EP3159648B1 - Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air - Google Patents

Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air Download PDF

Info

Publication number
EP3159648B1
EP3159648B1 EP15002975.9A EP15002975A EP3159648B1 EP 3159648 B1 EP3159648 B1 EP 3159648B1 EP 15002975 A EP15002975 A EP 15002975A EP 3159648 B1 EP3159648 B1 EP 3159648B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchanger
heat
structures
exchanger plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15002975.9A
Other languages
German (de)
French (fr)
Other versions
EP3159648A1 (en
Inventor
Thomas Hecht
Werner Kippe
Ayhan Yayli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP15002975.9A priority Critical patent/EP3159648B1/en
Priority to RU2016141091A priority patent/RU2016141091A/en
Priority to CN201611020449.XA priority patent/CN106595222A/en
Priority to JP2016205984A priority patent/JP2017090035A/en
Publication of EP3159648A1 publication Critical patent/EP3159648A1/en
Application granted granted Critical
Publication of EP3159648B1 publication Critical patent/EP3159648B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04066Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04072Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Definitions

  • the invention relates to a plate heat exchanger condenser evaporator and a method for the cryogenic separation of air according to the preambles of the independent claims.
  • EP 0952419 A1 describes such a plate heat exchanger condenser evaporator and a corresponding method.
  • evaporation and condensation units can be used for different purposes, among other things as main condensers or as overhead condensers of (raw) argon columns.
  • a plate heat exchanger condenser evaporator as it is based on the present invention, has a number of superimposed heat exchanger plates which form a, usually cuboid, heat exchanger block (block, core).
  • Each of the heat exchanger plates usually has an embossed sheet with heat transfer fins in its central area.
  • the heat exchange ribs for example, straight (plain fins) and possibly perforated (engl. Plain-perforated fins), but also interrupted and Serrated Fins), wavy (English: Herringbone Fins) or be formed in another way.
  • the embossed sheet is surrounded by a border of side elements (English Side Bars).
  • the embossed sheets and side elements of the individual heat exchanger plates are separated by flat sheets (English Parting Sheets).
  • the top and bottom heat exchanger plates each have a cover plate (English: Cap Sheet).
  • the heat exchange ribs and possibly existing fluid distribution and fluid collection structures (see below) of each heat exchanger plate thereby define "fluid guidance structures" in the language used here.
  • the fluid guide means terminate a first group of the heat exchanger plates at first and second outer surfaces of the heat exchanger block, the first and second outer surfaces being opposite and parallel to each other.
  • the first outer surface is also referred to as the "exit surface” and the second outer surface as the "suction surface” for fluid.
  • the fluid guides of the first heat exchanger plate group each have uncovered openings on the outlet surface and the suction surface, in which case an "uncovered" opening means an opening which does not open into a fluid supply line formed on the heat exchanger block or into a corresponding fluid header ,
  • the fluid guide means of the first heat exchanger plate group thus open during operation to a fluid space surrounding the heat exchanger block.
  • the fluid channels of the first heat exchanger plate group in a plate heat exchanger condenser evaporator may run parallel through the entire heat exchanger block, and either no fluid distribution and fluid collection structures are provided, or they are open ended (Open End Distributors).
  • the fluid supply line communicates with fluid distribution structures formed in the heat exchanger plates through the fluid supplied through the fluid supply line to the entire width of the fluid distribution line Heat exchange ribs is distributed.
  • the fluid manifold is in communication with fluid collection structures formed in the heat exchanger plates. Through the latter, fluid is collected over the entire width of the heat exchange fins and fed to the fluid manifold.
  • Corresponding fluid distribution structures and fluid collection structures are known in various configurations, among others from the aforementioned ALPEMA standard.
  • a plate heat exchanger condenser evaporator with the suction surface in a liquid bath of a condensed and to be evaporated fluid, for example, an oxygen-rich fluid in the bottom of the low pressure column of an air separation plant, immersed.
  • Gaseous fluid to be condensed for example a nitrogen-rich top product of the high-pressure column, is fed into the fluid supply line.
  • the fluid guides of the first heat exchanger plate group may be aligned vertically, but at least their openings are arranged in the outlet surface but above their openings in the suction surface, to effect the so-called thermosiphon effect:
  • the condensed and to be evaporated fluid enters via the openings in the suction surface in the fluid guides of the first heat exchanger plate group and there undergoes a heat exchange with the gaseous, to be condensed fluid in the fluid guides the second heat exchanger plate group or there formed (partial) condensate of this fluid , This leads to a partial evaporation in the condensed and to be evaporated fluid.
  • the resulting two-phase mixture has a lower overall density than the condensed and to be evaporated fluid from which it was formed.
  • the invention has as its object to provide measures which eliminate the disadvantages mentioned, in particular to prevent segregation in a plate heat exchanger condenser evaporator in a simple and effective manner.
  • the present invention proposes a plate heat exchanger condenser evaporator with a heat exchanger block having a number of heat exchanger plates with fluid routing structures.
  • the heat exchanger block has outer surfaces. If the heat exchanger block is cuboid, there are a total of six outer surfaces.
  • a first, a second, a third and a fourth outer surface of the heat exchanger block are considered.
  • the first outer surface is opposite to the second outer surface, the third outer surface of the fourth.
  • the first outer surface and the second outer surface are in particular parallel to each other, as well as the third and the fourth.
  • the distance between the first and second outer surfaces corresponds to the height of the heat exchanger block.
  • the first outer surface is in operation of the plate heat exchanger condenser evaporator at the top of the heat exchanger block, the second at the bottom thereof.
  • the second outer surface and a portion of the third and fourth outer surfaces are immersed in a liquid bath of condensed fluid during operation of the plate heat exchanger condenser evaporator.
  • the heat exchanger plates comprise a plurality of first and a plurality of second heat exchanger plates, which basically have different functions and are constructed differently.
  • the fluid guide structures of the first heat exchanger plates and thus the first heat exchanger plates in total, are adapted to evaporate the condensed fluid partially or completely, so that this fluid rises in the fluid guiding structures of the first heat exchanger plates upwards, to which the explained thermosiphon effect is used.
  • the fluid routing structures of the first heat exchanger plates have uncovered openings from both fluid supply lines and fluid manifolds, so that direct entry of the condensed fluid and direct exit of the partially or fully vaporized fluid can be ensured.
  • the said openings are hereinafter also referred to as "first" and “second” openings, wherein via the second openings, the condensed liquid is sucked and discharged via the first openings in partially or completely vaporized form.
  • the second openings used for this purpose are arranged below the liquid level of the liquid bath or the liquid level of the liquid bath is brought to a corresponding height.
  • the exit of the partially or completely vaporized fluid via the first openings can take place either completely above, partly above and partly below or also completely below the liquid level of the liquid bath.
  • a liquid circulation can be effected by the thermosiphon effect, if the evaporation can be made a sufficient pressure difference between the respective openings, which overcomes the hydrostatic pressure gradient.
  • the fluid guiding structures of second heat exchanger plates which are adapted for (partial) condensation of a fluid, run between a fluid supply line arranged on the heat exchanger block and a fluid manifold arranged on the heat exchanger block, so that a fluid to be condensed is fed in via the fluid supply line and via the fluid collecting line in (FIG. partially) condensed form can be removed.
  • the present invention contemplates that the fluid delivery line on the first outer surface, i. in operation on top of the plate heat exchanger condenser evaporator, is arranged.
  • the arrangement of the fluid supply line and the specific configuration of corresponding fluid distribution structures in the fluid-guiding structures of the second heat exchanger plates makes it possible for the present invention to avoid the disadvantageous effect mentioned above of partial separation of a corresponding mixed fluid.
  • the homogeneous distribution of corresponding injected fluid is improved and thus the heat exchange efficiency of a corresponding plate heat exchanger condenser evaporator increases overall.
  • first openings the openings of the fluid-guiding structures of the first heat exchanger plates conventionally arranged on the first outer surface of the heat exchanger block (referred to herein as "first" openings) consist of one through the fluid supply line hidden area must be relocated. It was recognized that the expense of a corresponding displacement and the possible disadvantages due to the influence of the evaporation path are thereby outweighed by the improved fluid distribution in the second heat exchanger plates. Overall, there is a significantly improved heat exchange efficiency.
  • the first openings of the fluid guiding structures of the first heat exchanger plates are arranged either on the first outer surface in a region not covered by the fluid supply line or in each case in a first region of the third and the fourth outer surface.
  • the first openings can therefore be displaced on the first outer surface from a region covered by the fluid supply line or to the third and fourth outer surface.
  • the "first areas" of the third and fourth outer surface are respectively above the liquid level of the fluid to be evaporated by the plate heat exchanger condenser evaporator.
  • the first openings of the fluid guiding structures of the first heat exchanger plates are formed on the first outer surface by fluid collecting structures and displaced by them in the manner just mentioned from the area in which the fluid supply line is located.
  • the fluid collection structures communicate with heat exchange fins in a central region of the fluid routing structures. This makes it possible, without affecting the (partial) evaporation of a corresponding fluid in the first heat exchanger plates or in their fluid guide structures to arrange a fluid supply line on the first outer surface.
  • the fluid supply line extends in a central region of the first outer surface perpendicular to the heat exchanger plates, that is, there is a central feed of fluid into the second fluid guiding structures. This makes it possible to achieve a particularly homogeneous distribution of corresponding fluid and it is possible to completely dispense with a horizontal fluid feed or corresponding fluid distribution structures.
  • first openings of the first heat exchanger plates formed by the fluid collection structures are located on the first outer surface in a region not covered by the fluid supply line or in each case in a first region of the third and the fourth outer surface, they can be referred to as double exit Be formed distributors, as they are known in principle from the field of heat exchanger technology and described in the aforementioned ALPEMA standard. However, as noted, they do not end up as conventional double exit distributors in fluid distribution manifolds.
  • the fluid guide structures of the second heat exchanger plates on the first outer surface are provided with openings which open into the fluid supply lines and are formed by the Fluidverteil Modellen, said Fluidverteil Modellen communicate with heat exchange ribs in a central region of the fluid guide structures.
  • the Fluidverteil Modellen the second heat exchanger plates are designed as central distributors, as also known in principle from the mentioned literature, resulting in the aforementioned advantages.
  • the position of the fluid manifold is also changed from the arrangement in conventional plate exchanger condenser evaporators, i. the fluid manifold is disposed on the second outer surface of the heat exchanger block.
  • the openings of the fluid guide structures of the first heat exchanger plates located in a conventional plate heat exchanger condenser evaporator on the second outer surface are arranged in an area uncovered by the fluid manifold, so that suction is made possible by condensed fluid.
  • the second openings of the fluid guiding structures of the first heat exchanger plates are formed on the second outer surface in an area not covered by the fluid collecting line and / or respectively in second areas of the third and fourth outer surfaces by fluid distribution structures connected to the heat exchange fins in the central region of the fluid routing structures.
  • the fluid manifold is arranged in a central region of the second outer surface and perpendicular to the heat exchanger plates, so that fluid can be collected centrally and therefore no segregation effects can occur here.
  • the fluid distribution structures of the first heat exchanger plates are advantageously designed as so-called double-entry distributors, as described in the above-described standard literature, if the openings of the fluid guiding structures of the first heat exchanger plates are arranged on the second outer surface.
  • the fluid guide structures of the second heat exchanger plates on the second outer surface form openings that open into the fluid manifolds and are formed by fluid collection structures that communicate with the heat exchange fins in the central one Area of fluid management structures in connection.
  • the fluid collection structures of the second heat exchanger plates can be designed as central distributors, which reliably prevents segregation.
  • the mentioned first regions of the third and fourth outer surfaces adjoin the first outer surface, the second regions of the third and fourth outer surfaces adjoin the second outer surface.
  • the first and second areas of the third and fourth outer surfaces each comprise at most 50% of the area of the respective outer surface, in particular at most 40%, 30%, 20% or 10%.
  • the first regions of the third and fourth outer surfaces are completely above, partially above, and partially below, or below, or completely below the level of the fluid to be evaporated in operation of the plate heat exchanger condenser evaporator, the second regions completely below. Details have already been explained.
  • the present invention also extends to a process for the cryogenic separation of air, as it is basically described in the technical literature mentioned above.
  • a process for the cryogenic separation of air in such a process, an oxygen-enriched bottom product and a nitrogen-enriched overhead product are produced using compressed, cooled feed air in a first distillation column.
  • an oxygen-enriched bottoms product and a nitrogen-rich overhead product are produced in a second distillation column.
  • the method according to the present invention is characterized in that one or more plate heat exchanger condenser evaporators are used in one or more of the embodiments explained above, so that a particularly good heat exchange efficiency results in such a method.
  • one or more plate heat exchanger condenser evaporators are used in one or more of the embodiments explained above, so that a particularly good heat exchange efficiency results in such a method.
  • the present invention provides according to a particularly preferred embodiment of the method to use the or one of the plate heat exchanger condenser evaporator as a so-called main condenser, that is, a condenser, which connects the first distillation column and the second distillation column heat exchanging.
  • main condenser that is, a condenser
  • the oxygen-rich bottom product of the second distillation column is partially vaporized
  • the nitrogen-enriched overhead product of the first distillation column is partially liquefied.
  • the plate heat exchanger condenser evaporator is immersed for this purpose in a liquid bath, which is formed from the oxygen-rich bottom product of the second distillation column. Due to the thermosiphon effect, this bottom product rises in the fluid-guiding structures of the first heat exchanger plates and is partially vaporized in this case.
  • the nitrogen-enriched overhead product of the first distillation column is partially liquefied here.
  • a further preferred embodiment of the method according to the invention comprises using a corresponding plate heat exchanger condenser evaporator as the top condenser of an argon column, ie it comprises taking out a fluid from the second distillation column and feeding it into a third distillation column.
  • the third distillation column in this case has a top condenser, in which by means of or one of the plate heat exchanger condenser evaporator (s) a portion of the oxygen-enriched bottom product of the first distillation column is partially vaporized in the fluid routing structures of the first heat exchanger plates, and in which an argon-enriched overhead of the third distillation column in the Fluid management structures of the second heat exchanger plates is partially liquefied.
  • the invention is suitable for use in so-called crude argon columns, in which an argon-enriched product is obtained, but also in so-called argon discharge columns, which are only intended to reduce an argon content in the first and / or second distillation column, so that in this an oxygen product gain in greater purity.
  • an argon discharge column refers to an argon-oxygen separation column, which serves not for the recovery of a pure argon product but for the discharge of argon from the air to be separated in the first and second distillation columns.
  • Their circuit differs only slightly from that of a classical crude argon column, but it contains significantly less theoretical plates, namely less than 40, especially between 15 and 30.
  • the bottom portion of an argon discharge column is connected to an intermediate point of the second distillation column and the argon discharge column becomes cooled by a top condenser, on the evaporation side relaxed bottom liquid is introduced from the high pressure column.
  • An argon discharge column has no bottom evaporator.
  • the top condenser may, as mentioned, be designed as a plate heat exchanger condenser evaporator.
  • FIG. 1 shows a non-inventive plate heat exchanger condenser evaporator in a schematic and partially opened representation.
  • the plate heat exchanger condenser evaporator FIG. 1 is designated overall by 110.
  • a heat exchanger block 10 of the plate heat exchanger condenser evaporator is formed of alternately arranged heat exchanger plates 20 and 30, wherein the heat exchanger plates 20 hereinafter referred to as "first" heat exchanger plates and the heat exchanger plates 30 hereinafter referred to as "second" heat exchanger plates. Corresponding heat exchanger plates are partially explained in more detail in the following figures. Only two corresponding heat exchanger plates 20, 30 are provided with reference numerals, but the entire heat exchanger block 10 is constructed in total from corresponding heat exchanger plates 20, 30.
  • each fluid guide structures are formed, which are designated for the first heat exchanger plates 20 with 21 and for the second heat exchanger plates 30 with 31.
  • fluid routing structures here language used understood both the typically arranged in a central region of the corresponding heat exchanger plates 20, 30 heat exchange ribs, as well as the terminal Fluidverteil- or fluid collection structures (distributors).
  • the heat exchange ribs which, as mentioned, can also be provided in another embodiment, illustrated for both heat exchanger plates 20, 30 and here in each case with 215 and 315 respectively.
  • Corresponding heat exchange fins are, as explained, referred to in the relevant literature as Heat Exchange Fins.
  • the fluid distribution structures 313 have the task, a fluid which is provided via a fluid supply line 40, which is also commonly referred to as header and enters through openings 311 in corresponding second heat exchanger plates 30, over the entire width of the second heat exchanger plates 30 to the heat exchange ribs 315 distribute and thus ensure an effective heat exchange. As mentioned and also with reference to the following FIG. 2 However, this can lead to unequal distributions and corresponding disadvantageous effects. Not illustrated in FIG. 1 Fluid collecting structures of the second heat exchanger plates 30, the fluid that exits the heat exchanger fins 315, collect and supply a fluid manifold 50.
  • the first heat exchanger plates 20 have, in contrast to the second heat exchanger plates 30, no or possibly open-end Fluidverteil Modellen on, but in the FIG. 1 not illustrated.
  • the fluid guide structures 21 of the heat exchanger plates 20 formed from the heat exchange ribs 215 and optionally the open-end Fluidverteil Modellen therefore extend between a first outer surface of the heat exchanger block 10, here denoted by 11, and a second outer surface of the heat exchanger block 10, which is designated here by 12. They have both fluid supply lines and fluid manifolds uncovered openings to these outer surfaces 11, 12, wherein in the illustration of FIG. 1 only the openings to the first outer surface 11 ("first" openings) are illustrated and labeled 211.
  • first outer surface 11 in the representation of FIG. 1 in operation on top of the heat exchanger block 10 and the second outer surface 12 is located on the underside thereof.
  • the edges of the heat exchanger plates 20, 30 further form a third and a fourth outer surface of the heat exchanger block 10, here denoted by 13 and 14. (The fourth outer surface 14 is in FIG. 1 covered.)
  • the fluid guide structures 31 of the second heat exchanger plates 30 run between the fluid supply line 40 and the fluid manifold 50.
  • a gaseous fluid to be condensed for example a nitrogen-rich top product of a high-pressure column of an air separation plant
  • the heat exchanger block 10 is immersed to a certain height in a liquid bath of a fluid to be vaporized, for example, in an oxygen-rich liquid in the bottom of a low pressure column of an air separation plant, it comes to the above-mentioned Termosiphon bin.
  • FIG. 2 is one of the second heat exchanger plates 30 of the in FIG. 1 illustrated plate heat exchanger condenser evaporator illustrated in plan view.
  • the fluid supply line 40 and the fluid manifold 50 are shown schematically, but they are not part of the second heat exchanger plates 30 themselves but are applied to a heat exchanger block 10 formed using the second heat exchanger plates 30.
  • the outer surfaces 11 to 14 of a heat exchanger block 10 are further indicated, which are defined by a corresponding heat exchanger plate 30.
  • fluid is supplied via the fluid supply line 40 and enters the fluid guide means 31 of the second heat exchanger plates 30 via the openings 311.
  • the fluid is first distributed by means of Fluidverteil Camillen 313 on the entire width of the heat exchanger plate 30.
  • the fluid distribution structures 313 and collection structures 314 discussed below are each illustrated as Type B diagonal manifolds, however, other forms of fluid distribution and fluid collection structures may be used, such as those discussed in the aforementioned ALPEMA Standard illustrated forms.
  • Distributed fluid ideally enters the area of the heat exchange fins 315 at the same flow rate and composition over the entire width and is ideally collected over the entire area of the heat exchange fins 315 by means of the fluid collection structures 314.
  • the fluid collected by the fluid collection structures 314 exits the second heat exchanger plate 30 via the openings 312 and is thus supplied to a fluid manifold 50.
  • FIG. 3 a plate heat exchanger condenser evaporator according to an embodiment of the invention is illustrated schematically and designated 100 as a whole. Already in the description of FIG. 1 mentioned elements will not be explained again.
  • the fluid supply line 40 on the first outer surface 11, that is, the top of the heat exchanger block 10 is disposed. This leads, as also explained below, to a significantly better fluid distribution in the second heat exchanger plates 30 and their fluid guiding structures, because they can be made particularly favorable.
  • the openings 311 of the fluid distribution structures 313 of these second heat exchanger plates 30 differ from those in FIG FIG. 1 illustrated type trained.
  • the fluid collection structures of the heat exchanger plates 30 may continue as in FIG FIG. 2 illustrated or obtained a different configuration, depending on where the fluid manifold 50 is arranged. If this is further arranged laterally of the heat exchanger block 10, as in the plate heat exchanger condenser evaporator 110 according to FIG. 1 , an arrangement is used, as in the FIG. 4 is shown. However, it is also possible to displace the fluid collecting line 50 to the second outer surface 12 of the heat exchanger block 10, in which case an arrangement according to FIG. 5 is used. This also leads to consequences for the design of the first heat exchanger plates 20, as with reference to the FIGS. 6 to 8 explained.
  • the first openings 211 of the fluid guide structures 21 of the first heat exchanger plates 20 are displaced by suitable fluid collection structures from a portion of the first outer surface 11 obscured by the fluid supply line 40, but still disposed on the first outer surface 11.
  • the openings 211 of the fluid guiding structures 21 of the first heat exchanger plates 20 may also be displaced on the outer surfaces 13 and 14, as with respect to FIG. 8 shown.
  • FIG. 4 is, as mentioned, a second heat exchanger plate 30 of a plate heat exchanger condenser evaporator according to FIG. 3 illustrated. Again, the fluid supply line 40 and the fluid manifold 50 are shown.
  • the heat exchanger plate 30 shown here has the openings 311 of the fluid distribution structures 313 arranged on top of the heat exchanger plates 30 and thus the first outer surface 11 of the heat exchanger block 10.
  • the fluid supply line 40 additionally illustrated here. Due to the symmetrical design of the fluid distribution structures 313, the fluid can spread better over the entire width of the heat exchanger plate 30 or the heat exchange ribs 315, so that it no longer exists in the area of the fluid distribution structures 313 can lead to demixing effects.
  • the embodiment of a second heat exchanger plate 30 illustrated in FIG. 2 illustrates the fluid collection structures as in conventional second heat exchanger plates 30 FIG. 1 used, trained.
  • the fluid manifold 50 on a second outer surface 12 and the underside of the heat exchanger block 10, respectively.
  • a used for this case second heat exchanger plate 30 is in FIG. 5 illustrated.
  • the fluid collecting structures unite the fluid which emerges from the heat exchange ribs 315 in a central region, so that no or less separation effects can also occur here.
  • the second heat exchanger plates 30 are arranged according to the preceding figures for partially or completely condensing a fluid, the first heat exchanger plates 20, however, are adapted to evaporate a fluid partially or completely.
  • the first heat exchanger plates 20 are operated on the basis of the aforementioned termosiphon effect.
  • first heat exchanger plates 20 are illustrated, as they can be used in the previously described embodiments, namely, when a fluid supply line on the top and a fluid manifold is arranged either laterally or on an underside of the heat exchanger block 11.
  • the fluid supply line 40 and the fluid manifold 50 are illustrated, but the fluid guide structures 21 are not in communication with such fluid supply lines 40, 50.
  • the first heat exchanger plates 20 are, as mentioned, adapted to partially or completely evaporate a fluid and thus bring about the Termosiphon effect.
  • the fluid guide structures 21 must have openings which are uncovered by both fluid supply lines and fluid collecting lines. If the fluid supply line 40 is arranged on the first outer surface of the heat exchanger block 10, no openings of fluid guiding structures 21 of the heat exchanger plates 20 (like those in FIG FIG. 1 illustrated first openings 211) may be provided. These first openings are therefore in the in FIG. 6 example connected to fluid collection 213.
  • the fluid collection structures 213 are designed in the manner of so-called double-exit distributors and provided with openings 211 on the first outer surface 11 of the heat exchanger block 10. However, other configurations may be provided.
  • first openings 211 About the first openings 211 is a partially vaporized fluid discharged at an upper side of the heat exchanger block 10 and the first outer surface 11. Unevaporated fluid runs off on the outside of the heat exchanger block 10.
  • openings 212 of the fluid-guiding structures 21 are provided, which are connected without or only to so-called open-end fluid distribution devices 214. Fluid can thus freely enter the heat exchange ribs 215 and ascend in this way.
  • a Fluidverteil Quilt 214 is used, which is formed for example in the manner of a so-called double-entry distributor. This is in FIG. 7 shown.
  • FIG. 8 illustrates in the case that the fluid distribution line 40 on the first outer surface 11 and the fluid collecting line 50 on the second outer surface 12 is arranged.
  • the formation of the second openings 212 may be as in FIG FIG. 6 shown done.
  • a combination of in FIG. 7 and 8th shown embodiments is possible, ie the formation of the first openings 211 may as in FIG. 6 shown and the formation of the second openings 212 as in FIG. 8 shown or vice versa.

