EP3173722A1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP3173722A1
EP3173722A1 EP15196286.7A EP15196286A EP3173722A1 EP 3173722 A1 EP3173722 A1 EP 3173722A1 EP 15196286 A EP15196286 A EP 15196286A EP 3173722 A1 EP3173722 A1 EP 3173722A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
channel
wall
prevention means
straight portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15196286.7A
Other languages
English (en)
French (fr)
Other versions
EP3173722B1 (de
Inventor
M.Serhan KILIC
Aydin TUNA
Hakan PEKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Europe NV
Daikin Industries Ltd
Original Assignee
Daikin Europe NV
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Europe NV, Daikin Industries Ltd filed Critical Daikin Europe NV
Priority to EP15196286.7A priority Critical patent/EP3173722B1/de
Priority to CN201680066139.3A priority patent/CN108351184B/zh
Priority to PCT/JP2016/084575 priority patent/WO2017090595A1/en
Publication of EP3173722A1 publication Critical patent/EP3173722A1/de
Application granted granted Critical
Publication of EP3173722B1 publication Critical patent/EP3173722B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded

Definitions

  • the invention relates to a heat exchanger, especially a heat exchanger in which heat is transferred from a flue gas to a flowing liquid.
  • Such a heat exchanger is known from WO2009/053248A1 .
  • This heat exchanger is provided with walls to form a space for the flue gas. Channels in which water flows are respectively formed in the walls. As shown in the Fig.7 in the WO2009/053248A1 , the channel includes several straight portions which are arranged in substantially parallel to each other and are connected in series. The flow direction of the fluid is changed at the connection area of the straight portions in the channel, so that the fluid flows along an appropriate route for obtaining high heat efficiently.
  • the known heat exchanger mentioned above has certain efficiency due to the design of the flowing route of the channel.
  • the speed of the flow tends to become slow. Therefore, the fluid tends to be stagnated in the connection area of the straight portions and a scale such as lime can be deposited in the connection area of the straight portions.
  • the deposition of the scale covers the heat exchange surface of the heat exchanger and the heat exchange efficiency is thereby deteriorated.
  • a first aspect of the present invention provides a heat exchanger comprising walls to form a space for a flue gas. At least one channel is formed in at least one of the walls in which a fluid is to flow.
  • the channel includes at least two straight portions which are arranged in substantially parallel to each other and are connected in series.
  • a stagnation prevention means is arranged in at least one connecting area of the straight portions where the two straight portions are connected and which is located on the most upstream side in the channel with respect to a fluid flow.
  • the stagnation prevention means is arranged in the vicinity of an inner part of a joint of the straight portions around which the fluid is to turn.
  • the stagnation prevention means is arranged in the area where the speed of the fluid tends to be slow or nearly zero. Therefore, the deposition of the scale close to the inner part is effectively prevented.
  • the stagnation prevention means is arranged so as to partially surround the inner part of the joint of the straight portions around which the fluid is to turn when seen from the direction perpendicular to the wall.
  • the stagnation prevention means is arranged so as to surround the inner part of the joint of the straight portions over an angle range of more than 90 degrees when seen from the direction perpendicular to the wall.
  • At least one wall has an inside wall and an outside wall which face to each other and between which the channel is formed, and further has a wall element which connects the inside wall and outside wall and defines the channel.
  • the wall element defines the channel together with the inside and outside walls.
  • the channel is a tubular space surrounded by the inside wall, the outside wall, and the wall element.
  • the stagnation prevention means connects the inside wall and the outside wall.
  • the stagnation prevention means can be formed together with the channel, which is easy to manufacture the heat exchanger.
  • the wall element includes an extending wall element which extends along the main axis of the straight portion and extends from the inner part of the joint of the straight portions around which the fluid is to turn.
  • the stagnation prevention means includes a first portion which is arranged on the upstream side and a second portion which is arranged on the downstream side with respect to the fluid flow. The maximum distance between the second portion and the extending wall element is shorter than the maximum distance between the first portion and the extending wall element.
  • the stagnation prevention means includes the second portion which is closer to the extending wall element than the first portion.
  • the passage formed between the second portion and the extending wall element is narrower than the passage formed between the first portion and the extending wall element. The fluid is therefore accelerated through the passage formed between the second portion and the extending wall element. Accordingly, the deposition of the scale is effectively prevented.
  • the main axis is an axis along which the straight area of the channel extends.
  • the stagnation prevention means is arranged at least in the straight portion at the downstream side with respect to the fluid flow.
  • the stagnation prevention means is more preferably arranged in the connecting area and at least in the straight portion which is located on the downstream side among the two straight portions connected.
  • the speed of the fluid flow drops down on the downstream side of the connection area. Arranging the stagnation prevention means on the downstream side of the connection area effectively promotes the fluid to flow.
  • each of the at least two straight portions has a straight area which has a straight tube-like shape.
  • the stagnation prevention means is arranged over part of the connecting area and part of the straight area.
  • the channel includes three or more straight portions which are arranged in substantially parallel to each other and are connected in series.
