EP3167456B1 - Conteneur, son procédé d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur - Google Patents

Conteneur, son procédé d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur Download PDF

Info

Publication number
EP3167456B1
EP3167456B1 EP15736824.2A EP15736824A EP3167456B1 EP 3167456 B1 EP3167456 B1 EP 3167456B1 EP 15736824 A EP15736824 A EP 15736824A EP 3167456 B1 EP3167456 B1 EP 3167456B1
Authority
EP
European Patent Office
Prior art keywords
container
target
target assembly
fraction
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15736824.2A
Other languages
German (de)
English (en)
Other versions
EP3167456A1 (fr
Inventor
Milo CONARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanomarker Sprl
Original Assignee
Nanomarker Sprl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanomarker Sprl filed Critical Nanomarker Sprl
Publication of EP3167456A1 publication Critical patent/EP3167456A1/fr
Application granted granted Critical
Publication of EP3167456B1 publication Critical patent/EP3167456B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/08Holders for targets or for other objects to be irradiated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0015Fluorine

Definitions

  • the invention relates to a container usable for the production of radioisotopes, to a method for obtaining such a container, and to a target assembly comprising such a container.
  • radioisotope It is known to produce a radioisotope by irradiating a target containing a precursor of the radioisotope by means of a particle beam.
  • 18 F is produced by irradiation with a proton beam of a target material containing 18 O enriched water.
  • a particle accelerator such as a cyclotron or linac, is used to produce the particle beam.
  • the target comprises a container having a chamber or cavity, generally closed by a window that allows the passage of the beam, without it being substantially weakened. This window must be as thin as possible, but must withstand the thermal, mechanical and radiation stresses to which it is subjected in operation.
  • the power dissipated in the target during the irradiation by a particle beam is given by the product of the energy of the particles by the current of this beam. This power can be very important.
  • the target is usually cooled by energetic means such as water circulation.
  • the target may be disposed outside the cyclotron.
  • This solution facilitates the construction of the target and allows easy access to it, especially for the cooling means.
  • it requires that the beam be extracted from the accelerator, which presents many difficulties.
  • the various known extraction means such as stripping, the electrostatic deflector, or magnetic, the self extraction, each have known difficulties as well. Extraction by stripping is relatively easy, but uses negative ions, less stable during acceleration, more difficult to produce, and requiring a greater vacuum.
  • the deflectors generally comprise a septum and a high voltage electrode, whose function is to separate the last turn of the beam from the previous one.
  • the septum which heats up, is activated, and can be damaged.
  • the beam can be directed to the target, and the size, angle, and impact position of the beam on the target can be controlled.
  • Another solution is to place the target inside the cyclotron. It is not necessary to extract the beam.
  • the target is placed in the peripheral region of the median plane of the cyclotron.
  • the beam which traverses quasi-circular orbits of increasing radii, presents a certain width, and each tower is separated from the preceding by a certain distance. This distance can be reduced to the point where the beam constitutes a kind of continuous web in the median plane of the cyclotron.
  • a fraction of the beam or ply, located radially outward then strikes the target, while the fraction of the beam or the ply located radially inward continues its course in the machine. This technique is used widely and successfully in the case of solid targets.
  • the document WO2013049809 discloses a target set for producing radioisotopes for the synthesis of radiopharmaceuticals from a liquid precursor.
  • the target represented in Fig.1 comprises a container 10 having a chamber 12 adapted to contain a precursor material of the desired radioisotope.
  • a thin cover sheet 14 made of a beam permeable material covers the chamber and is secured to the container so as to seal the chamber by means of a front clamp 16 and a rear clamp 18.
  • a channel 24 allows access to the chamber 12 for filling or emptying the precursor material.
  • Other modes of joining can be envisaged, such as welding or brazing.
  • the center of the cyclotron is represented by the point O, and the arrow A represents a beam of particles traveling through a tower or an orbit with a radius less than the radial position of the target. This beam will continue its course in the cyclotron, and reappear with increased energy and a larger radius.
  • Arrow B represents an outer turn, tangentially hitting the target's cover sheet. Part of this beam interacts with the precursor contained in the chamber, but with the cover sheet 14, thus losing its energy without producing any useful effect.
  • Arrow C represents an even more external turn, which enters the chamber 12 and interacts with the precursor of the radioisotope it contains. It can be seen that there is an optimal orientation for the target assembly, minimizing the lost beam fraction in the tangential edge of the window 14.
  • the spherical shape chosen is the one that gives the best resistance to pressure, the stresses being distributed in a uniform.
  • the thickness required to allow forming and welding of the two hemispheres and the two tubes results in the beam losing a significant portion of its energy during the crossing, which generates heat, and requires additional cooling. the beam penetration zone.
  • This additional cooling is achieved by a circulation of water, which requires the aluminum window and the sheet of water, which in turn causes a loss of energy and a production of heat. Due to the need for this additional cooling, this target is not suitable for use as an internal target.
  • This target requires a relatively high proton energy (19 MeV) to allow a significant production of 18 F because the energy loss of these protons in the cooling system and the container wall is about 8 MeV.
  • An object of the invention is to provide a container usable for the production of radioisotopes, a method of obtaining such a container, and a target assembly comprising such a container, which is reliable, easy to assemble and to use, and which has a very good transparency to the particle beam.
  • the invention is defined by the independent claims. The dependent claims define preferred embodiments of the invention.
  • the container for the production of radioisotopes by irradiation of a precursor material.
  • the container consists of a metal envelope in one piece, the wall of said envelope having a thin fraction, with a thickness of between 5 and 100 ⁇ m, the balance having a thickness greater than 100 ⁇ m. .
  • said envelope has a symmetry of revolution, said thin fraction extending over a fraction of the height of the envelope.
  • the container may comprise at least one end having a conical shape, the base of the cone being oriented outwards of the container.
  • One end of said envelope can be closed.
  • the thin fraction may have an outer diameter of between 4 mm and 100 mm.
  • the container may consist, at least in part, of at least one of the metals selected from nickel, titanium, niobium, tantalum and stainless steels. Alloys such as Havar®, Invar® and Kovar® are also preferred. Alloys having a low coefficient of thermal expansion are advantageous in the case of rotating targets.
  • the matrix may advantageously be removed by dissolution.
  • a set of target for the production of radioisotopes comprising a container according to the invention, and comprising a support tube comprising at one end a threaded portion, and a ring comprising a adapted internal thread, the support tube and the ring being configured to grip the container.
  • the support tube can then advantageously have a conical end congruent to the end of the container, and the ring have a conical end congruent to the end of the container.
  • the tube of The carrier and the container are rotatably mounted about an axis and the target assembly includes a motor arranged to rotate the support tube and the container.
  • the target assembly may comprise a cooling tube disposed inside the container, arranged to allow the circulation of a cooling liquid.
  • the cooling tube may comprise, at its lower end, a cooling head, which may have on a part of its periphery capable of receiving the beam, a recess, which gives the incident beam a longer path in a precursor liquid.
  • the target set according to the invention can be used as an internal target for a cyclotron or as an external target. It can also be used as a beam stop.
  • Fig. 1 is a sectional view of a container of the prior art, namely that of WO2013049809 and has been described above.
  • the Fig. 2 is a perspective view of a container 100 according to the invention.
  • This container 100 is in the form of a "thimble" having a symmetry of revolution about an axis.
  • the upper part 110 is open and may have a conical shape, the opening of the cone being oriented upwards. As explained below, this arrangement is of interest for assembling the container 100 in a target set.
  • a first cylindrical portion 120 is connected upwardly to the upper portion 110 and down to a thin-walled portion 130.
  • This thin-walled portion 130 is connected to a second cylindrical portion 140, which in turn connects to a cupola 150 closing the container 100 from below.
  • the thickness of the thin fraction is less than or equal to 100 ⁇ m, for example 80, 60, 40.20, 10 or even 5 ⁇ m.
  • the non-thinned portions namely the open top 110, the first 120 and the second 140 cylindrical portion and the cupola 150 are made in a thickness greater than the thickness of the thin wall fraction 130.
  • the non-thinned portions may have a thickness greater than or equal to 100 microns, for example 200 microns or more.
  • the various parts of the container 100 are connected to each other without sharp angles, so that a better mechanical resistance, especially at the pressure, is obtained.
  • the inside diameter may be of the order of 10 mm, the total height of 11 mm, the angle of the cone may be 30 °.
  • the container 100 has been shown in cylindrical form. However, it is possible, within the scope of the present invention, to produce a container 100 having a more complex shape, with an inward curvature, such as a hyperboloid to a web, or a swollen shape, such as a barrel.
  • the container 100 has been shown with an opening up and a closed side down. However, it is conceivable, without departing from the scope of the invention, a container 100 having two openings as shown. There is then a container 100 which can be supplied with target material from above or from below, and in which a flow of coolant or precursor fluid passing through the container 100 from top to bottom can be achieved.