Description

Die Erfindung betrifft einen Plattenwärmetauscher-Kondensatorverdampfer und ein Verfahren zur Tieftemperaturzerlegung von Luft gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a plate heat exchanger condenser evaporator and a method for the cryogenic separation of air according to the preambles of the independent claims.

Stand der TechnikState of the art

EP 0952419 A1 beschreibt einen derartigen Plattenwärmetauscher-Kondensatorverdampfer und ein entsprechendes Verfahren. EP 0952419 A1 describes such a plate heat exchanger condenser evaporator and a corresponding method.

In Luftzerlegungsanlagen können für unterschiedliche Zwecke, unter anderem als Hauptkondensatoren oder als Kopfkondensatoren von (Roh-)Argonsäulen, kombinierte Verdampfungs- und Kondensationseinheiten zum Einsatz kommen.In air separation plants combined evaporation and condensation units can be used for different purposes, among other things as main condensers or as overhead condensers of (raw) argon columns.

Wie beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, Weinheim: 2006, in Abschnitt 2.2.5.6, "Apparatus" bzw. dem Unterabschnitt "Combined Evaporator/Condenser- Heat Transfer Units" auf Seite 52 und 53 erläutert, handelt es sich hierbei typischerweise um Sonderformen von Plattenwärmetauschern (engl. Plate Fin Heat Exchangers). Nachfolgend wird für derartige Einheiten daher der Begriff Plattenwärmetauscher-Kondensatorverdampfer verwendet.Like for example H.-W. Häring (ed.), Industrial Gases Processing, Wiley-VCH, Weinheim: 2006, in Section 2.2.5.6, "Apparatus" or the subsection "Combined Evaporator / Condenser-Heat Transfer Units" on page 52 and 53 These are typically special types of plate heat exchangers (Plate Fin Heat Exchangers). Hereinafter, the term plate heat exchanger condenser evaporator is therefore used for such units.

Bezüglich des fachmännischen Verständnisses der Bezeichnungen für die im Folgenden erläuterten Elemente wird insbesondere auf die Veröffentlichung " The Standards of the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association", 2. Auflage, 2000, insbesondere Abschnitt 1.2.1, "Components of an Exchanger " (nachfolgend kurz als "ALPEMA-Standards" bezeichnet) verwiesen.With regard to the expert understanding of the terms used in the following elements, reference is made in particular to the publication " The Standards of the Brazed Aluminum Plate-Fin Heat Exchanger Manufacturers' Association, 2nd Edition, 2000, especially Section 1.2.1, "Components of an Exchanger (hereafter referred to as "ALPEMA Standards").

Ein Plattenwärmetauscher-Kondensatorverdampfer, wie er der vorliegenden Erfindung zugrunde liegt, weist eine Anzahl von übereinander liegenden Wärmetauscherplatten auf, die einen, üblicherweise quaderförmigen, Wärmetauscherblock (engl. Block, Core), bilden. Jede der Wärmetauscherplatten weist in ihrem zentralen Bereich üblicherweise ein geprägtes Blech mit Wärmeaustauschrippen (engl. Heat Transfer Fins) auf. Die Wärmeaustauschrippen können beispielsweise gerade (engl. Plain Fins) und ggf. perforiert (engl. Plain-perforated Fins), aber auch unterbrochen und
zueinander versetzt (engl. Serrated Fins), wellig (engl. Herringbone Fins) oder in anderer Weise ausgebildet sein.
A plate heat exchanger condenser evaporator, as it is based on the present invention, has a number of superimposed heat exchanger plates which form a, usually cuboid, heat exchanger block (block, core). Each of the heat exchanger plates usually has an embossed sheet with heat transfer fins in its central area. The heat exchange ribs, for example, straight (plain fins) and possibly perforated (engl. Plain-perforated fins), but also interrupted and
Serrated Fins), wavy (English: Herringbone Fins) or be formed in another way.

