EP3075032B1 - Compact antenna structure for satellite telecommunications - Google Patents

Compact antenna structure for satellite telecommunications Download PDF

Info

Publication number
EP3075032B1
EP3075032B1 EP14805281.4A EP14805281A EP3075032B1 EP 3075032 B1 EP3075032 B1 EP 3075032B1 EP 14805281 A EP14805281 A EP 14805281A EP 3075032 B1 EP3075032 B1 EP 3075032B1
Authority
EP
European Patent Office
Prior art keywords
antenna structure
elementary
antenna
diameter
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14805281.4A
Other languages
German (de)
French (fr)
Other versions
EP3075032A2 (en
Inventor
Friedman Tchoffo Talom
Dominique Jousse
Sébastien Benoît Charles POTTIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3075032A2 publication Critical patent/EP3075032A2/en
Application granted granted Critical
Publication of EP3075032B1 publication Critical patent/EP3075032B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to an antenna structure for telecommunications, a platform comprising the antenna structure and a method for satellite communication between two stations using the antenna structure.
  • obtaining good quality communication involves specific performances for the electromagnetic waves produced by the antenna structure used in the communication in terms of gain and level of the secondary lobes (ratio between the intensity of the secondary lobes and the intensity of the main lobe).
  • an antenna structure of the parabolic type comprising a source producing electromagnetic waves and a parabola arranged to focus the electromagnetic waves produced by the source.
  • the source is positioned at a focal point of the dish.
  • the parabola In order to have the best performance with regard to the criteria mentioned above in terms of gain and level of the secondary lobes, the parabola must have a diameter of at least 40 centimeters to avoid significant masking of the emitting source.
  • the antenna structure may have an awkward bulk in certain applications involving in particular the installation of the antenna structure on an aerial platform, for example, on a helicopter.
  • the use of an antenna structure with electronic scanning may involve the use of an additional polarizer, which may slightly degrade the gain of the radiating structure comprising the antenna structure and the polarizer.
  • at least one motorization is essential.
  • the invention proposes an antenna structure for telecommunications, in particular by satellite, according to the claims.
  • An antenna structure 10 for telecommunications, in particular by satellite, is represented on the figure 1 .
  • the antenna structure 10 comprises an elementary antenna 12, a transmission-reception surface 14 and a radome 16.
  • the elementary antenna 12 has a helical shape.
  • the elementary antenna 12 comprises an emissive part consisting of a metal wire describing a spiral which winds around an axis. In this case, this axis is the normal to the transmission-reception surface 14.
  • the projection of the spiral on the transmission-reception surface 14 is a circle whose diameter is denoted D. In a manner known per se, the diameter of the projection of the spiral, the number of turns of the spiral, the spacing between these turns make it possible to determine the frequency or frequencies that the elementary antenna 12 is capable of transmitting or receiving.
  • the elementary antenna 12 can be sized to transmit and/or receive an electromagnetic wave having a frequency greater than 4 GHz for applications in the context of satellite communications. This means that such an elementary antenna 12 has an extension along the direction Z less than 20 millimeters (mm) and a diameter less than 30 mm.
  • the elementary antenna 12 is sized to transmit and/or receive an electromagnetic wave having a frequency comprised between 4 GHz and 50 GHz.
  • This means that such an elementary antenna 12 has an extension along the Z direction of between 1.5 mm and 20 mm and a diameter of between 2 mm and 30 mm.
  • the elementary antenna 12 is sized to transmit and/or receive an electromagnetic wave having a frequency comprised in a spectrum band chosen from the X band and the Ku band.
  • an electromagnetic wave in the field of satellite communications belongs to the X band when the wave has a frequency between 7.2 GHz and 8.4 GHz.
  • an elementary antenna 12 is capable of transmitting and/or receiving an electromagnetic wave belonging to the X band if the elementary antenna 12 has an extension along the Z direction comprised between 9 mm and 10 mm and a diameter comprised between 14 mm and 15mm.
  • an electromagnetic wave in the field of satellite communications belongs to the Ku band when the wave has a frequency between 10.7 GHz and 14.25 GHz.
  • an elementary antenna 12 is capable of transmitting and/or receiving an electromagnetic wave belonging to the Ku band if the elementary antenna 12 has an extension along the direction Z comprised between 6 mm and 8 mm and a diameter comprised between 10 mm and 12mm.
  • the elementary antenna 12 extends between a first end 18 fed by a coaxial port present on the transmission-reception surface 14 and a second end 20 remote from the transmission-reception surface 14.
  • the first end 18 is adjacent to the transmission-reception surface 14.
  • the elementary antenna 12 thus protrudes from the transmission-reception surface 14.
  • the transmission-reception surface 14 is circular in shape.
  • the transmission-reception surface 14 has an area A less than or equal to 100* ⁇ 2 where "*" designates the mathematical operation of multiplication, and ⁇ designates the average wavelength of the different wavelengths of the waves that the elementary antennas 12 are sized to transmit and/or receive.
  • the area A is less than 7600 mm 2 .
  • the antenna structure 10 further comprises a cylindrical casing 22 whose base surface is the transmission-reception surface 22.
  • the housing 22 delimits a cavity for supplying the elementary antenna 12 with electromagnetic waves arranged with coaxial access orifices present on the transmission-reception surface 14.
  • the housing 22 includes an inlet 24 for injecting an electromagnetic wave, the electric field of the electromagnetic wave then propagating in the radial cavity.
  • the elementary antenna 12 is provided with an electric field insertion element. This means that the elementary antenna 12 does not have a magnetic field insertion loop.
  • the electric field insertion element is a metal rod which may or may not be in contact with the housing 22.
  • a dielectric isolation device is inserted between the rod and the casing 22 which makes it possible to maintain the straightness of the rod and incidentally of the elementary antenna 12.
  • this dielectric device has dielectric characteristics of less than 4 in order to guarantee optimum performance of the antenna structure.
  • the radome 16 has a cylindrical shape, the base of which is the emission-reception surface 14.
  • the radome 16 has a diameter of less than 50 millimeters (mm).
  • the radome 16 has an extension, along the Z direction, of less than 14 mm and is positioned at a distance greater than 1 mm from the elementary antennas 12.
  • the antenna structure 10 can be made of metallized plastic, in particular the case 22 and the elementary antenna 22 are made of such a material to limit its overall weight. But ideally, the material should be a conductive metal.
  • the antenna structure 10 is powered by an electromagnetic wave.
  • the elementary antenna 12 picks up the electric field resulting from this electromagnetic wave to emit a wave in the desired frequency band.
  • the figure 4 shows that over the whole band of interest (in this case it is the X band) the adaptation is less than -20 dB. This testifies to the good adaptation in terms of antenna impedance for operation in the X band.
  • the antenna structure 10 has a gain of the order of 13 dB.
  • the helical elementary source has a wide band, i.e. a band greater than 25% around the central operating frequency, with circular polarization and very good radiation efficiency (in particular the axial ratio for such a small antenna is better than in the state of the art and apodization of the emitted wave facilitated).
  • the antenna structure 10 has better performance than a parabola of reduced size, better compactness and reduced weight (this effect being accentuated in the other embodiments presented below).
  • This reduced weight makes it possible to reduce the constraints in particular in the case where the antenna structure 10 is accompanied by a mechanical positioner.
  • the antenna structure 10 is capable of emitting a circular polarized wave without using an additional polarizer.
  • the figures 6 and 7 illustrate a second embodiment of the antenna structure 10 according to the invention.
  • the elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.
  • the antenna structure 10 comprises a plurality of elementary antennas 12.
  • Each elementary antenna 12 of figures 6 and 7 is identical to the elementary antenna 12 described with reference to the figure 1 .
  • some antennas are different.
  • the antenna structure 10 comprises at least two sets of a plurality of elementary antennas 12. According to the example of figure 6 , the antenna structure 10 comprises four sets 30, 32, 34, 36 of plurality of elementary antennas 12.
  • the elementary antennas 12 of each set 30, 32, 34, 36 are arranged along a circle of radius specific to this set 30, 32, 34, 36, all said circles 30, 32, 34, 36 being concentric.
  • the first assembly 30 comprises six elementary antennae 12 arranged along a first circle having a first radius R1; the second set 32 comprises fourteen elementary antennas 12 arranged along a second circle having a second radius R2; the third set 34 comprises twenty elementary antennae 12 arranged along the third circle having a third radius R3 and the fourth set 36 comprises twenty-six elementary antennae 12 arranged along the fourth circle having a fourth radius R4.
  • the four rays R1, R2, R3, R4 are such that the first ray R1 is less than the second ray R2, the second ray R2 is less than the third ray R3, the third ray R3 is less than the fourth ray R4.
  • the elementary antennas 12 are provided with electric field insertion elements.
  • the electric field insertion elements are in the form of metal rods. This means that the elementary antennas 12 do not have a magnetic field insertion loop.
  • the antenna structure 10 further comprises a cylindrical casing 22 whose base surface is the transmission-reception surface 22.
  • the rods supplying the elementary antennas 12 may or may not be in contact with the casing 22. In the event that there is no contact, a dielectric isolation device is inserted between the rod and the casing 22 which makes it possible to maintain the straightness of the rod and incidentally of the elementary antenna 12.
  • the box 22 delimits a cavity for supplying the elementary antennas 12 with electromagnetic waves arranged in contact with the transmission-reception surface 14.
  • the radome 16 has a cylindrical shape, the base of which is the emission-reception surface 14.
  • the radome 16 has a diameter less than 350 mm and a height less than 30 mm.
  • the operation of the antenna structure 10 according to the second embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.
  • the antenna structure 10 has a gain of the order of 28 dB.
  • the production of the antenna structure 10 is simplified since the power supply cavity is not very complex.
  • the antenna structure 10 has a wide band, greater than 10% around the central operating frequency and very good radiation efficiency (better than 70%) with low losses.
  • the optimization of the antenna structure 10 to improve the reduction of secondary lobes is also easy to implement since these depend solely on the position and orientation of the elementary antennas 12.
  • the size of the antenna structure 10 is reduced, in particular in the Z direction. This results in better compactness of the antenna structure 10.
  • the gain of the antenna structure 10 is easily controllable since the increase in the number of elementary antennas 12 leads to an increase in the gain of the antenna structure 10.
  • the antenna structure 10 has a lower mass than the parabola of a parabolic antenna structure 10 whose source is offset, in particular if the material is metallized plastic.
  • the antenna structure 10 is made of metallized plastic, this can lead to reductions in the manufacturing cost of the antenna structure 10.
  • the figures 9 and 10 illustrate a third embodiment of the antenna structure 10.
  • the elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.
  • the antenna structure 10 instead of a single elementary antenna 12, the antenna structure 10 comprises a plurality of elementary antennas 12.
