軌道衛星通信用之天 線,此天線係在一使用低地球軌道衛星之衛星通信系統 中,使用於地面侧,並使用一種偏移開口天線而機械式追 蹤上述低地球軌道衛星。於此,上述天線係藉由以下方式 作機械式追蹤:固定開口天線之1次發射器,並朝一低地 球執道衛星之方向,僅只使天線之反射鏡繞一方位角軸線 與一仰角軸線而旋轉。 具體而言,本發明係提供:一反射鏡,具有預先決定 之旋轉拋物面偏移量,·一 AZ-EL支架,連接至上述反射5. Description of the invention (4) The condition is stable, and the radio frequency (RF) transmitting / receiving unit with a feeding system such as a low noise amplifier and a high frequency power amplifier also needs to be installed close to the primary transmitter. However, in this case, the weight of the antenna also increases the weight of the RF transmitting / receiving section. Under this condition, it can also be understood that the RF transmitting / receiving part is separated from the mirror and fixed. However, in order to maintain a stable connection independent of the displacement caused by rotating the power feeding part, the power feeding line must be flexible and must be flexible. A rotary joint and other rotary joints are used. Therefore, the problem is that the antenna used for satellite communication is complicated and expensive. As mentioned above, the object of the present invention is to provide an antenna for communication with low earth orbit satellites, which is used in a small ground station to communicate with a plurality of LEO satellites. Such an antenna system can achieve miniaturization and weight reduction. , And can track a LEO satellite at high speed. [Comprehensive description of the invention] In order to achieve the above object, an antenna for communicating with a low earth orbit satellite according to the present invention is based on an antenna for communicating with a low earth orbit satellite. The antenna is a low earth orbit satellite. In the satellite communication system, it is used on the ground side and uses an offset aperture antenna to mechanically track the above-mentioned low earth orbit satellite. Here, the above-mentioned antenna is mechanically tracked by the following method: the primary transmitter of the fixed-open antenna is directed toward a low earth conducting satellite, and only the reflector of the antenna is wound around an azimuth axis and an elevation axis. Spin. Specifically, the present invention provides: a mirror with a predetermined rotation parabolic offset, and an AZ-EL bracket connected to the reflection

五、發明說明(5) 405279 鏡,藉由基於一方位角軸線與一仰角軸線而旋轉上述反射 鏡,用以追蹤上述低地球軌道衛星;一1次發射器,用以 在上述反射鏡上放射預先決定的波束;一饋電部,用以饋 電至上述1次發射器;以及一發射器支持部,用以支持上 述1次發射器,俾能使上述1次發射器可獨立於上述反射鏡 而受固定。 上述偏移量之值係以在預先決定的最小運作仰角,獲 得最大天線增益之條件而設定。 【圖示之簡單說明】 圖1係顯示一種與低地球軌道衛星通信用之偏移拋物 面天線之組成方塊圖,相當於本發明第一實施例; 圖2 A與2 B說明圖1之偏移拋物面天線之追蹤機構; 圖3 A與3 B說明圖2 A與2 B之仰角軸線之定義; 圖4顯示一 L E 0衛星之想像圖; 圖5顯示使用一 L E 0衛星之衛星通信系統; 圖6顯示依本發明之追蹤範圍; 圖7顯示一仰角對之傳播損耗、天線增益與全傳播損 耗三者間之關係; 圖8係顯示一種與低地球軌道衛星通信用之偏移卡塞 格倫天線之組成方塊圖,相當於本發明第二實施例; 圖9係顯示一種與低地球執道衛星通信用之偏移卡塞 格倫天線之組成方塊圖,相當於本發明第三·實施例; 圖1 0係顯示一種與低地球軌道衛星通信用之偏移格雷 戈里(Gregorian)型天線之組成方塊圖,相當於本發明第V. Description of the invention (5) 405279 mirror, which is used to track the above-mentioned low earth orbit satellite by rotating the above-mentioned mirror based on an azimuth axis and an elevation axis; a primary transmitter for emitting on the above-mentioned mirror A predetermined beam; a feeding unit to feed the primary transmitter; and a transmitter support unit to support the primary transmitter, so that the primary transmitter can be independent of the reflection Mirror and subject to fixation. The above-mentioned offset value is set on the condition that a maximum antenna gain is obtained at a predetermined minimum operating elevation angle. [Brief description of the diagram] FIG. 1 is a block diagram showing the composition of an offset parabolic antenna for communication with low earth orbit satellites, which is equivalent to the first embodiment of the present invention; FIGS. 2A and 2B illustrate the offset of FIG. 1 Fig. 3 A and 3 B illustrate the definition of the elevation axis of Fig. 2 A and 2 B; Fig. 4 shows an imaginary diagram of a LE 0 satellite; Fig. 5 shows a satellite communication system using an LE 0 satellite; Fig. 6 shows the tracking range according to the present invention; Fig. 7 shows the relationship between the propagation loss, antenna gain and total propagation loss at an elevation angle; Fig. 8 shows an offset Cassegrain for communication with low earth orbit satellites Antenna composition block diagram, equivalent to the second embodiment of the present invention; FIG. 9 is a composition block diagram showing an offset Cassegrain antenna for communication with a low-earth satellite, corresponding to the third embodiment of the present invention Figure 10 is a block diagram showing the composition of an offset Gregorian antenna for communication with low earth orbit satellites, which is equivalent to the first embodiment of the present invention.