Das geprägte Blech ist von einer Randeinfassung aus Seitenelementen (engl. Side Bars) umgeben. Die geprägten Bleche und Seitenelemente der einzelnen Wärmetauscherplatten sind durch flache Bleche (engl. Parting Sheets) voneinander getrennt. Die obersten und untersten Wärmetauscherplatten weisen jeweils ein Abdeckblech (engl. Cap Sheet) auf. Die Wärmeaustauschrippen und ggf. vorhandene Fluidverteil- und Fluidsammelstrukturen (siehe unten) jeder Wärmetauscherplatte definieren dabei im hier verwendeten Sprachgebrauch "Fluidführungsstrukturen".The embossed sheet is surrounded by a border of side elements (English Side Bars). The embossed sheets and side elements of the individual heat exchanger plates are separated by flat sheets (English Parting Sheets). The top and bottom heat exchanger plates each have a cover plate (English: Cap Sheet). The heat exchange ribs and possibly existing fluid distribution and fluid collection structures (see below) of each heat exchanger plate thereby define "fluid guidance structures" in the language used here.

In einem Plattenwärmetauscher-Kondensatorverdampfer herkömmlicher Art enden die Fluidführungsmittel einer ersten Gruppe der Wärmetauscherplatten an einer ersten und einer zweiten Außenfläche des Wärmetauscherblocks, wobei die erste und die zweite Außenfläche einander gegenüber und parallel zueinander liegen. Ihrer Funktion entsprechend wird die erste Außenfläche auch als "Austrittsfläche" und die zweite Außenfläche als "Ansaugfläche" für Fluid bezeichnet. Die Fluidführungen der ersten Wärmetauscherplattengruppe weisen jeweils unverdeckte Öffnungen auf der Austrittsfläche und der Ansaugfläche auf, wobei hier unter einer "unverdeckten" Öffnung eine Öffnung verstanden wird, die weder in eine auf dem Wärmetauscherblock ausgebildete Fluidzufuhrleitung noch in eine entsprechende Fluidsammelleitung (engl. Header) mündet. Die Fluidführungsmittel der ersten Wärmetauscherplattengruppe öffnen sich also im Betrieb zu einem den Wärmetauscherblock umgebenden Fluidraum. Insbesondere können die Fluidkanäle der ersten Wärmetauscherplattengruppe in einem Plattenwärmetauscher-Kondensatorverdampfer durch den gesamten Wärmetauscherblock parallel verlaufen und es sind entweder keine Fluidverteil- und Fluidsammelstrukturen (engl. Distributor Fins) vorgesehen oder diese sind offenendig ausgebildet (engl. Open End Distributors).In a plate heat exchanger condenser evaporator conventional type, the fluid guide means terminate a first group of the heat exchanger plates at first and second outer surfaces of the heat exchanger block, the first and second outer surfaces being opposite and parallel to each other. According to its function, the first outer surface is also referred to as the "exit surface" and the second outer surface as the "suction surface" for fluid. The fluid guides of the first heat exchanger plate group each have uncovered openings on the outlet surface and the suction surface, in which case an "uncovered" opening means an opening which does not open into a fluid supply line formed on the heat exchanger block or into a corresponding fluid header , The fluid guide means of the first heat exchanger plate group thus open during operation to a fluid space surrounding the heat exchanger block. In particular, the fluid channels of the first heat exchanger plate group in a plate heat exchanger condenser evaporator may run parallel through the entire heat exchanger block, and either no fluid distribution and fluid collection structures are provided, or they are open ended (Open End Distributors).

In einem Plattenwärmetauscher-Kondensatorverdampfer verlaufen hingegen die Fluidführungen einer zweiten Gruppe von Wärmetauscherplatten, wie auch in normalen Plattenwärmetauschern, zwischen einer Fluidzufuhrleitung und einer Fluidsammelleitung. Die Fluidzufuhrleitung steht in Verbindung mit in den Wärmetauscherplatten ausgebildeten Fluidverteilstrukturen, durch die über die Fluidzufuhrleitung eingespeistes Fluid auf die gesamte Breite der Wärmeaustauschrippen verteilt wird. Entsprechend steht die Fluidsammelleitung in Verbindung mit in den Wärmetauscherplatten ausgebildeten Fluidsammelstrukturen. Durch letztere wird Fluid über die gesamte Breite der Wärmeaustauschrippen gesammelt und der Fluidsammelleitung zugeführt. Entsprechende Fluidverteilstrukturen und Fluidsammelstrukturen sind in unterschiedlichen Ausgestaltungen, unter anderem aus dem zuvor erwähnten ALPEMA-Standard, bekannt.In a plate heat exchanger condenser evaporator, on the other hand, the fluid guides of a second group of heat exchanger plates, as well as in normal plate heat exchangers, run between a fluid supply line and a fluid manifold. The fluid supply line communicates with fluid distribution structures formed in the heat exchanger plates through the fluid supplied through the fluid supply line to the entire width of the fluid distribution line Heat exchange ribs is distributed. Accordingly, the fluid manifold is in communication with fluid collection structures formed in the heat exchanger plates. Through the latter, fluid is collected over the entire width of the heat exchange fins and fed to the fluid manifold. Corresponding fluid distribution structures and fluid collection structures are known in various configurations, among others from the aforementioned ALPEMA standard.

Im Betrieb wird ein Plattenwärmetauscher-Kondensatorverdampfer mit der Ansaugfläche in ein Flüssigkeitsbad eines kondensierten und zu verdampfenden Fluids, beispielsweise ein sauerstoffreiches Fluid im Sumpf der Niederdrucksäule einer Luftzerlegungsanlage, eingetaucht. In die Fluidzufuhrleitung wird gasförmiges, zu kondensierendes Fluid, beispielsweise ein stickstoffreiches Kopfprodukt der Hochdrucksäule, eingespeist. Die Fluidführungen der ersten Wärmetauscherplattengruppe können lotrecht ausgerichtet sein, zumindest sind ihre Öffnungen in der Austrittsfläche aber oberhalb ihrer Öffnungen in der Ansaugfläche angeordnet, um den sogenannten Thermosiphoneffekt zu bewirken:
Das kondensierte und zu verdampfende Fluid tritt über die Öffnungen in der Ansaugfläche in die Fluidführungen der ersten Wärmetauscherplattengruppe ein und erfährt dort einen Wärmetausch mit dem gasförmigen, zu kondensierenden Fluid in den Fluidführungen der zweiten Wärmetauscherplattengruppe bzw. einem dort gebildeten (Teil-)Kondensat dieses Fluids. Hierdurch kommt es in dem kondensierten und zu verdampfenden Fluid zu einer teilweisen Verdampfung. Das dabei entstehende Zweiphasengemisch weist insgesamt eine geringere Dichte auf als das kondensierte und zu verdampfende Fluid, aus dem es gebildet wurde. Es steigt daher in den Fluidführungen der ersten Wärmetauscherplattengruppe auf und tritt über die Öffnungen in der Austrittsfläche aus. Hierdurch ergibt sich eine kontinuierliche Strömung in den Fluidführungen der ersten Wärmetauscherplattengruppe. Das in den Fluidführungen der ersten Wärmetauscherplattengruppe verdampfte Fluid geht in einen Gasraum oberhalb der Austrittsfläche über, nicht verdampftes Fluid fließt an der Außenseite des Wärmetauscherblocks in das Flüssigkeitsbad zurück.
In operation, a plate heat exchanger condenser evaporator with the suction surface in a liquid bath of a condensed and to be evaporated fluid, for example, an oxygen-rich fluid in the bottom of the low pressure column of an air separation plant, immersed. Gaseous fluid to be condensed, for example a nitrogen-rich top product of the high-pressure column, is fed into the fluid supply line. The fluid guides of the first heat exchanger plate group may be aligned vertically, but at least their openings are arranged in the outlet surface but above their openings in the suction surface, to effect the so-called thermosiphon effect:
The condensed and to be evaporated fluid enters via the openings in the suction surface in the fluid guides of the first heat exchanger plate group and there undergoes a heat exchange with the gaseous, to be condensed fluid in the fluid guides the second heat exchanger plate group or there formed (partial) condensate of this fluid , This leads to a partial evaporation in the condensed and to be evaporated fluid. The resulting two-phase mixture has a lower overall density than the condensed and to be evaporated fluid from which it was formed. It therefore rises in the fluid guides of the first heat exchanger plate group and exits via the openings in the exit surface. This results in a continuous flow in the fluid guides of the first heat exchanger plate group. The fluid vaporized in the fluid guides of the first heat exchanger plate group transitions into a gas space above the exit surface, unevaporated fluid flows back into the liquid bath on the outside of the heat exchanger block.

Gleichzeitig kommt es durch den Wärmetausch in den Fluidkanälen der zweiten Wärmetauscherplattengruppe, wie oben angesprochen, zu einer (Teil-)Kondensation. Aus der Fluidsammelleitung dieser zweiten Wärmetauscherplattengruppe kann auf diese Weise ein (Teil-)Kondensat des über die Fluidzufuhrleitung eingespeisten Fluids, d.h. ein flüssiger Strom oder ein Zweiphasenstrom, abgezogen werden.At the same time, due to the heat exchange in the fluid channels of the second heat exchanger plate group, as mentioned above, a (partial) condensation. In this way, a (partial) condensate of the fluid fed in via the fluid supply line, ie a liquid stream or a two-phase stream, can be withdrawn from the fluid collecting line of this second heat exchanger plate group.

In Plattenwärmetauscher-Kondensatorverdampfern kann es, wenn in die Fluidzufuhrleitung der zweiten Wärmetauscherplattengruppe ein Gasgemisch eingespeist wird, in den Fluidverteilstrukturen der Wärmetauscherplatten durch selektive Kondensation und andere Effekte zu einer Entmischung kommen, d.h. in bestimmten Bereichen kann sich eine Gaskomponente des Gasgemischs anreichern. Dies ist insbesondere dann nachteilig, wenn eine der Gaskomponenten ein Inertgas ist. In derartigen Bereichen kann der Fluiddurchgang verhindert und/oder ein effektiver Wärmetausch behindert werden. Im Effekt führt dies zu einer Verringerung der insgesamt zu Verfügung stehender Wärmetauschfläche.In plate heat exchanger condenser evaporators, when a gas mixture is fed into the fluid supply line of the second heat exchanger plate group, segregation may occur in the fluid distribution structures of the heat exchanger plates by selective condensation and other effects, i. in certain areas, a gas component of the gas mixture can accumulate. This is particularly disadvantageous if one of the gas components is an inert gas. In such areas, the fluid passage can be prevented and / or an effective heat exchange can be hindered. In effect, this leads to a reduction in the total available heat exchange surface.

Die Erfindung stellt sich die Aufgabe, Maßnahmen anzugeben, die die genannten Nachteile beseitigen, insbesondere eine Entmischung in einem Plattenwärmetauscher-Kondensatorverdampfer in einfacher und effektiver Weise verhindern.The invention has as its object to provide measures which eliminate the disadvantages mentioned, in particular to prevent segregation in a plate heat exchanger condenser evaporator in a simple and effective manner.

Offenbarung der ErfindungDisclosure of the invention

Diese Aufgabe wird durch einen Plattenwärmetauscher-Kondensatorverdampfer und ein Verfahren zur Tieftemperaturzerlegung von Luft mit den Merkmalen der unabhängigen Patentansprüche gelöst. Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.This object is achieved by a plate heat exchanger condenser evaporator and a process for the cryogenic separation of air with the features of the independent claims. Embodiments are the subject of the dependent claims and the following description.

Vorteile der ErfindungAdvantages of the invention

Die vorliegende Erfindung schlägt einen Plattenwärmetauscher-Kondensatorverdampfer mit einem Wärmetauscherblock vor, der eine Anzahl von Wärmetauscherplatten mit Fluidführungsstrukturen aufweist. Der Wärmetauscherblock weist Außenflächen auf. Ist der Wärmetauscherblock quaderförmig aufgebaut, sind insgesamt sechs Außenflächen vorhanden. Nachfolgend werden eine erste, eine zweite, eine dritte und eine vierte Außenfläche des Wärmetauscherblocks betrachtet. Die erste Außenfläche liegt der zweiten Außenfläche gegenüber, die dritte Außenfläche der vierten. Die erste Außenfläche und die zweite Außenfläche liegen insbesondere parallel zueinander, ebenso die dritte und die vierte. Die Distanz zwischen der ersten und der zweiten Außenfläche entspricht der Höhe des Wärmetauscherblocks. Die erste Außenfläche befindet sich im Betrieb des Plattenwärmetauscher-Kondensatorverdampfers an der Oberseite des Wärmetauscherblocks, die zweite an dessen Unterseite. Die zweite Außenfläche und jeweils ein Teil der dritten und vierten Außenfläche sind im Betrieb des Plattenwärmetauscher-Kondensatorverdampfers in ein Flüssigkeitsbad eines kondensierten Fluids eingetaucht. Die Wärmetauscherplatten umfassen mehrere erste und mehrere zweite Wärmetauscherplatten, die grundsätzlich unterschiedliche Funktion besitzen und unterschiedlich aufgebaut sind.The present invention proposes a plate heat exchanger condenser evaporator with a heat exchanger block having a number of heat exchanger plates with fluid routing structures. The heat exchanger block has outer surfaces. If the heat exchanger block is cuboid, there are a total of six outer surfaces. Hereinafter, a first, a second, a third and a fourth outer surface of the heat exchanger block are considered. The first outer surface is opposite to the second outer surface, the third outer surface of the fourth. The first outer surface and the second outer surface are in particular parallel to each other, as well as the third and the fourth. The distance between the first and second outer surfaces corresponds to the height of the heat exchanger block. The first outer surface is in operation of the plate heat exchanger condenser evaporator at the top of the heat exchanger block, the second at the bottom thereof. The second outer surface and a portion of the third and fourth outer surfaces are immersed in a liquid bath of condensed fluid during operation of the plate heat exchanger condenser evaporator. The heat exchanger plates comprise a plurality of first and a plurality of second heat exchanger plates, which basically have different functions and are constructed differently.