  • the choice of the thickness of the thin portion 130 is an important element of the invention.
  • the residual energy of a proton beam having an energy of 7, 10, 15, 20, and 30 MeV after passing through a nickel sheet of various thicknesses has been indicated. It can be seen that when the sheet has a thickness of 5 ⁇ m, the energy loss of the protons is negligible, namely, 3% at 7 MeV, and less than 0.2% at 30 MeV. On the other hand, at 100 ⁇ m, and low energy, the loss in the sheet is substantial. It is then necessary to use an accelerator at higher energy and therefore more expensive. It is known that the production yield of 18 F from H 2 18 O by reaction (p, n) is practically zero when the protons have an energy less than 3 MeV.
  • the Fig. 3 is an exploded view and perspective view of the lower portion of a target assembly according to the invention and shows how the container 100 is arranged to a support tube 200.
  • the tube has a male threaded portion 220.
  • a ring 300 presents a corresponding female threaded portion 310.
  • the ring covers the upper part 110 of the container 100 and apply it against the lower part of the support tube 200.
  • At least the thin wall fraction 130 of the container 100 then emerges from the assembly and form.
  • the support tube 200 and the ring 300 may comprise flats 210, 320 which then allow an operator to assemble and disassemble the assembly very quickly by means of two flat keys.
  • the support tube 200 and the ring 300 may be made for example of stainless steel.
  • the lower part of the support tube 200 has a conical end 230 congruent with the conical portion 110 of the container 100, itself congruent a conical end 330 of the ring 300.
  • an excellent seal can be obtained without having to resort to a seal: the sealing is ensured by the metal-to-metal contact.
  • the Fig. 4 is a sectional view of the lower part of a target assembly according to the invention.
  • the assembly "glove finger” 400 which has the dual function of cooling the precursor material contained in the container and which in turn cools the container, and to allow the loading or unloading of the material precursor in the container.
  • a cooling tube 410 closed at its lower end can be inserted into the support tube 200 and end up in the container 100.
  • the container 100 has an internal diameter of 10 mm, and a height of 10 mm
  • the cooling tube 410 has an outer diameter of 8 mm
  • the irradiation chamber 440 having a working volume of approximately 350 mm 3 .
  • An intermediate tube 420 open at its lower end 425, and of smaller diameter than that of the cooling tube is inserted therein. It is thus possible to circulate a cooling liquid such as water in the space between this cooling tube 410 and this inner tube 420.
  • the arrows A represent the coolant inlet and the arrows B the exit of cooling liquid. Circulation directions A and B can be reversed.
  • the heat exchange surface being large and evenly distributed, this arrangement allows excellent cooling.
  • the assembly "glove finger" 400 remains fixed. The relative movement of these two sets produces a stirring which further improves the cooling, inducing a forced convection.
  • a capillary tube 430 placed axially inside the intermediate tube 420, and sealingly crossing the lower end of the cooling tube 410 to end in the space between the container 100 and the cooling tube 410 allows the loading and unloading of the precursor material as indicated by the bidirectional arrow C. It is shown in enlarged view how the conical portion 110 of the container is sandwiched between the conical end of the ring 330 and the conical end of the support tube 230, thus ensuring the seal without the use of a seal.
  • the target set of the invention is used as an internal target or as an external target, it is advantageous to be able to rotate it. It can be given successively different orientations, for example, a rotation of 10 ° for each use, or preferably, ensure a continuous rotation of the container 100 during the irradiation. It is thus possible to ensure that the entire periphery of the thin wall fraction is traversed by the beam, which ensures a better distribution of heat production over a larger area.
  • the rotation induces stirring of the precursor material, which improves the convection cooling.
  • the Fig. 5 is an axial and perspective sectional view of the upper portion 500 of a target assembly according to the invention, in one embodiment for rotating the container 100.
  • the container 100 (not shown in the figure) and the support tube 200 are arranged in the rotor 570 of an electric motor.
  • the stator 560 is secured to a support case 510 which is fixed. Maintaining and sealing are provided by a bearing-seal having a fixed portion 540 and a rotating portion 542.
  • This bearing-seal may include ball bearings 550 and 550 '.
  • This seal may be for example a ferrofluidic joint such as those provided by Rigaku.
  • the dispensing head of the thermowell 400 emerges at the top of the target assembly and provides access to the inlet or outlet ports 452, 454 for cooling liquid and 430 filling / emptying of the precursor material. There may be two tubes for separate input and output.
  • Figs 6a and 6b a cyclotron 700 in which a set of target according to the invention is arranged.
  • the upper part 500 emerges from the upper face of the cyclotron 700.
  • the support tube 200 has a length such that the container 701 is in the median plane of the cyclotron, the thin fraction of which is exposed to the beam, as shown in detail view 6c.
  • the target assembly of the invention When used as an external target, it can be arranged at the end of the beam line, and receive it radially. It is also possible to produce a container whose thin part is located on the base, such as the containers 907 and 909 shown in FIG. fig.8 and orient the beam towards this base, parallel to the axis of symmetry of the container.
  • FIGS. Figs 7a and 7b wherein the volume of the chamber is even smaller.
  • the Fig. 7a is a perspective view of the lower end of a cooling head 800 of a thimble of this preferred mode. This tube has a face 801 having an optimized profile as discussed below.
  • the coolant inlet / outlet ports 802 make it possible to circulate the coolant inside the cooling head 800.
  • the inlet / outlet ports of the precursor liquid 803 open below the lower end of the cooling head 800 and provide access to the space between the container and the cooling head 800. Notches or grooves 804 may be provided for the placement of temperature probes eg thermocouples.
  • the Fig. 7b is a top view of a section perpendicular to the axis of this cooling head 800 in position in a container 860.
  • the cooling head 800 has on a part of its periphery, a recess 851, which gives the incident beam, represented by the arrows F, a greater path 852 in the precursor liquid, while the space between the cooling head 800 and the container 860 is smaller where there is no incident beam.
  • the length of this path is determined so that the beam can deposit all its useful energy in the precursor material.
  • This arrangement has the following advantages: reducing the volume of precursor required; maximizing cooling, due to a minimum liquid thickness; use of all useful energy (eg energy above 4 MeV for protons in H 2 18 O) beam particles in the precursor.
  • Thermocouples 805 provide real-time temperature control of the target.
  • the container 860 is in rotation, while the cooling head 800 is fixed, which promotes the mixing of the precursor liquid, and the heat exchange.
  • the inside diameter of the container 860 is 10 mm
  • the outside diameter of the cooling head is 9.5 mm
  • the useful volume of the chamber is 100 mm 3 .
  • Fig. 9 shows sectional views of a plurality of embodiments of containers according to the invention.
  • the arrow X represents the direction of the incident beam.
  • the X arrow also indicates the position of the thin wall.
  • the cuts are limited to the facial section of the solids so as to facilitate the representation of the thin walls.
  • the container 901, symmetrical of revolution, cylindrical, and conical top end is one of the preferred embodiments of the invention.
  • the container 902, symmetrical of revolution has two open ends, both of conical shape.
  • the containers 903 and 904 are similar to the container 901, except they have an open end with a flat edge and an open end with a cylindrical edge, respectively.
  • the container 905 is similar to the container 901, except that it has a shape of "barrel"
  • the container 906 is similar to the container 901, except that it has a hyperboloid shape to a web.
  • the container 907 is similar to the container 901, except that it has a thin wall on the closed end. It thus allows axial penetration of the beam.
  • the container 908, unlike the other containers shown, has no symmetry of revolution, but a square or rectangular section, the thin wall may extend over a portion of two or three faces. This container is also represented in a cavalier perspective.
  • the container 910 is similar to the container 901, except that it has a larger diameter, for example 50 mm, and a flat bottom.
  • the container 909 is similar to the container 910, except that the thin portion is arranged in a ring on the flat bottom and allows axial penetration of the beam.
  • This container can advantageously be used in an external target, in which the incident beam is parallel to the axis of rotation, as represented by the arrow X.
  • the targets 901 to 907 can be arranged in such a way that the beam penetrates radially into the target.
  • the container 100 according to the invention has the advantage of being in one piece, that is to say not requiring any means of assembly, or assembly or disassembly work.
  • the thin fraction 130 of the container 100 constitutes, as it were, a window integrated in the container 100.
  • the target and the container 100 according to the invention allow easy disassembly and reassembly. The operator can act quickly and can therefore limit his exposure to radiation.
  • the container of the invention requires little material. It is therefore expensive and has little waste when it needs to be disposed of.
  • the target assembly according to the invention may incidentally serve as a beam stop, for example during the development of an accelerator.
  • the use of the words up / down bottom / top is to be understood as being related to the orientation of the components shown in the drawings.
  • the invention can be applied to other liquid precursors, such as than the ordinary water H 2 16 O which produces 13 N during the irradiation with protons, or gaseous such as 14 N 2 , to obtain 11 C.
  • the invention also applies to the case of a precursor material such as 11 B 2 O 3 , which produces 11 C by reaction (p, n) and form of 11 CO 2 that can be collected.
  • Other particles can be used, such as deuterons and alpha particles.
  • the target according to the invention can be used, the chamber of the container being at atmospheric pressure, or the chamber being kept under pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Particle Accelerators (AREA)