405279_ 五、發明說明(6) 三實施例; 圖1 1係顯示一種傳統式大型地面站之天線追蹤技術之 外觀圖;以及 圖1 2係顯示一種傳統式小型地面站之天線追蹤技術之 概念圖。 【符號之說明】 1 ~ 1次發射器 2〜偏移反射鏡 3〜AZ-EL支架 4〜饋電部 5〜發射器支持部 6〜R F送/收信部 7〜天線支持部 8〜旋轉拋物面軸 9〜方位角軸線【圖2A, 2B】 9〜拋物面【圖3A, 3B】 1 0〜仰角軸線 1 1〜軌道面 1 2〜衛星追蹤範圍【圖6】 12〜主反射鏡【圖8, 9】 1 3〜小型地面站【圖6】 1 3〜副反射鏡【圖8】 1 4〜圓形孔405279_ V. Description of the invention (6) Three embodiments; Figure 1 1 shows the external appearance of a traditional large-scale ground station antenna tracking technology; and Figure 12 shows a conceptual view of a traditional small-scale ground station antenna tracking technology . [Description of symbols] 1 ~ 1 time transmitter 2 ~ offset mirror 3 ~ AZ-EL bracket 4 ~ feeding unit 5 ~ transmitter supporting unit 6 ~ RF transmitting / receiving unit 7 ~ antenna supporting unit 8 ~ rotation Parabolic axis 9 ~ Azimuth axis [Fig. 2A, 2B] 9 ~ Parabolic surface [Fig. 3A, 3B] 1 0 ~ Elevation axis 1 1 ~ Orbital surface 1 2 ~ Satellite tracking range [Fig. 6] 12 ~ Primary mirror [Fig. 8 , 9] 1 3 to small ground station [Figure 6] 1 3 to sub-reflector [Figure 8] 1 4 to circular hole

第10頁 -465279- 五、發明說明(7) 1 5 ~主反射鏡 1 6〜副反射鏡 1 0 0〜與低地球軌道衛星通信用之天線 【較佳實施例之說明】 1 . 第一實施例 接著,將參考附圖詳細說明本發明第一實施例。圖1 係顯示一種與低地球軌道衛星通信用之天線之組成方塊 圖,相當於本發明之最佳實施例。 如圖1所示,依本發明之與低地球軌道衛星通信用之 天線1 0 0包含:一 1次發射器(喇叭)1 ,用以傳送或接收K a 帶之信號;一偏移反射鏡2,設有一預先決定的旋轉拋物 面;一AZ-EL支架3,連接至反射鏡2,用以旋轉一方位角 軸線與一仰角軸線並追蹤衛星;一饋電部4,用以饋電至1 次發射器1 ; 一發射器支持部5,用以固定1次發射器1 ; 一 R F送/收信部6,由一低雜訊放大器與一高頻功率放大器所 組成;以及一天線支持部7,用以固定整個天線。 此天線係使用一種偏移拋物面天線型反射鏡天線,而 1次發射器1係安裝於形成反射鏡2之旋轉拋物面之焦點位 置。吾人選取偏移拋物面天線之偏移量,俾能使天線增益 在最小運作仰角(說明於後)為最大。含有可動構造之1次 發射器1,係具有機械上獨立於反射鏡2之構造,並裝設至 發射器支持部5而予以固定。 同時,吾人組成反射鏡2,俾能使其藉由AZ-EL支架3 而基於方位角軸線與仰角軸線旋轉。從1次發射器1而來之Page 10-465279- V. Description of the invention (7) 1 5 ~ Main mirror 16 ~ Sub mirror 1 0 0 ~ Antenna for communication with low earth orbit satellite [Description of preferred embodiment] 1. First Embodiment Next, a first embodiment of the present invention will be described in detail with reference to the drawings. Fig. 1 is a block diagram showing the composition of an antenna for communication with a low earth orbit satellite, which corresponds to a preferred embodiment of the present invention. As shown in FIG. 1, the antenna 100 for communicating with a low earth orbit satellite according to the present invention includes: a primary transmitter (horn) 1 for transmitting or receiving a signal in the Ka band; an offset mirror 2. A predetermined paraboloid of rotation is provided; an AZ-EL bracket 3 is connected to the mirror 2 to rotate an azimuth axis and an elevation axis and track the satellite; a power supply unit 4 is used to feed power to 1 A secondary transmitter 1; a transmitter support section 5 for fixing a primary transmitter 1; an RF transmitting / receiving section 6 composed of a low noise amplifier and a high frequency power amplifier; and an antenna support section 7, used to fix the entire antenna. This antenna uses an offset parabolic antenna type reflector antenna, and the primary transmitter 1 is installed at the focal position of the rotating paraboloid forming the reflector 2. I choose the offset of the offset parabolic antenna, so that the antenna gain can be maximized at the minimum operating elevation angle (described later). The primary transmitter 1 including a movable structure has a structure that is mechanically independent of the mirror 2 and is fixed to the transmitter support 5. At the same time, we formed the reflector 2 so that it could be rotated by the AZ-EL bracket 3 based on the azimuth axis and the elevation axis. From 1 launcher 1