Die Fluidführungsstrukturen der ersten Wärmetauscherplatten und damit die ersten Wärmetauscherplatten insgesamt, sind dazu eingerichtet, das kondensierte Fluid teilweise oder vollständig zu verdampfen, so dass dieses Fluid in den Fluidführungsstrukturen der ersten Wärmetauscherplatten nach oben steigt, wozu der erläuterte Thermosiphoneffekt eingesetzt wird. Die Fluidführungsstrukturen der ersten Wärmetauscherplatten weisen sowohl von Fluidzufuhrleitungen als auch von Fluidsammelleitungen unverdeckte Öffnungen auf, so dass ein direkter Eintritt des kondensierten Fluids und ein direkter Austritt des teilweise oder vollständig verdampften Fluids gewährleistet werden kann.The fluid guide structures of the first heat exchanger plates and thus the first heat exchanger plates in total, are adapted to evaporate the condensed fluid partially or completely, so that this fluid rises in the fluid guiding structures of the first heat exchanger plates upwards, to which the explained thermosiphon effect is used. The fluid routing structures of the first heat exchanger plates have uncovered openings from both fluid supply lines and fluid manifolds, so that direct entry of the condensed fluid and direct exit of the partially or fully vaporized fluid can be ensured.

Die genannten Öffnungen werden nachfolgend auch als "erste" und "zweite" Öffnungen bezeichnet, wobei über die zweiten Öffnungen die kondensierte Flüssigkeit angesaugt und über die ersten Öffnungen in teilweise oder vollständig verdampfter Form abgegeben wird. Damit ein Ansaugen der kondensierten Flüssigkeit aus dem Flüssigkeitsbad möglich ist, werden die hierzu verwendeten zweiten Öffnungen unterhalb des Flüssigkeitsspiegels des Flüssigkeitsbads angeordnet bzw. der Flüssigkeitsspiegel des Flüssigkeitsbads wird auf eine entsprechende Höhe gebracht. Der Austritt des teilweise oder vollständig verdampften Fluids über die ersten Öffnungen kann hingegen entweder vollständig oberhalb, teilweise oberhalb und teilweise unterhalb oder auch vollständig unterhalb des Flüssigkeitsspiegels des Flüssigkeitsbads erfolgen. Auch in den beiden zuletzt genannten Fällen kann ein Flüssigkeitsumlauf durch den Thermosiphoneffekt bewirkt werden, wenn durch die Verdampfung ein ausreichender Druckunterschied zwischen den jeweiligen Öffnungen hergestellt werden kann, der das hydrostatische Druckgefälle überwindet.The said openings are hereinafter also referred to as "first" and "second" openings, wherein via the second openings, the condensed liquid is sucked and discharged via the first openings in partially or completely vaporized form. So that suction of the condensed liquid from the liquid bath is possible, the second openings used for this purpose are arranged below the liquid level of the liquid bath or the liquid level of the liquid bath is brought to a corresponding height. On the other hand, the exit of the partially or completely vaporized fluid via the first openings can take place either completely above, partly above and partly below or also completely below the liquid level of the liquid bath. Also in the two latter cases, a liquid circulation can be effected by the thermosiphon effect, if the evaporation can be made a sufficient pressure difference between the respective openings, which overcomes the hydrostatic pressure gradient.

Die Fluidführungsstrukturen zweiter Wärmetauscherplatten, die zur (Teil-)Kondensation eines Fluids eingerichtet sind, verlaufen hingegen zwischen einer auf dem Wärmetauscherblock angeordneten Fluidzufuhrleitung und einer auf dem Wärmetauscherblock angeordneten Fluidsammelleitung, so dass ein zu kondensierendes Fluid über die Fluidzufuhrleitung eingespeist und über die Fluidsammelleitung in (teil-)kondensierter Form entnommen werden kann.On the other hand, the fluid guiding structures of second heat exchanger plates, which are adapted for (partial) condensation of a fluid, run between a fluid supply line arranged on the heat exchanger block and a fluid manifold arranged on the heat exchanger block, so that a fluid to be condensed is fed in via the fluid supply line and via the fluid collecting line in (FIG. partially) condensed form can be removed.

Die vorliegende Erfindung sieht vor, dass die Fluidzufuhrleitung auf der ersten Außenfläche, d.h. im Betrieb auf der Oberseite des Plattenwärmetauscher-Kondensatorverdampfers, angeordnet ist. Durch die Anordnung der Fluidzufuhrleitung und die spezifische Ausgestaltung entsprechender Fluidverteilstrukturen in den Fluidführungsstrukturen der zweiten Wärmetauscherplatten ermöglicht es die vorliegende Erfindung, den eingangs erwähnten nachteiligen Effekt einer teilweisen Entmischung eines entsprechenden gemischten Fluids zu vermeiden. Durch den Einsatz der vorliegenden Erfindung wird die homogene Verteilung entsprechenden eingespeisten Fluids verbessert und damit die Wärmetauscheffizienz eines entsprechenden Plattenwärmetauscher-Kondensatorverdampfers insgesamt erhöht. Im Rahmen der vorliegenden Erfindung wurde dabei erkannt, dass eine derartige Fluidverteilung deutliche Vorteile bietet, wenngleich die herkömmlicherweise auf der ersten Außenfläche des Wärmetauscherblocks angeordneten Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten (wie erwähnt hier als "erste" Öffnungen bezeichnet) dabei aus einem durch die Fluidzufuhrleitung verdeckten Bereich verlagert werden müssen. Es wurde erkannt, dass der Aufwand einer entsprechenden Verlagerung und die möglichen Nachteile aufgrund der Beeinflussung der Verdampfungsstrecke dabei durch die verbesserte Fluidverteilung in den zweiten Wärmetauscherplatten überwogen werden. Insgesamt ergibt sich eine deutlich verbesserte Wärmetauscheffizienz.The present invention contemplates that the fluid delivery line on the first outer surface, i. in operation on top of the plate heat exchanger condenser evaporator, is arranged. The arrangement of the fluid supply line and the specific configuration of corresponding fluid distribution structures in the fluid-guiding structures of the second heat exchanger plates makes it possible for the present invention to avoid the disadvantageous effect mentioned above of partial separation of a corresponding mixed fluid. By the use of the present invention, the homogeneous distribution of corresponding injected fluid is improved and thus the heat exchange efficiency of a corresponding plate heat exchanger condenser evaporator increases overall. In the context of the present invention, it has been recognized that such a fluid distribution offers significant advantages, although the openings of the fluid-guiding structures of the first heat exchanger plates conventionally arranged on the first outer surface of the heat exchanger block (referred to herein as "first" openings) consist of one through the fluid supply line hidden area must be relocated. It was recognized that the expense of a corresponding displacement and the possible disadvantages due to the influence of the evaporation path are thereby outweighed by the improved fluid distribution in the second heat exchanger plates. Overall, there is a significantly improved heat exchange efficiency.

Erfindungsgemäß sind die ersten Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten entweder auf der ersten Außenfläche in einem nicht durch die Fluidzufuhrleitung verdeckten Bereich oder jeweils in einem ersten Bereich der dritten und der vierten Außenfläche angeordnet. Die ersten Öffnungen können also auf der ersten Außenfläche aus einem durch die Fluidzufuhrleitung verdeckten Bereich oder auf die dritte und vierte Außenfläche verlagert werden. Die "ersten Bereiche" der dritten und vierten Außenfläche liegen dabei jeweils oberhalb des Flüssigkeitsspiegels des durch den Plattenwärmetauscher-Kondensatorverdampfer zu verdampfenden Fluids.According to the invention, the first openings of the fluid guiding structures of the first heat exchanger plates are arranged either on the first outer surface in a region not covered by the fluid supply line or in each case in a first region of the third and the fourth outer surface. The first openings can therefore be displaced on the first outer surface from a region covered by the fluid supply line or to the third and fourth outer surface. The "first areas" of the third and fourth outer surface are respectively above the liquid level of the fluid to be evaporated by the plate heat exchanger condenser evaporator.

Vorteilhafterweise sind dabei die ersten Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten auf der ersten Außenfläche durch Fluidsammelstrukturen gebildet und durch diese in der soeben angegebenen Weise aus dem Bereich verlagert, in dem sich die Fluidzufuhrleitung befindet. Die Fluidsammelstrukturen stehen mit Wärmeaustauschrippen in einem zentralen Bereich der Fluidführungsstrukturen in Verbindung. Hierdurch wird ermöglich, ohne eine Beeinträchtigung der (Teil-)Verdampfung eines entsprechenden Fluids in den ersten Wärmetauscherplatten bzw. in deren Fluidführungsstrukturen eine Fluidzufuhrleitung auf der ersten Außenfläche anzuordnen.Advantageously, the first openings of the fluid guiding structures of the first heat exchanger plates are formed on the first outer surface by fluid collecting structures and displaced by them in the manner just mentioned from the area in which the fluid supply line is located. The fluid collection structures communicate with heat exchange fins in a central region of the fluid routing structures. This makes it possible, without affecting the (partial) evaporation of a corresponding fluid in the first heat exchanger plates or in their fluid guide structures to arrange a fluid supply line on the first outer surface.

Besondere Vorteile ergeben sich, wenn die Fluidzufuhrleitung in einem mittleren Bereich der ersten Außenfläche rechtwinklig zu den Wärmetauscherplatten verläuft, also eine zentrale Einspeisung von Fluid in die zweiten Fluidführungsstrukturen erfolgt. Hierdurch lässt sich eine besonders homogene Verteilung entsprechenden Fluids erzielen und es kann vollständig auf eine horizontale Fluideinspeisung bzw. entsprechende Fluidverteilungsstrukturen verzichtet werden.Particular advantages arise when the fluid supply line extends in a central region of the first outer surface perpendicular to the heat exchanger plates, that is, there is a central feed of fluid into the second fluid guiding structures. This makes it possible to achieve a particularly homogeneous distribution of corresponding fluid and it is possible to completely dispense with a horizontal fluid feed or corresponding fluid distribution structures.

Befinden sich die durch die Fluidsammelstrukturen gebildeten ersten Öffnungen der ersten Wärmetauscherplatten, wie erfindungsgemäß vorgesehen, auf der ersten Außenfläche in einem nicht durch die Fluidzufuhrleitung verdeckten Bereich oder jeweils in einem ersten Bereich der dritten und der vierten Außenfläche, können diese als sogenannte Double-Exit-Distributoren ausgebildet sein, wie sie grundsätzlich aus dem Bereich der Wärmetauschertechnik bekannt und in dem eingangs erwähnten ALPEMA-Standard beschrieben sind. Sie münden jedoch, wie erwähnt, nicht wie herkömmliche Double-Exit-Distributoren in Fluidverteil- bzw. -sammelleitungen.If the first openings of the first heat exchanger plates formed by the fluid collection structures, as provided according to the invention, are located on the first outer surface in a region not covered by the fluid supply line or in each case in a first region of the third and the fourth outer surface, they can be referred to as double exit Be formed distributors, as they are known in principle from the field of heat exchanger technology and described in the aforementioned ALPEMA standard. However, as noted, they do not end up as conventional double exit distributors in fluid distribution manifolds.

Vorteilhafterweise sind die Fluidführungsstrukturen der zweiten Wärmetauscherplatten auf der ersten Außenfläche mit Öffnungen versehen, die in die Fluidzufuhrleitungen münden und durch die Fluidverteilstrukturen gebildet sind, wobei die Fluidverteilstrukturen mit Wärmeaustauschrippen in einem zentralen Bereich der Fluidführungsstrukturen in Verbindung stehen. Durch eine geeignete Gestaltung entsprechender Fluidverteilstrukturen wird eine besonders homogene Verteilung von Fluid auf die entsprechenden Wärmeaustauschrippen gewährleistet. Vorteilhafterweise sind dabei die Fluidverteilstrukturen der zweiten Wärmetauscherplatten als zentrale Distributoren ausgebildet, wie ebenfalls grundsätzlich aus der erwähnten Fachliteratur bekannt, wodurch sich die zuvor erwähnten Vorteile ergeben.Advantageously, the fluid guide structures of the second heat exchanger plates on the first outer surface are provided with openings which open into the fluid supply lines and are formed by the Fluidverteilstrukturen, said Fluidverteilstrukturen communicate with heat exchange ribs in a central region of the fluid guide structures. By a suitable design of corresponding fluid distribution structures, a particularly homogeneous distribution of Ensures fluid to the corresponding heat exchange ribs. Advantageously, the Fluidverteilstrukturen the second heat exchanger plates are designed as central distributors, as also known in principle from the mentioned literature, resulting in the aforementioned advantages.

Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist auch die Position der Fluidsammelleitung gegenüber der Anordnung in herkömmlichen Plattentauscher-Kondensatorverdampfern verändert, d.h. die Fluidsammelleitung ist auf der zweiten Außenfläche des Wärmetauscherblocks angeordnet. In diesem Fall sind die Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten, die sich in einem herkömmlichen Plattenwärmetauscher-Kondensatorverdampfer auf der zweiten Außenfläche befinden (wie erwähnt hier als "zweite" Öffnungen bezeichnet), in einem durch die Fluidsammelleitung unverdeckten Bereich angeordnet, so dass ein Ansaugen von kondensiertem Fluid ermöglicht wird.According to a particularly preferred embodiment of the present invention, the position of the fluid manifold is also changed from the arrangement in conventional plate exchanger condenser evaporators, i. the fluid manifold is disposed on the second outer surface of the heat exchanger block. In this case, the openings of the fluid guide structures of the first heat exchanger plates located in a conventional plate heat exchanger condenser evaporator on the second outer surface (referred to as "second" openings herein) are arranged in an area uncovered by the fluid manifold, so that suction is made possible by condensed fluid.