  • Each elementary antenna 12 of the figure 9 is identical to the elementary antenna 12 described with reference to the figure 1 .
  • some antennas are different.
  • the antenna structure 10 comprises at least two sets of a plurality of elementary antennas 12. According to the example of figure 9 , the antenna structure 10 comprises twelve sets 50 of plurality of elementary antennas 12.
  • each set 50 comprises twelve elementary antennas 12 fed in propagating mode in a linear guide.
  • the elementary antennas 12 of each set 50 are along a specific line of this set 50.
  • Each eigenline is parallel to the other eigenlines.
  • the antenna structure 10 comprises a plurality of elementary sources 52.
  • the number of elementary sources 52 is identical to the number of sets 50 that the antenna structure 10 comprises. In this case, the antenna structure 10 comprises twelve elementary sources 52.
  • Each antenna elementary 12 is powered by a respective power source 52.
  • the radome 16 has a parallelepiped shape, the base of which is the transmission-reception surface 14.
  • the radome 16 has a length of less than 300 mm and a width of less than 200 mm.
  • the operation of the antenna structure 10 according to the third embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.
  • the losses are reduced, in particular in the context of use of the scanning antenna type.
  • the production of the antenna structure 10 is also simplified.
  • the antenna structure 10 has a reduced size compared to the antenna structures of the state of the technique for identical performance in terms of radiation.
  • the antenna structure 10 is capable of emitting a circular polarized emission without using an additional polarizer. This improved compactness is accompanied by a gain in lightness and a gain in radiation performance (wideband) compared to a small dish (diameter less than 40 cm for operation in X band). Furthermore, the antenna structure 10 is easy to make and can be manufactured at low cost.
  • the antenna structure 10 proposed can be used as a substitute for a small-sized parabolic antenna and/or a scanning antenna for telecommunications applications between two stations, in particular by satellite. It should be noted that in this case, the radiation pattern of the antenna structure 10 thus produced complies with the templates specified for use with certain satellites.
  • Such an antenna structure 10 can advantageously be used in a platform, in particular an aerial platform of the helicopter type.
  • the compactness of the antenna structure 10 makes it possible to reduce the constraints on the installation of equipment in the platform.
  • the figure 12 illustrates a fourth embodiment of the antenna structure 10 according to the invention.
  • the elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.
  • the elementary antenna 12 includes an electric field insertion element 100.
  • the box 22 has a first inner wall 102 and a second inner wall 104 which delimit in the direction Z the electromagnetic wave supply cavity.
  • At least one coaxial access port 106 is made in the transmit-receive surface 14.
  • Radome 16 includes a third interior wall 108 and a positioning cavity 110. Radome 16 is configured to be attached to housing 22.
  • a dielectric isolation device 112 is inserted between the rod and the casing 22.
  • the dielectric device 112 is provided to maintain the straightness of the elementary antenna 12.
  • the dielectric isolation device 112 also makes it possible to prevent contact between the elementary antenna 12 and box 22.
  • the electric field insertion member 100 is a rod. Furthermore, the rod 100 is made of metal.
  • the rod 100 is bent so that the rod 100 comprises two rectilinear parts 114, 116 connected by an elbow 118.
  • the first interior wall 102 is parallel to the transmission-reception surface 14. On the figure 12 , the first inner wall 102 is in the form of a disc. The first lower wall 102 is distant, in the direction Z, by a first distance H1 from the transmission-reception surface 14.
  • the second interior wall 104 is parallel to the emission-reception surface 14.
  • the second interior wall 104 is carried by the same part as the emission-reception surface 14.
  • the second inner wall 104 is in the form of a disc.
  • the coaxial access orifice 106 is delimited in the direction Z by the transmission-reception surface 14 and the first inner surface 100.
  • the coaxial access orifice 106 is cylindrical with a circular base, axis Z.
  • L Cylindrical access port 106 has a first diameter D1.
  • the third interior wall 108 faces the transmission-reception surface 14. In the direction Z, the third interior wall 108 is a second distance H2 from the second interior wall 104.
  • Positioning cavity 110 is configured to receive dielectric device 112 in an inserted position.
  • the positioning cavity 110 is cylindrical with a circular base.
  • the positioning cavity 110 has a second diameter D2.
  • the positioning cavity 110 has a first depth P1.
  • the dielectric device 112 comprises a first end 120, a second end 122, a side surface 124 and a cavity 126 for receiving the elementary antenna 12.
  • the first rectilinear part 114 extends along the Z direction while the second rectilinear part 116 extends along the Y direction.
  • the first rectilinear part 114 has a first length L1 along the direction Z.
  • the first rectilinear part 114 is cylindrical, of axis Z
  • the first rectilinear part 114 is cylindrical with a circular base.
  • the first rectilinear part 114 has a third diameter D3.
  • the second rectilinear part 116 has a second length L2 along the direction X.
  • the second rectilinear part 116 is cylindrical with axis X.
  • the second rectilinear part 116 has a fourth diameter D4.
  • the fourth diameter D4 is equal to the third diameter D3.
  • the first length L1 is greater than the second length L2. According to the example of figure 12 , the first length L1 is greater than twice the second length L2.
  • the first end 120 is adapted to be inserted into the positioning cavity 110.
  • the first end 120 is flat.
  • the first end 120 is perpendicular to the direction Z.
  • the first end 120 is cylindrical with a circular base, and has a fifth diameter D5.
  • the fifth diameter D5 is less than or equal to the second diameter D2.
  • Second end 122 is parallel to first end 120. Second end 122 is planar. The second end 122 is cylindrical with a circular base, and has a sixth diameter D6. The sixth diameter D6 is greater than or equal to the fifth diameter D5. The sixth diameter D6 is less than or equal to the first diameter D1.
  • the side surface 124 has a symmetry of revolution around the Z axis.
  • the side surface 124 has a first end part 128, a second end part 130 and a middle part 132.
  • the receiving cavity 126 is configured to receive the rod 100.
  • the receiving cavity 126 is able to hold the rod 100 in position relative to the dielectric device 112.
  • the receiving cavity 126 is formed by the union of an axial cavity 134 and a side cavity 136.
  • the first end part 128 is located between the middle part 132 of the lateral surface 124 and the first end 120.
  • the first end part 128 comprises a first shoulder 137, a first portion 138 delimited in the direction Z by the shoulder 137 and the first end 120, and a second portion 139 delimited in the direction Z by the shoulder 137 and the middle part 132.
  • the first shoulder 137 is located at a third distance H3 from the first end 120.
  • the third distance H3 is less than or equal to the depth P1.
  • the first shoulder 137 is located at a fourth distance H4 from the second end 122.
  • the fourth distance H4 is equal to the second distance H2.
  • the first portion 138 is complementary to the positioning cavity 110.
  • the first portion 138 is cylindrical with an axis Z.
  • the first portion 138 is cylindrical with a circular base.
  • the diameter of the first portion 138 is equal to the fifth diameter D5.
  • the first portion 138 is capable of being tightly mounted in the positioning cavity 110.
  • the fifth diameter D5 is equal to the second diameter D2.
  • the second portion 139 is cylindrical with an axis Z.
  • the second portion 139 is cylindrical with a circular base.
  • the diameter of the second portion 139 is equal to the sixth diameter D6.
  • the second end part 130 is located between the middle part 132 of the side surface 124 and the second end 122.
  • the second end part 120 is cylindrical with axis Z.
  • the second end part 130 is cylindrical with circular base.
  • the diameter of the second end part 130 is equal to the sixth diameter D6.
  • the middle part 132 is located between the first end part 128 and the second end part 130.
  • the middle part 132 is delimited in the direction Z by a second shoulder 140 and a third shoulder 142.
  • the middle part 132 comprises, in addition, a crown 144.
  • the second shoulder 140 is included, in the direction Z, between the ring 144 and the first end 120.
  • the third shoulder 142 is included, in the direction Z, between the ring 144 and the second end 122. In the direction Z, the third shoulder 142 is located at a fourth distance H4 from the second end 122. On the figure 12 , the fourth distance H4 is equal to the first distance H1.
  • the axial cavity 134 extends between the second end 122 and the first shoulder 142.
  • the axial cavity 134 is capable of receiving the first rectilinear part 114 by a translation in the direction Y.
  • the axial cavity 134 is parallelepipedal.
  • the three pairs of sides of the axial cavity 134 are respectively perpendicular to the directions X, Y and Z.
  • the axial cavity 134 has a first width l1 greater than or equal to the third diameter D3.
  • the first width l1 is equal to the third diameter D3.
  • the axial cavity 134 is configured such that, when the first rectilinear part 114 is inserted into the axial cavity 134, the axis of revolution of the first rectilinear part 114 coincides with the axis of revolution of the lateral surface 124.
  • the lateral cavity 136 is between the second shoulder 142 and the third shoulder 144.
  • the lateral cavity 136 is capable of receiving the second rectilinear part 116 by a translation in the direction Y.
  • the lateral cavity 136 is parallelepipedic.
  • the three pairs of sides of the axial cavity 134 are respectively perpendicular to the directions X, Y and Z.
  • the lateral cavity 136 has a second width l2 greater than or equal to the fourth diameter D4.
  • the second width l2 is equal to the fourth diameter D4.
  • Crown 144 is cylindrical with a circular base, axis Z. Crown 144 has a seventh diameter D7.
  • the seventh diameter D7 is greater than or equal to the sixth diameter D6.
  • the seventh diameter D7 is less than the first diameter D1.
  • Crown 144 is delimited in direction Z by second shoulder 142 and third shoulder 144.
  • crown 144 In direction Z, crown 144 has a third width L3.
  • the third width L3 is greater than the fourth diameter D4.
  • the operation of the antenna structure 10 according to the fourth embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.
  • the straightness of the dielectric device 112 is fixed by the construction of the radome 16 and of the positioning cavity 110. No specific tool is therefore employed to fix the straightness of the dielectric device 112.
  • the dielectric device 112 is fixed relative to the radome 16, in the absence of a force exerted by an operator. This means that, when the dielectric device 112 is in its inserted position, the positioning cavity 110 exerts on the dielectric device a clamping force greater than the sum of the weights of the dielectric device 112 and of the elementary antenna 12.
  • the radome 16 it is possible to pre-assemble a plurality of elementary antennas 12 and dielectric devices 112 to the radome 16 before fixing the radome 16 to the casing 22.
  • Each of the elementary antennas 12 can be easily removed or replaced.
  • the assembly of the antenna structure 10 is thus simplified.
  • the elementary antenna 12 is inserted into the dielectric device 112.
  • the dielectric device 112 is then inserted into the positioning cavity 110, then the radome 16 is fixed to the casing 22.
  • the dielectric device 112 then extends through the coaxial access port 106 without being in contact with the transceiver surface 14.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne une structure antennaire pour télécommunications, une plateforme comprenant la structure antennaire et un procédé de communication par satellites entre deux stations utilisant la structure antennaire.The present invention relates to an antenna structure for telecommunications, a platform comprising the antenna structure and a method for satellite communication between two stations using the antenna structure.