第11頁 _405279_ 五、發明說明(8) 一個或其餘信號,係經由饋電部4饋入至R F送/收信部6。 AZ-EL支架3、發射器支持部5與RF送/收信部6係安裝於天 線支持部7上。 然後,將說明圖1之與低地球軌道衛星通信用之天線 1 0 0的運作。 圖2 A與2 B說明此種天線之追蹤機構,並特別顯示分別 關於追蹤之反射鏡2與1次發射器1。圖2A顯示反射鏡2與1 次發射器1之前視圖,其中,實線係顯示在最小運作仰角 0 M1N下之反射鏡2的位置,點線係顯示假設仰角趨近9 0度 之反射鏡2的位置。圖2 B顯示分別從側面觀看之反射鏡2與 1次發射器1。從這些圖示亦可明顯的理解到,一方位角軸 線9係繞著一直線(連接反射鏡2之中心與1次發射器1之中 心)旋轉,且反射鏡2係以方位角軸線9作中心而旋轉3 6 0 度。參考數字8表示旋轉搬物面之軸。 同時,圖3 A與3 B說明一仰角軸線,而在這兩圖中之仰 角軸線係指與從一旋轉拋物面軸8和一拋物面9之交點(中 心)通過偏移反射鏡2之旋轉拋物面内的一放射狀直線在旋' 轉拋物面内直交的軸線相接觸的線而言。一角度係以此仰 角軸線作中心,在最小運作仰角與9 0度間作變化。 AZ-EL支架3驅動反射鏡2,俾能使反射鏡繞著方位角 軸線9與仰角軸線1 0而旋轉以追蹤衛星。 即使當反射鏡2旋轉時,1次發射器1總是固定於拋物 面之焦點位置,此乃因為1次發射器1係藉由發射器支持部 5而固定。Page 11 _405279_ V. Description of the invention (8) One or the other signals are fed to the RF transmitting / receiving section 6 through the feeding section 4. The AZ-EL bracket 3, the transmitter support section 5, and the RF transmitting / receiving section 6 are mounted on the antenna support section 7. Next, the operation of the antenna 100 for low earth orbit satellite communication of FIG. 1 will be explained. Figures 2A and 2B illustrate the tracking mechanism of such an antenna, and particularly show the mirror 2 and the primary transmitter 1 for tracking, respectively. FIG. 2A shows the front view of the reflector 2 and the primary transmitter 1. The solid line shows the position of the mirror 2 at the minimum operating elevation angle 0 M1N, and the dotted line shows the reflector 2 assuming that the elevation angle approaches 90 degrees. s position. Figure 2B shows the mirror 2 and the primary emitter 1 viewed from the side, respectively. It can also be clearly understood from these illustrations that an azimuth axis 9 is rotated around a straight line (connecting the center of the mirror 2 and the center of the primary transmitter 1), and the mirror 2 is centered on the azimuth axis 9 And rotate 360 degrees. Reference numeral 8 indicates an axis of the rotating object plane. Meanwhile, FIGS. 3A and 3B illustrate an elevation angle axis, and the elevation angle axis in these two figures refers to the inside of the rotating paraboloid passing through the offset mirror 2 from the intersection (center) of a rotating parabolic axis 8 and a parabolic surface 9. For a line in which a radial straight line touches an orthogonal axis in a paraboloid of rotation. An angle is centered on the axis of the elevation angle and changes between the minimum operating elevation angle and 90 degrees. The AZ-EL bracket 3 drives the mirror 2 so that the mirror can be rotated around the azimuth axis 9 and the elevation axis 10 to track the satellite. Even when the mirror 2 is rotated, the primary transmitter 1 is always fixed at the focal position of the parabola, because the primary transmitter 1 is fixed by the transmitter support 5.