Description

    Domaine technique
  • L'invention se rapporte à conteneur utilisable pour la production de radio-isotopes, à un procédé permettant d'obtenir un tel conteneur, et à un ensemble de cible comportant un tel conteneur.
  • Description de l'état de la technique
  • Il est connu de produire un radio-isotope par irradiation d'une cible contenant un précurseur du radio-isotope au moyen d'un faisceau de particules. On produit notamment du 18F par irradiation par un faisceau de protons d'un matériau cible contenant de l'eau enrichie en 18O.
  • On utilise un accélérateur de particules, tel qu'un cyclotron ou un linac, pour la production du faisceau de particules. Lorsque le précurseur du radio-isotope est un liquide ou un gaz, la cible comporte un conteneur comportant une chambre ou cavité, généralement fermée par une fenêtre qui permet le passage du faisceau, sans que celui-ci ne soit affaibli substantiellement. Cette fenêtre doit donc être aussi mince que possible, mais doit résister aux contraintes thermique, mécaniques et de rayonnement auxquelles elle est soumise en fonctionnement. La puissance dissipée dans la cible lors de l'irradiation par un faisceau de particules est donnée par le produit de l'énergie des particules par le courant de ce faisceau. Cette puissance peut être très importante. La cible est généralement refroidie par des moyens énergiques tels qu'une circulation d'eau.
  • Dans le cas de l'utilisation d'un cyclotron, la cible peut être disposée à l'extérieur du cyclotron. Cette solution facilite la construction de la cible et permet un accès aisé à celle-ci, notamment pour les moyens de refroidissement. Cependant, elle requiert que le faisceau soit extrait de l'accélérateur, ce qui présente de nombreuses difficultés. Les divers moyens d'extraction connus, tels que le stripping, le déflecteur électrostatique, ou magnétique, l'auto extraction, présentent chacun des difficultés connues également. L'extraction par stripping est relativement facile, mais fait appel à des ions négatifs, moins stables lors de l'accélération, plus difficiles à produire, et requérant un vide plus poussé. Les déflecteurs comportent en général un septum et une électrode à haute tension, qui ont pour fonction de séparer le dernier tour du faisceau du précédent. Lorsque les tours successifs sont rapprochés ou se chevauchent, une fraction du faisceau frappe le septum, qui chauffe, est activé, et peut être endommagé. Cependant, lorsque le faisceau a été extrait, il peut être dirigé vers la cible, et on peut contrôler la taille, l'angle et la position d'impact du faisceau sur la cible.
  • Une autre solution consiste à placer la cible à l'intérieur du cyclotron. Il n'est alors pas nécessaire d'extraire le faisceau. La cible est placée dans la région périphérique du plan médian du cyclotron. Le faisceau, qui parcourt des orbites quasi-circulaires de rayons croissants, présente une certaine largeur, et chaque tour est séparé du précédent d'une certaine distance. Cette distance peut être réduite, au point que le faisceau constitue une sorte de nappe continue dans le plan médian du cyclotron. Une fraction du faisceau ou de la nappe, située radialement vers l'extérieur frappe alors la cible, tandis que la fraction du faisceau ou de la nappe située radialement vers l'intérieur poursuit son parcours dans la machine. Cette technique est utilisée largement et avec succès dans le cas de cibles solides.
  • Le document WO2013049809 divulgue un ensemble de cible pour produire des radio-isotopes pour la synthèse de produits radiopharmaceutiques à partir d'un précurseur liquide. La cible, représentée à la Fig.1 comprend un conteneur 10 comportant une chambre 12 apte à contenir un matériau précurseur du radio-isotope désiré. Une feuille de couverture mince 14 faite d'un matériau perméable au faisceau couvre la chambre et est solidarisée au conteneur de manière à assurer l'étanchéité de la chambre au moyen d'une bride de serrage avant 16 et d'une bride de serrage arrière 18. Un canal 24 permet l'accès à la chambre 12 pour le remplissage ou la vidange du matériau précurseur. D'autres modes de solidarisations peuvent être envisagés, tel le soudage ou le brasage. On a représenté par le point O le centre du cyclotron, et par la flèche A un faisceau de particules parcourant un tour ou une orbite d'un rayon inférieur à la position radiale de la cible. Ce faisceau va poursuivre son parcours dans le cyclotron, et réapparaître avec une énergie accrue et un rayon plus grand. La flèche B représente un tour plus extérieur, frappant tangentiellement la feuille de couverture de la cible. Une partie de ce faisceau n'interagit par avec le précurseur contenu dans la chambre, mais avec la feuille de couverture 14, perdant ainsi son énergie sans produire d'effet utile. La flèche C représente un tour encore plus extérieur, qui pénètre dans la chambre 12 et y interagit avec le précurseur du radio-isotope qu'elle contient. On voit qu'il existe une orientation optimale pour l'ensemble de cible, minimisant la fraction de faisceau perdue dans le bord tangentiel de la fenêtre 14. Ceci implique un réglage précis donc difficilement reproductible de l'orientation de la cible lors de chaque intervention. L'assemblage de cette cible, en particulier de la feuille de couverture est fragile et délicat. Lorsqu'une telle feuille de couverture doit être remplacée, une intervention d'un technicien doit être effectuée sur un équipement qui a été activé lors de l'irradiation, ce qui nécessite l'attente d'un temps de décroissance de la radioactivité. La chambre de circulation de l'eau de refroidissement 20, alimentée par le tube 22, est disposée en contact d'échange thermique avec la partie arrière de la chambre 12. Le refroidissement ne peut donc qu'être imparfait.
  • Zeisler et al. (Applied Radiation and Isotopes, vol. 53, 2000, pages 449-453) ont construit une cible sphérique en Niobium dans laquelle le faisceau de particules frappe une première fenêtre, constituée d'une feuille d'aluminium de 0.3 mm d'épaisseur, puis une nappe d'eau de refroidissement, d'épaisseur 1.1 mm, et enfin la paroi du conteneur, ayant la forme d'une sphère. Cette sphère a été obtenue en soudant deux hémisphères, elles mêmes obtenues par estampage de flans circulaires en niobium, d'épaisseur 0.25 mm. A la différence des cibles généralement connues, le conteneur de cette cible ne comporte pas de fenêtre mince pour la pénétration du faisceau. Le conteneur doit d'une part résister mécaniquement aux pressions qui peuvent prendre naissance lors de l'irradiation, et d'autre part être suffisamment mince pour réduire la perte d'énergie du faisceau. La forme sphérique choisie est celle qui donne la meilleure résistance à la pression, les contraintes étant réparties de manière uniforme. Cependant, l'épaisseur nécessaire pour permettre le formage et le soudage des deux hémisphères et des deux tubes a pour effet que le faisceau perd une partie significative de son énergie lors de la traversée, ce qui produit de la chaleur, et nécessite un refroidissement additionnel de la zone de pénétration du faisceau.
    Ce refroidissement additionnel est réalisé par une circulation d'eau, ce qui nécessite la fenêtre d'aluminium et la nappe d'eau, qui occasionnent à leur tour une perte d'énergie et une production de chaleur. En raison de la nécessité de ce refroidissement additionnel, cette cible n'est pas adaptée à un usage comme cible interne. Cette cible requiert une énergie relativement élevée des protons (19 MeV) pour permettre une production significative de 18F car la perte d'énergie de ces protons dans le système de refroidissement et la paroi du conteneur est d'environ 8 MeV.
  • Résumé de l'invention
  • Un but de l'invention est de fournir un conteneur utilisable pour la production de radio-isotopes, un procédé d'obtention d'un tel conteneur, et un ensemble de cible comportant un tel conteneur, qui soit fiable, facile à assembler et à utiliser, et qui présente une très bonne transparence au faisceau de particules. L'invention est définie par les revendications indépendantes. Les revendications dépendantes définissent des modes de réalisation préférés de l'invention.
  • Selon un premier aspect de l'invention il est fourni un conteneur pour la production de radio-isotopes par irradiation d'un matériau précurseur. Suivant l'invention, le conteneur est constitué d'une enveloppe métallique d'un seul tenant, la paroi de ladite enveloppe présentant une fraction mince, d'une épaisseur comprise entre 5 et 100 µm, le solde présentant une épaisseur supérieure à 100 µm.