Dans le domaine des communications satellitaires haut débit (c'est-à-dire ne transmettant pas uniquement de la voix), l'obtention d'une communication de bonne qualité implique des performances particulières pour les ondes électromagnétiques produites par la structure antennaire utilisée dans la communication en termes de gain et de niveau des lobes secondaires (rapport entre l'intensité des lobes secondaires et l'intensité du lobe principal).In the field of high-speed satellite communications (i.e. not transmitting only voice), obtaining good quality communication involves specific performances for the electromagnetic waves produced by the antenna structure used in the communication in terms of gain and level of the secondary lobes (ratio between the intensity of the secondary lobes and the intensity of the main lobe).

Pour cela, il est connu d'utiliser, par exemple, une structure antennaire de type parabolique comprenant une source produisant des ondes électromagnétiques et une parabole agencée pour focaliser les ondes électromagnétiques produites par la source. La source est positionnée à un point focal de la parabole.For this, it is known to use, for example, an antenna structure of the parabolic type comprising a source producing electromagnetic waves and a parabola arranged to focus the electromagnetic waves produced by the source. The source is positioned at a focal point of the dish.

Afin d'avoir les meilleures performances au regard des critères mentionnés précédemment en termes de gain et de niveau des lobes secondaires, la parabole doit présenter un diamètre d'au moins 40 centimètres pour éviter un masquage important de la source émettrice.In order to have the best performance with regard to the criteria mentioned above in terms of gain and level of the secondary lobes, the parabola must have a diameter of at least 40 centimeters to avoid significant masking of the emitting source.

Toutefois, dans le cas précédent, pour pointer le faisceau rayonné dans une direction particulière, deux motorisations sont nécessaires. Aussi, la structure antennaire peut présenter un encombrement gênant dans certaines applications impliquant notamment l'implantation de la structure antennaire sur une plateforme aérienne, par exemple, sur un hélicoptère.However, in the previous case, to point the radiated beam in a particular direction, two motorizations are necessary. Also, the antenna structure may have an awkward bulk in certain applications involving in particular the installation of the antenna structure on an aerial platform, for example, on a helicopter.

Il est également connu d'utiliser une structure antennaire à balayage électronique par déphasage. Une telle structure antennaire implique d'utiliser des sources élémentaires le plus souvent sous la forme de patchs (notamment superposés) pour obtenir une bande passante relativement large. La vérification du critère en terme de gain pour la structure antennaire impose, en outre, de recourir à la mise en réseau d'un certain nombre de sources élémentaires.It is also known to use an antenna structure with electronic phase shift scanning. Such an antenna structure involves using elementary sources most often in the form of patches (notably superimposed) to obtain a relatively wide passband. Verification of the criterion in terms of gain for the antenna structure also requires resorting to the networking of a certain number of elementary sources.

Mais, cela entraîne une augmentation de l'encombrement global de la structure antennaire. De plus, dans le cas où l'émission d'une polarisation circulaire est souhaitée, l'emploi d'une structure antennaire à balayage électronique peut impliquer d'employer un polariseur additionnel, ce qui peut dégrader légèrement le gain de la structure rayonnante comprenant la structure antennaire et le polariseur. En outre, pour pointer le faisceau dans une direction particulière, au moins une motorisation est indispensable.However, this leads to an increase in the overall size of the antenna structure. Moreover, in the case where the emission of a circular polarization is desired, the use of an antenna structure with electronic scanning may involve the use of an additional polarizer, which may slightly degrade the gain of the radiating structure comprising the antenna structure and the polarizer. In addition, to point the beam in a particular direction, at least one motorization is essential.

En fonction de l'encombrement global de la structure antennaire, des contraintes fortes en terme de couple moteur sont nécessaires au niveau du dispositif de motorisation à utiliser.Depending on the overall size of the antenna structure, strong constraints in terms of motor torque are necessary at the level of the motorization device to be used.

Il est également connu des structures antennaires des documents suivants :

  • GB 2 227 369 A ,
  • JP H04 360306 A ,
  • JP H03 265306 A ,
  • EP 0 637 095 A1 ,
  • JP 2004/056280 A , et
  • US 2010/309089 A1 .
The antenna structures are also known from the following documents:
  • GB 2 227 369 A ,
  • JP H04 360306 A ,
  • JP H03 265306 A ,
  • EP 0 637 095 A1 ,
  • JP 2004/056280 A , and
  • US 2010/309089 A1 .

Il existe donc un besoin pour une structure antennaire pour télécommunications, en particulier satellitaires, présentant un encombrement réduit (c'est-à-dire un diamètre inférieur à 10 fois la longueur d'onde relative à la fréquence de fonctionnement) tout en permettant l'obtention d'une communication haut débit de bonne qualité, notamment en termes de gain et de réduction des lobes secondaires.There is therefore a need for an antenna structure for telecommunications, in particular satellite communications, having a reduced size (that is to say a diameter less than 10 times the wavelength relative to the operating frequency) while allowing the obtaining high-speed communication of good quality, particularly in terms of gain and reduction of secondary lobes.

A cet effet, l'invention propose une structure antennaire pour télécommunications, notamment par satellite, selon les revendications.To this end, the invention proposes an antenna structure for telecommunications, in particular by satellite, according to the claims.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, de modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui sont :

  • figures 1 à 3, des schémas d'une structure antennaire selon un premier mode de réalisation respectivement en vue de haut, en perspective et en vue de côté ;
  • figure 4, un graphique montrant l'évolution de l'adaptation de la structure antennaire du premier mode de réalisation en fonction de la fréquence (cas d'une structure adaptée par les bandes satellite en bande X) ;
  • figure 5, un diagramme de rayonnement en gain de la structure antennaire du premier mode de réalisation ;
  • figures 6 et 7, des schémas d'une structure antennaire selon un deuxième mode de réalisation en perspective et en vue de côté ;
  • figure 8, un diagramme de rayonnement en gain de la structure antennaire du deuxième mode de réalisation ;
  • figures 9 et 10, des schémas d'une structure antennaire selon un troisième mode de réalisation en perspective vue de haut et en perspective vue du bas, et
  • figure 11, un graphique montrant l'évolution du gain en fonction de l'angle d'émission considéré pour la structure antennaire du troisième mode de réalisation ;
  • Figures 12 et 13, des vues partielles en coupe selon un plan transversal de la structure antennaire de la figure 1, la structure antennaire étant munie d'un dispositif diélectrique d'isolation apte à maintenir la rectitude de l'antenne élémentaire et à assurer les performances de rayonnement optimales.
Other characteristics and advantages of the invention will appear on reading the following detailed description of embodiments of the invention, given by way of example only and with reference to the drawings which are:
  • figures 1 to 3 , diagrams of an antenna structure according to a first embodiment respectively in top view, in perspective and in side view;
  • figure 4 , a graph showing the evolution of the adaptation of the antenna structure of the first embodiment as a function of the frequency (case of a structure adapted by the satellite bands in X band);
  • figure 5 , a gain radiation pattern of the antenna structure of the first embodiment;
  • figures 6 and 7 , diagrams of an antenna structure according to a second embodiment in perspective and in side view;
  • figure 8 , a gain radiation pattern of the antenna structure of the second embodiment;
  • figures 9 and 10 , diagrams of an antenna structure according to a third embodiment in perspective view from above and in perspective view from below, and
  • figure 11 , a graph showing the evolution of the gain as a function of the emission angle considered for the antenna structure of the third embodiment;
  • Figure 12 and 13 , partial sectional views along a transverse plane of the antennal structure of the figure 1 , the antenna structure being provided with a dielectric isolation device able to maintain the straightness of the elementary antenna and to ensure optimum radiation performance.

Une structure antennaire 10 pour télécommunications, notamment par satellite, est représentée sur la figure 1.An antenna structure 10 for telecommunications, in particular by satellite, is represented on the figure 1 .

La structure antennaire 10 comprend une antenne élémentaire 12, une surface d'émission-réception 14 et un radôme 16.The antenna structure 10 comprises an elementary antenna 12, a transmission-reception surface 14 and a radome 16.

L'antenne élémentaire 12 présente une forme hélicoïdale. Ainsi, l'antenne élémentaire 12 comporte une partie émissive constituée d'un fil métallique décrivant une spirale qui s'enroule autour d'un axe. En l'occurrence, cet axe est la normale à la surface d'émission-réception 14. La projection de la spirale sur la surface d'émission-réception 14 est un cercle dont le diamètre est noté D. De manière connue en soi, le diamètre de la projection de la spirale, le nombre de spires de la spirale, l'espacement entre ces spires permettent de déterminer la ou les fréquences que l'antenne élémentaire 12 est propre à émettre ou à recevoir.The elementary antenna 12 has a helical shape. Thus, the elementary antenna 12 comprises an emissive part consisting of a metal wire describing a spiral which winds around an axis. In this case, this axis is the normal to the transmission-reception surface 14. The projection of the spiral on the transmission-reception surface 14 is a circle whose diameter is denoted D. In a manner known per se, the diameter of the projection of the spiral, the number of turns of the spiral, the spacing between these turns make it possible to determine the frequency or frequencies that the elementary antenna 12 is capable of transmitting or receiving.

L'antenne élémentaire 12 peut être dimensionnée pour émettre et/ou recevoir une onde électromagnétique présentant une fréquence supérieure à 4 GHz pour des applications dans le contexte des communications satellitaires Cela signifie qu'une telle antenne élémentaire 12 présente une extension le long de la direction Z inférieure à 20 millimètres (mm) et un diamètre inférieur à 30 mm.The elementary antenna 12 can be sized to transmit and/or receive an electromagnetic wave having a frequency greater than 4 GHz for applications in the context of satellite communications. This means that such an elementary antenna 12 has an extension along the direction Z less than 20 millimeters (mm) and a diameter less than 30 mm.