  • the stagnation prevention means is arranged in each of the connecting areas of the straight portions.
  • At least the stagnation prevention means which is located on the most upstream side in the channel with respect to the fluid flow is formed in a hook-like shape when seen from the direction perpendicular to the wall.
  • each stagnation prevention means other than the stagnation prevention means arranged on the most upstream side in the channel with respect to the fluid flow is formed in an arc-like shape when seen from the direction perpendicular to the wall.
  • the arc-like shaped stagnation prevention means is arranged in the channel such that the arc-like shaped surface is substantially along the fluid flow.
  • a cross-sectional area of a straight portion arranged on the most upstream side is larger than a cross-sectional area of another straight portion arranged on downstream side with respect to the fluid flow.
  • the speed of the fluid is slower on the upstream side than on the downstream side in the channel. Accordingly, fluid tends to be stagnated on the upstream side in the channel. The stagnation can be therefore effectively prevented by the stagnation prevention means arranged in the connecting area located on the most upstream side in the channel.
  • FIG. 1 shows a schematic diagram of a heat exchange system 1 equipped with a heat exchanger 10 according to a preferred embodiment of the present invention.
  • the heat exchange system 1 is used for heating medium fluid which is used for space heating and heating domestic water, while the heat exchange system 1 may be used only for heating the medium fluid for space heating or only for heating the domestic water.
  • the heat exchange system 1 is mainly provided with the heat exchanger 10, a fan 2a, a burner 3, a siphon 4b, a pump 5a, a heat exchanger 6, and a housing 9.
  • the heat exchange system 1 has a gas inlet connector 9a to which a fuel gas supply pipe (not shown) is connected, a condensate outlet connector 9b to which a drain outlet pipe (not shown) is connected, medium fluid water inlet/outlet connectors 9c, 9d to which medium fluid inlet/outlet pipes (not shown) are respectively connected, and DHW (domestic heat water) inlet/outlet connectors 9e, 9f to which DHW inlet/outlet pipes (not shown) are respectively connected.
  • DHW domestic heat water
  • the housing 9 shown in FIG. 1 has a box-like-shape such as a cuboid shape.
  • the housing 9 accommodates the heat exchanger 10, the fan 2a, the burner 3, the siphon 4b, the pump 5a, and the heat exchanger 6 as shown in FIG. 1 .
  • the fan 2a intakes a fuel gas, such as natural gas, supplied from the fuel gas supply pipe (not shown) via the gas inlet connector 9a and a gas pipe 2 as shown in FIG. 1 .
  • the fan 2a also intakes air from the outside of the housing 9. The fan 2a then supplies the mixture gas with the fuel gas and the air to the burner 3.
  • the burner 3 is mounted on the heat exchanger 10 as shown in FIG. 3 . Specifically, the burner 3 is mounted on the top of the heat exchanger 10. A burner port 3a of the burner 3, from which flammable gas is injected, is arranged in a combustion space 42 formed in the heat exchanger 10 as shown in FIG. 6 . The burner 3 injects the flammable gas (mixture gas with the fuel gas and the air) into the combustion space 42 and combusts the flammable gas in the combustion space 42.
  • the flammable gas mixture gas with the fuel gas and the air
  • the heat exchanger 10 has a flue gas space 40 including the combustion space 42 and two channels 60, 70 as shown in FIG. 5 .
  • the heat exchanger 10 is configured such that the medium fluid in the two channels 60, 70 can exchange heat with the flue gas flowing in the flue gas space 40, in use.
  • the burner port 3a of the burner 3 is arranged over the combustion space 42 and the flammable gas is combusted in the combustion space 42. Flue gas generated by the combustion of the flammable gas flows downward in the flue gas space 40.
  • the channels 60, 70 constitute a part of a medium fluid circuit 5 in which a medium fluid circulates.
  • the medium fluid circuit 5 further includes an inlet pipe 5b, an outlet pipe 5c, and the medium fluid inlet/outlet pipes (not shown) which are arranged outside the heat exchange system 1 and are connected to the medium fluid water inlet/outlet connectors 9c, 9d.
  • the medium fluid circuit 5 also includes space heating devices (not shown), such as floor heating devices and radiators, which are arranged outside the heat exchange system 1 and which are connected to the medium fluid outlet pipe and the medium fluid inlet pipe.
  • the medium fluid circulating in the medium fluid circuit 5 is an aqueous medium.
  • the medium fluid is supplied to the medium fluid inlet connector 9c from the medium fluid inlet pipe (not shown).
  • the medium fluid then flows in each of the channels 60, 70 from the inlet of each of the channels 60, 70 through the inlet pipe 5b.
  • the pump 5a is arranged to circulate the medium fluid in the medium fluid circuit 5.
  • the medium fluid flows in the channels 60, 70 and exchanges heat with the flue gas flowing in the flue gas space 40.
  • the medium fluid in each of the channels 60, 70 flows out from an outlet of each of the channels 60, 70.
  • the medium fluid then flows out to the medium fluid outlet pipe (not shown) through the outlet pipe 5c and the medium fluid outlet connector 9d and is sent to space heating devices (not shown) through the medium fluid outlet pipe.
  • the drain collecting part 4 includes a drain pipe 4a.
  • the end portion of the drain pipe 4a is connected to the siphon 4b.
  • the siphon 4b allows the condensate from the flue gas to drain to the drain outlet pipe (not shown) which is connected to the condensate outlet connector 9b while preventing the release of the flue gas.
  • the medium fluid circuit 5 includes a connecting pipe 5d which connects the inlet pipe 5b and the outlet pipe 5c of the medium fluid circuit 5 via a medium fluid channel 6a formed in the heat exchanger 6.
  • the connecting pipe 5d is configured so that the medium fluid can flow from the outlet pipe 5c to the inlet pipe 5b through the medium fluid channel 6a.
  • the heat exchanger 6 also has a domestic water channel 6b formed therein.
  • An inlet pipe 7a of the domestic water is connected to an inlet of the domestic water channel 6b.