第12頁 —. 405279 五、發明說明(9) 如上所述,依本發明之衛星通信天線,可使反射鏡2 繞著方位角軸線旋轉,並可作全方位角追縱。顯示指向性 之仰角,係可藉由繞著仰角軸線旋轉反射鏡2而變化,而 且可獲得仰角9 0度之天頂方向的指向性。 然後,將說明一個上述與低地球軌道衛星通信用之天 線的所需追縱角度範圍。 圖4係顯示多數的L E 0衛星配置於遍及地球之複數軌道 面以罩覆全世界之想像圖。如圖4所示,係藉由配置遍及 地球之複數LE0衛星,而提供用以罩覆全世界之衛星通信 系統,俾能在地球上任何地方皆可看到任一個衛星。 LE0衛星意指一種位於地面上將近1500 km上下高度之 橢圓軌道(含圓形軌道)上的衛星,並假設在1 〇 〇 〇 km的高 度下,每個衛星之軌道週期為將近1小時4 5分。 假設一衛星之高度為7 6 5 km,且其最小運作仰角為3 0 度,則在相同軌道面所欲配置之衛星數量為2 0,且需要1 0 個執道面以罩覆全世界。亦即,所需衛星的總數量為 2 0 0。所需衛星的數量係基於衛星之高度與最小運作仰角 而決定。即使衛星位於相同高度,假設運作仰角為2 0度, 則所需衛星之數量為9 8 ;假設運作仰角為1 0度,則所需衛 星之數量為4 5。 圖5係顯示一種使用L E 0衛星之廣帶域衛星通信系統之 概念圖。如圖5所示,於此系統中’使用L帶(1 · 5至1 . 6 GHz)多波束之將近6 4 kbps之一低速波道,係提供給小型 使用對象(諸如攜帶式終端機)’且在小型地面站使用K a帶Page 12 — 405279 5. Description of the invention (9) As mentioned above, according to the satellite communication antenna of the present invention, the reflector 2 can be rotated around the azimuth axis and can be tracked in all directions. The elevation angle showing the directivity can be changed by rotating the mirror 2 about the elevation axis, and the directivity in the zenith direction of the elevation angle of 90 degrees can be obtained. Then, the required tracking angle range of an antenna for communication with a low earth orbit satellite as described above will be explained. Fig. 4 is an imaginary view showing that most LE0 satellites are arranged on a plurality of orbital planes across the earth to cover the whole world. As shown in Fig. 4, a satellite communication system covering the whole world is provided by arranging a plurality of LE0 satellites throughout the earth, so that any satellite can be seen anywhere on the earth. LE0 satellite means a satellite located in an elliptical orbit (including circular orbit) at an altitude of nearly 1500 km on the ground, and it is assumed that at an altitude of 1,000 km, the orbital period of each satellite is approximately 1 hour 4 5 Minute. Assuming the height of a satellite is 765 km and its minimum operating elevation is 30 degrees, the number of satellites to be deployed on the same orbital plane is 20, and 10 beacon planes are required to cover the world. That is, the total number of satellites required is 200. The number of satellites required is based on the satellite's altitude and minimum operating elevation. Even if the satellites are at the same altitude, assuming an operating elevation of 20 degrees, the number of satellites required is 9 8; assuming an operating elevation of 10 degrees, the number of satellites required is 45. Fig. 5 is a conceptual diagram showing a wide-band satellite communication system using LE0 satellites. As shown in Figure 5, in this system, one of the low-speed channels of nearly 64 kbps using L-band (1.5 to 1.6 GHz) multi-beams is provided for small users (such as portable terminals). 'And use K a belt at small ground stations

第13頁 -405279- 五、發明說明(ίο) (一般稱為2 0至3 0 GHz的準毫米波帶)多數點波束的高速資 料,係提供給大型使用對象(諸如船舶、飛機與小規模辦 公室)。 本發明係關於一種與低地球軌道衛星通信用之天線, 而此種天線主要為後者(使用於小型地面站)。 圖6顯示假設從一小型地面站1 3觀看設有一執道面1 1 之LE0衛星之追蹤範圍。如圖6所示,最小運作仰角0MIN係 基於LE0衛星數量與上述高度之間的關係所決定,且衛星 追蹤範圍1 2相當於以斜線表示的面積,亦即,在從最小運 作仰角θ MIN至天頂方向之全方位角的整體面積。 接著,圖7顯示傳播損耗(A)與偏移拋物面天線增益 (B )間的關係,其中,傳播損耗(A )包含基於一仰角之自由 空間損耗,與由於降雨衰減之損耗。圖7亦顯示傳播損耗 (A )與天線增益(B )之總和,亦即,包含天線增益之全傳播 損耗(C = A + B )。在圖7中,最小運作仰角0 MIN設定為4 0 度。吾人可調整一偏移量,俾能使天線增益於此仰角時為 最大,並可使用在Ka帶之30 GHz的傳送頻率計算傳播損 耗。 因此,圖7顯示全傳播損耗在最小運作仰角4 0度時為 最大,且當仰角趨近於天頂時,全傳播損耗較小。 其原因乃在於:因偏離偏移拋物面反射鏡之理想狀 況,所以在天頂方向的方向性增益較低,然而,在微波 帶、毫米波帶與其他波帶之衛星通信中,天線增益係為需 要的,此乃因為當在仰角最小時,衛星之距離最遠、自由Page 13-405279- V. Description of the invention (ίο) (commonly referred to as the quasi-millimeter wave band of 20 to 30 GHz) Most high-speed data of spot beams are provided for large-scale users (such as ships, aircraft and small-scale office). The present invention relates to an antenna for communication with a low earth orbit satellite, and this antenna is mainly the latter (used for a small ground station). FIG. 6 shows the tracking range of an LE0 satellite provided with a runway 1 1 viewed from a small ground station 13. As shown in Figure 6, the minimum operating elevation angle 0MIN is determined based on the relationship between the number of LE0 satellites and the above-mentioned altitude, and the satellite tracking range 12 is equivalent to the area represented by the oblique line, that is, from the minimum operating elevation angle θ MIN to The overall area of the omnidirectional angle in the zenith direction. Next, Fig. 7 shows the relationship between the propagation loss (A) and the offset parabolic antenna gain (B). The propagation loss (A) includes free space loss based on an elevation angle and loss due to rain attenuation. Figure 7 also shows the sum of the propagation loss (A) and the antenna gain (B), that is, the total propagation loss including the antenna gain (C = A + B). In FIG. 7, the minimum operating elevation angle 0 MIN is set to 40 degrees. We can adjust an offset to maximize the antenna gain at this elevation angle, and use the transmission frequency of 30 GHz in the Ka band to calculate the propagation loss. Therefore, Fig. 7 shows that the total propagation loss is maximum at a minimum operating elevation of 40 degrees, and that the total propagation loss is smaller when the elevation angle approaches the zenith. The reason is that due to the deviation from the ideal state of the parabolic mirror, the directivity gain in the zenith direction is low. However, in satellite communications in the microwave, millimeter-wave, and other bands, the antenna gain is required. This is because when the elevation angle is the smallest, the distance of the satellite is the longest and free