  • Dans un mode de réalisation préféré, ladite enveloppe présente une symétrie de révolution, ladite fraction mince s'étendant sur une fraction de la hauteur de l'enveloppe.
  • Le conteneur peut comporter au moins une extrémité présentant une forme conique, la base du cône étant orientée vers l'extérieur du conteneur.
  • Une extrémité de ladite enveloppe peut être refermée.
  • La fraction mince peut présenter un diamètre extérieur compris entre 4 mm et 100 mm.
  • Le conteneur peut être constitué, au moins pour partie, d'au moins un des métaux sélectionnés parmi le nickel, le titane, le niobium, le tantale et les aciers inoxydables. Des alliages tels que le Havar®, l'Invar® et le Kovar® sont également préférés. Des alliages ayant un faible coefficient de dilatation thermique sont avantageux dans le cas des cibles tournantes.
  • Selon un second aspect de l'invention il est fourni un procédé d'obtention d'un conteneur suivant l'invention, qui comporte les étapes de :
    • fournir une matrice ;
    • electrodéposer sur la matrice une épaisseur d'un matériau métallique, jusqu' obtention d'une première épaisseur comprise entre 5 µm et 100 µm ;
    • masquer une fraction de la surface de ladite matrice ;
    • electrodéposer sur la portion non masquée jusqu' à obtention d'une épaisseur supérieure à 100 µm ;
    • éliminer la matrice.
  • La matrice peut avantageusement être éliminée par dissolution.
  • Selon un troisième aspect de l'invention, il est fourni un ensemble de cible pour la production de radio-isotopes comportant un conteneur suivant l'invention, et comportant un tube de support comportant à une extrémité une partie filetée, et une bague comportant un filetage intérieur adapté, le tube de support et la bague étant configurés pour enserrer le conteneur.
  • Lorsque le conteneur présente une extrémité de forme conique, le tube de support peut alors avantageusement présenter une extrémité conique congruente à l'extrémité du conteneur, et la bague présenter une extrémité conique congruente à l'extrémité du conteneur.
  • Suivant un mode de réalisation préféré de l'invention, le tube de support et le conteneur sont montés en rotation autour d'un axe et l'ensemble de cible comporte un moteur agencé pour mettre le tube de support et le conteneur en rotation.
  • L'ensemble de cible peut comporter un tube de refroidissement disposé à l'intérieur du conteneur, agencé pour permettre la circulation d'un liquide de refroidissement.
  • De manière préférée, le tube de refroidissement peut comporter, à son extrémité inférieure, une tête de refroidissement, qui peut présenter sur une partie de sa périphérie susceptible de recevoir le faisceau, un renfoncement, qui donne au faisceau incident un parcours plus important dans un liquide précurseur.
  • L'ensemble de cible suivant l'invention peut être utilisé comme cible interne à un cyclotron ou comme cible externe. Il peut également être utilisé comme arrêt de faisceau.
  • Brève description des dessins
    • La Fig. 1 est une vue en coupe d'un conteneur de l'art antérieur, à savoir celui de WO2013049809 .
    • La Fig. 2 est une vue en perspective cavalière d'un conteneur suivant l'invention.
    • La Fig. 3 est une vue éclatée et en perspective cavalière de la partie inférieure d'un ensemble de cible suivant l'invention.
    • La Fig. 4 est une vue en coupe de la partie inférieure d'un ensemble de cible suivant l'invention.
    • La Fig. 5 est une vue en coupe axiale et en perspective de la partie supérieure d'un ensemble de cible suivant l'invention, dans un mode de réalisation permettant la mise en rotation du conteneur.
    • Les Figs. 6a, 6b et 6c sont une vue en coupe et en perspective cavalière, une vue en coupe, et une vue de détail, respectivement, d'un cyclotron dans lequel un ensemble de cible suivant l'invention, avec possibilité de rotation, est agencé comme cible interne.
    • La Fig. 7a est une vue en perspective cavalière de l'extrémité inférieure d'un tube de refroidissement d'un doigt de gant suivant un mode de réalisation particulier de l'invention. La Fig. 7b est une vue du dessus d'une coupe perpendiculaire à l'axe de ce tube en position dans un conteneur.
    • La Fig. 8 représente des vues en coupe d'une pluralité de modes de réalisation de conteneurs suivant l'invention et une vue en perspective cavalière de l'un d'entre eux.
    Description détaillée de l'invention
  • La Fig. 1 est une vue en coupe d'un conteneur de l'art antérieur, à savoir celui de WO2013049809 et a été décrite ci-dessus.
  • La Fig. 2 est une vue en perspective cavalière d'un conteneur 100 suivant l'invention. Ce conteneur 100 se présente sous la forme d'un « dé à coudre », ayant une symétrie de révolution autour d'un axe. La partie supérieure 110 est ouverte et peut présenter une forme conique, l'ouverture du cône étant orientée vers le haut. Comme expliqué ci-après, cette disposition présente un intérêt pour l'assemblage du conteneur 100 dans un ensemble de cible. Une première partie cylindrique 120 se raccorde vers le haut à la partie supérieure 110 et vers le bas à une fraction de paroi mince 130. Cette fraction de paroi mince 130 se raccorde à une deuxième partie cylindrique 140, qui elle-même se raccorde à une coupole 150 refermant le conteneur 100 par le bas. L'épaisseur de la fraction mince est inférieure ou égale à 100 µm, par exemple 80, 60, 40,20, 10 ou même 5 µm. Une épaisseur plus faible donne une meilleure transparence au faisceau et donc un meilleur rendement de production, mais est plus fragile. Le demandeur a expérimenté que la valeur de 20 µm donnait un bon compromis entre ces exigences contradictoires. Les parties non amincies, à savoir la partie supérieure ouverte 110, la première 120 et la deuxième 140 partie cylindrique et la coupole 150 sont réalisées dans une épaisseur supérieure à l'épaisseur de la fraction 130 de paroi mince. Par exemple, lorsque la fraction mince présent une épaisseur de 20 µm, les parties non-amincies peuvent présenter une épaisseur supérieure ou égale à 100 µm, par exemple 200 µm ou plus. Les diverses parties du conteneur 100 se raccordent l'une à l'autre sans angles vifs, de telle sorte qu'une meilleure résistance mécanique, notamment à la pression, est obtenue. Le diamètre intérieur peut être de l'ordre de 10 mm, la hauteur totale de 11 mm, l'angle du cône peut être de 30°. Le conteneur 100 a été représenté sous forme cylindrique. Cependant, on peut, sans sortir du cadre de la présente invention, réaliser un conteneur 100 présentant une forme plus complexe, avec une courbure vers l'intérieur, comme un hyperboloïde à une nappe, ou une forme enflée, comme un tonneau. Le conteneur 100 a été représenté avec une ouverture vers le haut et un coté fermé vers le bas. Cependant, on peu concevoir, sans sortir du cadre de l'invention, un conteneur 100 présentant deux ouvertures comme celle représentée. On a alors un conteneur 100 qui peut être alimenté en matériau cible par le haut ou par le bas, et dans lequel une circulation de fluide réfrigérant ou de fluide précurseur traversant le conteneur 100 de haut en bas peut être réalisée.
  • L'obtention d'un conteneur 100 suivant l'invention, en particulier lorsque la fraction mince 130 est très mince, présente de nombreuses difficultés. Le demandeur a mis au point un procédé de fabrication grâce auquel la forme représentée ou d'autres formes, peut être réalisée aisément. Ce procédé est basé sur l'électroformage :
    • On réalise une matrice ayant la forme de l'intérieur du conteneur 100. Cette matrice peut être réalisée par exemple en aluminium ;
    • On procède par électrodéposition au dépôt d'une couche métallique sur toute la surface extérieure de la matrice, jusqu'à obtention de l'épaisseur désirée pour la partie mince ;
    • On masque une fraction de la hauteur de la matrice, par application d'une couche isolante, exemple un vernis ou un ruban plastique ;
    • On poursuit l'électrodéposition jusqu'à obtenir l'épaisseur désirée pour les parties non-amincies ;
    • On élimine la matrice, par exemple dans une solution caustique.