In der erwähnten besonders bevorzugten Ausgestaltung der Erfindung sind dabei die zweiten Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten auf der zweiten Außenfläche in einem nicht durch die Fluidsammelleitung verdeckten Bereich und/oder jeweils in zweiten Bereichen der dritten und vierten Außenfläche durch Fluidverteilstrukturen gebildet, die mit den Wärmeaustauschrippen in dem zentralen Bereich der Fluidführungsstrukturen in Verbindung stehen. Ein teilweises Verdampfen von Fluid, das über entsprechende Öffnungen angesaugt wird, wir hierdurch nicht beeinträchtigt, selbst wenn die Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten entsprechend verlagert werden.In the mentioned particularly preferred embodiment of the invention, the second openings of the fluid guiding structures of the first heat exchanger plates are formed on the second outer surface in an area not covered by the fluid collecting line and / or respectively in second areas of the third and fourth outer surfaces by fluid distribution structures connected to the heat exchange fins in the central region of the fluid routing structures. A partial evaporation of fluid that is sucked through corresponding openings, we thereby not affected, even if the openings of the fluid guide structures of the first heat exchanger plates are displaced accordingly.

Vorteilhafterweise ist in einem solchen Fall die Fluidsammelleitung in einem mittleren Bereich der zweiten Außenfläche und rechtwinklig zu den Wärmetauscherplatten angeordnet, so dass Fluid zentral gesammelt werden kann und daher auch hier keine Entmischungseffekte auftreten können. Wie zuvor bezüglich der Fluidsammelstrukturen der ersten Wärmetauscherplatten erläutert, sind dabei vorteilhafterweise die Fluidverteilstrukturen der ersten Wärmetauscherplatten als sogenannte Double-Entry-Distributoren ausgebildet, wie in der zuvor erläuterten Standardliteratur beschrieben, wenn die Öffnungen der Fluidführungsstrukturen der ersten Wärmetauscherplatten auf der zweiten Außenfläche angeordnet sind.Advantageously, in such a case, the fluid manifold is arranged in a central region of the second outer surface and perpendicular to the heat exchanger plates, so that fluid can be collected centrally and therefore no segregation effects can occur here. As explained above with regard to the fluid collection structures of the first heat exchanger plates, the fluid distribution structures of the first heat exchanger plates are advantageously designed as so-called double-entry distributors, as described in the above-described standard literature, if the openings of the fluid guiding structures of the first heat exchanger plates are arranged on the second outer surface.

In dem erläuterten Fall der Anordnung der Fluidsammelleitung in einem mittleren Bereich der zweiten Außenfläche und rechtwinklig zu den Wärmetauscherplatten bilden die Fluidführungsstrukturen der zweiten Wärmetauscherplatten auf der zweiten Außenfläche Öffnungen, die in die Fluidsammelleitungen münden und durch Fluidsammelstrukturen gebildet sind, die mit den Wärmeaustauschrippen in dem zentralen Bereich der Fluidführungsstrukturen in Verbindung stehen. Wie erwähnt, können vorteilhafterweise die Fluidsammelstrukturen der zweiten Wärmetauscherplatten als zentrale Distributoren ausgebildet sein, das eine Entmischung sicher verhindert.In the illustrated case of arranging the fluid manifold in a central region of the second outer surface and perpendicular to the heat exchanger plates, the fluid guide structures of the second heat exchanger plates on the second outer surface form openings that open into the fluid manifolds and are formed by fluid collection structures that communicate with the heat exchange fins in the central one Area of fluid management structures in connection. As mentioned, advantageously, the fluid collection structures of the second heat exchanger plates can be designed as central distributors, which reliably prevents segregation.

Die erwähnten ersten Bereiche der dritten und vierten Außenfläche grenzen an die erste Außenfläche an, die zweiten Bereiche der dritten und vierten Außenfläche an die zweite Außenfläche. Die ersten und zweiten Bereiche der dritten und vierten Außenfläche umfassen jeweils höchstens 50% der Fläche der jeweiligen Außenfläche, insbesondere höchstens 40%, 30%, 20% oder 10%. Die ersten Bereiche der dritten und vierten Außenfläche liegen im Betrieb des Plattenwärmetauscher-Kondensatorverdampfers vollständig oberhalb, teilweise oberhalb und teilweise unterhalb oder vollständig unterhalb des Spiegels des zu verdampfenden Fluids, die zweiten Bereiche vollständig darunter. Details wurden bereits erläutert.The mentioned first regions of the third and fourth outer surfaces adjoin the first outer surface, the second regions of the third and fourth outer surfaces adjoin the second outer surface. The first and second areas of the third and fourth outer surfaces each comprise at most 50% of the area of the respective outer surface, in particular at most 40%, 30%, 20% or 10%. The first regions of the third and fourth outer surfaces are completely above, partially above, and partially below, or below, or completely below the level of the fluid to be evaporated in operation of the plate heat exchanger condenser evaporator, the second regions completely below. Details have already been explained.

Die vorliegende Erfindung erstreckt sich auch auf ein Verfahren zur Tieftemperaturzerlegung von Luft, wie es grundsätzlich in der eingangs erwähnten Fachliteratur beschrieben ist. In einem derartigen Verfahren wird unter Verwendung verdichteter, abgekühlter Einsatzluft in einer ersten Destillationssäule ein sauerstoffangereichertes Sumpfprodukt und ein stickstoffangereichertes Kopfprodukt erzeugt. Unter Verwendung des sauerstoffangereichertem Sumpfprodukts aus der ersten Destillationssäule wird in einer zweiten Destillationssäule ein sauerstoffreiches Sumpfprodukt und ein stickstoffreiches Kopfprodukt erzeugt.The present invention also extends to a process for the cryogenic separation of air, as it is basically described in the technical literature mentioned above. In such a process, an oxygen-enriched bottom product and a nitrogen-enriched overhead product are produced using compressed, cooled feed air in a first distillation column. Using the oxygen-enriched bottoms product from the first distillation column, an oxygen-rich bottom product and a nitrogen-rich overhead product are produced in a second distillation column.

Das Verfahren gemäß der vorliegenden Erfindung zeichnet sich dadurch aus, dass ein oder mehrere Plattenwärmetauscher-Kondensatorverdampfer in einer oder in mehreren der zuvor erläuterten Ausführungsformen verwendet werden, so dass sich in einem derartigen Verfahren eine besonders gute Wärmeaustauscheffizienz ergibt. Auf die jeweiligen Vorteile der genannten Ausführungsformen wird an dieser Stelle ausdrücklich verwiesen, auch das erfindungsgemäße Verfahren zur Tieftemperaturzerlegung von Luft profitiert von diesen Vorteilen.The method according to the present invention is characterized in that one or more plate heat exchanger condenser evaporators are used in one or more of the embodiments explained above, so that a particularly good heat exchange efficiency results in such a method. On the respective advantages of said embodiments will be at this point expressly referenced, also the inventive method for the cryogenic separation of air benefits from these advantages.

Die vorliegende Erfindung sieht gemäß einer besonders bevorzugten Ausgestaltung des Verfahrens vor, den oder einen der Plattenwärmetauscher-Kondensatorverdampfer als sogenannten Hauptkondensator einzusetzen, also einen Kondensator, der die erste Destillationssäule und die zweite Destillationssäule wärmetauschend verbindet. In diesem Fall wird in den Fluidführungsstrukturen der ersten Wärmetauscherplatten das sauerstoffreiche Sumpfprodukt der zweiten Destillationssäule teilverdampft und in den Fluidführungsstrukturen der zweiten Wärmetauscherplatten wird das stickstoffangereicherte Kopfprodukt der ersten Destillationssäule teilverflüssigt. Der Plattenwärmetauscher-Kondensatorverdampfer wird hierzu in ein Flüssigkeitsbad eingetaucht, das aus dem sauerstoffreichen Sumpfprodukt der zweiten Destillationssäule gebildet wird. Durch den Thermosiphoneffekt steigt dieses Sumpfprodukt in den Fluidführungsstrukturen der ersten Wärmetauscherplatten auf und wird hierbei teilverdampft. Zugleich wird das stickstoffangereicherte Kopfprodukt der ersten Destillationssäule hier teilverflüssigt.The present invention provides according to a particularly preferred embodiment of the method to use the or one of the plate heat exchanger condenser evaporator as a so-called main condenser, that is, a condenser, which connects the first distillation column and the second distillation column heat exchanging. In this case, in the fluid-guiding structures of the first heat exchanger plates, the oxygen-rich bottom product of the second distillation column is partially vaporized, and in the fluid guide structures of the second heat exchanger plates, the nitrogen-enriched overhead product of the first distillation column is partially liquefied. The plate heat exchanger condenser evaporator is immersed for this purpose in a liquid bath, which is formed from the oxygen-rich bottom product of the second distillation column. Due to the thermosiphon effect, this bottom product rises in the fluid-guiding structures of the first heat exchanger plates and is partially vaporized in this case. At the same time, the nitrogen-enriched overhead product of the first distillation column is partially liquefied here.

Eine weitere bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens umfasst, einen entsprechenden Plattenwärmetauscher-Kondensatorverdampfer als Kopfkondensator einer Argonsäule einzusetzen, es umfasst also, der zweiten Destillationssäule ein Fluid zu entnehmen und in eine dritte Destillationssäule einzuspeisen. Die dritte Destillationssäule weist dabei einen Kopfkondensator auf, in dem mittels des oder eines der Plattenwärmetauscher-Kondensatorverdampfer(s) ein Teil des sauerstoffangereicherten Sumpfprodukts der ersten Destillationssäule in den Fluidführungsstrukturen der ersten Wärmetauscherplatten teilverdampft wird, und in dem ein argonangereichertes Kopfprodukt der dritten Destillationssäule in den Fluidführungsstrukturen der zweiten Wärmetauscherplatten teilverflüssigt wird. Die Erfindung eignet sich dabei zum Einsatz in sogenannten Rohargonsäulen, in denen ein argonangereichertes Produkt gewonnen wird, jedoch auch in sogenannten Argonausschleussäulen, die lediglich dazu vorgesehen sind, einen Argongehalt in der ersten und/oder zweiten Destillationssäule zu verringern, so dass in dieser ein Sauerstoffprodukt in größerer Reinheit gewinnen lässt.A further preferred embodiment of the method according to the invention comprises using a corresponding plate heat exchanger condenser evaporator as the top condenser of an argon column, ie it comprises taking out a fluid from the second distillation column and feeding it into a third distillation column. The third distillation column in this case has a top condenser, in which by means of or one of the plate heat exchanger condenser evaporator (s) a portion of the oxygen-enriched bottom product of the first distillation column is partially vaporized in the fluid routing structures of the first heat exchanger plates, and in which an argon-enriched overhead of the third distillation column in the Fluid management structures of the second heat exchanger plates is partially liquefied. The invention is suitable for use in so-called crude argon columns, in which an argon-enriched product is obtained, but also in so-called argon discharge columns, which are only intended to reduce an argon content in the first and / or second distillation column, so that in this an oxygen product gain in greater purity.

Unter einer Argonausschleussäule wird hier eine Trennsäule zur Argon-Sauerstoff-Trennung bezeichnet, die nicht zur Gewinnung eines reinen Argonprodukts, sondern zur Ausschleusung von Argon der in der ersten und zweiten Destillationssäule zu zerlegenden Luft dient. Ihre Schaltung unterscheidet sich nur wenig von der einer klassischen Rohargonsäule, allerdings enthält sie deutlich weniger theoretische Böden, nämlich weniger als 40, insbesondere zwischen 15 und 30. Wie eine Rohargonsäule ist der Sumpfbereich einer Argonausschleussäule mit einer Zwischenstelle der zweiten Destillationssäule verbunden und die Argonausschleussäule wird durch einen Kopfkondensator gekühlt, auf dessen Verdampfungsseite entspannte Sumpfflüssigkeit aus der Hochdrucksäule eingeleitet wird. Eine Argonausschleussäule weist keinen Sumpfverdampfer auf. Der Kopfkondensator kann, wie erwähnt, als Plattenwärmetauscher-Kondensatorverdampfer ausgebildet sein.Here, an argon discharge column refers to an argon-oxygen separation column, which serves not for the recovery of a pure argon product but for the discharge of argon from the air to be separated in the first and second distillation columns. Their circuit differs only slightly from that of a classical crude argon column, but it contains significantly less theoretical plates, namely less than 40, especially between 15 and 30. Like a crude argon column, the bottom portion of an argon discharge column is connected to an intermediate point of the second distillation column and the argon discharge column becomes cooled by a top condenser, on the evaporation side relaxed bottom liquid is introduced from the high pressure column. An argon discharge column has no bottom evaporator. The top condenser may, as mentioned, be designed as a plate heat exchanger condenser evaporator.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, in denen bevorzugte Ausführungsformen der Erfindung gegenüber dem Stand der Technik veranschaulicht sind.The invention will be explained in more detail below with reference to the accompanying drawings, in which preferred embodiments of the invention compared to the prior art are illustrated.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

  • Figur 1 zeigt einen nicht erfindungsgemäßen Plattenwärmetauscher-Kondensatorverdampfer in schematischer Darstellung. FIG. 1 shows a non-inventive plate heat exchanger condenser evaporator in a schematic representation.
  • Figur 2 zeigt eine ("zweite") Wärmetauscherplatte des Plattenwärmetauscher-Kondensatorverdampfers gemäß Figur 1. FIG. 2 shows a ("second") heat exchanger plate of the plate heat exchanger condenser evaporator according to FIG. 1 ,
  • Figur 3 zeigt einen Plattenwärmetauscher-Kondensatorverdampfer gemäß einer Ausführungsform der Erfindung in schematischer Darstellung. FIG. 3 shows a plate heat exchanger condenser evaporator according to an embodiment of the invention in a schematic representation.
  • Figur 4 zeigt eine ("zweite") Wärmetauscherplatte des Plattenwärmetauscher-Kondensatorverdampfers gemäß Figur 3. FIG. 4 shows a ("second") heat exchanger plate of the plate heat exchanger condenser evaporator according to FIG. 3 ,
  • Figur 5 zeigt eine ("zweite") Wärmetauscherplatte eines Plattenwärmetauscher-Kondensatorverdampfers gemäß einer weiteren Ausführungsform der Erfindung in schematischer Darstellung. FIG. 5 shows a ("second") heat exchanger plate of a plate heat exchanger condenser evaporator according to another embodiment of the invention in a schematic representation.
  • Figur 6 zeigt eine ("erste") Wärmetauscherplatte des Plattenwärmetauscher-Kondensatorverdampfers gemäß Figur 3. FIG. 6 shows a ("first") heat exchanger plate of the plate heat exchanger condenser evaporator according to FIG. 3 ,
  • Figur 7 zeigt eine ("erste") Wärmetauscherplatte eines Plattenwärmetauscher-Kondensatorverdampfers gemäß einer weiteren Ausführungsform der Erfindung in schematischer Darstellung. FIG. 7 shows a ("first") heat exchanger plate of a plate heat exchanger condenser evaporator according to another embodiment of the invention in a schematic representation.
  • Figur 8 zeigt eine ("erste") Wärmetauscherplatte eines Plattenwärmetauscher-Kondensatorverdampfers gemäß einer weiteren Ausführungsform der Erfindung in schematischer Darstellung. FIG. 8 shows a ("first") heat exchanger plate of a plate heat exchanger condenser evaporator according to another embodiment of the invention in a schematic representation.