第14頁 4Θ5-27» 五、發明說明(π) 空間損耗最大、通過降雨區域之距離最長、且降雨衰減量 最大,而當在天頂方向時,上述衰減為最小。 因此,即使把仰角設定至天頂方向,亦可藉由設定適 當數值作為最小運作仰角而能真正減少問題。 2. 第二實施例 使用偏移拋物面天線之本發明第一實施例係如上所 述,然而,本發明並未偈限於諸如此類之設有單反射鏡的 天線。 亦即,對本發明第二實施例而言,亦可使用圖8之一 種設有複數反射鏡之偏移卡塞格倫天線。 如圖8所示,參考數字12表示一具有旋轉拋物面之主 反射鏡,如上所述’ 一預先決定的偏移量施加至主反射 鏡,俾能在最小運作仰角獲得最大天線增益。參考數字1 3 表示一副反射鏡,藉由一個旋轉雙曲面而形成,此旋轉雙 曲面係共用旋轉拋物面之焦點作為一個焦點。因為旋轉雙 曲面之另一個焦點係位於主反射鏡1 2的區域,所以用以從 1次發射器1放射波束之一圓形孔1 4,係提供至主反射鏡 1 2。因其餘參考數字係與圖1類似,固省略其說明。 在此實施例中,因採用設有複數反射鏡之天線,所以 天線結構係為複雜的,然而,因為1次發射器1係從主反射 鏡12之背面饋電,而可產生以下的效果:減少饋電損失、 使連接至送/收信部較容易、並避免追蹤範圍的中斷。 3. 第三實施例 再者,對於本發明第三實施例而言,係使用圖9之一Page 14 4Θ5-27 »5. Description of the invention (π) The largest space loss, the longest distance through the rainfall area, and the largest amount of rainfall attenuation, and when in the zenith direction, the above attenuation is the smallest. Therefore, even if the elevation angle is set to the zenith direction, the problem can be really reduced by setting an appropriate value as the minimum operating elevation angle. 2. Second Embodiment The first embodiment of the present invention using an offset parabolic antenna is as described above, however, the present invention is not limited to such an antenna provided with a single mirror. That is, for the second embodiment of the present invention, one of the offset Cassegrain antennas provided with a plurality of mirrors can also be used. As shown in FIG. 8, reference numeral 12 denotes a main mirror with a rotating paraboloid. As described above, a predetermined offset is applied to the main mirror, and the maximum antenna gain can be obtained at the minimum operating elevation angle. Reference numeral 1 3 denotes a pair of mirrors, which are formed by a rotating hyperboloid, and the rotating hyperboloid uses a focal point of a rotating paraboloid as a focal point. Since the other focal point of the rotating hyperboloid is located in the area of the main mirror 12, a circular hole 14 for radiating a beam from the primary transmitter 1 is provided to the main mirror 12. Since the remaining reference numerals are similar to those in FIG. 1, their descriptions are omitted. In this embodiment, the antenna structure is complicated because an antenna provided with a plurality of mirrors is used. However, since the primary transmitter 1 feeds power from the back of the main mirror 12, the following effects can be produced: Reduce feed loss, make it easier to connect to send / receive department, and avoid interruption of tracking range. 3. Third Embodiment Furthermore, for the third embodiment of the present invention, one of FIG. 9 is used.