Avantageusement, l'antenne élémentaire 12 est dimensionnée pour émettre et/ou recevoir une onde électromagnétique présentant une fréquence comprise entre 4 GHz et 50 GHz. Cela signifie qu'une telle antenne élémentaire 12 présente une extension le long de la direction Z comprise entre 1,5 mm et 20 mm et un diamètre compris entre 2 mm et 30 mm.Advantageously, the elementary antenna 12 is sized to transmit and/or receive an electromagnetic wave having a frequency comprised between 4 GHz and 50 GHz. This means that such an elementary antenna 12 has an extension along the Z direction of between 1.5 mm and 20 mm and a diameter of between 2 mm and 30 mm.

De préférence, l'antenne élémentaire 12 est dimensionnée pour émettre et/ou recevoir une onde électromagnétique présentant une fréquence comprise dans une bande de spectre choisie parmi la bande X et la bande Ku.Preferably, the elementary antenna 12 is sized to transmit and/or receive an electromagnetic wave having a frequency comprised in a spectrum band chosen from the X band and the Ku band.

Par définition, une onde électromagnétique dans le domaine de communications satellitaires appartient à la bande X lorsque l'onde présente une fréquence comprise entre 7,2 GHz et 8,4 GHz. Ainsi, une antenne élémentaire 12 est propre à émettre et/ou recevoir une onde électromagnétique appartenant à la bande X si l'antenne élémentaire 12 présente une extension le long de la direction Z comprise entre 9 mm et 10 mm et un diamètre compris entre 14 mm et 15 mm.By definition, an electromagnetic wave in the field of satellite communications belongs to the X band when the wave has a frequency between 7.2 GHz and 8.4 GHz. Thus, an elementary antenna 12 is capable of transmitting and/or receiving an electromagnetic wave belonging to the X band if the elementary antenna 12 has an extension along the Z direction comprised between 9 mm and 10 mm and a diameter comprised between 14 mm and 15mm.

Par définition, une onde électromagnétique dans le domaine des communications satellitaires appartient à la bande Ku lorsque l'onde présente une fréquence comprise entre 10,7 GHz et 14,25 GHz. Ainsi, une antenne élémentaire 12 est propre à émettre et/ou recevoir une onde électromagnétique appartenant à la bande Ku si l'antenne élémentaire 12 présente une extension le long de la direction Z comprise entre 6 mm et 8 mm et un diamètre compris entre 10 mm et 12 mm.By definition, an electromagnetic wave in the field of satellite communications belongs to the Ku band when the wave has a frequency between 10.7 GHz and 14.25 GHz. Thus, an elementary antenna 12 is capable of transmitting and/or receiving an electromagnetic wave belonging to the Ku band if the elementary antenna 12 has an extension along the direction Z comprised between 6 mm and 8 mm and a diameter comprised between 10 mm and 12mm.

L'antenne élémentaire 12 s'étend entre une première extrémité 18 alimentée par un accès coaxial présent sur la surface d'émission-réception 14 et une deuxième extrémité 20 distante de la surface d'émission-réception 14. La première extrémité 18 est adjacente à la surface d'émission réception 14. L'antenne élémentaire 12 fait ainsi saillie depuis la surface d'émission-réception 14.The elementary antenna 12 extends between a first end 18 fed by a coaxial port present on the transmission-reception surface 14 and a second end 20 remote from the transmission-reception surface 14. The first end 18 is adjacent to the transmission-reception surface 14. The elementary antenna 12 thus protrudes from the transmission-reception surface 14.

La surface d'émission-réception 14 est de forme circulaire.The transmission-reception surface 14 is circular in shape.

La surface d'émission-réception 14 présente une aire A inférieure ou égale à 100*λ2 où « * » désigne l'opération mathématique de multiplication, et λ désigne la longueur d'onde moyenne des différentes longueurs d'ondes des ondes que les antennes élémentaires 12 sont dimensionnées à émettre et/ou recevoir.The transmission-reception surface 14 has an area A less than or equal to 100*λ 2 where "*" designates the mathematical operation of multiplication, and λ designates the average wavelength of the different wavelengths of the waves that the elementary antennas 12 are sized to transmit and/or receive.

Par exemple, selon l'exemple de la figure 1, l'aire A est inférieure à 7600 mm2.For example, following the example of the figure 1 , the area A is less than 7600 mm 2 .

La structure antennaire 10 comporte, en outre, un boîtier 22 cylindrique dont la surface de base est la surface d'émission-réception 22.The antenna structure 10 further comprises a cylindrical casing 22 whose base surface is the transmission-reception surface 22.

Le boîtier 22 délimite une cavité d'alimentation de l'antenne élémentaire 12 en ondes électromagnétiques agencée avec des orifices d'accès coaxiaux présents sur la surface d'émission-réception 14.The housing 22 delimits a cavity for supplying the elementary antenna 12 with electromagnetic waves arranged with coaxial access orifices present on the transmission-reception surface 14.

Le boîtier 22 comporte une entrée 24 d'injection d'une onde électromagnétique, le champ électrique de l'onde électromagnétique se propageant ensuite dans la cavité radiale.The housing 22 includes an inlet 24 for injecting an electromagnetic wave, the electric field of the electromagnetic wave then propagating in the radial cavity.

L'antenne élémentaire 12 est pourvue d'élément d'insertion du champ électrique. Cela signifie que l'antenne élémentaire 12 est dépourvue d'une boucle d'insertion du champ magnétique.The elementary antenna 12 is provided with an electric field insertion element. This means that the elementary antenna 12 does not have a magnetic field insertion loop.

Dans un exemple, l'élément d'insertion du champ électrique est une tige métallique pouvant être ou non en contact avec le boîtier 22. Dans le cas où il n'aurait pas de contact, un dispositif diélectrique d'isolation est inséré entre la tige et le boîtier 22 qui permet de maintenir la rectitude de la tige et incidemment de l'antenne élémentaire 12. Idéalement ce dispositif diélectrique présente des caractéristiques diélectriques inférieures à 4 afin de garantir des performances optimales de la structure antennaire.In one example, the electric field insertion element is a metal rod which may or may not be in contact with the housing 22. In the event that it does not have contact, a dielectric isolation device is inserted between the rod and the casing 22 which makes it possible to maintain the straightness of the rod and incidentally of the elementary antenna 12. Ideally this dielectric device has dielectric characteristics of less than 4 in order to guarantee optimum performance of the antenna structure.

Le radôme 16 présente une forme cylindrique dont la base est la surface d'émission-réception 14.The radome 16 has a cylindrical shape, the base of which is the emission-reception surface 14.

Le radôme 16 présente un diamètre inférieur à 50 millimètres (mm). Le radôme 16 présente une extension, le long de la direction Z, inférieure à 14 mm et est positionné à une distance supérieure à 1 mm des antennes élémentaires 12.The radome 16 has a diameter of less than 50 millimeters (mm). The radome 16 has an extension, along the Z direction, of less than 14 mm and is positioned at a distance greater than 1 mm from the elementary antennas 12.

La structure antennaire 10 peut être en plastique métallisé, notamment le boîtier 22 et l'antenne élémentaire 22 sont dans un tel matériau pour limiter son poids global. Mais idéalement, le matériau doit être un métal conducteur.The antenna structure 10 can be made of metallized plastic, in particular the case 22 and the elementary antenna 22 are made of such a material to limit its overall weight. But ideally, the material should be a conductive metal.

En fonctionnement, la structure antennaire 10 est alimentée par une onde électromagnétique. L'antenne élémentaire 12 capte le champ électrique issu de cette onde électromagnétique pour émettre une onde dans la bande de fréquence souhaitée.In operation, the antenna structure 10 is powered by an electromagnetic wave. The elementary antenna 12 picks up the electric field resulting from this electromagnetic wave to emit a wave in the desired frequency band.

La figure 4 montre que sur toute la bande d'intérêt (dans ce cas, il s'agit de la bande X) l'adaptation est inférieure à -20 dB. Cela témoigne de la bonne adaptation en terme d'impédance de l'antenne pour un fonctionnement dans la bande X.The figure 4 shows that over the whole band of interest (in this case it is the X band) the adaptation is less than -20 dB. This testifies to the good adaptation in terms of antenna impedance for operation in the X band.

Il apparaît sur la figure 5 que la structure antennaire 10 présente un gain de l'ordre de 13 dB.It appears on the figure 5 that the antenna structure 10 has a gain of the order of 13 dB.

La source élémentaire hélicoïdale présente une large bande, soit une bande supérieure à 25% autour de la fréquence centrale de fonctionnement, à polarisation circulaire et une très bonne efficacité de rayonnement (notamment le rapport axial pour une aussi petite antenne est meilleur que dans l'état de la technique et apodisation de l'onde émise facilitée).The helical elementary source has a wide band, i.e. a band greater than 25% around the central operating frequency, with circular polarization and very good radiation efficiency (in particular the axial ratio for such a small antenna is better than in the state of the art and apodization of the emitted wave facilitated).

Il en résulte que la structure antennaire 10 présente des meilleures performances qu'une parabole de taille réduite, une meilleure compacité et un poids réduit (cet effet étant accentué dans les autres modes de réalisation présentés ci-après). Ce poids réduit permet de réduire les contraintes notamment dans le cas où la structure antennaire 10 est accompagnée d'un positionneur mécanique. La structure antennaire 10 est capable d'émettre une onde polarisée circulaire sans utilisation d'un polariseur additionnel.As a result, the antenna structure 10 has better performance than a parabola of reduced size, better compactness and reduced weight (this effect being accentuated in the other embodiments presented below). This reduced weight makes it possible to reduce the constraints in particular in the case where the antenna structure 10 is accompanied by a mechanical positioner. The antenna structure 10 is capable of emitting a circular polarized wave without using an additional polarizer.

Les figures 6 et 7 illustrent un deuxième mode de réalisation de la structure antennaire 10 selon l'invention. Les éléments identiques au premier mode de réalisation de la figure 1 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.The figures 6 and 7 illustrate a second embodiment of the antenna structure 10 according to the invention. The elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.

Dans le deuxième mode de réalisation, au lieu d'une seule antenne élémentaire 12, la structure antennaire 10 comporte une pluralité d'antennes élémentaires 12.In the second embodiment, instead of a single elementary antenna 12, the antenna structure 10 comprises a plurality of elementary antennas 12.

Chaque antenne élémentaire 12 des figures 6 et 7 est identique à l'antenne élémentaire 12 décrite en référence à la figure 1.Each elementary antenna 12 of figures 6 and 7 is identical to the elementary antenna 12 described with reference to the figure 1 .

En variante, certaines antennes sont différentes.Alternatively, some antennas are different.