  • An outlet pipe 7b of the domestic water is connected to an outlet of the domestic water channel 6b.
  • the inlet pipe 7a of the domestic water is connected to DHW inlet connector 9e.
  • the outlet pipe 7b of the domestic water is connected to DHW outlet connector 9f.
  • the inlet/outlet pipes 7a, 7b of the domestic water are configured so that domestic water flows in the domestic water channel 6b from the inlet of the domestic water channel 6b, and flows out to the outlet pipe 7b from the outlet of the domestic water channel 6b after the domestic heat water passes through the domestic water channel 6b.
  • domestic heat water flowing in domestic water channel 6b exchanges heat with the medium fluid flowing the medium fluid channel 6a, in use.
  • Fuel gas is supplied via the gas inlet connector 9a. Fuel gas and air taken from the outside of the housing 9 are mixed. The mixture gas is supplied to the burner 3. The flammable gas (mixture gas) is injected into the combustion space 42 from the burner 3 and is combusted in the combustion space 42. Flue gas then flows downwardly in the flue gas space 40.
  • Medium fluid is circulated in the medium fluid circuit 5.
  • relatively low temperature medium fluid flows into the channels 60, 70 via medium fluid inlet connector 9c and the inlet pipe 5b.
  • Medium fluid flowing in the channels 60, 70 exchanges heat with the flue gas in the flue gas space 40 in use.
  • the medium fluid heated at the heat exchanger 10 flows out from the medium fluid outlet connector 9d through the outlet pipe 5c and is sent to the space heating devices (not shown).
  • the heat of the medium fluid is used for the space heating devices and cooled medium fluid (the medium fluid taken its heat by the space heating devices) then returns to the heat exchange system 1.
  • the medium fluid heated at the heat exchanger 10 is sent to the heat exchanger 6 to heat the domestic water.
  • the heated domestic water is sent to the usage point such as bath room and kitchen.
  • the flue gas flowing out of the flue gas space 40 is exhausted through the gas duct 8.
  • the condensate from the flue gas is drained to the drain outlet pipe through the siphon 4b.
  • a heat exchanger 10 according to a preferred embodiment of the present invention will be described in detail.
  • FIG. 2 shows a perspective view of the heat exchanger 10.
  • FIG. 3 shows a side view of the heat exchanger 10 on which the burner is mounted.
  • FIG. 4 shows a front view of the heat exchanger 10.
  • the heat exchanger 10 is preferably manufactured by corrosion resistant metal such as aluminum alloy.
  • heat exchanger 10 is manufactured as monoblock sand-cast, although manufacturing method is not limited to this.
  • the heat exchanger 10 is designed so that the burner 3 is mounted on the top of the heat exchanger 10 as shown in FIG. 3 .
  • the heat exchanger 10 mainly includes a front wall 20, a back wall 30, side walls 50, an inlet distribution pipe 52, and an outlet converging pipe 54 as shown in FIG.2 .
  • the front wall 20 and the back wall 30 form a flue gas space 40 for a flue gas.
  • the flue gas space 40 is formed by a space defined by the front wall 20, the back wall 30 and the side walls 50 which are attached to lateral ends of the front wall 20 and the back wall 30.
  • the flue gas space 40 includes the combustion space 42 of the flammable gas.
  • the combustion space 42 in which the burner port 3a of the burner 3 is installed, is arranged at the upper part of the flue gas space 40 as shown in FIG. 5 .
  • the flue gas flows downwardly in the flue gas space 40 from the combustion space 42 and flows out from an opening 44 arranged at the bottom of the heat exchanger 10, in use.
  • a front channel 60 is formed in the front wall 20 and a back channel 70 is formed in the back wall 30 as shown in FIG.5 .
  • the medium fluid flows in the front channel 60 and back channel 70, in use.
  • the inlet distribution pipe 52 has a tube-shape which has an inlet opening 52a in the front side as shown in FIG. 4 .
  • the inlet pipe 5b of the medium fluid circuit 5 is connected at the inlet opening 52a.
  • the inlet distribution pipe 52 is also connected to the inlets of each of the front channel 60 and the back channel 70.
  • the inlet distribution pipe 52 is configured to distribute the fluid to the front channel 60 and the back channel 70, in use.
  • the medium fluid flows into the front channel 60 and the back channel 70 through the inlet distribution pipe 52, in use.
  • the outlet converging pipe 54 has a tube-shape which has an outlet opening 54a in the front side as shown in FIG. 4 .
  • the outlet pipe 5c of the medium fluid circuit 5 is connected at the outlet opening 54a.
  • the outlet converging pipe 54 is also connected to the outlets of each of the front channel 60 and the back channel 70.
  • the outlet converging pipe 54 is configured to converge the fluid from the front channel 60 and the back channel 70, and output therefrom, in use.
  • the converged medium fluid flows in the outlet pipe 5c of the medium fluid circuit 5, in use.
  • the back wall 30 has a tabular shape.
  • the back wall 30 extends along a first plane P1 as shown in FIG. 5 .
  • the heat exchanger 10 is arranged on a horizontal plane and the first plane P1 is a vertical plane in this embodiment, although the arrangement of the heat exchanger 10 is not limited to this.
  • the heat exchanger 10 is preferably accommodated such that the back wall 30 extends along one of the walls of the housing 9. Due to the shape of the back wall 30, a dead space between the back surface of the heat exchanger 10 and the inner surface of the wall of the housing 9 can be minimized.
  • the front wall 20 includes a lower portion 22 and an upper portion 24 as shown in FIG. 2 .
  • the lower portion 22 extends upwardly along the back wall 30 as shown in FIG. 3 .
  • the lower portion 22 of the frond wall extends in parallel with the back wall 30.
  • the lower portion 22 preferably has a plane-like shape.
  • the upper portion 24 extends upwardly from the upper end of the lower portion 22 as shown in FIG. 3 . More specifically, the upper portion 24 extends upwardly from the upper end of the lower portion 22 in a planar fashion.
  • the upper portion 24 of the front wall 20 has a plane-like shape.
  • the upper portion 24 extends outwardly away from the back wall 30 so as to form a combustion space 42 of a flammable gas between the upper portion 24 of the front wall 20 and the back wall 30.