第15頁 _405279_ 五、發明說明(12) 種設有複數反射鏡之偏移卡塞格倫天線。在此實施例中, 亦使用圖8之設有複數反射鏡之偏移卡塞格倫天線,然 而,此實施例與第二實施例不同之處在於:1次發射器1之 位置係位於主反射鏡1 2區域之外部。 4. 第四實施例 再者,對於本發明第四實施例而言,亦可使用圖1 0之 一種設有複數反射鏡之偏移格雷戈里天線。於此實施例 中,一預先決定的偏移量施加至具有旋轉拋物面的主反射 鏡1 5,俾能在最小運作仰角獲得最大天線增益。具有旋轉 橢圓面之副反射鏡1 6,係共用旋轉拋物面之焦點。1次發 射器1之相位中心係位於旋轉橢圓面之另一焦點。 依據上述第二至第四實施例之使用設有複數反射鏡之 天線的構造,相較於第一實施例之天線,饋電損耗更進一 步地減少、1次發射器受到固定、且整體天線的高度更進 一步地減小。 如上所述,依本發明之與低地球軌道衛星通信用之天 線,可產生以下的效果: 第一,藉由將天線之旁波瓣特性與交互極化之電磁輻 射隔絕予以最佳化,可在衛星航道中之最小仰角,獲得最 大之傳播損耗與降雨衰減之最佳特性,此乃因為使用偏移 拋物面天線、偏移卡塞格倫天線與其餘天線之故,而此等 天線係在最小運作仰角可獲得最大增益。尤其是,因為 L E 0衛星係使用毫米波帶,而且具有大的降雨衰減,所以 上述效果係為顯著的。Page 15 _405279_ V. Description of the invention (12) An offset Cassegrain antenna with a plurality of reflectors. In this embodiment, the offset Cassegrain antenna provided with a plurality of mirrors in FIG. 8 is also used. However, this embodiment is different from the second embodiment in that the position of the primary transmitter 1 is located at the main Outside the mirror 12 area. 4. Fourth Embodiment Furthermore, for the fourth embodiment of the present invention, an offset Gregory antenna provided with a plurality of mirrors can also be used. In this embodiment, a predetermined offset is applied to the main mirror 15 having a rotating paraboloid, so that the maximum antenna gain can be obtained at the minimum operating elevation angle. The sub-mirror 16 with a rotating elliptical surface shares the focal point of the rotating paraboloid. The phase center of the primary transmitter 1 is located at the other focal point of the rotating ellipse. According to the structures of the second to fourth embodiments using the antenna provided with a plurality of mirrors, compared with the antenna of the first embodiment, the feeding loss is further reduced, the primary transmitter is fixed, and the overall antenna is The height is further reduced. As described above, the antenna for communication with low earth orbit satellites according to the present invention can produce the following effects: First, by isolating the sidelobe characteristics of the antenna from the electromagnetic radiation of cross polarization, it can be optimized. The minimum elevation angle in the satellite channel obtains the best characteristics of maximum propagation loss and rainfall attenuation. This is because of the use of offset parabolic antennas, offset Cassegrain antennas and other antennas, and these antennas are at the minimum The maximum elevation is obtained by operating the elevation angle. In particular, since the LE0 satellite system uses a millimeter wave band and has a large rainfall attenuation, the above-mentioned effect is significant.

第16頁 -- 五、發明說明(13) 第二,因1次發射器被固定住,故不需為饋電線與導 波管提供一彈性部,可簡化其結構並增加其可靠度。 第三,因受驅動以追蹤衛星之部份僅有反射鏡,故可 減少驅動重量、可作高速追蹤、並可使驅動機構小型輕量 化0Page 16-V. Description of the invention (13) Second, because the primary transmitter is fixed, there is no need to provide an elastic part for the feeder and the waveguide, which can simplify its structure and increase its reliability. Third, because the part driven to track the satellite is only a mirror, it can reduce the driving weight, can perform high-speed tracking, and make the driving mechanism small and lightweight.

第17頁Page 17

Claims (1)