La structure antennaire 10 comprend au moins deux ensembles d'une pluralité d'antennes élémentaires 12. Selon l'exemple de la figure 6, la structure antennaire 10 comprend quatre ensembles 30, 32, 34, 36 de pluralité d'antennes élémentaires 12.The antenna structure 10 comprises at least two sets of a plurality of elementary antennas 12. According to the example of figure 6 , the antenna structure 10 comprises four sets 30, 32, 34, 36 of plurality of elementary antennas 12.

Les antennes élémentaires 12 de chaque ensemble 30, 32, 34, 36 sont agencées le long d'un cercle de rayon propre de cet ensemble 30, 32, 34, 36, tous lesdits cercles 30, 32, 34, 36 étant concentriques.The elementary antennas 12 of each set 30, 32, 34, 36 are arranged along a circle of radius specific to this set 30, 32, 34, 36, all said circles 30, 32, 34, 36 being concentric.

Ainsi, dans le cas de la figure 6, le premier ensemble 30 comprend six antennes élémentaires 12 agencées le long d'un premier cercle présentant un premier rayon R1 ; le deuxième ensemble 32 comprend quatorze antennes élémentaires 12 agencées le long d'un deuxième cercle présentant un deuxième rayon R2 ; le troisième ensemble 34 comprend vingt antennes élémentaires 12 agencées le long du troisième cercle présentant un troisième rayon R3 et le quatrième ensemble 36 comporte vingt-six antennes élémentaires 12 agencées le long du quatrième cercle présentant un quatrième rayon R4. Les quatre rayons R1, R2, R3, R4 sont tels que le premier rayon R1 est inférieur au deuxième rayon R2, que le deuxième rayon R2 est inférieur au troisième rayon R3, que le troisième rayon R3 est inférieur au quatrième rayon R4.Thus, in the case of the figure 6 , the first assembly 30 comprises six elementary antennae 12 arranged along a first circle having a first radius R1; the second set 32 comprises fourteen elementary antennas 12 arranged along a second circle having a second radius R2; the third set 34 comprises twenty elementary antennae 12 arranged along the third circle having a third radius R3 and the fourth set 36 comprises twenty-six elementary antennae 12 arranged along the fourth circle having a fourth radius R4. The four rays R1, R2, R3, R4 are such that the first ray R1 is less than the second ray R2, the second ray R2 is less than the third ray R3, the third ray R3 is less than the fourth ray R4.

Les antennes élémentaires 12 sont pourvues d'éléments d'insertion du champ électrique. Selon l'exemple représenté, les éléments d'insertion du champ électrique sont en forme de tiges métalliques. Cela signifie que les antennes élémentaires 12 sont dépourvues d'une boucle d'insertion du champ magnétique.The elementary antennas 12 are provided with electric field insertion elements. According to the example shown, the electric field insertion elements are in the form of metal rods. This means that the elementary antennas 12 do not have a magnetic field insertion loop.

La structure antennaire 10 comporte, en outre, un boîtier 22 cylindrique dont la surface de base est la surface d'émission-réception 22.The antenna structure 10 further comprises a cylindrical casing 22 whose base surface is the transmission-reception surface 22.

Les tiges alimentant les antennes élémentaires 12 peuvent être ou non en contact avec le boîtier 22. Dans le cas où il n'y aurait pas de contact, un dispositif diélectrique d'isolation est inséré entre la tige et le boîtier 22 qui permet de maintenir la rectitude de la tige et incidemment de l'antenne élémentaire 12.The rods supplying the elementary antennas 12 may or may not be in contact with the casing 22. In the event that there is no contact, a dielectric isolation device is inserted between the rod and the casing 22 which makes it possible to maintain the straightness of the rod and incidentally of the elementary antenna 12.

Le boîtier 22 délimite une cavité d'alimentation des antennes élémentaires 12 en ondes électromagnétiques agencée en contact avec la surface d'émission-réception 14.The box 22 delimits a cavity for supplying the elementary antennas 12 with electromagnetic waves arranged in contact with the transmission-reception surface 14.

Le radôme 16 présente une forme cylindrique dont la base est la surface d'émission-réception 14.The radome 16 has a cylindrical shape, the base of which is the emission-reception surface 14.

Le radôme 16 présente un diamètre inférieur à 350 mm et une hauteur inférieure à 30 mm.The radome 16 has a diameter less than 350 mm and a height less than 30 mm.

Le fonctionnement de la structure antennaire 10 selon le deuxième mode de réalisation est similaire au fonctionnement de la structure antennaire 10 selon le premier mode de réalisation.The operation of the antenna structure 10 according to the second embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.

Il apparaît sur la figure 8 que la structure antennaire 10 présente un gain de l'ordre de 28 dB.It appears on the figure 8 that the antenna structure 10 has a gain of the order of 28 dB.

Dans le cas du mode de réalisation avec une cavité radiale pour l'alimentation (surface d'émission-réception 14 en format circulaire), la réalisation de la structure antennaire 10 est simplifiée puisque la cavité d'alimentation est peu complexe.In the case of the embodiment with a radial cavity for the power supply (transmission-reception surface 14 in circular format), the production of the antenna structure 10 is simplified since the power supply cavity is not very complex.

En outre, la structure antennaire 10 présente une large bande, supérieure à 10 % autour de la fréquence centrale de fonctionnement et une très bonne efficacité de rayonnement (meilleure que 70 %) avec des pertes faibles.In addition, the antenna structure 10 has a wide band, greater than 10% around the central operating frequency and very good radiation efficiency (better than 70%) with low losses.

L'optimisation de la structure antennaire 10 pour améliorer la réduction des lobes secondaires est également facile à mettre en œuvre puisque ceux-ci dépendent uniquement de la position et de l'orientation des antennes élémentaires 12.The optimization of the antenna structure 10 to improve the reduction of secondary lobes is also easy to implement since these depend solely on the position and orientation of the elementary antennas 12.

La taille de la structure antennaire 10 est réduite, notamment dans la direction Z. Il en résulte une meilleure compacité de la structure antennaire 10.The size of the antenna structure 10 is reduced, in particular in the Z direction. This results in better compactness of the antenna structure 10.

Le gain de la structure antennaire 10 est aisément contrôlable puisque l'augmentation du nombre d'antennes élémentaires 12 entraîne une augmentation du gain de la structure antennaire 10.The gain of the antenna structure 10 is easily controllable since the increase in the number of elementary antennas 12 leads to an increase in the gain of the antenna structure 10.

La structure antennaire 10 présente une masse plus faible que la parabole d'une structure antennaire 10 parabolique dont la source est déportée, notamment si la matière est du plastique métallisé.The antenna structure 10 has a lower mass than the parabola of a parabolic antenna structure 10 whose source is offset, in particular if the material is metallized plastic.

De plus, dans le cas où la structure antennaire 10 est réalisée en plastique métallisé, ceci peut conduire à des baisses du coût de fabrication de la structure antennaire 10.Moreover, in the case where the antenna structure 10 is made of metallized plastic, this can lead to reductions in the manufacturing cost of the antenna structure 10.

Les figures 9 et 10 illustrent un troisième mode de réalisation de la structure antennaire 10. Les éléments identiques au premier mode de réalisation de la figure 1 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.The figures 9 and 10 illustrate a third embodiment of the antenna structure 10. The elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.

Dans le troisième mode de réalisation, au lieu d'une seule antenne élémentaire 12, la structure antennaire 10 comporte une pluralité d'antennes élémentaires 12.In the third embodiment, instead of a single elementary antenna 12, the antenna structure 10 comprises a plurality of elementary antennas 12.

Chaque antenne élémentaire 12 de la figure 9 est identique à l'antenne élémentaire 12 décrite en référence à la figure 1.Each elementary antenna 12 of the figure 9 is identical to the elementary antenna 12 described with reference to the figure 1 .

En variante, certaines antennes sont différentes.Alternatively, some antennas are different.

La structure antennaire 10 comprend au moins deux ensembles d'une pluralité d'antennes élémentaires 12. Selon l'exemple de la figure 9, la structure antennaire 10 comprend douze ensembles 50 de pluralité d'antennes élémentaires 12.The antenna structure 10 comprises at least two sets of a plurality of elementary antennas 12. According to the example of figure 9 , the antenna structure 10 comprises twelve sets 50 of plurality of elementary antennas 12.

En outre, chaque ensemble 50 comprend douze antennes élémentaires 12 alimentées en mode propagatif dans un guide linéaire.In addition, each set 50 comprises twelve elementary antennas 12 fed in propagating mode in a linear guide.

Les antennes élémentaires 12 de chaque ensemble 50 sont le long d'une ligne propre de cet ensemble 50.The elementary antennas 12 of each set 50 are along a specific line of this set 50.

Chaque ligne propre est parallèle aux autres lignes propres.Each eigenline is parallel to the other eigenlines.

Il apparaît sur la figure 11 qu'un ensemble 50 présente un gain de l'ordre de 23 dB.It appears on the figure 11 that an assembly 50 has a gain of the order of 23 dB.

La structure antennaire 10 comprend une pluralité de sources élémentaires 52. Le nombre de sources élémentaires 52 est identique au nombre d'ensembles 50 que comprend la structure antennaire 10. En l'occurrence, la structure antennaire 10 comporte douze sources élémentaires 52. Chaque antenne élémentaire 12 est alimentée par une source d'alimentation 52 respective.The antenna structure 10 comprises a plurality of elementary sources 52. The number of elementary sources 52 is identical to the number of sets 50 that the antenna structure 10 comprises. In this case, the antenna structure 10 comprises twelve elementary sources 52. Each antenna elementary 12 is powered by a respective power source 52.

Le radôme 16 présente une forme parallélépipédique dont la base est la surface d'émission-réception 14.The radome 16 has a parallelepiped shape, the base of which is the transmission-reception surface 14.

Dans le cas de la bande X, le radôme 16 présente une longueur inférieure à 300 mm et une largeur inférieure à 200 mm.In the case of band X, the radome 16 has a length of less than 300 mm and a width of less than 200 mm.

Le fonctionnement de la structure antennaire 10 selon le troisième mode de réalisation est similaire au fonctionnement de la structure antennaire 10 selon le premier mode de réalisation.The operation of the antenna structure 10 according to the third embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.

Dans le cas du mode de réalisation avec un guide en mode propagatif pour l'alimentation (surface d'émission-réception 14 en format planaire), les pertes sont diminuées, notamment dans le cadre d'une utilisation de type antenne à balayage.In the case of the embodiment with a guide in propagating mode for the feed (transmission-reception surface 14 in planar format), the losses are reduced, in particular in the context of use of the scanning antenna type.