    L'épaisseur du dépôt est déterminée par l'intensité du courant et la durée d'application de celui-ci. Les métaux suivants peuvent être utilisés : le nickel, le titane, le niobium, le tantale et des alliages peuvent également être obtenus comme l'acier inoxydable, le Havar® (alliage à base de cobalt), l'Invar® ou le Kovar®. Dans le cas d'une cible tournante, le point de pénétration du faisceau dans le conteneur constitue un point chaud, qui se déplace en continu. Ce point est source de dilatations/contractions thermiques, qui peuvent conduire à une fatigue du métal. Le choix d'un matériau à faible coefficient de dilatation, tel l'Invar® et le Kovar®, peut alors présenter un intérêt. On peut également déposer des métaux ou alliages différents au cours d'étapes successives d'électrodéposition, de manière à obtenir une première couche dans un matériau, et une ou plusieurs autres couches dans d'autres matériaux. On peut ainsi choisir le matériau constituant la fraction mince en raison de sa résistance au faisceau, ou la couche en contact avec le matériau précurseur dans un matériau présentant une compatibilité chimique avec le matériau précurseur. Le niobium peut avantageusement être utilisé pour la première couche, formant la paroi interne du conteneur, qui est en contact avec le matériau précurseur. En effet, il est connu que l'utilisation de niobium ne conduit pas à la contamination du radio-isotope produit par des radio-isotopes non désirés.
  • Le choix de l'épaisseur de la partie mince 130 est un élément important de l'invention. Dans le tableau ci-dessous, on a indiqué l'énergie résiduelle d'un faisceau de protons ayant une énergie respectivement de 7, 10, 15, 20, et 30 MeV après passage à travers une feuille de Nickel de diverses épaisseurs. On voit que lorsque la feuille a une épaisseur de 5 µm, la perte d'énergie des protons est négligeable, à savoir, mois de 3% à 7 MeV, et moins de 0,2 % à 30 MeV. Par contre, à 100 µm, et faible énergie, la perte dans la feuille est substantielle. Il est nécessaire alors de recourir à un accélérateur à plus haute énergie et donc plus couteux. Il est connu que le rendement de production du 18F à partir d'H2 18O par réaction (p,n) est pratiquement nul lorsque les protons ont une énergie inférieure à 3MeV. Pour obtenir un rendement supérieur à 60mCi/µA, il est nécessaire d'utiliser des protons de 6 MeV au moins. Les valeurs d'épaisseur indiquées en gras dans le tableau ci-dessous, sont donc les épaisseurs maximums préférées, en fonction de l'énergie du faisceau disponible. Si l'on souhaite un rendement encore supérieur à 60mCi/µA, il faut réduire encore l'épaisseur de la fraction mince.
    NICKEL E incidente <MeV>
    Epaisseur Feuille 7 10 15 20 30
    <µm> E transmise <MeV>
    5 6,84 9,87 14,91 19,92 29,94
    10 6,67 9,74 14,81 19,85 29,89
    20 6,32 9,48 14,62 19,70 29,78
    40 5,59 8,95 14,24 19,39 29,55
    60 4,77 8,38 13,85 19,07 29,33
    80 3,86 7,80 13,43 18,76 29,10
    100 2,75 7,16 13,01 18,44 28,86
    200 arrêt 3,00 10,79 16,75 27,72
    Le choix d'une paroi plus mince, par exemple inférieure ou égale à 100 µm, permet de limiter la production de chaleur lors de la traversée du faisceau. Le tableau ci-dessus guide le choix de l'épaisseur lorsque le matériau choisi est le nickel. D'autres métaux, tels le niobium, le titane, ou le Havar®, ont une transparence légèrement plus grande et donneront des résultats meilleurs.
  • La Fig. 3 est une vue éclatée et en perspective cavalière de la partie inférieure d'un ensemble de cible suivant l'invention et montre comment le conteneur 100 est agencé à un tube de support 200. Le tube présente une partie filetée mâle 220. Une bague 300 présente une partie filetée femelle correspondante 310. La bague vient recouvrir la partie supérieure 110 du conteneur 100 et l'appliquer contre la partie inférieure du tube de support 200. Au moins la fraction de paroi mince 130 du conteneur 100 émerge alors de l'ensemble ainsi formé. Le tube support 200 et la bague 300 peuvent comporter des méplats 210, 320 qui permettent alors à un opérateur d'assembler et désassembler l'ensemble très rapidement au moyen de deux clés plates. Le tube de support 200 et la bague 300 peuvent être réalisés par exemple en acier inoxydable. D'autres moyens d'assemblages mécaniques peuvent également être utilisés sans sortir du cadre de l'invention, tels que des colliers de serrage à verrouillage rapide. Dans un mode préféré de l'invention, la partie inférieure du tube de support 200 comporte une extrémité conique 230 congruente à la partie conique 110 du conteneur 100, elle-même congruente une extrémité conique 330 de la bague 300. Dans ce mode de réalisation, une excellente étanchéité peut être obtenue sans devoir recourir à un joint : l'étanchéité est assurée par le contact métal sur métal.
  • La Fig. 4 est une vue en coupe de la partie inférieure d'un ensemble de cible suivant l'invention. Outre les éléments déjà décrits en relation avec la Fig. 3, on y a représente l'ensemble "doigt de gant" 400 qui a pour double fonction d'assurer le refroidissement du matériau précurseur contenu dans le conteneur et qui refroidit à son tour le conteneur, et de permettre le chargement ou le déchargement du matériau précurseur dans le conteneur. Un tube de refroidissement 410 fermé à son extrémité inférieure peut être inséré dans le tube de support 200 et aboutir dans le conteneur 100. Dans un exemple de réalisation, le conteneur 100 présente un diamètre interne de 10 mm, et une hauteur de 10 mm, le tube de refroidissement 410 un diamètre externe de 8 mm, la chambre d'irradiation 440 présentant un volume utile de d'approximativement 350 mm3. Un tube intermédiaire 420, ouvert à son extrémité inférieure 425, et de diamètre inférieur à celui du tube de refroidissement est inséré dans celui-ci. On peut ainsi faire circuler un liquide de refroidissement tel que de l'eau dans l'espace compris entre ce tube de refroidissement 410 et ce tube intérieur 420. Les flèches A représentent l'entrée de liquide de refroidissement et les flèches B la sortie de liquide de refroidissement. Les sens de circulation A et B peuvent être inversés. La surface d'échange thermique étant importante et répartie uniformément, cet agencement permet un excellent refroidissement. Dans le cas où l'ensemble de cible permet la rotation de l'ensemble constitué par le conteneur 100, le tube de support 200 et la bague 300, l'ensemble « doigt de gant » 400 reste fixe. Le mouvement relatif de ces deux ensembles produit un brassage qui améliore encore le refroidissement, en induisant une convection forcée. Un tube capillaire 430, placé axialement à l'intérieur du tube intermédiaire 420, et traversant de manière étanche l'extrémité inférieure du tube de refroidissement 410 pour aboutir dans l'espace compris entre le conteneur 100 et le tube de refroidissement 410 permet le chargement et le déchargement du matériau précurseur comme indiqué par la flèche bidirectionnelle C. On a représenté en vue agrandie comment la partie conique 110 du conteneur est enserrée entre l'extrémité conique de la bague 330 et l'extrémité conique du tube de support 230, assurant ainsi l'étanchéité sans utilisation d'un joint.
  • Que l'ensemble de cible de l'invention soit utilisé comme cible interne ou comme cible externe, il est avantageux de pouvoir la mettre en rotation. On peut soit lui donner successivement des orientations différentes, par exemple, une rotation de 10° pour chaque utilisation, soit de manière préférée, assurer une rotation continue du conteneur 100 au cours de l'irradiation. On peut ainsi faire en sorte que toute la périphérie de la fraction de paroi mince soit traversée par le faisceau, ce qui assure une meilleure répartition de la production de chaleur sur une plus grande surface. En outre, dans le cas d'une cible liquide, la rotation induit un brassage du matériau précurseur, ce qui améliore le refroidissement par convection. La Fig. 5 est une vue en coupe axiale et en perspective de la partie supérieure 500 d'un ensemble de cible suivant l'invention, dans un mode de réalisation permettant la mise en rotation du conteneur 100. Le conteneur 100 (non représenté sur la figure) et le tube de support 200 sont agencés dans le rotor 570 d'un moteur électrique. Le stator 560 est solidaire d'un boitier de support 510 qui est fixe. Le maintien et l'étanchéité sont assurés par un palier-joint présentant une partie fixe 540 et une partie tournante 542. Ce palier-joint peut comporter des roulements à billes 550 et 550'. Ce joint peut être par exemple un joint ferrofluidique tels que ceux fournis par la société Rigaku. La tête de distribution du doigt de gant 400 émerge à la partie supérieure de l'ensemble de cible et donne accès aux orifices d'entrée ou de sortie 452, 454 de liquide de refroidissement.et 430 remplissage / vidange du matériau précurseur. Il peut y avoir deux tubes pour entrée et sortie séparées.