六、申請專利範圍 405279 1. 一種與低地球軌道衛星通信用之天線,在使用低 地球軌道衛星之衛星通信系統中,使用於一地面站,其 中,係使用一種偏移開口天線,對該低地球軌道衛星作機 械式追縱。 2. 如申請專利範圍第1項之與低地球軌道衛星通信用 之天線,其中,該機械式追蹤係藉由固定該開口天線之 一 1次發射器,並於該低地球軌道衛星方向,基於一方位 角軸線與一仰角軸線,只旋轉該開口天線之一反射鏡而實 現。 3. 一種與低地球執道衛星通信用之天線,在使用低 地球軌道衛星之一衛星通信系統中,使用於一地面站,包 含: 一反射鏡,設有預先決定之旋轉拋物面偏移量; 一 AZ-EL支架,連接至該反射鏡,藉由基於一方位角 軸線與一仰角軸線而旋轉該反射鏡,用以追蹤該低地球軌 道衛星; _ 一 1次發射器,用以在該反射鏡上放射預先決定的波 束; 一饋電部,用以饋電至該1次發射器;以及 一發射器支持部,用以支持該1次發射器,俾能使該1 次發射器可獨立於該反射鏡而受固定。 4. 如申請專利範圍第3項之與低地球軌道衛星通信用 之天線,其中,該偏移量之值係以使天線增益在一預先決 定的最小運作仰角時為最大的條件而設定。6. Application patent scope 405279 1. An antenna for communication with low earth orbit satellites. In a satellite communication system using low earth orbit satellites, it is used in a ground station. An offset open antenna Earth orbiting satellites are used for mechanical tracking. 2. For example, the antenna for communication with low earth orbit satellites in the scope of patent application, wherein the mechanical tracking is by fixing a primary transmitter of the open antenna, and in the direction of the low earth orbit satellite, based on An azimuth axis and an elevation axis are achieved by rotating only a mirror of the open antenna. 3. An antenna for communication with a low earth orbiting satellite, which is used in a ground station in a satellite communication system using a low earth orbit satellite, and includes: a reflector with a predetermined parabolic offset of rotation; An AZ-EL bracket is connected to the mirror, and is used to track the low-Earth orbit satellite by rotating the mirror based on an azimuth axis and an elevation axis; A predetermined beam is radiated on the mirror; a power feeding section for feeding the primary transmitter; and a transmitter support section for supporting the primary transmitter, so that the primary transmitter can be independent It is fixed to the mirror. 4. For the antenna for communication with low earth orbit satellites in item 3 of the scope of patent application, the value of the offset is set such that the antenna gain is maximized at a predetermined minimum operating elevation angle. 第18頁 _^05279_ 六、申請專利範圍 5. 如申請專利範圍第4項之與低地球軌道衛星通信用 之天線,其中: 該預先決定的最小運作仰角,係為在該低地球軌道衛 星之仰角方向之追蹤界限;以及 該預先決定的最小運作仰角,係基於配置於與該低地 球執道衛星之高度相同的軌道面上之衛星數量而決定。 6. 如申請專利範圍第3項之與低地球軌道衛星通信用 之天線,其中,該天線係為一種偏移拋物面天線。 7. 如申請專利範圍第3項之與低地球軌道衛星通信用 之天線,其中,該天線係為一種偏移卡塞格倫天線。 8. 如申請專利範圍第3項之與低地球軌道衛星通信用> 之天線,其中,該天線係為一種偏移格雷戈里 (Gregorian)天線。 9. 如申請專利範圍第3項之與低地球軌道衛星通信用 之天線,.其中: - 該方位角軸線係繞著一條連接該反射鏡中心與該1次 發射器中心之直線旋轉;且 ' 該仰角軸線與從一旋轉抛物面軸和一拋物面之交點 (中心)通過偏移反射鏡之旋轉拋物面内的一放射狀直線在 旋轉拋物面内直交的線相接觸。 10. 如申請專利範圍第3項之與低地球軌道衛星通信 用之天線,其中,一個追蹤該低地球軌道衛星的範圍,在 仰角方向係為從該最小運作仰角到天頂,而在方位角方向 係為從0度到3 6 0度。P.18 _ ^ 05279_ VI. Patent application scope 5. For the antenna for communication with low earth orbit satellites in item 4 of the patent application scope, where: the predetermined minimum operating elevation angle is at the low earth orbit satellite The tracking limit in the elevation direction; and the predetermined minimum operating elevation angle is determined based on the number of satellites placed on the same orbital plane as the low-Earth orbiting satellite. 6. For the antenna for communication with low earth orbit satellites in the scope of patent application No. 3, wherein the antenna is an offset parabolic antenna. 7. The antenna for communication with low earth orbit satellites, such as in claim 3, wherein the antenna is an offset Cassegrain antenna. 8. The antenna for communication with low earth orbit satellites according to item 3 of the patent application, wherein the antenna is an offset Gregorian antenna. 9. For the antenna for communication with low earth orbit satellites in the scope of patent application No. 3, wherein:-the azimuth axis is rotated about a straight line connecting the center of the mirror and the center of the primary transmitter; and ' The elevation axis is in contact with a line orthogonal to the rotating parabola from a point of intersection (center) of the rotating paraboloid axis and a paraboloid through a radial straight line in the rotating paraboloid of the offset mirror. 10. For the antenna for communication with low earth orbit satellites in the scope of patent application item 3, wherein a range tracking the low earth orbit satellite is in the elevation direction from the minimum operating elevation to the zenith, and in the azimuth direction The range is from 0 degrees to 360 degrees. 第19頁 六、申請專·in 11. 如申請專利範圍第3項之與低地球軌道衛星通信 用之天線,其中,該與低地球軌道衛星通信用之天線,係 於一微波帶或一毫米波帶傳送/接收一種高頻信號。Page 19 6. Application for special application in 11. If the antenna used for communication with low earth orbit satellites in item 3 of the patent application scope, wherein the antenna for communication with low earth orbit satellites is in a microwave band or a millimeter A band transmits / receives a high-frequency signal. 第20頁Page 20
TW87120120A 1997-12-04 1998-12-02 Antenna for communicating with low earth orbit satellite TW405279B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09334060A JP3109584B2 (en) 1997-12-04 1997-12-04 Antenna device for low orbit satellite communication