  • the length L2 of the upper portion 24 along the longitudinal direction thereof is preferably longer than the length L1 of the lower portion 22 along the longitudinal direction thereof as shown in FIG. 3 .
  • Each of the longitudinal direction of the upper portion 24 and the lower portion 22 is a direction along which each of the upper portion 24 and the lower portion 22 extends in side view.
  • the space formed under the upper portion 24 is effectively used for arranging elements of the heat exchange system 1 such as the fan 2a to achieve the downsizing of the housing 9 of the heat exchange system 1 as shown in FIG. 3 .
  • the space formed under the upper portion 24 may also be used for arranging the other elements of the heat exchange system 1 such as valve, pipe, and venturi device.
  • the inner surface of the upper portion 24 is a surface which faces the back wall 30.
  • the inner surface of the back wall 30 is a surface which faces the front wall 20.
  • FIG. 5 is a cross section view of the heat exchanger viewing from the arrow direction of the V-V line of FIG.4 .
  • FIG. 6 is a cross section view of the heat exchanger viewing from the arrow direction of the VI-VI line of FIG.4 .
  • FIG. 7 is a cross section view of the heat exchanger viewing from the arrow direction of the VII-VII line of FIG.3 .
  • the upper portion 24 of the front wall 20 is provided with front fins 110 as shown in FIG. 5 .
  • the front fins 110 are formed to protrude from the inner surface of the front wall 20.
  • a plurality of the front fins 110 is arranged along the lateral direction (left-right direction) of the front wall 20 on the inner surface of the upper portion 24 at a predetermined interval.
  • the number of the front fins 110 and the interval between the front fins 110 depend on the various factors such as the amount of heat transferred from the flue gas to the medium fluid, materials of the walls, and the power of the burner to be installed.
  • the front wall 20 is provided with front pins 130, 150 as shown in FIG. 5 .
  • the front pins 130, 150 are arranged on the downstream side of the front fins 110 with respect to the flue gas flow direction. In other words, the front pins 130, 150 are arranged below the front fins 110.
  • the cross-sectional of the front pins 130, 150 with respect to its main axis has a circular shape, or preferably an elliptic shape which is longer in the longitudinal direction than the lateral direction of the front wall.
  • Each of the pins 130, 150 has larger surface area per unit volume than the front fins 110.
  • the front pins 130, 150 extend backwardly from the inner surface of the front wall 20.
  • a part of the front pins is arranged at the upper portion 24 of the front wall 20 below the front fins 110.
  • a plurality of the front pins 130 is preferably arranged along the lateral direction (left-right direction) of the front wall 20 on the inner surface of the upper portion 24 at a predetermined interval.
  • Several lines of the front pins 130 are preferably arranged at the upper portion 24 along the longitudinal direction at a predetermined interval.
  • the rest of the front pins 150 are arranged at the lower portion 22 of the front wall.
  • a plurality of the front pins 150 is arranged along the lateral direction (left-right direction) of the front wall 20 on the inner surface of the lower portion 22 at a predetermined interval.
  • Several lines of the front pins 150 are arranged at the lower portion 22 along the longitudinal direction at a predetermined interval.
  • the number of the front pins 130, 150, and the interval between the front pins 130, 150 depend on the various factors such as the amount of heat transferred from the flue gas to the medium fluid, materials of the walls, and the power of the burner to be installed.
  • the back wall 30 is provided with back fins 120 as shown in FIG. 5 .
  • the back fins 120 are formed to protrude from the inner surface of the back wall 30.
  • a plurality of the back fins 120 is arranged along the lateral direction (left-right direction) of the back wall 30 on the inner surface of the back wall 30 at a predetermined interval as shown in FIG. 7 .
  • the number of the back fins 120 and the interval between the back fins 120 depend on the various factors such as the amount of heat transferred from the flue gas to the medium fluid, materials of the walls, and the power of the burner to be installed.
  • the number of the back fins 120 and the interval between the back fins 120 are preferably the same as those of the front fins 110.
  • Each of the back fins 120 preferably corresponds to one of the front fins 110 such that the corresponding front and back fins face to each other.
  • the front fin 110 and the corresponding back fin 120 are arranged symmetrically with respect to a virtual line C2 along which the flammable gas is to be injected into the combustion space 42 as shown in FIG. 5 .
  • the shapes of the front fins 110 and the back fins 120 are described in detail with reference to FIG. 6 .
  • the height H1 of the first portion 112, 122 from the inner surface of the corresponding wall 20, 30 is smaller than the height H2 of the second portion 114, 124 from the inner surface of the corresponding wall 20, 30 as shown in FIG.6 .
  • each of the fins 110, 120 includes the first portion 112, 122 and the second portion 114, 124.
  • Most of the front fins 110 and the corresponding back fins 120, except for fins 110, 120 arrange under the outlet converging pipe 54 include an inwardly bulged portion 112a, 122a which bulges toward the virtual line C2 and an outwardly curved portion 112b, 122b which curves away from the virtual line C2 as shown in FIG. 6 .
  • the outwardly curved portion 112b, 122b is arranged below the inwardly bulged portion 112a, 122a as shown in FIG.6 .
  • the inwardly bulged portion 112a, 122a and the outwardly curved portion 112b, 122b are formed so as to keep a predetermined distance between the burner 3, more specifically the burner port 3a of the burner 3, to be installed on the heat exchanger 10 and the fin 110, 120.
  • the predetermined distance depends on various factors such as the desired power of the burner 3 and the material of the fins 110, 120.
  • each of the fins 110, 120 includes the inwardly bulged portion 112a, 122a and the outwardly curved portion 112b, 122b.