  • On a représenté aux Figs 6a et 6b un cyclotron 700 dans lequel un ensemble de cible suivant l'invention est disposé. La partie supérieur 500 émerge de la face supérieure du cyclotron 700. Le tube de support 200 a une longueur telle que le conteneur 701 se situe dans le plan médian du cyclotron, la fraction mince de celui-ci étant exposée au faisceau, comme montré à la vue de détail 6c. Lorsque l'ensemble de cible de l'invention est utilisé en cible externe, il peut être disposé à l'extrémité de la ligne de faisceau, et recevoir celui-ci radialement. On peut également réaliser un conteneur dont la partie mince se situe sur la base comme les conteneurs 907 et 909 représentés à la fig.8 et orienter le faisceau vers cette base, parallèlement à l'axe de symétrie du conteneur.
  • Certains précurseurs de radio-isotopes, tels le H2 18O, sont précieux et coûteux. Par ailleurs, il est parfois avantageux de pouvoir faire la synthèse radiochimique à partir d'un produit concentré. Il est donc avantageux de minimiser la quantité à mettre en oeuvre. A cette fin, on a conçu un mode préféré de l'invention représenté aux Figs 7a et 7b dans lequel le volume de la chambre est encore plus réduit. La Fig. 7a est une vue en perspective cavalière de l'extrémité inférieure d'une tête de refroidissement 800 d'un doigt de gant de ce mode préféré. Ce tube présente une face 801 ayant un profil optimisé comme discuté ci-après. Les orifices 802 d'entrée/sortie du liquide de refroidissement permettent de faire circuler le liquide de refroidissement à l'intérieur de la tête de refroidissement 800. Dans cet exemple, il y a deux tubes parallèles d'entrée et de sortie, mais il pourrait n'y en avoir qu'un seul comme dans l'exemple de la Fig.4. Les orifices d'entrée/sortie du liquide précurseur 803 débouchent en dessous de l'extrémité inférieure de la tête de refroidissement 800 et permettent d'accéder à l'espace compris entre le conteneur et la tête de refroidissement 800. Des encoches ou des rainures 804 peuvent être prévues pour le placement de sondes de température par exemple des thermocouples. La Fig. 7b est une vue du dessus d'une coupe perpendiculaire à l'axe de cette tête de refroidissement 800 en position dans un conteneur 860. Comme on le voit sur cette coupe, la tête de refroidissement 800 présente sur une partie de sa périphérie, un renfoncement 851, qui donne au faisceau incident, représenté par les flèches F, un parcours 852 plus important dans le liquide précurseur, alors que l'espace entre la tête de refroidissement 800 et le conteneur 860 est plus réduit là où il n'y a pas de faisceau incident. La longueur de ce parcours est déterminée pour que le faisceau puisse déposer toute son énergie utile dans le matériau précurseur. Cet agencement présente les avantages suivants : réduction du volume de précurseur nécessaire ; maximisation du refroidissement, due à une épaisseur de liquide minimale ; utilisation de toute l'énergie utile (par exemple l'énergie supérieure à 4 MeV pour des protons dans H2 18O) des particules du faisceau dans le précurseur. Les thermocouples 805 permettent un contrôle en temps réel de la température la cible. Dans le mode de réalisation d'une cible tournante, le conteneur 860 est en rotation, alors que la tête de refroidissement 800 est fixe, ce qui favorise la brassage du liquide précurseur, et l'échange thermique. Dans cet exemple, le diamètre intérieur du conteneur 860 est de 10 mm, le diamètre extérieur de la tête de refroidissement est de 9,5 mm, et le volume utile de la chambre est de 100 mm3.
  • La Fig. 9 représente des vues en coupe d'une pluralité de modes de réalisation de conteneurs suivant l'invention. On a représenté par la flèche X la direction du faisceau incident. La flèche X indique également la position de la paroi mince. Les coupes sont limitées à la section faciale des solides de manière à faciliter la représentation des parois minces.
    Le conteneur 901, à symétrie de révolution, cylindrique, et extrémité supérieure de forme conique, constitue un des modes préférés de l'invention. Le conteneur 902, à symétrie de révolution, présente deux extrémités ouvertes, toutes deux de forme conique.
    Les conteneurs 903 et 904 sont semblables au conteneur 901, si ce n'est qu'ils présentent une extrémité ouverte avec bord plan et une extrémité ouverte avec bord cylindrique, respectivement.
    Le conteneur 905 est semblable au conteneur 901, si ce n'est qu'il présente une forme de "tonneau"
    Le conteneur 906 est semblable au conteneur 901, si ce n'est qu'il présente une forme hyperboloïde à une nappe.
    Le conteneur 907 est semblable au conteneur 901, si ce n'est qu'il présente une paroi mince sur l'extrémité fermée. Il permet ainsi une pénétration axiale du faisceau.
    Le conteneur 908, à la différence des autres conteneurs représentés, ne présente pas de symétrie de révolution, mais une section carrée ou rectangulaire, la paroi mince pouvant s'étendre sur une partie de deux ou trois faces. Ce conteneur est également représenté en perspective cavalière. Le conteneur 910 est semblable au conteneur 901, si ce n'est qu'il présente un diamètre plus grand, par exemple 50 mm, et un fond plat.
    Le conteneur 909 est semblable au conteneur 910, si ce n'est que la partie mince est aménagée en couronne sur le fond plat et permet une pénétration axiale du faisceau. Ce conteneur peut avantageusement être utilisé dans une cible externe, dans laquelle le faisceau incident est parallèle à l'axe de rotation, comme représenté par la flèche X.
    En cas d'utilisation en cible externe, les cibles 901 à 907 peuvent être disposées de telle sorte que le faisceau pénètre radialement dans la cible.
  • Avantages de l'invention
  • Le conteneur 100 suivant l'invention présente l'avantage d'être d'un seul tenant, c'est-à-dire ne nécessitant pas de moyen d'assemblage, ni de travail de montage ou de démontage. La fraction mince 130 du conteneur 100 constitue en quelque sorte une fenêtre intégrée au conteneur 100. La cible et le conteneur 100 suivant l'invention permettent un démontage et un remontage aisé. L'opérateur peut agir rapidement et peut donc limiter son exposition au rayonnement. Le conteneur de l'invention requiert peu de matière. Il est donc peut couteux et constitue peu de déchet lorsqu'il doit être éliminé. L'ensemble de cible suivant l'invention peut accessoirement servir d'arrêt de faisceau, par exemple lors de la mise au point d'un accélérateur.
  • La présente invention a été décrite en relation avec des modes de réalisations spécifiques, qui ont une valeur purement illustrative et ne doivent pas être considérés comme limitatifs. D'une manière générale, il apparaîtra évident pour l'homme du métier que la présente invention n'est pas limitée aux exemples illustrés et/ou décrits ci-dessus. La présence de numéros de référence aux dessins ne peut être considérée comme limitative, y compris lorsque ces numéros sont indiqués dans les revendications. L'usage des verbes « comprendre », « inclure », « comporter », ou toute autre variante, ainsi que leurs conjugaisons, ne peut en aucune façon exclure la présence d'éléments autres que ceux mentionnés. L'usage de l'article indéfini « un », « une », ou de l'article défini « le », « la » ou « l' », pour introduire un élément n'exclut pas la présence d'une pluralité de ces éléments. L'utilisation des mots haut/bas inférieur/supérieur est à comprendre comme étant relatifs à l'orientation des composants représentés sur les dessins. Bien que les exemples décrits se rapportent à la production de 18F par irradiation par un faisceau de protons d'un matériau cible contenant de l'eau enrichie en 18O, l'invention peut s'appliquer à d'autres précurseurs liquides, tels que l'eau ordinaire H2 16O qui produit 13N lors de l'irradiation par des protons, ou gazeux tels que 14N2, pour l'obtention de 11C. On peut également appliquer l'invention à des matériaux précurseurs pulvérulents ou des poudres en suspension dans un liquide et formant des boues. Enfin, l'invention s'applique également au cas d'un matériau précurseur tel que le 11B2O3, qui produit du 11C par réaction (p,n) et forme du 11CO2 que l'on peut recueillir. D'autres particules peuvent être utilisées, tels les deutons et les particules alpha. De même, la cible suivant l'invention peut s'utiliser, la chambre du conteneur étant à la pression atmosphérique, ou la chambre étant maintenue sous pression.