En outre, l'antenne élémentaire 12 étant compacte, les possibilités de pointage d'un axe précis sont augmentées.In addition, the elementary antenna 12 being compact, the possibilities of pointing a precise axis are increased.

La réalisation de la structure antennaire 10 est également simplifiée.The production of the antenna structure 10 is also simplified.

Ainsi, dans tous les modes de réalisations, du fait que l'antenne élémentaire 12 est large bande, de polarisation circulaire et présente une bonne efficacité de rayonnement, la structure antennaire 10 présente un encombrement réduit par rapport aux structures antennaires de l'état de la technique pour des performances en terme de rayonnement identiques. La structure antennaire 10 est capable d'émettre une émission polarisée circulaire sans utilisation d'un polariseur additionnel. Cette meilleure compacité s'accompagne d'un gain en légèreté et d'un gain en performance de rayonnement (large bande) par rapport à une parabole de petite taille (diamètre inférieur à 40 cm pour un fonctionnement en bande X). En outre, la structure antennaire 10 est de réalisation aisée et peut être fabriquée à bas coût.Thus, in all the embodiments, because the elementary antenna 12 is broadband, of circular polarization and has good radiation efficiency, the antenna structure 10 has a reduced size compared to the antenna structures of the state of the technique for identical performance in terms of radiation. The antenna structure 10 is capable of emitting a circular polarized emission without using an additional polarizer. This improved compactness is accompanied by a gain in lightness and a gain in radiation performance (wideband) compared to a small dish (diameter less than 40 cm for operation in X band). Furthermore, the antenna structure 10 is easy to make and can be manufactured at low cost.

Ainsi, la structure antennaire 10 proposée est utilisable en substitution d'une antenne parabolique de petite dimension et/ou d'une antenne à balayage pour des applications de télécommunications entre deux stations, notamment par satellite. Il est à noter que dans ce cas, le diagramme de rayonnement de la structure antennaire 10 ainsi réalisée est conforme aux gabarits spécifiés pour être utilisé avec certains satellites.Thus, the antenna structure 10 proposed can be used as a substitute for a small-sized parabolic antenna and/or a scanning antenna for telecommunications applications between two stations, in particular by satellite. It should be noted that in this case, the radiation pattern of the antenna structure 10 thus produced complies with the templates specified for use with certain satellites.

Une telle structure antennaire 10 est avantageusement utilisable dans une plateforme, notamment aérienne de type hélicoptère. Dans le cadre de cette utilisation, la compacité de la structure antennaire 10 permet de réduire les contraintes sur les implantations d'équipements dans la plateforme.Such an antenna structure 10 can advantageously be used in a platform, in particular an aerial platform of the helicopter type. In the context of this use, the compactness of the antenna structure 10 makes it possible to reduce the constraints on the installation of equipment in the platform.

La figure 12 illustre un quatrième mode de réalisation de la structure antennaire 10 selon l'invention. Les éléments identiques au premier mode de réalisation de la figure 1 ne sont pas décrits à nouveau. Seules les différences sont mises en évidence.The figure 12 illustrates a fourth embodiment of the antenna structure 10 according to the invention. The elements identical to the first embodiment of the figure 1 are not described again. Only the differences are highlighted.

Dans la suite de cette description, il est utilisé le repère défini dans la figure 1, dans lequel la direction Z est la normale à la surface d'émission-réception 14.In the remainder of this description, the reference defined in the figure 1 , in which the Z direction is the normal to the transceiver surface 14.

Dans le quatrième mode de réalisation, l'antenne élémentaire 12 comporte un élément d'insertion du champ électrique 100.In the fourth embodiment, the elementary antenna 12 includes an electric field insertion element 100.

Le boîtier 22 présente une première paroi intérieure 102 et une deuxième paroi intérieure 104 qui délimitent selon la direction Z la cavité d'alimentation en ondes électromagnétiques.The box 22 has a first inner wall 102 and a second inner wall 104 which delimit in the direction Z the electromagnetic wave supply cavity.

Au moins un orifice d'accès coaxial 106 est ménagé dans la surface d'émission-réception 14.At least one coaxial access port 106 is made in the transmit-receive surface 14.

Le radôme 16 comprend une troisième paroi intérieure 108 et une cavité de positionnement 110. Le radôme 16 est configuré pour être fixé au boîtier 22.Radome 16 includes a third interior wall 108 and a positioning cavity 110. Radome 16 is configured to be attached to housing 22.

Un dispositif diélectrique d'isolation 112 est inséré entre la tige et le boîtier 22. Le dispositif diélectrique 112 est prévu pour maintenir la rectitude de l'antenne élémentaire 12. Le dispositif diélectrique d'isolation 112 permet également d'empêcher le contact entre l'antenne élémentaire 12 et le boîtier 22.A dielectric isolation device 112 is inserted between the rod and the casing 22. The dielectric device 112 is provided to maintain the straightness of the elementary antenna 12. The dielectric isolation device 112 also makes it possible to prevent contact between the elementary antenna 12 and box 22.

Selon l'exemple de la figure 12, l'élément d'insertion du champ électrique 100 est une tige. En outre, la tige 100 est réalisée en métal.According to the example of figure 12 , the electric field insertion member 100 is a rod. Furthermore, the rod 100 is made of metal.

Dans le cas de la figure 12, la tige 100 est coudée de sorte que la tige 100 comporte deux parties rectilignes 114, 116 reliées par un coude 118.In the case of the figure 12 , the rod 100 is bent so that the rod 100 comprises two rectilinear parts 114, 116 connected by an elbow 118.

La première paroi intérieure 102 est parallèle à la surface d'émission-réception 14. Sur la figure 12, la première paroi intérieure 102 est en forme d'un disque. La première paroi inférieure 102 est distante, selon la direction Z, d'une première distance H1 de la surface d'émission-réception 14.The first interior wall 102 is parallel to the transmission-reception surface 14. On the figure 12 , the first inner wall 102 is in the form of a disc. The first lower wall 102 is distant, in the direction Z, by a first distance H1 from the transmission-reception surface 14.

La deuxième paroi intérieure 104 est parallèle à la surface d'émission-réception 14. La deuxième paroi intérieure 104 est portée par la même pièce que la surface d'émission-réception 14. Sur la figure 12, la deuxième paroi intérieure 104 est en forme d'un disque. L'orifice d'accès coaxial 106 est délimité selon la direction Z par la surface d'émission-réception 14 et la première surface intérieure 100. L'orifice d'accès coaxial 106 est cylindrique à base circulaire, d'axe Z. L'orifice d'accès cylindrique 106 a un premier diamètre D1.The second interior wall 104 is parallel to the emission-reception surface 14. The second interior wall 104 is carried by the same part as the emission-reception surface 14. On the figure 12 , the second inner wall 104 is in the form of a disc. The coaxial access orifice 106 is delimited in the direction Z by the transmission-reception surface 14 and the first inner surface 100. The coaxial access orifice 106 is cylindrical with a circular base, axis Z. L Cylindrical access port 106 has a first diameter D1.

La troisième paroi intérieure 108 fait face à la surface d'émission-réception 14. Selon la direction Z, la troisième paroi intérieure 108 est distante d'une deuxième distance H2 de la deuxième paroi intérieure 104.The third interior wall 108 faces the transmission-reception surface 14. In the direction Z, the third interior wall 108 is a second distance H2 from the second interior wall 104.

La cavité de positionnement 110 est configurée pour recevoir le dispositif diélectrique 112 dans une position insérée. Sur la figure 12, la cavité de positionnement 110 est cylindrique à base circulaire. La cavité de positionnement 110 présente un deuxième diamètre D2. La cavité de positionnement 110 présente une première profondeur P1.Positioning cavity 110 is configured to receive dielectric device 112 in an inserted position. On the figure 12 , the positioning cavity 110 is cylindrical with a circular base. The positioning cavity 110 has a second diameter D2. The positioning cavity 110 has a first depth P1.

Le dispositif diélectrique 112 comporte une première extrémité 120, une deuxième extrémité 122, une surface latérale 124 et une cavité 126 de réception de l'antenne élémentaire 12.The dielectric device 112 comprises a first end 120, a second end 122, a side surface 124 and a cavity 126 for receiving the elementary antenna 12.

La première partie rectiligne 114 s'étend le long de la direction Z tandis que la deuxième partie rectiligne 116 s'étend le long de la direction Y.The first rectilinear part 114 extends along the Z direction while the second rectilinear part 116 extends along the Y direction.

La première partie rectiligne 114 présente une première longueur L1 le long de la direction Z. La première partie rectiligne 114 est cylindrique, d'axe Z La première partie rectiligne 114 est cylindrique à base circulaire. La première partie rectiligne 114 présente un troisième diamètre D3.The first rectilinear part 114 has a first length L1 along the direction Z. The first rectilinear part 114 is cylindrical, of axis Z The first rectilinear part 114 is cylindrical with a circular base. The first rectilinear part 114 has a third diameter D3.

La deuxième partie rectiligne 116 présente une deuxième longueur L2 le long de la direction X. La deuxième partie rectiligne 116 est cylindrique d'axe X. La deuxième partie rectiligne 116 présente un quatrième diamètre D4. Sur la figure 13, le quatrième diamètre D4 est égal au troisième diamètre D3.The second rectilinear part 116 has a second length L2 along the direction X. The second rectilinear part 116 is cylindrical with axis X. The second rectilinear part 116 has a fourth diameter D4. On the figure 13 , the fourth diameter D4 is equal to the third diameter D3.

La première longueur L1 est supérieure à la deuxième longueur L2. Selon l'exemple de la figure 12, la première longueur L1 est supérieure au double de la deuxième longueur L2.The first length L1 is greater than the second length L2. According to the example of figure 12 , the first length L1 is greater than twice the second length L2.

La première extrémité 120 est apte à être insérée dans la cavité de positionnement 110. La première extrémité 120 est plane. La première extrémité 120 est perpendiculaire à la direction Z. La première extrémité 120 est cylindrique à base circulaire, et présente un cinquième diamètre D5. Le cinquième diamètre D5 est inférieur ou égal au deuxième diamètre D2.The first end 120 is adapted to be inserted into the positioning cavity 110. The first end 120 is flat. The first end 120 is perpendicular to the direction Z. The first end 120 is cylindrical with a circular base, and has a fifth diameter D5. The fifth diameter D5 is less than or equal to the second diameter D2.