In den Figuren sind einander entsprechende Elemente mit identischen Bezugszeichen angegeben und werden der Übersichtlichkeit halber nicht wiederholt erläutert.In the figures, corresponding elements are given identical reference numerals and will not be explained repeatedly for the sake of clarity.

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

Figur 1 zeigt einen nicht erfindungsgemäßen Plattenwärmetauscher-Kondensatorverdampfer in schematischer und teilweise eröffneter Darstellung. Der Plattenwärmetauscher-Kondensatorverdampfer der Figur 1 ist insgesamt mit 110 bezeichnet. FIG. 1 shows a non-inventive plate heat exchanger condenser evaporator in a schematic and partially opened representation. The plate heat exchanger condenser evaporator FIG. 1 is designated overall by 110.

Ein Wärmetauscherblock 10 des Plattenwärmetauscher-Kondensatorverdampfer ist aus alternierend angeordneten Wärmetauscherplatten 20 und 30 gebildet, wobei die Wärmetauscherplatten 20 nachfolgend als "erste" Wärmetauscherplatten und die Wärmetauscherplatten 30 nachfolgend als "zweite" Wärmetauscherplatten bezeichnet werden. Entsprechende Wärmetauscherplatten sind teilweise auch in den nachfolgenden Figuren noch näher erläutert. Nur zwei entsprechender Wärmetauscherplatten 20, 30 sind mit Bezugszeichen versehen, der gesamte Wärmetauscherblock 10 ist jedoch insgesamt aus entsprechenden Wärmetauscherplatten 20, 30 aufgebaut.A heat exchanger block 10 of the plate heat exchanger condenser evaporator is formed of alternately arranged heat exchanger plates 20 and 30, wherein the heat exchanger plates 20 hereinafter referred to as "first" heat exchanger plates and the heat exchanger plates 30 hereinafter referred to as "second" heat exchanger plates. Corresponding heat exchanger plates are partially explained in more detail in the following figures. Only two corresponding heat exchanger plates 20, 30 are provided with reference numerals, but the entire heat exchanger block 10 is constructed in total from corresponding heat exchanger plates 20, 30.

Sowohl in den ersten Wärmetauscherplatten 20 als auch in den zweiten Wärmetauscherplatten 30 sind jeweils Fluidführungsstrukturen ausgebildet, die für die ersten Wärmetauscherplatten 20 mit 21 und für die zweiten Wärmetauscherplatten 30 mit 31 bezeichnet sind. Wie erwähnt werden unter "Fluidführungsstrukturen", im hier verwendeten Sprachgebrauch sowohl die typischerweise in einem zentralen Bereich entsprechender Wärmetauscherplatten 20, 30 angeordneten Wärmetauschrippen, als auch die endständigen Fluidverteil- bzw. Fluidsammelstrukturen (Distributoren) verstanden. In der Darstellung der Figur 1 sind die Wärmetauschrippen, die, wie erwähnt, auch in anderer Ausgestaltung vorgesehen sein können, für beide Wärmetauscherplatten 20, 30 veranschaulicht und hier jeweils mit 215 bzw. 315 bezeichnet. Entsprechende Wärmeaustauschrippen werden, wie erläutert, in der einschlägigen Fachliteratur auch als Heat Exchange Fins bezeichnet.Both in the first heat exchanger plates 20 and in the second heat exchanger plates 30 each fluid guide structures are formed, which are designated for the first heat exchanger plates 20 with 21 and for the second heat exchanger plates 30 with 31. As mentioned, under "fluid routing structures", here language used understood both the typically arranged in a central region of the corresponding heat exchanger plates 20, 30 heat exchange ribs, as well as the terminal Fluidverteil- or fluid collection structures (distributors). In the presentation of the FIG. 1 are the heat exchange ribs, which, as mentioned, can also be provided in another embodiment, illustrated for both heat exchanger plates 20, 30 and here in each case with 215 and 315 respectively. Corresponding heat exchange fins are, as explained, referred to in the relevant literature as Heat Exchange Fins.

In der Figur 1 sind jedoch lediglich für eine der zweiten Wärmetauscherplatten 30 Fluidverteilstrukturen 313 veranschaulicht. Die Fluidverteilstrukturen 313 haben die Aufgabe, ein Fluid, das über eine Fluidzufuhrleitung 40, die üblicherweise auch als Header bezeichnet wird, bereitgestellt wird und über Öffnungen 311 in entsprechende zweiten Wärmetauscherplatten 30 eintritt, über die gesamte Breite der zweiten Wärmetauscherplatten 30 auf die Wärmetauschrippen 315 zu verteilen und auf diese Weise einen effektiven Wärmetausch sicherzustellen. Wie erwähnt und auch unter Bezugnahme auf die nachfolgende Figur 2 erläutert, kann es jedoch hierbei zu Ungleichverteilungen und entsprechenden nachteiligen Effekten kommen. Nicht veranschaulicht sind in Figur 1 Fluidsammelstrukturen der zweiten Wärmetauscherplatten 30, die Fluid, das aus den Wärmetauscherrippen 315 austritt, sammeln und einer Fluidsammelleitung 50 zuführen.In the FIG. 1 However, only one of the second heat exchanger plates 30 Fluidverteilstrukturen 313 illustrated. The fluid distribution structures 313 have the task, a fluid which is provided via a fluid supply line 40, which is also commonly referred to as header and enters through openings 311 in corresponding second heat exchanger plates 30, over the entire width of the second heat exchanger plates 30 to the heat exchange ribs 315 distribute and thus ensure an effective heat exchange. As mentioned and also with reference to the following FIG. 2 However, this can lead to unequal distributions and corresponding disadvantageous effects. Not illustrated in FIG. 1 Fluid collecting structures of the second heat exchanger plates 30, the fluid that exits the heat exchanger fins 315, collect and supply a fluid manifold 50.

Die ersten Wärmetauscherplatten 20 weisen, im Gegensatz zu den zweiten Wärmetauscherplatten 30, keine oder allenfalls Offenend-Fluidverteilstrukturen auf, die jedoch in der Figur 1 nicht veranschaulicht sind. Die aus den Wärmetauschrippen 215 und gegebenenfalls den Offenend-Fluidverteilstrukturen gebildeten Fluidführungsstrukturen 21 der Wärmetauscherplatten 20 verlaufen daher zwischen einer ersten Außenfläche des Wärmetauscherblocks 10, die hier mit 11 bezeichnet ist, und einer zweiten Außenfläche des Wärmetauscherblocks 10, die hier mit 12 bezeichnet ist. Sie weisen sowohl von Fluidzufuhrleitungen als auch von Fluidsammelleitungen unverdeckte Öffnungen zu diesen Außenflächen 11, 12 auf, wobei in der Darstellung der Figur 1 lediglich die Öffnungen zu der ersten Außenfläche 11 ("erste" Öffnungen) veranschaulicht und mit 211 bezeichnet sind. Zur Vermeidung von Missverständnissen sei betont, dass sich die erste Außenfläche 11 in der Darstellung der Figur 1 im Betrieb auf der Oberseite des Wärmetauscherblocks 10 und die zweite Außenfläche 12 auf dessen Unterseite befindet. Die Kanten der Wärmetauscherplatten 20, 30 bilden ferner eine dritte und eine vierte Außenfläche des Wärmetauscherblocks 10, hier mit 13 und 14 bezeichnet. (Die vierte Außenfläche 14 ist in Figur 1 verdeckt.)The first heat exchanger plates 20 have, in contrast to the second heat exchanger plates 30, no or possibly open-end Fluidverteilstrukturen on, but in the FIG. 1 not illustrated. The fluid guide structures 21 of the heat exchanger plates 20 formed from the heat exchange ribs 215 and optionally the open-end Fluidverteilstrukturen therefore extend between a first outer surface of the heat exchanger block 10, here denoted by 11, and a second outer surface of the heat exchanger block 10, which is designated here by 12. They have both fluid supply lines and fluid manifolds uncovered openings to these outer surfaces 11, 12, wherein in the illustration of FIG. 1 only the openings to the first outer surface 11 ("first" openings) are illustrated and labeled 211. To avoid misunderstandings, it should be emphasized that the first outer surface 11 in the representation of FIG. 1 in operation on top of the heat exchanger block 10 and the second outer surface 12 is located on the underside thereof. The edges of the heat exchanger plates 20, 30 further form a third and a fourth outer surface of the heat exchanger block 10, here denoted by 13 and 14. (The fourth outer surface 14 is in FIG. 1 covered.)

Durch die Anordnung der Fluidzufuhrleitung 40 und der Fluidsammelleitung 50 verlaufen hingegen die Fluidführungsstrukturen 31 der zweiten Wärmetauscherplatten 30 zwischen der Fluidzufuhrleitung 40 und der Fluidsammelleitung 50. Wird über die Fluidzufuhrleitung 40 ein gasförmiges, zu kondensierendes Fluid, beispielsweise ein stickstoffreiches Kopfprodukt einer Hochdrucksäule einer Luftzerlegungsanlage, eingespeist, und wird der Wärmetauscherblock 10 bis zu einer bestimmten Höhe in ein Flüssigkeitsbad eines zu verdampfenden Fluids, beispielsweise in eine sauerstoffreiche Flüssigkeit im Sumpf einer Niederdrucksäule einer Luftzerlegungsanlage, getaucht, kommt es zu dem eingangs erwähnten Termosiphoneffekt.By arranging the fluid supply line 40 and the fluid manifold 50, however, the fluid guide structures 31 of the second heat exchanger plates 30 run between the fluid supply line 40 and the fluid manifold 50. Via the fluid supply line 40, a gaseous fluid to be condensed, for example a nitrogen-rich top product of a high-pressure column of an air separation plant, is fed , And the heat exchanger block 10 is immersed to a certain height in a liquid bath of a fluid to be vaporized, for example, in an oxygen-rich liquid in the bottom of a low pressure column of an air separation plant, it comes to the above-mentioned Termosiphoneffekt.

In Figur 2 ist eine der zweiten Wärmetauscherplatten 30 des in Figur 1 gezeigten Plattenwärmetauscher-Kondensatorverdampfers in Draufsicht veranschaulicht. Zusätzlich sind die Fluidzufuhrleitung 40 und die Fluidsammelleitung 50 schematisch dargestellt, die jedoch nicht Teil der zweiten Wärmetauscherplatten 30 selbst sind sondern auf einem unter Verwendung der zweiten Wärmetauscherplatten 30 gebildeten Wärmetauscherblock 10 aufgebracht sind. Zur Veranschaulichung sind ferner die Außenflächen 11 bis 14 eines Wärmetauscherblocks 10 angegeben, die durch eine entsprechende Wärmetauscherplatte 30 definiert werden.In FIG. 2 is one of the second heat exchanger plates 30 of the in FIG. 1 illustrated plate heat exchanger condenser evaporator illustrated in plan view. In addition, the fluid supply line 40 and the fluid manifold 50 are shown schematically, but they are not part of the second heat exchanger plates 30 themselves but are applied to a heat exchanger block 10 formed using the second heat exchanger plates 30. To illustrate, the outer surfaces 11 to 14 of a heat exchanger block 10 are further indicated, which are defined by a corresponding heat exchanger plate 30.

Wie erwähnt, wird im Betrieb Fluid über die Fluidzufuhrleitung 40 zugeführt und tritt über die Öffnungen 311 in die Fluidführungsmittel 31 der zweiten Wärmetauscherplatten 30 ein. Das Fluid wird dabei zunächst mittels Fluidverteilstrukturen 313 auf die gesamte Breite der Wärmetauscherplatte 30 verteilt. Im dargestellten Beispiel sind die Fluidverteilstrukturen 313 und die nachfolgend erläuterten Sammelstrukturen 314 jeweils als diagonale Verteil- bzw. Sammelstrukturen vom Typ B veranschaulicht, es können jedoch auch andere Formen von Fluidverteil- und Fluidsammelstrukturen zum Einsatz kommen, beispielsweise die in dem eingangs erwähnten ALPEMA-Standard veranschaulichten Formen. Mittels der Fluidverteilstrukturen 313 auf die gesamte Breite der Wärmetauscherplatte 30 verteiltes Fluid tritt idealerweise auf der gesamten Breite in den Bereich der Wärmetauschrippen 315 mit gleicher Flussrate und Zusammensetzung ein und wird idealerweise über den gesamten Bereich der Wärmetauschrippen 315 mittels der Fluidsammelstrukturen 314 gesammelt. Das mittels der Fluidsammelstrukturen 314 gesammelte Fluid tritt über die Öffnungen 312 aus der zweiten Wärmetauscherplatte 30 aus und wird auf diese Weise einer Fluidsammelleitung 50 zugeführt.As mentioned, during operation, fluid is supplied via the fluid supply line 40 and enters the fluid guide means 31 of the second heat exchanger plates 30 via the openings 311. The fluid is first distributed by means of Fluidverteilstrukturen 313 on the entire width of the heat exchanger plate 30. In the illustrated example, the fluid distribution structures 313 and collection structures 314 discussed below are each illustrated as Type B diagonal manifolds, however, other forms of fluid distribution and fluid collection structures may be used, such as those discussed in the aforementioned ALPEMA Standard illustrated forms. By means of the fluid distribution structures 313 over the entire width of the heat exchanger plate 30th Distributed fluid ideally enters the area of the heat exchange fins 315 at the same flow rate and composition over the entire width and is ideally collected over the entire area of the heat exchange fins 315 by means of the fluid collection structures 314. The fluid collected by the fluid collection structures 314 exits the second heat exchanger plate 30 via the openings 312 and is thus supplied to a fluid manifold 50.