  • the tapered portion 112c, 122c is formed so as to keep a predetermined distance between the burner 3, more specifically the burner port 3a of the burner 3, to be installed in the heat exchanger 10 and the fin 110, 120.
  • the predetermined distance depends on various factors such as the desired power of the burner 3 and the material of the fins 110, 120.
  • each of the fins 110, 120 has the tapered portion 112c, 122c.
  • the back wall 30 is provided with back pins 140, 150 as shown in FIG. 5 .
  • the cross-sectional of the back pins 140, 150 with respect to its main axis has a circular shape, or preferably an elliptic shape which is longer in the longitudinal direction than the lateral direction of the back wall 30.
  • Each of the pins 140, 150 has larger surface area per unit volume than the back fins 120.
  • the back pins 140, 150 extends forwardly from the inner surface of the back wall 30.
  • a plurality of the back pins 140, 150 is arranged in the lateral direction (left-right direction) of the back wall 30 on the inner surface of the back wall 30 at a predetermined interval.
  • back pins 140, 150 are arranged on the back wall 30 along the longitudinal direction at a predetermined interval.
  • the number of the back pins 140, 150 and the interval between the back pins 140, 150 depend on the various factors such as the amount of heat transferred from the flue gas to the medium fluid, materials of the walls, and the power of the burner to be installed.
  • the front pins 150 arranged at the lower portion 22 of the front wall 20 are preferably connected to the corresponding back pins 150.
  • each of the pins 150 extends from the front wall 20 to the back wall 30.
  • front pins 150 arranged at the lower portion 22 of the front wall 20 are integrated with the back pins 150.
  • the front pins 130 arranged at the upper portion 24 of the front wall 20 so as to face to the corresponding back pins 140.
  • the front pins 130 are arranged at the upper portion 24 of the front wall 20 is not connected to the corresponding the back pins 140 so as to make a space between them.
  • the upper portion of the front wall 20 and the corresponding part of the back wall 30, which forms the combustion space 42 of heat exchanger 10 therebetween, is designed symmetrically with respect to the virtual line C2 which tilts against a virtual line C1.
  • the lower portion 22 of the front wall 20 and the back wall 30 is arranged symmetrical with respect to the virtual line C1.
  • FIG. 8 is a cross section view of the heat exchanger viewing from the arrow direction of the VIII-VIII line of FIG.3 .
  • the front wall 20 has an inside wall 602 and an outside wall 604 which face to each other and form the front channel 60 therebetween.
  • the front wall 20 also has wall elements 606 which connect the inside wall 602 and the outside wall 604 and define the front channel 60.
  • the back wall 30 has an inside wall 702 and an outside wall 704 which face to each other and form the back channel 70 therebetween.
  • the back wall 30 has wall elements 706 which connect the inside wall 702 and outside wall 704 and define the back channel 70.
  • the front channel 60 includes straight portions 60a, 60b, 60c, 60d, 60e, 60f, 60g, 60h, and 60i which are arranged in substantially parallel to each other and are connected in series as shown in FIG. 8 .
  • the medium fluid supplied from the inlet of the front channel 60 flows the straight portions 60a, 60b, 60c, 60d, 60e, 60f, 60g, 60h, and 60i in this order and flows out from the outlet of the front channel 60.
  • parallel means that the two straight portions are connected with an angle such that the speed of the turning fluid in the channel drops to nearly zero on the inner side in the connecting area 61 a, 61 b, 61 c, 61 d, 61 e, 61 f, 61 g, and 61 h.
  • the fluid nearly stops upon turning.
  • a plurality of pins 62 extending from the inside wall 602 is arranged in the straight portions 60a, 60b so as to improve the heat transfer efficiency between the medium fluid flowing in the straight portions 60a, 60b and the flue gas which flows along the inside wall 602.
  • the straight portions 60a, 60b require higher strength against burst than the straight portions 60c-60i since the straight portions 60a, 60b has the larger surface area compared with the straight portions 60c-60i.
  • a plurality of pins 62 can also improve the strength against burst of the straight portions 60a, 60b.
  • a plurality of grooves 68 extending along the longitudinal direction of the straight portions 60c-60i is formed on the inside wall 602. Thereby the heat transfer area is increased between the medium fluid flowing in the straight portions 60c-60i and the flue gas which flows along the inside wall 602.
  • the cross-sectional area of the straight portion 60a arranged on the most upstream side is larger than the cross-sectional area of the other straight portions 60b-60i arranged on downstream side with respect to the fluid flow as shown in FIG. 5 .
  • the back channel 70 also includes straight portions 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i as shown in FIG. 5 .
  • the straight portions 70a-70i are arranged in substantially parallel to each other and are connected in series.
  • the medium fluid flowing from the inlet of the back channel 70 flows the straight portions 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i in this order and flows out from the outlet of the back channel 70.
  • parallel has the same meaning with the previous paragraph for the front channel 60.
  • a plurality of pins (not shown) extending from the inside wall 702 is arranged in the straight portions 70a, 70b and a plurality of grooves 78 extending along the longitudinal direction of the straight portions 70c-70i are formed on the inside wall 702 in the straight portions 70c-70i.
  • the cross-sectional area of the straight portion 70a arranged on the most upstream side is larger than the cross-sectional area of the other straight portions 70b-70i arranged on downstream side with respect to the fluid flow.
  • the front channel 60 is further explained with reference to FIG. 8 .
  • stagnation prevention means 64, 66 are preferably arranged in each of the connecting area 61 a-61 h of the straight portions 60a-60i as shown in FIG. 8 .
  • the stagnation prevention means 64, 66 connects the inside wall 602 and the outside wall 604 of the front wall 20.
  • stagnation prevention means 64, 66 are arranged in each of the connecting area 61 a-61 h of the straight portions 60a-60i, but it is not limited to this configuration. It is preferable that at least the first stagnation prevention means 64 is arranged in the connecting area 61 a of the straight portions 60a and the straight portion 60b which locates on the most upstream side in the channel 60 with respect to a fluid flow.
  • the first stagnation prevention means 64 is arranged in the connecting area 61 a of the straight portions 60a and the straight portion 60b which locates on the most upstream side in the channel 60 with respect to the fluid flow.
  • the first stagnation prevention means 64 is arranged in the vicinity of the inner part T1 of the joint 60ab of the straight portions 60a, 60b around which the fluid is to turn as shown in FIG. 8 .
  • the first stagnation prevention means 64 is formed in a hook-like shape when seen from the direction perpendicular to the front wall 20 as shown in FIG. 8 .
  • At least one or more second stagnation prevention means 66 are preferably arranged in the connecting area 61b-61h of the straight portions 60b-60i in the channel 60.
  • the second stagnation prevention means 66 are arranged in the connecting areas other than the connecting area 61 a which locates on the most upstream side in the channel 60 with respect to the fluid flow.
  • the second stagnation prevention means 66 are formed in an arc-like shape when seen from the direction perpendicular to the front wall 20 as shown in FIG. 8 .
  • the arc-like shaped second stagnation prevention means 66 are arranged in the front channel 60 such that the arc-like shaped surface is substantially along the fluid flow.
  • Each of the second stagnation prevention means 66 is arranged in the vicinity of an inner part of a joint of the straight portions 60b-60i around which the fluid is to turn.
  • one of the second stagnation prevention means 66 is arranged in the vicinity of an inner part T2 of a joint 60bc of the straight portions 60b, 60c around which the fluid is to turn as shown in FIG. 8 .
  • the first stagnation prevention means 64 is arranged so as to partially surround the inner part T1 of the joint 60ab of the straight portions 60a, 60b around which the fluid is to turn when seen from the direction perpendicular to the wall 20 as shown in FIG. 8 .
  • the first stagnation prevention means 64 is preferably arranged so as to surround the inner part T1 of the joint 60ab of the straight portions 60a, 60b over an angle range of more than 90 degrees, and more preferably over an angle range of more than 180 degrees when seen from the direction perpendicular to the wall 20 as shown in FIG. 8 .
  • the one or more second stagnation prevention means 66 are also arranged so as to partially surround the inner part of the joint of the straight portions around which the fluid is to turn when seen from the direction perpendicular to the wall 20 as shown in FIG. 8 .
  • the second stagnation prevention means 66 are arranged so as to partially surround the inner part T2 of the joint 60bc of the straight portions 60b, 60c around which the fluid is to turn when seen from the direction perpendicular to the wall 20 as shown in FIG. 8 .
  • the second stagnation prevention means 66 are arranged so as to surround the inner part T2 of the joint 60bc of the straight portions 60b, 60c over an angle range of more than 90 degrees when seen from the direction perpendicular to the wall 20.
  • the wall elements 606 which connects the inside wall 602 and the outside wall 604 include extending wall elements W1, W2 which respectively extend along the main axis A1, A2 of the straight portion 60a, 60b.
  • the wall elements W1, W2 extend from the inner part T1 of the joint 60ab of the straight portions 60a, 60b around which the fluid is to turn as shown in FIG. 9 .
  • the main axes A1, A2 are axes along which the straight area of the straight portion 60a, 60b extends.
  • the first stagnation prevention means 64 includes a first portion 64a which is arranged on the upstream side and a second portion 64b which is arranged on the downstream side with respect to the fluid flow as shown in FIG. 9 .
  • a maximum distance D1 between the second portion 64b and the extending wall element W2 is shorter than a maximum distance D2 between the first portion 64a and the extending wall element W2.
  • the distance between the second portion 64b and the extending wall element W2 may be almost equal at any points.
  • the first stagnation prevention means 64 is arranged in the connecting area 61 a in the straight portion 60b which is located on the downstream side among the two straight portions 60a, 60b connected.
  • Each of the straight portions 60a, 60b has a straight area which has a straight tube-like shape.
  • the first stagnation prevention means 64 is arranged to extend from the connecting area 61 a into part of the straight area in the straight portion 60b.
  • the first stagnation prevention means 64 may extend into the connecting area 61 a located in the straight portion 60a at the upstream side with respect to the fluid flow.
  • the second stagnation prevention means 66 are arranged in the straight portion which is located at the downstream side with respect to the fluid flow among the straight portions connected. More specifically, the second stagnation prevention means 66 are arranged in the connecting area in the straight portion which is located on the downstream side among the two straight portions connected. Each of the straight portions 60c-60i has a straight area which has a straight tube-like shape. The second stagnation prevention means 66 may be arranged to extend from a connecting area into the straight area of the straight portion located on the downstream side.
  • the front channel 60 is explained above in detail with reference to FIG. 8 .
  • the explanation of the back channel 70 is omitted regarding the common feature between the front channel 60 and the back channel 70. Only the difference between the front channel 60 and the back channel 70 will be explained below.
  • the heat transfers on the side of the front wall 20 and the side of the back wall 30 have different characteristic because of the unsymmetrical design of the walls.
  • the medium fluid in the front channel 60 of the front wall 20 can obtain more heat from the flue gas than the medium fluid in the back channel 70 of the back wall 30.