Claims (16)

  1. Conteneur (100, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910) pour la production de radio-isotopes par irradiation d'un matériau précurseur caractérisé en ce qu'il est constitué d'une enveloppe métallique d'un seul tenant, la paroi de ladite enveloppe présentant une fraction mince (130), d'une épaisseur comprise entre 5 et 100 µm, le solde présentant une épaisseur supérieure à 100 µm.
  2. Conteneur (100, 901, 902, 903, 904, 905, 906, 907, 909, 910) suivant la revendication 1 caractérisé en ce que ladite enveloppe présente une symétrie de révolution, ladite fraction mince s'étendant sur une fraction de la hauteur de l'enveloppe.
  3. Conteneur (100, 901, 902, 905, 906, 907, 908, 909, 910) suivant l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte au moins une extrémité présentant une forme conique, la base du cône étant orientée vers l'extérieur du conteneur.
  4. Conteneur (100, 901, 903, 904, 905, 907, 908, 909, 910) suivant l'une quelconque des revendications précédentes caractérisé en ce qu'une extrémité de ladite enveloppe est refermée.
  5. Conteneur (100, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910) suivant l'une quelconque des revendications précédentes caractérisé en ce que ladite fraction mince présente un diamètre extérieur compris entre 4 mm et 100 mm.
  6. Conteneur (100, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910) suivant l'une quelconque des revendications précédentes caractérisé en ce qu'il est constitué, au moins pour partie, d'au moins un des métaux sélectionnés parmi le nickel, le titane, le niobium, le tantale, le fer, le chrome, le cobalt et les aciers inoxydables.
  7. Procédé d'obtention d'un conteneur (100, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910) suivant l'une quelconque des revendications 1 à 6 caractérisé en ce qu'il comporte les étapes de :
    - fournir une matrice ;
    - electrodéposer sur la matrice une épaisseur d'un matériau métallique, jusqu' obtention d'une première épaisseur comprise entre 5 µm et 100 µm ;
    - masquer une fraction de la surface de ladite matrice ;
    - electrodéposer sur la portion non masquée jusqu' à obtention d'une épaisseur supérieure à 100 µm ;
    - éliminer la matrice.
  8. Procédé suivant la revendication 7 caractérisé en ce que la matrice est éliminée par dissolution.
  9. Ensemble de cible pour la production de radio-isotopes comportant un conteneur (100, 901, 902, 903, 904, 905 , 906, 907, 908, 909, 910) suivant l'une quelconque des revendications 1 à 6 et comportant un tube de support (200) comportant à une extrémité une partie filetée (220), et une bague (300) comportant un filetage intérieur (310) adapté, le tube de support (200) et la bague (300) étant configurés pour enserrer le conteneur.
  10. Ensemble de cible suivant la revendication 9 caractérisé en ce que le conteneur (100, 901, 902, 905, 906, 907, 908, 909, 910) présente une extrémité présentant une forme conique, la base du cône étant orientée vers l'extérieur du conteneur, en ce que le tube de support (200) présente une extrémité conique congruente à l'extrémité du conteneur, et en ce que la bague (300) présente une extrémité conique congruente à l'extrémité du conteneur.
  11. Ensemble de cible suivant l'une quelconque des revendications 9 à 10 caractérisé en ce que le tube de support (200) et le conteneur sont montés en rotation autour d'un axe et que l'ensemble de cible comporte un moteur (560, 570) agencé pour mettre le tube de support (200) et le conteneur en rotation.
  12. Ensemble de cible suivant l'une quelconque des revendications 9 à 11 caractérisé en ce qu'il comporte un tube de refroidissement (410) disposé à l'intérieur du conteneur, et agencé pour permettre la circulation d'un liquide de refroidissement.
  13. Ensemble de cible suivant la revendication 12 caractérisé en ce que le tube de refroidissement (410) comporte à son extrémité une tête de refroidissement (800) qui présente sur une partie de sa périphérie susceptible de recevoir le faisceau, un renfoncement (851), qui donne au faisceau incident un parcours (852) plus important dans un liquide précurseur.
  14. Utilisation de l'ensemble de cible suivant l'une quelconque des revendications 9 à 13 comme cible interne à un cyclotron (700).
  15. Utilisation de l'ensemble de cible suivant l'une quelconque des revendications 9 à 13 comme cible externe.
  16. Utilisation de l'ensemble de cible suivant l'une quelconque des revendications 9 à 13 comme arrêt de faisceau.
EP15736824.2A 2014-07-10 2015-07-09 Conteneur, son procédé d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur Active EP3167456B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2014/0551A BE1023217B1 (fr) 2014-07-10 2014-07-10 Conteneur, son procede d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur
PCT/EP2015/065687 WO2016005492A1 (fr) 2014-07-10 2015-07-09 Conteneur, son procédé d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur

Publications (2)

Publication Number Publication Date
EP3167456A1 EP3167456A1 (fr) 2017-05-17
EP3167456B1 true EP3167456B1 (fr) 2018-04-18

Family

ID=51609855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15736824.2A Active EP3167456B1 (fr) 2014-07-10 2015-07-09 Conteneur, son procédé d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur

Country Status (6)

Country Link
US (1) US10854349B2 (fr)
EP (1) EP3167456B1 (fr)
CN (1) CN106716548B (fr)
BE (1) BE1023217B1 (fr)
CA (1) CA2957639C (fr)
WO (1) WO2016005492A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023217B1 (fr) 2014-07-10 2016-12-22 Pac Sprl Conteneur, son procede d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur
US9961756B2 (en) * 2014-10-07 2018-05-01 General Electric Company Isotope production target chamber including a cavity formed from a single sheet of metal foil
US10354771B2 (en) 2016-11-10 2019-07-16 General Electric Company Isotope production system having a target assembly with a graphene target sheet
US11443868B2 (en) * 2017-09-14 2022-09-13 Uchicago Argonne, Llc Triple containment targets for particle irradiation
US11315700B2 (en) * 2019-05-09 2022-04-26 Strangis Radiopharmacy Consulting and Technology Method and apparatus for production of radiometals and other radioisotopes using a particle accelerator
CZ309802B6 (cs) * 2021-04-16 2023-10-25 Extreme Light Infrastructure ERIC (ELI ERIC) Jaderný terčík, způsob indukce jaderné reakce s tímto jaderným terčíkem a zařízení na výrobu radioizotopů s tímto jaderným terčíkem

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971697A (en) * 1972-04-25 1976-07-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Production of 123 I
US3940617A (en) * 1975-04-07 1976-02-24 The United States Of America As Represented By The United States Energy Research And Development Administration Method for nondestructive fuel assay of laser fusion targets
US6011825A (en) * 1995-08-09 2000-01-04 Washington University Production of 64 Cu and other radionuclides using a charged-particle accelerator
US5713828A (en) * 1995-11-27 1998-02-03 International Brachytherapy S.A Hollow-tube brachytherapy device
EP1429345A1 (fr) * 2002-12-10 2004-06-16 Ion Beam Applications S.A. Dispositif et procédé de production de radio-isotopes
US7831009B2 (en) * 2003-09-25 2010-11-09 Siemens Medical Solutions Usa, Inc. Tantalum water target body for production of radioisotopes
JP2008525968A (ja) * 2004-12-22 2008-07-17 フォックス・チェイス・キャンサー・センター レーザ加速された陽子線治療器およびその超電導電磁石システム
US8526561B2 (en) * 2008-07-30 2013-09-03 Uchicago Argonne, Llc Methods for making and processing metal targets for producing Cu-67 radioisotope for medical applications
KR100982302B1 (ko) * 2008-12-26 2010-09-15 한전원자력연료 주식회사 연료봉 들림 방지 미늘을 가진 이물질여과용 하부지지격자
US20100226472A1 (en) * 2009-03-06 2010-09-09 Westinghouse Electric Company Llc Nuclear fuel element and assembly
AU2011282744B2 (en) * 2010-07-29 2014-11-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Isotope production target
BE1023217B1 (fr) 2014-07-10 2016-12-22 Pac Sprl Conteneur, son procede d'obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2957639C (fr) 2023-02-21
WO2016005492A1 (fr) 2016-01-14
CA2957639A1 (fr) 2016-01-14
US10854349B2 (en) 2020-12-01
BE1023217B1 (fr) 2016-12-22
CN106716548A (zh) 2017-05-24
CN106716548B (zh) 2019-03-15
US20170213614A1 (en) 2017-07-27
EP3167456A1 (fr) 2017-05-17

Similar Documents

Publication Publication Date Title
EP3167456B1 (fr) Conteneur, son procédé d&#39;obtention, et ensemble de cible pour la production de radio-isotopes utilisant un tel conteneur
EP0481869B1 (fr) Buse de traitement de surface par laser, avec apport de poudre
EP2994711B1 (fr) Procede de realisation d&#39;un module d&#39;echangeur de chaleur a au moins deux circuits de circulation de fluide
EP1429345A1 (fr) Dispositif et procédé de production de radio-isotopes
FR2712114A1 (fr) Procédé de fabrication de cibles de production de 99Mo à l&#39;aide d&#39;uranium peu enrichi et cibles ainsi obtenues.
FR2669966A1 (fr) Procede de fabrication de paroi de chambre de combustion, notamment pour moteur-fusee, et chambre de combustion obtenue par ce procede.
CA2879780A1 (fr) Procede de fabrication d&#39;une piece metallique
EP2699376B1 (fr) Dispositif et procede de soudage par friction malaxage d&#39;un ensemble de stockage d&#39;energie electrique
BE1019556A3 (fr) Dispositif destine a la production de radioisotopes.
FR3044659A1 (fr) Traversee etanche de type verre-metal, utilisation en tant que borne pour accumulateur electrochimique au lithium, procede de realisation associe
FR2733581A1 (fr) Enceinte de combustion avec refroidissement par transpiration
FR3063923A1 (fr) Procede d&#39;assemblage d&#39;un insert sur un support, et insert a assembler sur un support
EP3560302B1 (fr) Système de ciblerie à gaz pour production de radio-isotopes
EP3041636B1 (fr) Procede de realisation par friction malaxage d&#39;une bride bi-composant pour enceintes a ultravide ; bride et enceinte associees
EP2036101B1 (fr) Procede de fabrication par brasage diffusion des connexions electriques d&#39;un ensemble de stockage d&#39;energie electrique
BE1019054A3 (fr) Dispositif de production de radio-isotopes.
FR3042065A1 (fr) Procede de fabrication d&#39;un drain thermique et drain thermique associe
FR3043454B1 (fr) Procede de realisation d&#39;un module d&#39;echangeur de chaleur a au moins deux circuits de circulation de fluide, avec etape de compression isostatique a chaud de plaques
WO2014090902A1 (fr) Procédé d&#39;assemblage par sertissage magnétique
EP3197628A1 (fr) Bobine pour soudage de pièces tubulaires par impulsion magnétique et procédé de soudage associé
EP4166881A1 (fr) Module pour la fabrication d&#39;un caloduc a pompe capillaire a rainures réentrantes
EP3178963B1 (fr) Procédé de traitement et réceptacle de confinement d&#39;une anode de production de rayons x
WO2022078951A1 (fr) Crayon de combustible nucléaire et procédé de fabrication
EP2705924A2 (fr) Procédé et dispositif d&#39;obturation d&#39;un conduit contenu dans un corps
EP4247543A1 (fr) Dispositif de synthèse colinéaire de nanoparticules par pyrolyse laser, système et procédé associés

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171103

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20180313

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 991291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015010190

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180418

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180719

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 991291

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015010190

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

26N No opposition filed

Effective date: 20190121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180709

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180418

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200723

Year of fee payment: 6

Ref country code: DE

Payment date: 20200721

Year of fee payment: 6

Ref country code: GB

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200721

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015010190

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210709

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230516

Year of fee payment: 9