Wie erwähnt, kann es in zweiten Wärmetauscherplatten 30, wie sie in Figur 2 veranschaulicht sind, jedoch beispielsweise im Bereich der Fluidverteilstrukturen 313, aber auch im Bereich der Fluidsammelstrukturen 314, zu Entmischungseffekten kommen, insbesondere dann, wenn ein Gasgemisch, das Inertgase enthält, über die Fluidzufuhrleitung 40 eingespeist wird. Hierdurch können sich in bestimmten Bereichen, bezogen auf die gesamte Breite der zweiten Wärmetauscherplatte 30, Rein- bzw. Inertgase bzw. entmischte Gasanteile anreichern und den Durchtritt von Fluid durch die Wärmetauschrippen 315 bzw. andere Bereiche der Fluidleiteinrichtungen 31 behindern. Die effektive Wärmetauschleistung einer entsprechenden zweiten Wärmetauscherplatte 30 und damit eines gesamten Wärmetauscherblocks 10 bzw. Plattenwärmetauscher-Kondensatorverdampfers 110, wird damit deutlich herabgesetzt.As mentioned, it may be in second heat exchanger plates 30, as in FIG. 2 However, for example in the area of the fluid distribution structures 313, but also in the area of the fluid collection structures 314, demixing effects occur, in particular when a gas mixture containing inert gases is fed via the fluid supply line 40. As a result, in certain areas, based on the entire width of the second heat exchanger plate 30, pure or inert gases or segregated gas components accumulate and impede the passage of fluid through the heat exchange fins 315 or other areas of the Fluidleiteinrichtungen 31. The effective heat exchange capacity of a corresponding second heat exchanger plate 30 and thus an entire heat exchanger block 10 or plate heat exchanger condenser evaporator 110, is thus significantly reduced.

In Figur 3 ist ein Plattenwärmetauscher-Kondensatorverdampfer gemäß einer Ausführungsform der Erfindung schematisch veranschaulicht und insgesamt mit 100 bezeichnet. Bereits in der Beschreibung der Figur 1 erwähnte Elemente werden nicht erneut erläutert.In FIG. 3 a plate heat exchanger condenser evaporator according to an embodiment of the invention is illustrated schematically and designated 100 as a whole. Already in the description of FIG. 1 mentioned elements will not be explained again.

Im Gegensatz zu dem Plattenwärmetauscher-Kondensatorverdampfer 110 der Figur 1 ist hier jedoch die Fluidzufuhrleitung 40 auf der ersten Außenfläche 11, d.h. der Oberseite des Wärmetauscherblocks 10, angeordnet. Dies führt, wie auch nachfolgend erläutert, zu einer deutlich besseren Fluidverteilung in den zweiten Wärmetauscherplatten 30 bzw. deren Fluidführungsstrukturen, weil diese besonders günstig ausgebildet werden können. Zugleich sind damit die Öffnungen 311 der Fluidverteilstrukturen 313 dieser zweiten Wärmetauscherplatten 30 abweichend zu der in Figur 1 veranschaulichten Art ausgebildet.In contrast to the plate heat exchanger condenser evaporator 110 of FIG. 1 Here, however, the fluid supply line 40 on the first outer surface 11, that is, the top of the heat exchanger block 10 is disposed. This leads, as also explained below, to a significantly better fluid distribution in the second heat exchanger plates 30 and their fluid guiding structures, because they can be made particularly favorable. At the same time, the openings 311 of the fluid distribution structures 313 of these second heat exchanger plates 30 differ from those in FIG FIG. 1 illustrated type trained.

Die Fluidsammelstrukturen der Wärmetauscherplatten 30 können beispielsweise weiterhin wie in Figur 2 veranschaulicht ausgebildet sein oder eine abweichende Ausgestaltung erhalten, je nachdem, wo die Fluidsammelleitung 50 angeordnet ist. Ist diese weiterhin seitlich des Wärmetauscherblocks 10 angeordnet, wie in dem Plattenwärmetauscher-Kondensatorverdampfer 110 gemäß Figur 1, kommt eine Anordnung zum Einsatz, wie sie in der Figur 4 gezeigt ist. Es ist jedoch auch möglich, die Fluidsammelleitung 50 auf die zweite Außenfläche 12 des Wärmetauscherblocks 10 zu verlagern, wobei dann eine Anordnung gemäß Figur 5 zum Einsatz kommt. Hieraus ergeben sich auch Konsequenzen für die Ausgestaltung der ersten Wärmetauscherplatten 20, wie unter Bezugnahme auf die Figuren 6 bis 8 erläutert.For example, the fluid collection structures of the heat exchanger plates 30 may continue as in FIG FIG. 2 illustrated or obtained a different configuration, depending on where the fluid manifold 50 is arranged. If this is further arranged laterally of the heat exchanger block 10, as in the plate heat exchanger condenser evaporator 110 according to FIG. 1 , an arrangement is used, as in the FIG. 4 is shown. However, it is also possible to displace the fluid collecting line 50 to the second outer surface 12 of the heat exchanger block 10, in which case an arrangement according to FIG. 5 is used. This also leads to consequences for the design of the first heat exchanger plates 20, as with reference to the FIGS. 6 to 8 explained.

Gemäß Figur 3 sind die ersten Öffnungen 211 der Fluidführungsstrukturen 21 der ersten Wärmetauscherplatten 20 durch geeignete Fluidsammelstrukturen aus einem Bereich der ersten Außenfläche 11, der durch die Fluidzufuhrleitung 40 verdeckt ist, verlagert, aber noch auf der ersten Außenfläche 11 angeordnet. Die Öffnungen 211 der Fluidführungsstrukturen 21 der ersten Wärmetauscherplatten 20 können jedoch auch auf die Außenflächen 13 und 14 verlagert sein, wie bezüglich Figur 8 gezeigt.According to FIG. 3 For example, the first openings 211 of the fluid guide structures 21 of the first heat exchanger plates 20 are displaced by suitable fluid collection structures from a portion of the first outer surface 11 obscured by the fluid supply line 40, but still disposed on the first outer surface 11. However, the openings 211 of the fluid guiding structures 21 of the first heat exchanger plates 20 may also be displaced on the outer surfaces 13 and 14, as with respect to FIG. 8 shown.

In Figur 4 ist, wie erwähnt, eine zweite Wärmetauscherplatte 30 eines Plattenwärmetauscher-Kondensatorverdampfers gemäß Figur 3 veranschaulicht. Auch hier sind die Fluidzufuhrleitung 40 und die Fluidsammelleitung 50 gezeigt.In FIG. 4 is, as mentioned, a second heat exchanger plate 30 of a plate heat exchanger condenser evaporator according to FIG. 3 illustrated. Again, the fluid supply line 40 and the fluid manifold 50 are shown.

Im Gegensatz zu der in Figur 2 dargestellten Wärmetauscherplatte 30 sind, wie erwähnt, hier jedoch die Öffnungen 311 der Fluidverteilstrukturen 313 auf der Oberseite der Wärmetauscherplatten 30 und damit der ersten Außenfläche 11 des Wärmetauscherblocks 10 angeordnet. Entsprechendes gilt für die hier ergänzend veranschaulichte Fluidzufuhrleitung 40. Über die Fluidzufuhrleitung 40 eingespeistes Fluid kann sich aufgrund der symmetrischen Ausbildung der Fluidverteilstrukturen 313 besser auf die gesamte Breite der Wärmetauscherplatte 30 bzw. der Wärmetauschrippen 315 verteilen, so dass es im Bereich der Fluidverteilstrukturen 313 nicht mehr zu Entmischungseffekten kommen kann. Wie erwähnt, sind in der in Figur 4 veranschaulichten Ausführungsform einer zweiten Wärmetauscherplatte 30 die Fluidsammelstrukturen jedoch wie bei herkömmlichen zweiten Wärmetauscherplatten 30, wie sie in einem Plattenwärmetauscher-Kondensatorverdampfer 110 gemäß Figur 1 zum Einsatz kommen, ausgebildet.Unlike the in FIG. 2 As already mentioned, however, the heat exchanger plate 30 shown here has the openings 311 of the fluid distribution structures 313 arranged on top of the heat exchanger plates 30 and thus the first outer surface 11 of the heat exchanger block 10. The same applies to the fluid supply line 40 additionally illustrated here. Due to the symmetrical design of the fluid distribution structures 313, the fluid can spread better over the entire width of the heat exchanger plate 30 or the heat exchange ribs 315, so that it no longer exists in the area of the fluid distribution structures 313 can lead to demixing effects. As mentioned, are in the in FIG. 4 However, as shown in a plate heat exchanger condenser evaporator 110 according to FIG. 2, the embodiment of a second heat exchanger plate 30 illustrated in FIG. 2 illustrates the fluid collection structures as in conventional second heat exchanger plates 30 FIG. 1 used, trained.

Wie erwähnt, ist es jedoch auch möglich, die Fluidsammelleitung 50 auf einer zweiten Außenfläche 12 bzw. der Unterseite des Wärmetauscherblocks 10 bereitzustellen. Eine für diesen Fall eingesetzte zweite Wärmetauscherplatte 30 ist in Figur 5 veranschaulicht. Die Fluidsammelstrukturen vereinigen hierbei das Fluid, das aus den Wärmetauschrippen 315 austritt, in einem zentralen Bereich, so dass auch hier keine oder geringere Entmischungseffekte auftreten können.However, as mentioned, it is also possible to provide the fluid manifold 50 on a second outer surface 12 and the underside of the heat exchanger block 10, respectively. A used for this case second heat exchanger plate 30 is in FIG. 5 illustrated. In this case, the fluid collecting structures unite the fluid which emerges from the heat exchange ribs 315 in a central region, so that no or less separation effects can also occur here.

Wie mehrfach erläutert, sind die zweiten Wärmetauscherplatten 30 gemäß den vorstehenden Figuren dafür eingerichtet, ein Fluid teilweise oder vollständig zu kondensieren, die ersten Wärmetauscherplatten 20 hingegen sind dazu eingerichtet, ein Fluid teilweise oder vollständig zu verdampfen. Die ersten Wärmetauscherplatten 20 werden dabei auf Grundlage des erwähnten Termosiphoneffekts betrieben.As explained several times, the second heat exchanger plates 30 are arranged according to the preceding figures for partially or completely condensing a fluid, the first heat exchanger plates 20, however, are adapted to evaporate a fluid partially or completely. The first heat exchanger plates 20 are operated on the basis of the aforementioned termosiphon effect.

Nachfolgend sind erste Wärmetauscherplatten 20 veranschaulicht, wie sie in den zuvor erläuterten Ausführungsformen zum Einsatz kommen können, nämlich dann, wenn eine Fluidzufuhrleitung auf der Oberseite und eine Fluidsammelleitung entweder seitlich oder auf einer Unterseite des Wärmetauscherblocks 11 angeordnet ist. In beiden Fällen sind die Fluidzufuhrleitung 40 und die Fluidsammelleitung 50 veranschaulicht, wobei die Fluidführungsstrukturen 21 jedoch nicht mit derartigen Fluidzufuhr- bzw. Fluidsammelleitungen 40, 50 in Verbindung stehen.Hereinafter, first heat exchanger plates 20 are illustrated, as they can be used in the previously described embodiments, namely, when a fluid supply line on the top and a fluid manifold is arranged either laterally or on an underside of the heat exchanger block 11. In both cases, the fluid supply line 40 and the fluid manifold 50 are illustrated, but the fluid guide structures 21 are not in communication with such fluid supply lines 40, 50.

Die ersten Wärmetauscherplatten 20 sind, wie erwähnt, dafür eingerichtet, ein Fluid teilweise oder vollständig zu verdampfen und damit den Termosiphon-Effekt herbeizuführen. Hierzu müssen die Fluidführungsstrukturen 21 Öffnungen aufweisen, die sowohl von Fluidzufuhrleitungen als auch von Fluidsammelleitungen unverdeckt sind. Wird die Fluidzufuhrleitung 40 auf der ersten Außenfläche des Wärmetauscherblocks 10 angeordnet, können in diesem Bereich keine Öffnungen von Fluidführungsstrukturen 21 der Wärmetauscherplatten 20 (wie die in Figur 1 veranschaulichten ersten Öffnungen 211) vorgesehen sein. Diese ersten Öffnungen werden daher in dem in Figur 6 dargestellten Beispiel mit Fluidsammelstrukturen 213 verbunden. Die Fluidsammelstrukturen 213 sind nach Art von sogenannten Double-Exit-Distributoren ausgebildet und mit Öffnungen 211 auf der ersten Außenfläche 11 des Wärmetauscherblocks 10 versehen. Es können jedoch auch andere Ausgestaltungen vorgesehen sein. Über die ersten Öffnungen 211 wird ein teilverdampftes Fluid an einer Oberseite des Wärmetauscherblocks 10 bzw. der ersten Außenfläche 11 abgegeben. Nicht verdampftes Fluid läuft dabei an der Außenseite des Wärmetauscherblocks 10 ab. An der Unterseite bzw. der zweiten Außenfläche 12 des Wärmetauscherblocks 10 sind hingegen Öffnungen 212 der Fluidführungsstrukturen 21 ("zweite" Öffnungen) vorgesehen, die ohne oder lediglich mit sogenannten Offenend-Fluidverteileinrichtungen 214 verbunden sind. Fluid kann auf diese Weise ungehindert in die Wärmetauschrippen 215 eintreten und in diesen aufsteigen.The first heat exchanger plates 20 are, as mentioned, adapted to partially or completely evaporate a fluid and thus bring about the Termosiphon effect. For this purpose, the fluid guide structures 21 must have openings which are uncovered by both fluid supply lines and fluid collecting lines. If the fluid supply line 40 is arranged on the first outer surface of the heat exchanger block 10, no openings of fluid guiding structures 21 of the heat exchanger plates 20 (like those in FIG FIG. 1 illustrated first openings 211) may be provided. These first openings are therefore in the in FIG. 6 example connected to fluid collection 213. The fluid collection structures 213 are designed in the manner of so-called double-exit distributors and provided with openings 211 on the first outer surface 11 of the heat exchanger block 10. However, other configurations may be provided. About the first openings 211 is a partially vaporized fluid discharged at an upper side of the heat exchanger block 10 and the first outer surface 11. Unevaporated fluid runs off on the outside of the heat exchanger block 10. On the underside or the second outer surface 12 of the heat exchanger block 10, on the other hand, openings 212 of the fluid-guiding structures 21 ("second" openings) are provided, which are connected without or only to so-called open-end fluid distribution devices 214. Fluid can thus freely enter the heat exchange ribs 215 and ascend in this way.

Wird jedoch eine Anordnung gewählt, in der die Fluidsammelleitung 50 auf einer Unterseite bzw. der zweiten Außenfläche 12 des Wärmetauscherblocks 10 angeordnet ist, so müssen auch die zweiten Öffnungen der Fluidführungsstrukturen 21 in einen Bereich verlagert werden, der durch die Fluidsammelleitung nicht verdeckt ist. Zu diesem Zweck kommt eine Fluidverteilstruktur 214 zum Einsatz, die beispielsweise nach Art eines sogenannten Double-Entry-Distributors ausgebildet ist. Dies ist in Figur 7 gezeigt. Alternativ dazu kann auch, wie bereits mehrfach erwähnt, vorgesehen sein, die ersten und/oder die zweiten Öffnungen 211 und/oder 212 auf die dritten und vierten Außenflächen 13, 14 des Wärmetauscherblocks 10 zu verlagern. Dies ist in Figur 8 für den Fall veranschaulicht, dass die Fluidverteilleitung 40 auf der ersten Außenfläche 11 und die Fluidsammelleitung 50 auf der zweiten Außenfläche 12 angeordnet ist. Ist die Fluidsammelleitung 50 hingegen nicht auf der zweiten Außenfläche 12 angeordnet, kann die Ausbildung der zweiten Öffnungen 212 wie in Figur 6 gezeigt erfolgen. Auch eine Kombination der in Figur 7 und 8 gezeigten Ausführungsformen ist möglich, d.h. die Ausbildung der ersten Öffnungen 211 kann wie in Figur 6 gezeigt erfolgen und die Ausbildung der zweiten Öffnungen 212 wie in Figur 8 gezeigt oder umgekehrt.However, if an arrangement is chosen in which the fluid manifold 50 is disposed on a bottom surface or second outer surface 12 of the heat exchanger block 10, then the second openings of the fluid routing structures 21 must also be displaced to an area that is not obscured by the fluid manifold. For this purpose, a Fluidverteilstruktur 214 is used, which is formed for example in the manner of a so-called double-entry distributor. This is in FIG. 7 shown. Alternatively, it may also be provided, as already mentioned several times, to displace the first and / or the second openings 211 and / or 212 onto the third and fourth outer surfaces 13, 14 of the heat exchanger block 10. This is in FIG. 8 illustrates in the case that the fluid distribution line 40 on the first outer surface 11 and the fluid collecting line 50 on the second outer surface 12 is arranged. On the other hand, if the fluid manifold 50 is not disposed on the second outer surface 12, the formation of the second openings 212 may be as in FIG FIG. 6 shown done. Also a combination of in FIG. 7 and 8th shown embodiments is possible, ie the formation of the first openings 211 may as in FIG. 6 shown and the formation of the second openings 212 as in FIG. 8 shown or vice versa.

Claims (15)

  1. Plate heat exchanger condenser-evaporator (100) having a heat-exchanger block (10) which comprises a number of heat-exchanger plates (20, 30) having fluid-conducting structures (21, 31), wherein the heat-exchanger block (10) comprises a first outer surface (11), a second outer surface (12) opposite the first outer surface (11), a third outer surface (13) and a fourth outer surface (14) opposite the third outer surface (13), wherein the fluid-conducting structures (21) of first heat-exchanger plates (20) comprise first and second openings (211, 212) on the heat-exchanger block (10), which openings are not covered by fluid feed lines or by fluid-collecting lines, and wherein the fluid-conducting structures (31) of second heat-exchanger plates (30) run between a fluid feed line (40) arranged on the heat-exchanger block (10) and a fluid-collecting line (50) arranged on the heat-exchanger block (10), characterized in that the fluid feed line (40) is arranged on the first outer surface (11) and in that the first openings (211) of the fluid-conducting structures (21) of the first heat-exchanger plates (20) are arranged either in a region of the first outer surface (11) that is not covered by the fluid feed line (40) or in a first region of the third outer surface (13) and a first region of the fourth outer surface (14).
  2. Plate heat exchanger condenser-evaporator (100) according to Claim 1, in which the first openings (211) of the fluid-conducting structures (21) of the first heat-exchanger plates (20) are formed by fluid-collecting structures (213) that are connected to heat-transfer fins (215) in a central region of the fluid-conducting structures (21).
  3. Plate heat exchanger condenser-evaporator (100) according to Claim 2, in which the fluid feed line (40) runs in a central region of the first outer surface (11) at right angles to the heat-exchanger plates (20, 30).
  4. Plate heat exchanger condenser-evaporator (100) according to Claim 2 or 3, in which the fluid-collecting structures (213) of the first heat-exchanger plates (20) are constructed as double-exit distributors.
  5. Plate heat exchanger condenser-evaporator (100) according to any one of the preceding claims, in which the fluid-conducting structures (31) of the second heat-exchanger plates (30) comprise openings (311) on the first outer surface (11), which openings open out into the fluid feed line (40) and are formed by fluid-distribution structures (313) that are connected to heat-transfer fins (315) in a central region of the fluid-conducting structures (31).
  6. Plate heat exchanger condenser-evaporator (100) according to Claim 5, in which the fluid-distribution structures (313) of the second heat-exchanger plates (30) are constructed as central distributors.
  7. Plate heat exchanger condenser-evaporator (100) according to any one of the preceding claims, in which the fluid collecting line (50) is arranged on the second outer surface (12).
  8. Plate heat exchanger condenser-evaporator (100) according to Claim 7, in which the second openings (212) of the fluid-conducting structures (21) of the first heat-exchanger plates (20) are formed by fluid-distribution structures (214) that are connected to the heat-transfer fins (215) in the central region of the fluid-conducting structures (21), wherein the second openings (212) formed by the fluid-distribution structures (214) are either arranged in a region of the second outer surface (12) that is not covered by the fluid-collecting line (50), or are respectively arranged in a second region of the third outer surface (13) and a second region of the fourth outer surface (14).
  9. Plate heat exchanger condenser-evaporator (100) according to Claim 8, in which the fluid-collecting line (50) runs in a central region of the second outer surface (12) at right angles to the heat-exchanger plates (20, 30).
  10. Plate heat exchanger condenser-evaporator (100) according to Claim 8 or 9, in which the fluid-distribution structures (214) of the first heat-exchanger plates (20) are constructed as double-entry distributors.
  11. Plate heat exchanger condenser-evaporator (100) according to any one of Claims 8 to 10, in which the fluid-conducting structures (31) of the second heat-exchanger plates (30) on the second outer surface (12) comprise openings (312) that open out into the fluid-collecting line (50) and are formed by fluid-collecting structures (314) that are connected to the heat-transfer fins (315) in the central region of the fluid-conducting structures (31).
  12. Plate heat exchanger condenser-evaporator (100) according to Claim 11, in which the fluid-collecting structures (314) of the second heat-exchanger plates (30) are constructed as central distributors.
  13. Process for low-temperature air separation, in which an oxygen-enriched sump product and a nitrogen-enriched overhead product are generated using compressed, cooled feed air in a first distillation column, and an oxygen-rich sump product and a nitrogen-rich overhead product are generated in a second distillation column, using the oxygen-enriched sump product from the first distillation column, characterized in that one or more plate heat exchanger condenser-evaporators (100) according to any one of the preceding claims are used.
  14. Process according to Claim 13, in which by means of the, or one of the, plate heat exchanger condenser-evaporators (100), the oxygen-rich sump product of the second distillation column is partially evaporated in the fluid-conducting structures of the first heat-exchanger plates, and in which the nitrogen-enriched overhead product of the first distillation column is partially liquefied in the fluid-conducting structures of the second heat-exchanger plates.
  15. Process according to Claim 13, in which a fluid is withdrawn from the second distillation column and fed into a third distillation column, wherein the third distillation column comprises an overhead condenser in which, by means of the, or one of the, plate heat exchanger condenser-evaporators (100), a part of the oxygen-enriched sump product of the first distillation column is partially evaporated in the liquid-conducting structures of the first heat-exchanger plates, and in which an argon-enriched overhead product of the third distillation column is partially liquefied in the fluid-conducting structures of the second heat-exchanger plates.
EP15002975.9A 2015-10-20 2015-10-20 Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air Not-in-force EP3159648B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15002975.9A EP3159648B1 (en) 2015-10-20 2015-10-20 Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air
RU2016141091A RU2016141091A (en) 2015-10-20 2016-10-19 LAMINATED HEAT EXCHANGER-CONDENSER-EVAPORATOR AND METHOD FOR LOW-TEMPERATURE DECOMPOSITION OF AIR
CN201611020449.XA CN106595222A (en) 2015-10-20 2016-10-19 Plate heat exchanger-capacitor evaporator and method for cryogenic decomposition of air
JP2016205984A JP2017090035A (en) 2015-10-20 2016-10-20 Plate heat exchanger/condensation vaporizer and low temperature separation method of air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15002975.9A EP3159648B1 (en) 2015-10-20 2015-10-20 Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air

Publications (2)

Publication Number Publication Date
EP3159648A1 EP3159648A1 (en) 2017-04-26
EP3159648B1 true EP3159648B1 (en) 2018-09-19

Family

ID=54359662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15002975.9A Not-in-force EP3159648B1 (en) 2015-10-20 2015-10-20 Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air

Country Status (4)

Country Link
EP (1) EP3159648B1 (en)
JP (1) JP2017090035A (en)
CN (1) CN106595222A (en)
RU (1) RU2016141091A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3653983A1 (en) * 2018-11-13 2020-05-20 Linde Aktiengesellschaft Plate heat exchanger, method for operating a plate heat exchanger and method for production of a plate heat exchanger
FR3096767B1 (en) * 2019-05-31 2021-07-30 Safran DEFLECTION HEAT EXCHANGER
JP7308237B2 (en) * 2021-03-12 2023-07-13 大陽日酸株式会社 Partial condenser, overhead partial condenser, air separation unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1516432A (en) * 1967-03-06 1968-03-08 Trane Co Plate type heat exchanger having a combined closure member and fluid distributor
WO1993013373A1 (en) * 1989-09-12 1993-07-08 Ha Bao V Cryogenic air separation process and apparatus
FR2685071B1 (en) * 1991-12-11 1996-12-13 Air Liquide INDIRECT PLATE TYPE HEAT EXCHANGER.
CA2268999C (en) * 1998-04-20 2002-11-19 Air Products And Chemicals, Inc. Optimum fin designs for downflow reboilers
EP1830149B2 (en) * 2005-12-13 2013-11-20 Linde AG Process for detemining the rigidity of a plate heat exchanger and process for producing the plate heat exchanger
EP2843348B1 (en) * 2013-08-29 2016-05-04 Linde Aktiengesellschaft Plate heat exchanger with heat exchanger blocks connected by metal foam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106595222A (en) 2017-04-26
RU2016141091A (en) 2018-04-20
RU2016141091A3 (en) 2020-01-21
EP3159648A1 (en) 2017-04-26
JP2017090035A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
EP0795349B1 (en) Device and process for evaporating a liquid
WO2001092799A1 (en) Multistoreyed bath condenser
EP2859295B1 (en) Heat exchanger
EP2909563B1 (en) Condenser
EP0669509A1 (en) Process and apparatus for obtaining pure argon
DE2248273A1 (en) HEAT EXCHANGER AND METHOD OF USING IT
EP3159648B1 (en) Plate heat exchanger capacitor evaporator and method for cryogenic decomposition of air
EP2755732B1 (en) Distillation station
DE69933202T2 (en) Falling Film Evaporator as Condensation Evaporator
DE60018639T2 (en) Use of a structured packing for air separation
EP0607887A2 (en) Apparatus and process for the low temperature air separations and liquid distributor for a mass transfer column
EP2986924B1 (en) Retrofit device for the cryogenic separation of air, retrofit installation and method for retrofitting a low-temperature air separator facility
EP1890099A1 (en) Dephlegmator
DE10322406A1 (en) Plate heat exchangers
DE19905060A1 (en) Brazed plates cryogenic condenser for use in an air distillation process
DE102016002115A1 (en) Distillation column system and method for producing oxygen by cryogenic separation of air
EP1037004B1 (en) Apparatus and process for gas mixture separation at low temperature
EP3077750B1 (en) Heat exchanger with collection channelfor the extraction of a liquid phase
WO2003087686A1 (en) Method for extracting argon by low-temperature air separation
DE2430836A1 (en) HEAT EXCHANGER MODEL
WO2003012352A2 (en) Multi-stage condenser-evaporator
DE2638488C2 (en) Method and device for breaking down a mixture of substances by rectification
DE102018002450A1 (en) Liquid distribution device and mass transfer column
EP2831524A2 (en) Transportable package with a cold box, and method for producing a low-temperature air separation system
DE102016006714A1 (en) Multi-column method and apparatus for cryogenic decomposition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170919

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20180725

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005914

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190327

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005914

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191023

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191021

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191023

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180919

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015005914

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005914

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1043739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201020