  • the heat exchanger 10 is configured such that the temperature of the medium fluid at each outlet of each channel 60, 70 is substantially the same, in use.
  • the heat exchanger 10 is therefore configured such that the volume flow rate and/or mass flow rate of the fluid in the front channel 60 is greater than the back channel 70, in use. It is preferable that the heat exchanger 10 is configured such that at least the mass flow rate of the fluid in the front channel 60 is greater than the back channel 70, in use.
  • Volume flow rate means the volume of fluid which passes per unit time. Mass flow rate means mass of a fluid which passes per unit of time.
  • the volume flow rate and mass flow rate of the fluid in the front channel 60 is greater than the back channel 70 means that the average volume flow rate and average mass flow rate of the fluid in the front channel 60 is greater than the back channel 70.
  • Average volume/mass flow rate means volume/mass flow over the entire front or back channel 60, 70. Volume/mass flow rate is generally measured at the inlet/outlet of each channel 60, 70.
  • the back channel 70 is configured to have a higher fluid resistance than the front channel 60.
  • the minimum cross section in the back channel 70 is smaller than the minimum cross section in the front channel 60 with respect to cross sections intersecting with the direction of the fluid flow.
  • an average cross-sectional area of the back channel 70 is smaller than the an average cross-sectional area of the front channel 60 with respect to cross sections intersecting with the direction of the fluid flow.
  • the front channel 60 includes a plurality of the straight portions 60a-60i as front sub channels which are arranged in substantially parallel to each other and are connected in series.
  • the back channel 70 includes a plurality of the straight portions 70a-70i as back sub channels which are arranged in substantially parallel to each other.
  • the straight portions 70a-70i are connected in series, and each of which faces to one of the straight portions 60a-60i. With respect to cross sections intersecting with the direction of the fluid flow, at least one of the straight portions 70a-70i has a minimum cross section smaller than a minimum cross section of the corresponding straight portions 60a-60i and/or an average cross-sectional area smaller than an average cross-sectional area of the corresponding straight portions 60a-60i.
  • each of the straight portions 70a-70i has a minimum cross section smaller than a minimum cross section of the corresponding straight portions 60a-60i and/or an average cross-sectional area smaller than an average cross-sectional area of the corresponding straight portions 60a-60i.
  • the volume of the entire back channel 70 is smaller than the volume of the entire front channel 60.
  • the first stagnation prevention means 264 which has an arc-like shape part 264a and a separated straight part 264b, may be arranged in the connecting area 61 a as shown in FIG. 10 .
  • the arc-like shape part 264a and the straight part 264b of the first stagnation prevention means 264 connects the inside wall 602 and the outside wall 604 of the front wall 20.
  • the first stagnation prevention means 264 especially the arc-like shape part 264a of the first stagnation prevention means 264 is arranged in the vicinity of the inner part T1 of the joint 60ab of the straight portions 60a, 60b around which the fluid is to turn as shown in FIG. 10 .
  • the first stagnation prevention means 264 especially the arc-like shape part 264a of the first stagnation prevention means 264 is arranged so as to partially surround the inner part T1 of the joint 60ab of the straight portions 60a, 60b around which the fluid is to turn as shown in FIG. 10 .
  • the arc-like shape part 264a of the first stagnation prevention means 264 is arranged so as to surround the inner part T1 of the joint 60ab of the straight portions 60a, 60b over an angle range of preferably more than 90 degrees as shown in FIG. 10 .
  • the arc-like shape part 264a of the first stagnation prevention means 264 is arranged in the straight portion 60b which is located at the downstream side with respect to the fluid flow among the straight portion 60a, 60b connected.
  • the arc-like shape part 264a is arranged in the connecting area 61 a and in the straight portion 60b which is located on the downstream side among the two straight portions 60a, 60b connected.
  • the arc-like shape part 264a is arranged over part of the connecting area 61 a and part of the straight area.
  • the arc-like shape part 264a is also arranged in the straight portion 60a at the upstream side with respect to the fluid flow.
  • the straight shape part 264b of the first stagnation prevention means 264 is arranged in the straight portion 60b which is located at the downstream side with respect to the fluid flow among the straight portion 60a, 60b connected.
  • the arc-like shape part 264a of the first stagnation prevention means 264 is arranged on the upstream side and the straight part 264b of the first stagnation prevention means 264 is arranged on the downstream side with respect to the fluid flow as shown in FIG. 10 .
  • the maximum distance D1 between the straight part 264b and the extending wall element W2 is shorter than the maximum distance D2 between the arc-like shape part 264a and the extending wall element W2.
  • the distance between the straight part 264b and the extending wall element W2 is not necessarily limited but is almost equal at any points in this embodiment.
  • stagnation prevention means By arranging stagnation prevention means in at least one connecting area of the straight portions that connects the two straight portions and that is located on the most upstream side in the channel with respect to a fluid flow, the fluid is prompted to flow smoothly. It is therefore possible to reduce the deposition of the scale which deteriorates the heat exchanging efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
EP15196286.7A 2015-11-25 2015-11-25 Wärmetauscher Active EP3173722B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15196286.7A EP3173722B1 (de) 2015-11-25 2015-11-25 Wärmetauscher
CN201680066139.3A CN108351184B (zh) 2015-11-25 2016-11-22 热交换器
PCT/JP2016/084575 WO2017090595A1 (en) 2015-11-25 2016-11-22 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15196286.7A EP3173722B1 (de) 2015-11-25 2015-11-25 Wärmetauscher

Publications (2)

Publication Number Publication Date
EP3173722A1 true EP3173722A1 (de) 2017-05-31
EP3173722B1 EP3173722B1 (de) 2019-05-01

Family

ID=54705419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15196286.7A Active EP3173722B1 (de) 2015-11-25 2015-11-25 Wärmetauscher

Country Status (3)

Country Link
EP (1) EP3173722B1 (de)
CN (1) CN108351184B (de)
WO (1) WO2017090595A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107477871A (zh) * 2017-07-20 2017-12-15 广东万和热能科技有限公司 换热器、全预混热水锅炉及其控制方法
EP3425301A1 (de) * 2017-07-07 2019-01-09 Bekaert Combustion Technology B.V. Wärmetauscherelement
WO2019008007A1 (en) * 2017-07-07 2019-01-10 Bekaert Combustion Technology B.V. FLAT SEGMENT FOR SECTIONAL HEAT EXCHANGER
WO2020030386A1 (de) * 2018-08-06 2020-02-13 Webasto SE Wärmeübertrager
CN115143631A (zh) * 2018-06-05 2022-10-04 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670346B2 (en) 2018-01-04 2020-06-02 Hamilton Sundstrand Corporation Curved heat exchanger
US10551131B2 (en) 2018-01-08 2020-02-04 Hamilton Sundstrand Corporation Method for manufacturing a curved heat exchanger using wedge shaped segments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985954A2 (de) * 2007-04-24 2008-10-29 Pierburg GmbH Wärmeübertragungsvorrichtung
WO2009053248A1 (en) 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Metallic porous body incorporated by casting into a heat exchanger
US20130206371A1 (en) * 2010-10-27 2013-08-15 Honda Motor Co., Ltd. Cooling structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985954A2 (de) * 2007-04-24 2008-10-29 Pierburg GmbH Wärmeübertragungsvorrichtung
WO2009053248A1 (en) 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Metallic porous body incorporated by casting into a heat exchanger
US20130206371A1 (en) * 2010-10-27 2013-08-15 Honda Motor Co., Ltd. Cooling structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425301A1 (de) * 2017-07-07 2019-01-09 Bekaert Combustion Technology B.V. Wärmetauscherelement
WO2019008007A1 (en) * 2017-07-07 2019-01-10 Bekaert Combustion Technology B.V. FLAT SEGMENT FOR SECTIONAL HEAT EXCHANGER
CN107477871A (zh) * 2017-07-20 2017-12-15 广东万和热能科技有限公司 换热器、全预混热水锅炉及其控制方法
CN107477871B (zh) * 2017-07-20 2020-05-19 广东万和热能科技有限公司 换热器、全预混热水锅炉及其控制方法
CN115143631A (zh) * 2018-06-05 2022-10-04 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
CN115143630A (zh) * 2018-06-05 2022-10-04 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
US11835261B2 (en) 2018-06-05 2023-12-05 Kyungdong Navien Co., Ltd. Heat exchanger unit
CN115143631B (zh) * 2018-06-05 2023-12-05 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
CN115143630B (zh) * 2018-06-05 2023-12-05 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
US11835262B2 (en) 2018-06-05 2023-12-05 Kyungdong Navien Co., Ltd. Heat exchanger unit
US11879666B2 (en) 2018-06-05 2024-01-23 Kyungdong Navien Co., Ltd. Heat exchanger unit
WO2020030386A1 (de) * 2018-08-06 2020-02-13 Webasto SE Wärmeübertrager

Also Published As

Publication number Publication date
CN108351184A (zh) 2018-07-31
CN108351184B (zh) 2020-06-19
EP3173722B1 (de) 2019-05-01
WO2017090595A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
EP3173722B1 (de) Wärmetauscher
US9557121B2 (en) Heat exchanger
JP4607470B2 (ja) 熱交換器
US10890356B2 (en) Heat exchange device and heat source machine
US11313585B2 (en) Heat exchanger
JP2020026900A (ja) 熱交換器
EP2982924A1 (de) Wärmetauscher
CN107504687B (zh) 一种多路并联扰流管式换热装置
EP3173723B1 (de) Wärmetauscher
EP3173710B1 (de) Wärmetauscher
US20100175860A1 (en) Heat exchanger
CN110388749A (zh) 热交换器以及热源机
JP2011144979A (ja) 熱交換器及びこれを用いる給湯機
JP3958302B2 (ja) 熱交換器
JP2005156033A (ja) 給湯器の熱交換器用フィン、及びこれを備える給湯器用熱交換器
WO2019167312A1 (ja) 熱交換器
JP7471446B2 (ja) 室内熱交換器、及び空気調和機の室内機
JP7174291B1 (ja) 熱交換器および空気調和装置
JP6798357B2 (ja) 熱交換器および熱源機
JP2016048129A (ja) 熱交換器
JP2019027624A (ja) 多管式の排熱回収熱交換器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170808

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1127514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015029228

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1127514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015029228

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231006

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231123

Year of fee payment: 9

Ref country code: DE

Payment date: 20230929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231016

Year of fee payment: 9