La deuxième extrémité 122 est parallèle à la première extrémité 120. La deuxième extrémité 122 est plane. La deuxième extrémité 122 est cylindrique à base circulaire, et présente un sixième diamètre D6. Le sixième diamètre D6 est supérieur ou égal au cinquième diamètre D5. Le sixième diamètre D6 est inférieur ou égal au premier diamètre D1.Second end 122 is parallel to first end 120. Second end 122 is planar. The second end 122 is cylindrical with a circular base, and has a sixth diameter D6. The sixth diameter D6 is greater than or equal to the fifth diameter D5. The sixth diameter D6 is less than or equal to the first diameter D1.

La surface latérale 124 présente une symétrie de révolution autour de l'axe Z. La surface latérale 124 comporte une première partie d'extrémité 128, une deuxième partie d'extrémité 130 et une partie médiane 132.The side surface 124 has a symmetry of revolution around the Z axis. The side surface 124 has a first end part 128, a second end part 130 and a middle part 132.

La cavité de réception 126 est configurée pour recevoir la tige 100. La cavité de réception 126 est apte à maintenir la tige 100 en position par rapport au dispositif diélectrique 112. La cavité de réception 126 est formée par la réunion d'une cavité axiale 134 et d'une cavité latérale 136.The receiving cavity 126 is configured to receive the rod 100. The receiving cavity 126 is able to hold the rod 100 in position relative to the dielectric device 112. The receiving cavity 126 is formed by the union of an axial cavity 134 and a side cavity 136.

La première partie d'extrémité 128 est située entre la partie médiane 132 de la surface latérale 124 et la première extrémité 120. La première partie d'extrémité 128 comporte un premier épaulement 137, une première portion 138 délimitée selon la direction Z par l'épaulement 137 et la première extrémité 120, et une deuxième portion 139 délimitée selon la direction Z par l'épaulement 137 et la partie médiane 132.The first end part 128 is located between the middle part 132 of the lateral surface 124 and the first end 120. The first end part 128 comprises a first shoulder 137, a first portion 138 delimited in the direction Z by the shoulder 137 and the first end 120, and a second portion 139 delimited in the direction Z by the shoulder 137 and the middle part 132.

Le premier épaulement 137 est situé à une troisième distance H3 de la première extrémité 120. La troisième distance H3 est inférieure ou égale à la profondeur P1. Le premier épaulement 137 est situé à une quatrième distance H4 de la deuxième extrémité 122. Sur la figure 12, la quatrième distance H4 est égale à la deuxième distance H2.The first shoulder 137 is located at a third distance H3 from the first end 120. The third distance H3 is less than or equal to the depth P1. the first shoulder 137 is located at a fourth distance H4 from the second end 122. On the figure 12 , the fourth distance H4 is equal to the second distance H2.

La première portion 138 est complémentaire de la cavité de positionnement 110. Sur la figure 12, la première portion 138 est cylindrique d'axe Z. La première portion 138 est cylindrique à base circulaire. Le diamètre de la première portion 138 est égal au cinquième diamètre D5. De préférence, la première portion 138 est apte à être montée serrée dans la cavité de positionnement 110. Par exemple, le cinquième diamètre D5 est égal au deuxième diamètre D2.The first portion 138 is complementary to the positioning cavity 110. On the figure 12 , the first portion 138 is cylindrical with an axis Z. The first portion 138 is cylindrical with a circular base. The diameter of the first portion 138 is equal to the fifth diameter D5. Preferably, the first portion 138 is capable of being tightly mounted in the positioning cavity 110. For example, the fifth diameter D5 is equal to the second diameter D2.

La deuxième portion 139 est cylindrique d'axe Z. La deuxième portion 139 est cylindrique à base circulaire. Le diamètre de la deuxième portion 139 est égal au sixième diamètre D6. La deuxième partie d'extrémité 130 est située entre la partie médiane 132 de la surface latérale 124 et la deuxième extrémité 122. La deuxième partie d'extrémité 120 est cylindrique à d'axe Z. La deuxième partie d'extrémité 130 est cylindrique à base circulaire. Le diamètre de la deuxième partie d'extrémité 130 est égal au sixième diamètre D6.The second portion 139 is cylindrical with an axis Z. The second portion 139 is cylindrical with a circular base. The diameter of the second portion 139 is equal to the sixth diameter D6. The second end part 130 is located between the middle part 132 of the side surface 124 and the second end 122. The second end part 120 is cylindrical with axis Z. The second end part 130 is cylindrical with circular base. The diameter of the second end part 130 is equal to the sixth diameter D6.

La partie médiane 132 est située entre la première partie d'extrémité 128 et la deuxième partie d'extrémité 130. La partie médiane 132 est délimitée selon la direction Z par un deuxième épaulement 140 et un troisième épaulement 142. La partie médiane 132 comporte, en outre, une couronne 144.The middle part 132 is located between the first end part 128 and the second end part 130. The middle part 132 is delimited in the direction Z by a second shoulder 140 and a third shoulder 142. The middle part 132 comprises, in addition, a crown 144.

Le deuxième épaulement 140 est compris, selon la direction Z, entre la couronne 144 et la première extrémité 120. Le troisième épaulement 142 est compris, selon la direction Z, entre la couronne 144 et la deuxième extrémité 122. Selon la direction Z, le troisième épaulement 142 est situé à une quatrième distance H4 de la deuxième extrémité 122. Sur la figure 12, la quatrième distance H4 est égale à la première distance H1.The second shoulder 140 is included, in the direction Z, between the ring 144 and the first end 120. The third shoulder 142 is included, in the direction Z, between the ring 144 and the second end 122. In the direction Z, the third shoulder 142 is located at a fourth distance H4 from the second end 122. On the figure 12 , the fourth distance H4 is equal to the first distance H1.

La cavité axiale 134 s'étend entre la deuxième extrémité 122 et le premier épaulement 142. La cavité axiale 134 est apte à recevoir la première partie rectiligne 114 par une translation selon la direction Y. Par exemple, la cavité axiale 134 est parallélépipédique. Sur la figure 12, les trois paires de côtés de la cavité axiale 134 sont respectivement perpendiculaires aux directions X, Y et Z. Selon la direction X, la cavité axiale 134 présente une première largeur l1 supérieure ou égale au troisième diamètre D3. Sur la figure 12, la première largeur l1 est égale au troisième diamètre D3.The axial cavity 134 extends between the second end 122 and the first shoulder 142. The axial cavity 134 is capable of receiving the first rectilinear part 114 by a translation in the direction Y. For example, the axial cavity 134 is parallelepipedal. On the figure 12 , the three pairs of sides of the axial cavity 134 are respectively perpendicular to the directions X, Y and Z. In the direction X, the axial cavity 134 has a first width l1 greater than or equal to the third diameter D3. On the figure 12 , the first width l1 is equal to the third diameter D3.

La cavité axiale 134 est configurée de telle sorte que, lorsque la première partie rectiligne 114 est insérée dans la cavité axiale 134, l'axe de révolution de la première partie rectiligne 114 est confondu avec l'axe de révolution de la surface latérale 124. Selon la direction Y, la cavité axiale 134 présente une deuxième profondeur P2 égale à la moitié de la somme entre le sixième diamètre D6 et le troisième diamètre D3. En d'autres termes, on a mathématiquement P2=(D6+D3)/2.The axial cavity 134 is configured such that, when the first rectilinear part 114 is inserted into the axial cavity 134, the axis of revolution of the first rectilinear part 114 coincides with the axis of revolution of the lateral surface 124. In the direction Y, the axial cavity 134 has a second depth P2 equal to the half of the sum between the sixth diameter D6 and the third diameter D3. In other words, we have mathematically P2=(D6+D3)/2.

La cavité latérale 136 est comprise entre le deuxième épaulement 142 et le troisième épaulement 144. La cavité latérale 136 est apte à recevoir la deuxième partie rectiligne 116 par une translation selon la direction Y. Par exemple, la cavité latérale 136 est parallélépipédique. Sur la figure 12, les trois paires de côtés de la cavité axiale 134 sont respectivement perpendiculaires aux directions X, Y et Z. Selon la direction Z, la cavité latérale 136 présente une deuxième largeur l2 supérieure ou égale au quatrième diamètre D4. Sur la figure 12, la deuxième largeur l2 est égale au quatrième diamètre D4.The lateral cavity 136 is between the second shoulder 142 and the third shoulder 144. The lateral cavity 136 is capable of receiving the second rectilinear part 116 by a translation in the direction Y. For example, the lateral cavity 136 is parallelepipedic. On the figure 12 , the three pairs of sides of the axial cavity 134 are respectively perpendicular to the directions X, Y and Z. In the direction Z, the lateral cavity 136 has a second width l2 greater than or equal to the fourth diameter D4. On the figure 12 , the second width l2 is equal to the fourth diameter D4.

La couronne 144 est cylindrique à base circulaire, d'axe Z. La couronne 144 présente un septième diamètre D7. Le septième diamètre D7 est supérieur ou égal au sixième diamètre D6. Sur la figure 12, le septième diamètre D7 est inférieur au premier diamètre D1.Crown 144 is cylindrical with a circular base, axis Z. Crown 144 has a seventh diameter D7. The seventh diameter D7 is greater than or equal to the sixth diameter D6. On the figure 12 , the seventh diameter D7 is less than the first diameter D1.

Selon la direction Y, la cavité latérale 136 présente une troisième profondeur P3 égale à la moitié de la somme entre le septième diamètre D7 et le quatrième diamètre D4. En d'autres termes, on a mathématiquement P3 = (D7+D4)/2.In the direction Y, the lateral cavity 136 has a third depth P3 equal to half the sum between the seventh diameter D7 and the fourth diameter D4. In other words, mathematically we have P3 = (D7+D4)/2.

La couronne 144 est délimitée selon la direction Z par le deuxième épaulement 142 et le troisième épaulement 144.Crown 144 is delimited in direction Z by second shoulder 142 and third shoulder 144.

Selon la direction Z, la couronne 144 présente une troisième largeur L3. La troisième largeur L3 est supérieure au quatrième diamètre D4.In direction Z, crown 144 has a third width L3. The third width L3 is greater than the fourth diameter D4.

Le fonctionnement de la structure antennaire 10 selon le quatrième mode de réalisation est similaire au fonctionnement de la structure antennaire 10 selon le premier mode de réalisation.The operation of the antenna structure 10 according to the fourth embodiment is similar to the operation of the antenna structure 10 according to the first embodiment.

Une fois inséré dans la cavité de positionnement 110, la rectitude du dispositif diélectrique 112 est fixée par la construction du radôme 16 et de la cavité de positionnement 110. Aucun outil spécifique n'est donc employé pour fixer la rectitude du dispositif diélectrique 112. Lorsque le dispositif diélectrique 112 est dans sa position insérée, le dispositif diélectrique est fixe par rapport au radôme 16, en l'absence d'une force exercée par un opérateur. Cela signifie que, lorsque le dispositif diélectrique 112 est dans sa position insérée, la cavité de positionnement 110 exerce sur le dispositif diélectrique une force de serrage supérieure à la somme des poids du dispositif diélectrique 112 et de l'antenne élémentaire 12.Once inserted into the positioning cavity 110, the straightness of the dielectric device 112 is fixed by the construction of the radome 16 and of the positioning cavity 110. No specific tool is therefore employed to fix the straightness of the dielectric device 112. When the dielectric device 112 is in its inserted position, the dielectric device is fixed relative to the radome 16, in the absence of a force exerted by an operator. This means that, when the dielectric device 112 is in its inserted position, the positioning cavity 110 exerts on the dielectric device a clamping force greater than the sum of the weights of the dielectric device 112 and of the elementary antenna 12.

De plus, il est possible de pré-assembler une pluralité d'antennes élémentaires 12 et de dispositifs diélectriques 112 au radôme 16 avant de fixer le radôme 16 au boîtier 22. Chacune des antennes élémentaires 12 peut être retirée ou remplacée aisément. Le montage de la structure antennaire 10 est ainsi simplifié. Lors du montage de la structure antennaire 10, l'antenne élémentaire 12 est insérée dans le dispositif diélectrique 112. Le dispositif diélectrique 112 est ensuite inséré dans la cavité de positionnement 110, puis le radôme 16 est fixé au boîtier 22. Le dispositif diélectrique 112 s'étend alors à travers l'orifice d'accès coaxial 106 sans être en contact avec la surface d'émission-réception 14.Furthermore, it is possible to pre-assemble a plurality of elementary antennas 12 and dielectric devices 112 to the radome 16 before fixing the radome 16 to the casing 22. Each of the elementary antennas 12 can be easily removed or replaced. The assembly of the antenna structure 10 is thus simplified. When assembling the structure antenna 10, the elementary antenna 12 is inserted into the dielectric device 112. The dielectric device 112 is then inserted into the positioning cavity 110, then the radome 16 is fixed to the casing 22. The dielectric device 112 then extends through the coaxial access port 106 without being in contact with the transceiver surface 14.

Claims (9)

  1. An antenna structure (10) for telecommunications, in particular by satellite, the antenna structure (10) comprising:
    - at least one elementary antenna (12) having a helical shape and dimensioned so as to transmit and/or receive at least one electromagnetic wave having a frequency higher than 4 GHz, preferably between 4 GHz and 50 GHz, in particular comprised within a spectral band selected from among the X band and the Ku band, each elementary antenna (12) being devoid of an insertion loop for inserting the magnetic field and further including an insertion element for inserting the electric field (100), the insertion element (100) being a metal rod and each elementary antenna (12) including, in addition, a dielectric insulation device (112) inserted between the rod (100) and the housing (22),
    - a transmitting-receiving surface (14), with each elementary antenna (12) extending between a first near end (18) that is adjacent to the transmitting-receiving surface (14) and a second distal end (20) that is at a distance from the transmitting-receiving surface (14),
    - a housing (22) the base surface of which is the transmitting-receiving surface (14) which delimits an electromagnetic wave feed cavity for feeding electromagnetic waves to the elementary antennas (12), arranged to be in contact with the transmitting-receiving surface (14), the dielectric insulation device (112) being inserted between the rod (100) and the housing (22),
    characterized in that the antenna structure (10) comprises:
    - a radome (16) capable of being attached to the housing (22) and comprising a positioning cavity (110) that is able to receive the dielectric device (112) in an inserted position,
    the dielectric device (112) including a cylindrical crown ring (144) having a circular base presenting a diameter (D7), the transmitting-receiving surface (14) comprising a coaxial access port (106) capable of receiving the dielectric device (112), with the coaxial access port (106) being cylindrical with a circular base and presenting a first diameter (D1), the first diameter (D1) being greater than the diameter (D7) of the crown ring (144).
  2. An antenna structure according to claim 1, in which the housing (22) includes an first interior wall (102) that is parallel to the transmitting-receiving surface (14), the transmitting-receiving surface (14) being comprised between the first interior wall (102) and the radome (16), with the dielectric device (112) being supported against the first interior wall (102) when the radome (16) is attached to the housing (22) and the dielectric device (112) is in the inserted position.
  3. An antenna structure according to claim 1 or 2, in which the dielectric device (112) includes a receiving cavity (126) for receiving the rod (100).
  4. An antenna structure according to claim 3, in which the rod (100) includes a first rectilinear cylindrical portion (114) with a circular base, the dielectric device (112) includes a first end portion (128) and second cylindrical end portion (130) with a circular base, and the receiving cavity (126) comprises an axial cavity (134) capable of receiving first rectilinear portion (114),
    the first rectilinear portion (114), having a fourth diameter (D4), the second end portion (130) having a sixth diameter (D6) and the axial cavity (134) having a second depth (P2) that is equal to half of the sum of the fourth diameter (D4) and the sixth diameter (D6).
  5. An antenna structure according to any one of claims 1 to 4, in which the transmitting-receiving surface (14) has a generally circular form and the antenna structure (10) includes at least two assemblies of a plurality of elementary antennas (12), the elementary antennas (12) of each assembly (30, 32, 34, 36) being arranged along a circle having a given radius (R1, R2, R3, R4) that is specific to this particular assembly (30 32, 34, 36), with all the said circles being concentric.
  6. An antenna structure according to any one of claims 1 to 5, in which the transmitting-receiving surface (14) has a generally rectangular form.
  7. An antenna structure according to claim 6, including power supply sources (52) and at least two assemblies (50) of a plurality of elementary antennas (12), the elementary antennas (12) of each assembly (50) being arranged along a supply line specific to this particular assembly (50), with each line being parallel to the other specific supply lines and being powered by a respective power supply source (52).
  8. A platform, in particular an aerial platform, comprising at least one antenna structure (10) according to any one of claims 1 to 7.
  9. A method for telecommunications, in particular by satellite, between two stations comprising a transmission or reception step for transmitting or receiving electromagnetic waves having a frequency higher than 4 GHz, preferably between 4 GHz and 50 GHz, in particular comprised within a spectral band selected from among the X band and the Ku band, by an antenna structure (10) according to any one of claims 1 to 7.
EP14805281.4A 2013-11-28 2014-11-28 Compact antenna structure for satellite telecommunications Active EP3075032B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1302759A FR3013905B1 (en) 2013-11-28 2013-11-28 COMPACT ANTENNA STRUCTURE FOR SATELLITE TELECOMMUNICATIONS
PCT/EP2014/075996 WO2015079038A2 (en) 2013-11-28 2014-11-28 Compact antenna structure for satellite telecommunications

Publications (2)

Publication Number Publication Date
EP3075032A2 EP3075032A2 (en) 2016-10-05
EP3075032B1 true EP3075032B1 (en) 2022-06-15

Family

ID=50780493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14805281.4A Active EP3075032B1 (en) 2013-11-28 2014-11-28 Compact antenna structure for satellite telecommunications

Country Status (4)

Country Link
EP (1) EP3075032B1 (en)
ES (1) ES2926932T3 (en)
FR (1) FR3013905B1 (en)
WO (1) WO2015079038A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227369A (en) * 1989-01-18 1990-07-25 Tdk Corp A circular polarization antenna system
JP2004056280A (en) * 2002-07-17 2004-02-19 Alps Electric Co Ltd Helical antenna
US20100309089A1 (en) * 2009-06-08 2010-12-09 Lockheed Martin Corporation Planar array antenna having radome over protruding antenna elements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120895B2 (en) * 1990-03-15 1995-12-20 八木アンテナ株式会社 Helical antenna device
JP2506514B2 (en) * 1991-06-06 1996-06-12 八木アンテナ株式会社 Planar antenna
KR0147035B1 (en) * 1993-07-31 1998-08-17 배순훈 Improved helical wire array planar antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227369A (en) * 1989-01-18 1990-07-25 Tdk Corp A circular polarization antenna system
JP2004056280A (en) * 2002-07-17 2004-02-19 Alps Electric Co Ltd Helical antenna
US20100309089A1 (en) * 2009-06-08 2010-12-09 Lockheed Martin Corporation Planar array antenna having radome over protruding antenna elements

Also Published As

Publication number Publication date
WO2015079038A2 (en) 2015-06-04
FR3013905B1 (en) 2017-05-19
FR3013905A1 (en) 2015-05-29
EP3075032A2 (en) 2016-10-05
WO2015079038A3 (en) 2015-07-23
ES2926932T3 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
EP1325537A1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP3109941B1 (en) Microwave antenna with dual reflector
EP2889954B1 (en) Method for defining the structure of a Ka-band antenna
EP3435480B1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
EP2658032B1 (en) Corrugated horn antenna
EP3075032B1 (en) Compact antenna structure for satellite telecommunications
EP1191630A1 (en) High frequency diverging dome shaped lens and antenna incorporating such lens
EP3188312B1 (en) Antennar system
EP3075031B1 (en) Arrangement of antenna structures for satellite telecommunications
EP3506429B1 (en) Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
EP2889955B1 (en) Compact antenna structure for satellite telecommunication
WO2015189134A1 (en) Flat antenna for satellite communication
EP4396901A1 (en) Multiband antenna
EP3506426A1 (en) Beam pointing device for antenna system, associated antenna system and platform
FR3085552A1 (en) ANTENNA FOR A SPATIAL SATELLITE
FR2909225A1 (en) POWER SUPPLY DEVICE FOR A REFLECTOR ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160527

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
PUAG Search results despatched under rule 164(2) epc together with communication from examining division

Free format text: ORIGINAL CODE: 0009017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200730

B565 Issuance of search results under rule 164(2) epc

Effective date: 20200730

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/00 20060101ALI20200727BHEP

Ipc: H01Q 21/06 20060101ALI20200727BHEP

Ipc: H01Q 1/42 20060101ALI20200727BHEP

Ipc: H01Q 21/20 20060101ALI20200727BHEP

Ipc: H01Q 21/08 20060101ALI20200727BHEP

Ipc: H01Q 11/08 20060101AFI20200727BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014084039

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2926932

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221031

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220615

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1498943

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014084039

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231218

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231115

Year of fee payment: 10

Ref country code: NO

Payment date: 20231024

Year of fee payment: 10

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: FI

Payment date: 20231020

Year of fee payment: 10

Ref country code: DE

Payment date: 20231107

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231113

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615