Publications (1)

Publication Number Publication Date
TW405279B true TW405279B (en) 2000-09-11

Family

ID=18273065

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87120120A TW405279B (en) 1997-12-04 1998-12-02 Antenna for communicating with low earth orbit satellite

Country Status (5)

Country Link
EP (1) EP0921590A3 (en)
JP (1) JP3109584B2 (en)
CN (1) CN1219004A (en)
AU (1) AU9520798A (en)
TW (1) TW405279B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071538A1 (en) * 2001-03-02 2002-09-12 Mitsubishi Denki Kabushiki Kaisha Reflector antenna
AU2002354448A1 (en) * 2001-12-10 2003-06-23 Digital Wave Co., Ltd. Insect tactile dipole antenna, directional antenna, and area control antenna
US6747604B2 (en) * 2002-10-08 2004-06-08 Ems Technologies Canada, Inc. Steerable offset antenna with fixed feed source
JP2006261994A (en) * 2005-03-16 2006-09-28 Toshiba Corp Antenna device
CA2680849A1 (en) * 2007-03-16 2008-09-25 Mobile Sat Ltd. A vehicle mounted antenna and methods for transmitting and/or receiving signals
JP5004846B2 (en) * 2008-03-26 2012-08-22 三菱電機株式会社 Beam scanning reflector antenna
JP5961087B2 (en) * 2011-10-17 2016-08-02 マクドナルド,デットワイラー アンド アソシエイツ コーポレーション Wide scan operability without keyhole antenna
EP3109937A4 (en) 2014-02-17 2017-10-18 Nec Corporation Antenna device and antenna device control method
CN111900551A (en) * 2020-06-17 2020-11-06 深圳捷豹电波科技有限公司 Millimeter wave parabolic antenna, control method thereof and computer readable storage medium
CN116404419A (en) * 2023-06-07 2023-07-07 武汉能钠智能装备技术股份有限公司四川省成都市分公司 Satellite signal broadband outdoor acquisition method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1603657A (en) * 1977-09-13 1981-11-25 Marconi Co Ltd Systems for the transmission and/or reception of electromagnetic waves
US4862185A (en) * 1988-04-05 1989-08-29 The Boeing Company Variable wide angle conical scanning antenna
WO1990006004A1 (en) * 1988-11-14 1990-05-31 Crooks Michell Peacock Stewart (Qld) Pty. Limited Offset parabolic reflector antenna
JPH02134001A (en) * 1988-11-15 1990-05-23 Kokusai Denshin Denwa Co Ltd <Kdd> Offset reflection mirror antenna

Also Published As

Publication number Publication date
EP0921590A2 (en) 1999-06-09
EP0921590A3 (en) 1999-09-15
JP3109584B2 (en) 2000-11-20
JPH11168322A (en) 1999-06-22
CN1219004A (en) 1999-06-09
AU9520798A (en) 1999-06-24

Similar Documents

Publication Publication Date Title
US6043788A (en) Low earth orbit earth station antenna
US6590544B1 (en) Dielectric lens assembly for a feed antenna
JP3313636B2 (en) Antenna device for low-orbit satellite communication
AU736065B2 (en) A terminal and antenna system for constellation of non- geostationary satellites
US6204822B1 (en) Multibeam satellite communication antenna
TW405279B (en) Antenna for communicating with low earth orbit satellite
AU746232B2 (en) Multilayer focusing spherical lens
WO1998015033A1 (en) Dielectric lens assembly for a feed antenna
US6243047B1 (en) Single mirror dual axis beam waveguide antenna system
US7102585B2 (en) Integrated feed horn device
CN115051143B (en) Scanning method based on high-gain planar transmitting array antenna system
JPH03190305A (en) Mobile station antenna system
JP2000082918A (en) Multi-beam antenna
WO2023235543A1 (en) Multi-feed tracking antenna with stationary reflector
JPS6012804B2 (en) Earth station antenna device
JP2001144529A (en) Method for directing antenna beam to non-geostationary satellite
Densmore et al. K/K/sub a/-band antenna system for mobile satellite service
JPS6251809A (en) Satellite reception antenna system
CN1224255A (en) Antenna for communicating with low earth orbit satellite
JPH08340291A (en) Mobile satellite communication system
JP2002111373A (en) Sub-reflector mirror offset paraboloidal antenna
JPH03123101A (en) Antenna equipment on board satellite
JPH01277007A (en) Antenna system
JPH04250705A (en) Multi-beam antenna
AU7242700A (en) Multibeam satellite communication antenna

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees