EP2909563B1 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
EP2909563B1
EP2909563B1 EP13756157.7A EP13756157A EP2909563B1 EP 2909563 B1 EP2909563 B1 EP 2909563B1 EP 13756157 A EP13756157 A EP 13756157A EP 2909563 B1 EP2909563 B1 EP 2909563B1
Authority
EP
European Patent Office
Prior art keywords
flow channel
condenser
refrigerant
region
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13756157.7A
Other languages
German (de)
French (fr)
Other versions
EP2909563A1 (en
Inventor
Herbert Hofmann
Martin Kaspar
Thomas Mager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2909563A1 publication Critical patent/EP2909563A1/en
Application granted granted Critical
Publication of EP2909563B1 publication Critical patent/EP2909563B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the invention relates to a condenser in a stacked disk design, with a first flow channel for a refrigerant and with a second flow channel for a coolant, wherein a plurality of disc elements are provided, which form stacked mutually adjacent channels between the disc elements, in particular according to the preamble of claim 1.
  • the US2009 / 0071189 discloses such a capacitor.
  • Condensers are used in refrigerant circuits of motor vehicle air-conditioning systems to cool the refrigerant to the condensation temperature and then to condense the refrigerant.
  • capacitors have a collector in which a volume of refrigerant is kept in order to compensate for volume fluctuations in the refrigerant circuit and to achieve a stable supercooling of the refrigerant.
  • the collector is usually arranged on the capacitor. It is flowed through by the refrigerant, which has already flowed through part of the condenser. After flowing through the collector, the refrigerant becomes returned to the condenser and subcooled in a subcooling below the condensation temperature.
  • the refrigerant for this purpose is led out of the condenser from one of the manifolds arranged at the side of a tube-rib block and introduced into the collector.
  • a stacked disc capacitor in which a first stack of disc elements represents a first cooling and condensing region and a second stack of disc elements constitutes a subcooling region.
  • the first stack is separated from the second stack by a housing containing a collector and dryer.
  • a disadvantage of the devices of the prior art is that the integration of capacitors in stacked disc design, collectors and subcoolers has been solved quite expensive.
  • the capacitors from the prior art are characterized by an increased production cost. This results in the use of the capacitors additional costs that make their use unattractive.
  • the object of the present invention to provide a condenser suitable for condenser, storage and further subcooling refrigerant, the condenser being characterized by a simple structure and compact design and inexpensive to manufacture.
  • the object of the present invention is achieved by a capacitor in stacking disk construction with the features of claim 1.
  • a collector in the refrigerant circuit is advantageously integrated in the flow channel of the refrigerant, at a point after the complete condensation of the refrigerant and before the collection, drying and / or filtering of the refrigerant.
  • the first connection element is designed as a channel and the channel leads from the first region through the second region to the fluid inlet of the collector, wherein the channel is only in fluid communication with the first region of the first flow channel.
  • the second connection element is designed as a channel and the channel leads from the fluid outlet of the collector through the first region into the second region.
  • the condenser may be formed outside the condenser by a stack of discs consisting predominantly of identical disc elements, despite the arrangement of the header.
  • the tube is guided through a series of adjacent disc elements.
  • the tube is preferably guided through the openings of the disc elements.
  • the tube is thereby inserted so deeply into the disc stack until it opens into one of the channels, which is assigned to the desired flow channel.
  • a channel of the first flow channel In the present case a channel of the first flow channel.
  • the first connection element is designed as a tube and the tube leads from the first region through the second region to the fluid inlet of the collector, wherein the tube is only in fluid communication with the first region of the first flow channel.
  • the collector is connected directly to the Enthitzungs- and condensation area.
  • This first region of the condenser viewed in the flow direction of the refrigerant, is located in front of the second region in which the subcooling takes place.
  • the tube In order to guide the entire refrigerant from this first region of the first flow channel into the collector, the tube is dimensioned so that it passes through all the disk elements of the second region and opens into a channel of the first region. In this way, the refrigerant is passed over the second area directly into the collector.
  • the channels forming the first flow channel can be flowed through by the refrigerant in series and / or in parallel.
  • the channels forming the second flow channel can be flowed through by the coolant in series and / or in parallel.
  • advantages can be achieved in the heat transfer to be achieved.
  • a targeted influencing of the flow direction of the first and the second flow channel a continuous flow in countercurrent of the refrigerant and the coolant can be achieved.
  • a fluid inlet or fluid outlet of the second flow channel has a second tube which is in fluid communication with another channel of the second flow channel.
  • both the fluid inlet and the fluid outlet can be arranged at a common end region of the disk stack.
  • the other channel is one of the last channels of the second flow channel, which lies substantially opposite the insertion side of the tube in the disc stack.
  • the second flow channel can be flowed through in series and a fluid inlet and a fluid outlet of the second flow channel are each arranged at the same end region of the disk stack.
  • the condenser By arranging the fluid inlet and the fluid outlet at the same end region of the disk stack, the condenser can be designed to be particularly compact.
  • the second region of the first flow channel with a third flow channel forms an internal heat exchanger in stacked disk design, wherein the first and the third flow channel can be flowed through by a refrigerant.
  • the subcooling section of the second region is replaced in this embodiment by an internal heat exchanger.
  • the subcooling of the refrigerant does not take place here by a heat transfer between the refrigerant and the coolant.
  • the cooling of the refrigerant in the condenser can be amplified once again, which leads to an overall higher performance of the condenser.
  • refrigerant flows in an internal heat exchanger, generally in countercurrent to one another, in two different flow channels.
  • the refrigerant which thereby flows in the two flow channels, is supplied to the inner heat exchanger from different sections of the refrigerant circuit, whereby the largest possible temperature difference between the two flow channels is achieved.
  • the first flow channel has a third region which follows the second region and the subcooling of the refrigerant serves, wherein the third region has a third flow channel for a fluid, wherein the first and the third flow channel at least in sections as a heat exchanger, preferably as an internal heat exchanger in stacked disk design, can be ausgestaltbar.
  • the arrangement of an internal heat exchanger after the second area, in which the supercooling takes place, further lowers the temperature of the refrigerant. There is a greater undercooling of the refrigerant, as by the pure use of a subcooling or an internal heat exchanger.
  • the condenser is constructed so that the heat transfer between the refrigerant and the refrigerant takes place in the first area in which the refrigerant is deprived and condensed.
  • the heat transfer also takes place between the refrigerant and the coolant.
  • the heat transfer then takes place between the refrigerant in a first temperature range and the refrigerant in a second temperature range.
  • the second flow channel of the coolant is guided through the condenser so that only the first region and the second region are flowed through and the coolant is subsequently led out of the condenser.
  • the third region of the disk stack has a fluid inlet and a fluid outlet, via which the third flow channel can be flown with the refrigerant.
  • the third flow channel can be supplied with a coolant independently of the first flow channel or with a coolant independently of the second flow channel.
  • the independent supply of the third flow channel with either a coolant or a refrigerant is particularly advantageous, since so a higher temperature difference between the third flow channel and the first flow channel can be achieved.
  • an additionally cooled fluid is supplied.
  • the collector is in fluid communication with only the first portion of the first flow passage via a pipe leading through a portion of the disk stack forming the fluid inlet into the accumulator and the fluid outlet of the accumulator is formed via another pipe which passes through a portion of the disk stack and is in fluid communication only with the second portion of the first flow channel.
  • the collector can be placed outside the disk stack and at the same time the simple construction of the disk stack can be achieved by using many identical disk elements.
  • the tubes are guided by the disc elements of the portions of the disc stack, with which they are not supposed to be in fluid communication, and then open into the channels of the disc stack, with which they are in fluid communication.
  • the collector can be effectively supplied to the refrigerant from the region of the first flow channel, in which the refrigerant is already completely condensed.
  • the tubes are dimensioned so that the refrigerant is discharged from one of the channels of the first flow channel into the collector and then in the subsequent channel of the first flow channel again is initiated.
  • the two channels of the first flow channel are only in fluid communication with each other via the collector.
  • the openings of the disc element of the channel, from which the refrigerant is diverted, are so closed that no liquid can take place directly into the subsequent channel.
  • a further preferred embodiment of the invention provides that the fluid inlet and / or the fluid outlet of the internal heat exchanger are formed by a tube.
  • connection of the inner heat exchanger via one or two tubes is advantageous because in this way the simple structure of the disk stack stack of the capacitor can be maintained.
  • the refrigerant, which flows through the third flow channel of the inner heat exchanger can be selectively guided through a pipe into a channel of the third flow channel and also be selectively led out of a channel of the third flow channel.
  • the discs have apertures with or without passage to create or seal fluid communication between adjacent channels.
  • the fluid flows directly into the next but one channel of the disk stack. This ensures that a change between channels that belong to the first flow channel and channels that belong to the second flow channel is achieved in the disk stack. In this case, a uniform distribution can be generated so that a channel of the first flow channel always follows a channel of the second flow channel. Even deviating distributions can be generated with this method.
  • the tubes are guided through openings in the disc elements and with at least a portion of the disc elements, in particular with the passages, are soldered.
  • the tubes By inserting the tubes into the openings and soldering the tubes with the disc elements and in particular with the passages, a compact unit is achieved, which is characterized by a high strength.
  • the tubes can be soldered to the disc stack in a single operation here.
  • first connection element is a tube and the second connection element is a flange or vice versa.
  • an advantageous connection of the collector to the capacitor can be achieved.
  • a very stable connection can be achieved by means of a flange, while the tube can be used to selectively supply the fluid into the condenser.
  • the collector is designed for filtering and / or drying the refrigerant.
  • the collector advantageously also implements the function of drying the refrigerant via suitable means for drying and further filtering the refrigerant. In this way, the refrigerant can be easily withdrawn excess moisture and continue to be freed of impurities.
  • the integration of these functions in a single component is particularly advantageous in terms of the variety of parts and the space utilization. It is particularly advantageous if the first section in the second channel has a plurality of flow paths through which the flow direction is alternately reversed.
  • the second section in the second channel has a plurality of flow paths through which the flow direction is alternately reversed in succession.
  • FIGS. 1 to 7 different embodiments of a capacitor 1, 60, 70 are shown in stacked disc design. These are capacitors 1, 60, 70 for use in an air conditioning system for motor vehicles. All shown capacitors 1, 60, 70 are formed from a multiplicity of disc elements stacked on top of one another to form a slice stack 11, 68, 87.
  • the essential advantage of the construction as a condenser 1, 60, 70 in stacked disk design is that the disk elements are largely identical and only the outer terminal plates and individual, built in the stack deflection or blocking plates, which deflect or block the inner flow channels of the differ fundamentally identical shape of the disc elements. This allows a low-cost and easy production.
  • the capacitors 1, 60, 70 are indicated only by a schematic diagram.
  • the individual portions of the capacitors 1, 60, 70, such as the Enthitzungs Society 3, 80 or the subcooling 4, 81 and the region of an internal heat exchanger 61, 82 are shown in the figures only as cuboidal elements.
  • Each of these cuboid elements actually consists of a plurality of disc elements. These disk elements are stacked on top of one another and, by means of a special arrangement of openings which may have passages, form a multiplicity of individual channels which, due to the design of the individual disk elements, are combined to form flow channels which carry either a coolant or a refrigerant.
  • the flow channels of the coolant and the flow channels of the refrigerant are always adjacent to each other. In simple embodiments, it may be that channels for the refrigerant and channels for the coolant in one equally distributed alternating order are arranged. Likewise, it is conceivable to choose a deviating from the uniform distribution distribution of refrigerant to coolant channels. It is conceivable to realize the alternating rhythm between coolant and coolant channels by a ratio of 1: 1.
  • FIGS. 1 to 7 The flow channels of the coolant and the refrigerant are in the FIGS. 1 to 7 also indicated only schematically. Each of the cuboidal elements is traversed in the figures only once by a refrigerant or coolant flow channel. This illustration is intended to illustrate only the flow principle of the individual capacitors 1, 60, 70 and has no delimiting effect.
  • the flow channels of the refrigerant 25, 64, 73, 79 are each represented by a dotted line.
  • the flow channels of the coolant 26, 42, 52, 67, 76 are each represented by a solid solid line.
  • FIGS. 1 to 7 shown flow directions of the refrigerant and the coolant are each only one example and can in reality just as in opposite directions to those in the FIGS. 1 to 7 be executed directions shown.
  • the FIG. 1 shows a condenser 1, which consists of a Enthitzungs Scheme 3 and a subcooling 4.
  • the Enthitzungs Scheme 3 is used for desuperheating a refrigerant and the condensation of the refrigerant from its vapor phase into a liquid phase.
  • the refrigerant is brought into a thermal exchange with a coolant, which also flows through the Enthitzungs Scheme 3.
  • a subcooling 4 is connected.
  • the completely liquid refrigerant is further cooled by a further thermal exchange with a coolant.
  • a collector 2 is arranged, which is flowed through by the refrigerant.
  • the task of the collector 2 is to store, filter and dry the refrigerant.
  • the collector 2 has at its fluid inlet 12 a tube 5, which is guided through the sub-cooling region 4 and is in the decompression region 3 in fluid communication with the flow channel of the refrigerant.
  • the fluid outlet 6 of the collector 2 is in turn in fluid communication with the flow channel of the refrigerant in the subcooling region 4. In this way, it is ensured that the refrigerant is completely conducted from the Enthitzungs Scheme 3 in the collector 2.
  • the collector 2 thus represents the passage of fluid from the desuperheating area 3 into the subcooling area 4, in particular for the refrigerant.
  • openings 8, 9, 10 are arranged. These can represent fluid inlets as well as fluid outlets, depending on the design of the inner flow channels. Also shown at the lower end of the disk stack 11 is an opening 7, which may also be a fluid inlet or a fluid outlet, depending on the design of the inner flow channels.
  • FIG. 2 also shows a capacitor 1, which corresponds to the in FIG. 1 shown capacitor 1 corresponds substantially.
  • Flow channels 25, 26 shown for a coolant and a refrigerant flows through a arranged at the upper end portion of the disk stack 11 fluid inlet 21 in the Enthitzungs Scheme 3 of the condenser 1. There it flows through the channels formed by the disc elements, which are associated with the flow channel 25 of the refrigerant.
  • the refrigerant flows through openings 24, which are arranged between the individual disc elements.
  • the refrigerant flows into the collector 2 via the pipe 5.
  • the collector 2 for the purpose of storage, filtration and drying and then flows through the fluid outlet 6 of the collector 2 into the subcooling region 4 of the condenser 1.
  • the refrigerant flows out of the subcooling region 4 through the fluid outlet 23 ,
  • the coolant flows through the fluid inlet 20 at the upper end portion of the condenser 1 into the dewarning area 3.
  • the coolant flows through the individual channels of the Enthitzungs Schemes 3 and the subcooling 4 in parallel.
  • the coolant through upper openings 24, which lie in an approximately rectilinear imaginary extension to the fluid inlet 20 of the coolant, from top to bottom through the disk stack 11 and then spreads across the width of the capacitor 1. After the coolant over the entire width of the Condenser 1, it then flows through a plurality of openings 24 in the disc elements from bottom to top through the fluid outlet 22 of the coolant from the condenser 1.
  • FIG. 3 shows a similar structure as it already in the Figures 1 and 2 was presented.
  • the flow channel 25 of the refrigerant is analogous to FIG. 2 through the condenser 1 of FIG. 3 arranged. Deviating from FIG. 2 the coolant flows in FIG. 3 now no longer in a parallel arrangement through the channels of the condenser 1, but flows through the condenser 1 as well as the refrigerant in series.
  • the coolant flows through the fluid inlet 30 at the lower region of the condenser 1 into the subcooling region 4. There it is distributed over the width of the capacitor 1 and flows through an inner opening 24 upwards into the Enthitzungs Scheme 3. There it also spreads over the entire width of the capacitor 1 and flows upward through a further inner opening 24 in the upper Area of the Enthitzungs Schemes 3 and finally flows after a redistribution across the width of the capacitor 1 through the fluid outlet 31 from the condenser 1 from.
  • the flow channel 32 of the coolant extends in the FIG. 3 , So as well as the flow channel 25 of the refrigerant in series through the individual channels in the interior of the condenser 1. By in FIG. 3 As shown, the refrigerant flow over the entire condenser 1 is in countercurrent to the coolant.
  • FIG. 4 again shows a capacitor 1 analogous to FIGS. 1 to 3 ,
  • the refrigerant flow channel 25 is analogous to Figures 2 and 3 executed. Deviating from the Figures 2 and 3 Now, the flow channel 42 of the coolant is disposed within the capacitor 1, that there are both areas in which the capacitor is flowed through in parallel, as well as areas in which it is passed through in series.
  • the coolant flows through the fluid inlet 40 into the subcooling region 4 of the condenser 1. There it is distributed both over the width of the condenser 1 as well as upwardly through an inner opening 24 in the Enthitzungs Scheme 3. In the desuperheating 3, the coolant is also distributed over the entire width of the condenser 1.
  • the coolant flow in the subcooling 4 also flows over an inner opening 24 upwards into the Enthitzungs Scheme 3, where the coolant flow from the sub-cooling region 4 and the Enthitzungs Scheme 3 reunites. Together, the coolant flows there via a further inner opening 24 in the upper region of the Enthitzungs Schemes 3 and there again distributed over the entire width of the capacitor 1 and finally flows out of the condenser 1 via the fluid outlet 41 of the coolant.
  • the condenser 1 is partially flowed through in parallel and partially in series by the coolant. This results in areas in which the coolant flows with the refrigerant in countercurrent, as well as areas in which the coolant flows with the refrigerant in the DC flow.
  • FIG. 5 also shows a capacitor 1 analogous to the embodiments of FIGS. 1 to 4 ,
  • the flow channel 25 of the refrigerant is again unchanged from the FIGS. 2 to 4 executed.
  • the coolant is now purely serially passed through the condenser 1 and is on the condenser by a, arranged at one of its end portions, fluid inlet 50 and fluid outlet 51 and removed.
  • the coolant is not distributed over the width of the condenser 1 as in the preceding figures, but is guided through a pipe 53, which is connected to the fluid inlet 50, through openings 54 in the disk elements down into the subcooling region 4 of the condenser 1 , Only in the subcooling region 4 does the coolant leave the tube 53 and spread over the width of the condenser 1.
  • the coolant flows again through an inner opening 24 in the Enthitzungs Scheme 3, where it is distributed over the width of the capacitor 1 again. It then flows through a further opening 24 in the upper region of the Enthitzungsshare and is also distributed there across the width of the capacitor 1, before it flows out of the condenser 1 via the fluid outlet 51 of the coolant.
  • the coolant thus flows completely serially through the regions of the condenser 1.
  • the coolant flowing in the flow channel 52 thus flows countercurrently to the refrigerant in the flow channel 25 at all times.
  • FIG. 6 shows a capacitor 60, which unlike the capacitors 1 of FIGS. 1 to 5 now has a Enthitzungs Suite 3 in the upper part and arranged underneath an internal heat exchanger 61, which in place of the subcooling 4 of the FIGS. 2 to 5 occurs.
  • the flow channel 25 of the refrigerant is analogous to FIGS. 2 to 5 passed through the capacitor 60.
  • the coolant flows into the condenser 60 through a fluid inlet 65 at the top of the disk stack 68 of the condenser 60. There, it is distributed through an inner opening 24 in depth via the Enthitzungs Scheme 3 and then distributed there across the width of the capacitor 60 before it flows out through openings 24 and the fluid outlet 66 back out of the condenser 60.
  • the Enthitzungs Scheme 3 flows through the coolant in parallel.
  • the desuperheating region 3 is further serially flowed through by the refrigerant through the flow channel 25 of the refrigerant, thereby adjusting portions of the direct current and portions of the counterflow between the refrigerant and the coolant.
  • the region 61 which represents the inner heat exchanger, is not flowed through by the coolant. Instead, the inner heat exchanger 61 on a third flow channel 64, which is also traversed by the refrigerant.
  • the refrigerant flows through a fluid inlet 62 into the inner heat exchanger 61 and is distributed over the width of the condenser 60 before it flows out of the condenser 60 via the fluid outlet 63.
  • the refrigerant in the flow channel 64 and the refrigerant in the flow channel 25 are in countercurrent to each other. In this way, a higher heat transfer between the two flow channels 64, 25 can be achieved.
  • the refrigerant which flows through the flow channel 64 of the inner heat exchanger 61, comes as the refrigerant in the flow channel 25 from the same refrigerant circuit.
  • the refrigerant in the flow channel 64 differs from the refrigerant in the flow channel 25 substantially by its temperature. Since it is intended that refrigerant in the flow channel 25 within the inner Heat exchanger 61 continue to cool, the refrigerant in the flow channel 64 has a lower temperature, whereby the refrigerant in the flow channel 25 further heat can be withdrawn.
  • FIG. 6 embodiment shown represents an alternative to that in the FIGS. 1 to 5 Instead of subcooling by a thermal transition between a coolant and the refrigerant, here a thermal transition between the refrigerant of a first temperature level and the refrigerant of a second temperature level is generated.
  • FIG. 7 now shows a capacitor 70, which consists of a disk stack 87.
  • the capacitor 70 is a combination of the embodiments of FIGS. 1 to 6 .
  • At the upper Enthitzungs Scheme 80 is followed at the bottom of a subcooling 81.
  • An internal heat exchanger 82 is connected to the subcooling region 81 at the bottom.
  • the upper portion of the condenser 70 which consists of the Enthitzungs Scheme 80 and the subcooling 81, is a coolant according to the flow, which is already in FIG. 2 for the coolant is shown, flows through.
  • a coolant flows through the fluid inlet 74 into the Enthitzungs Scheme 80 and there is distributed through inner openings along the depth of the condenser 70 into the sub-cooling region 81. It then flows through the capacitor 70 in its width uniformly, before it at the opposite end by internal openings flows upward and out of the condenser 70 via the fluid outlet 75.
  • the coolant flows through the condenser 70 in its flow channel 76 completely parallel.
  • the refrigerant flows through a fluid inlet 71 into the Enthitzungs Scheme 80 and flows through the Enthitzungs Scheme 80 serially.
  • the refrigerant then flows from the Enthitzungs Scheme 80 via a pipe 84 which passes through the subcooling 81 and the inner heat exchanger 82, directly into the collector 2. From the collector second
  • the refrigerant flows via the pipe 83 back into the subcooling region 81 and is distributed over the width of the capacitor 70 thereafter. It then flows through an inner opening from the subcooling 81 into the underlying inner heat exchanger 82 and also flows through the individual channels of the internal heat exchanger 82 serially before it flows out of the inner heat exchanger 82 via the fluid outlet 72 from the condenser 70.
  • the inner heat exchanger 82 is also traversed by a refrigerant.
  • a refrigerant flows via a fluid inlet 77, which may be formed as a tube 85, into the internal heat exchanger 82. There it is distributed over the width of the inner heat exchanger 82 and flows through an inner opening in the upper region of the inner heat exchanger 82. There it also spreads again across the width of the capacitor 70 and finally flows through a tube 86 which passes through the lower Area of the internal heat exchanger 82 leads out of the condenser 70.
  • the tube 86 thus also forms the fluid outlet 78 of the flow channel 79 of the refrigerant.
  • FIGS. 1 to 7 shown positions of the fluid inlets or fluid outlets are each exemplary. Deviating orientations, for example laterally on the condenser, are just as conceivable as the arrangement of a fluid inlet or outlet in a middle region of the condensers. Rather, the FIGS. 1 to 7 Embodiments show that it is possible to lead a refrigerant flow and a coolant flow both in the DC principle as well as in the countercurrent principle by the individual regions of the capacitors 1, 60, 70. This results in different advantages for the arrangement of the fluid inlets or fluid outlets. Depending on the intended application of the capacitors 1, 60, 70, a corresponding internal design of the disk stack 11, 68, 87 of the capacitors 1, 60, 70 make.
  • the capacitors 1, 60, 70 can be selectively produced from a combination of desuperheating area 3, 80, subcooling area 4, 81 and internal heat exchanger 61, 82.
  • Optimal configurations can be created depending on the application all follow a simple structure of individual disc elements and thus are very flexible in their construction.
  • FIGS. 1 to 7 shown pipes are also inexpensive to manufacture and are introduced in the simplest case in the disk stack 11, 68, 87, thereby leading through inner openings of the disk elements.
  • this is done in an early part of the production process, so that the disc elements can be soldered to the individual tubes in one operation.
  • the tubes are in particular soldered to the openings which have passages.
  • the FIG. 8 shows a section through a connecting element, with which, for example, the collector 2 to the respective lower portion of the capacitors 1, 60 in the FIGS. 1 to 6 can be connected.
  • the connection element has a tube 90, which forms a flow channel 96 between a fluid inlet 93 and a fluid outlet 94.
  • This tube 90 corresponds in the FIGS. 1 to 6 the pipe 5, which connects the collector 2 with the lower part of the Enthitzungs Schemes 3.
  • the collector 2 is in fluid communication via the flow channel 97, which is formed between the fluid inlet 91 and the fluid outlet 92, with the subcooling region 4 or the internal heat exchanger 61.
  • the tube 90 engages through at least one of the disk elements of the capacitors 1, 60.
  • the capacitor is in FIG. 8 designated by the reference numeral 95. It can be seen in particular that the flow channel 97 extends completely around the tube 90 around.
  • FIG. 9 shows a further alternative connection element, which in particular in an arrangement according to the FIG. 7 can be used.
  • a first tube 100 is arranged parallel to a second tube 101.
  • the tube 100 forms a flow channel 106 which extends between a fluid inlet 102 and a fluid outlet 103.
  • the tube 101 also forms a flow channel 107, which runs between a fluid inlet 104 and a fluid outlet 105.
  • the capacitor is in FIG. 9 indicated by the reference numeral 108.
  • Main task of the connection element of FIG. 9 it is to discharge a fluid from a region of the condenser 1, 60, 70, 108 and supply it to the collector 2. This is done via the longer tube 101.
  • the return of the fluid from the collector 2 into the condenser 1, 60, 70, 108 is done via the shorter tube 100.
  • By the length of the tubes 100, 101 and thus resulting different heights of the fluid outlets 103rd , 105 it is possible to divert the fluid at different heights relative to the condenser 1, 60, 70, 108 from the condenser 1, 60, 70, 108 and feed it again.
  • FIGS. 8 and 9 shown fluid inlets and fluid outlets can also be arranged reversed depending on the flow direction.

Description

Technisches GebietTechnical area

Die Erfindung betrifft einen Kondensator in Stapelscheibenbauweise, mit einem ersten Strömungskanal für ein Kältemittel und mit einem zweiten Strömungskanal für ein Kühlmittel, wobei eine Mehrzahl von Scheibenelementen vorgesehen sind, die aufeinandergestapelt zueinander benachbarte Kanäle zwischen den Scheibenelementen ausbilden, insbesondere gemäß dem Oberbegriff von Anspruch 1. Die US2009/0071189 offenbart einen derartigen Kondensator.The invention relates to a condenser in a stacked disk design, with a first flow channel for a refrigerant and with a second flow channel for a coolant, wherein a plurality of disc elements are provided, which form stacked mutually adjacent channels between the disc elements, in particular according to the preamble of claim 1. The US2009 / 0071189 discloses such a capacitor.

Stand der TechnikState of the art

In Kältemittelkreisläufen von Klimaanlagen für Kraftfahrzeuge werden Kondensatoren eingesetzt um das Kältemittel auf die Kondensationstemperatur abzukühlen und anschließend das Kältemittel zu kondensieren. Regelmäßig weisen Kondensatoren einen Sammler auf, in welchem ein Kältemittelvolumen vorgehalten ist um Volumenschwankungen im Kältemittelkreislauf auszugleichen und um eine stabile Unterkühlung des Kältemittels zu erreichen.Condensers are used in refrigerant circuits of motor vehicle air-conditioning systems to cool the refrigerant to the condensation temperature and then to condense the refrigerant. Regularly, capacitors have a collector in which a volume of refrigerant is kept in order to compensate for volume fluctuations in the refrigerant circuit and to achieve a stable supercooling of the refrigerant.

Oftmals sind in dem Sammler zusätzliche Mittel zur Trocknung und/oder Filterung des Kältemittels vorgesehen. Der Sammler ist im Regelfall am Kondensator angeordnet. Er wird von dem Kältemittel durchströmt, welches bereits einen Teil des Kondensators durchströmt hat. Nach dem Durchströmen des Sammlers wird das Kältemittel in den Kondensator zurückgeleitet und in einer Unterkühlungsstrecke unter die Kondensationstemperatur unterkühlt.Often, additional means for drying and / or filtering the refrigerant are provided in the collector. The collector is usually arranged on the capacitor. It is flowed through by the refrigerant, which has already flowed through part of the condenser. After flowing through the collector, the refrigerant becomes returned to the condenser and subcooled in a subcooling below the condensation temperature.

Bei konventionellen Kondensatoren in Rippe-Rohr-Bauweise wird das Kältemittel hierfür aus einem der seitlich eines Rohr-Rippenblocks angeordneten Sammelrohre aus dem Kondensator hinausgeleitet und in den Sammler eingeleitet.In the case of conventional rib-tube-type condensers, the refrigerant for this purpose is led out of the condenser from one of the manifolds arranged at the side of a tube-rib block and introduced into the collector.

Bei Kondensatoren, welche in Stapelscheibenbauweise gebaut sind, sind Möglichkeiten im Stand der Technik bekannt, den Sammler als eine zusätzliche Lage von Scheibenelementen an den Kondensator anzufügen.For capacitors constructed in a stacked disc design, ways in the art are known to attach the collector to the capacitor as an additional layer of disk elements.

Außerdem ist es bekannt, das Kältemittel über eine spezielle Verteilerplatte aus dem in Stapelscheibenbauweise gebauten Kondensator hinauszuleiten und einem externen Sammler zuzuführen und das Kältemittel nach dem Sammler wieder in den Kondensator zurückzuführen. Dies ist beispielsweise in der unveröffentlichten Anmeldung der Anmelderin DE 10 2010 026 507 offenbart.In addition, it is known to lead the refrigerant via a special distribution plate from the built-up in stacked disk condenser and supply an external collector and return the refrigerant after the collector back into the condenser. This is for example in the unpublished application of the Applicant DE 10 2010 026 507 disclosed.

Weiterhin offenbart die US 2009/0071189 A1 einen Kondensator in Stapelscheibenbauweise, bei dem ein erster Stapel an Scheibenelementen einen ersten Abkühlungs- und Kondensationsbereich darstellt und ein zweiter Stapel an Scheibenelementen einen Unterkühlungsbereich darstellt. Der erste Stapel ist von dem zweiten Stapel durch ein Gehäuse getrennt, welches einen Sammler und Trockner beinhaltet.Furthermore, the disclosure US 2009/0071189 A1 a stacked disc capacitor in which a first stack of disc elements represents a first cooling and condensing region and a second stack of disc elements constitutes a subcooling region. The first stack is separated from the second stack by a housing containing a collector and dryer.

Nachteilig an den Vorrichtungen des Standes der Technik ist, dass die Integration von Kondensatoren in Stapelscheibenbauweise, Sammlern und Unterkühlern bisher recht aufwändig gelöst ist. Neben einem komplexen Aufbau, zeichnen sich die Kondensatoren aus dem Stand der Technik durch einen erhöhten Fertigungsaufwand aus. Dadurch ergeben sich hinsichtlich der Verwendung der Kondensatoren Mehrkosten, die ihren Einsatz unattraktiv machen.A disadvantage of the devices of the prior art is that the integration of capacitors in stacked disc design, collectors and subcoolers has been solved quite expensive. In addition to a complex structure, the capacitors from the prior art are characterized by an increased production cost. This results in the use of the capacitors additional costs that make their use unattractive.

Darstellung der Erfindung, Aufgabe, Lösung, VorteilePresentation of the invention, object, solution, advantages

Daher ist es die Aufgabe der vorliegenden Erfindung einen Kondensator bereitzustellen, der geeignet ist ein Kältemittel zu kondensieren, es zu bevorraten und weiterhin zu unterkühlen, wobei der Kondensator durch einen einfachen Aufbau und eine kompakte Bauweise gekennzeichnet ist und kostengünstig herzustellen ist.Therefore, it is the object of the present invention to provide a condenser suitable for condenser, storage and further subcooling refrigerant, the condenser being characterized by a simple structure and compact design and inexpensive to manufacture.

Die Aufgabe der vorliegenden Erfindung wird durch einen Kondensator in Stapelscheibenbauweise mit den Merkmalen des Anspruchs 1 gelöst.The object of the present invention is achieved by a capacitor in stacking disk construction with the features of claim 1.

Der Aufbau eines Kondensators in Stapeischeibenbauweise ist besonders einfach und kostengünstig zu realisieren. Im Regelfall können eine Vielzahl identischer Scheibenelemente für den Aufbau verwendet werden. Lediglich die äußeren Begrenzungsplatten des Scheibenstapels oder Scheibenelemente im inneren des Scheibenstapels, welche zusätzliche Funktionalitäten, wie etwa das Blockieren oder Umlenken eines Strömungskanals bewirken, weisen eine abweichende Gestaltung auf. Die Aufteilung des Strömungskanals, welcher das Kältemittel führt in einen ersten Bereich, welcher der Enthitzung und der Kondensation des Kältemittels in seiner dampfförmigen Phase dient und einen zweiten Bereich, welcher der Unterkühlung des kondensierten Kältemittels dient, führt dazu, dass am Ende des Kondensators stets vollständig unterkühltes Kältemittel vorliegt.The construction of a condenser in Stapeischeibenbauweise is particularly simple and inexpensive to implement. As a rule, a multiplicity of identical disk elements can be used for the construction. Only the outer boundary plates of the disk stack or disk elements in the interior of the disk stack, which cause additional functionalities, such as the blocking or deflection of a flow channel, have a different design. The division of the flow channel, which leads the refrigerant into a first region which serves for the desuperheating and the condensation of the refrigerant in its vapor phase and a second region which serves for the subcooling of the condensed refrigerant, results in that the end of the condenser is always complete Undercooled refrigerant is present.

Um das Kältemittelvolumen im Kältemittelkreislauf konstant zu halten und das Kältemittel zusätzlich zu Trocknen und/oder zu Filtrieren ist es zusätzlich vorteilhaft einen Sammler in den Kältemittelkreislauf zu integrieren. Dieser ist vorteilhafterweise in den Strömungskanal des Kältemittels, an einer Stelle nach der vollständigen Kondensation des Kältemittels und vor der Sammlung, Trocknung und/oder Filterung des Kältemittels, integriert.In order to keep the volume of refrigerant in the refrigerant circuit constant and the refrigerant in addition to drying and / or to filter, it is additionally advantageous to integrate a collector in the refrigerant circuit. This is advantageously integrated in the flow channel of the refrigerant, at a point after the complete condensation of the refrigerant and before the collection, drying and / or filtering of the refrigerant.

Besonders vorteilhaft ist es, wenn das erste Anschlusselement als Kanal ausgebildet ist und der Kanal vom ersten Bereich durch den zweiten Bereich zum Fluideinlass des Sammlers führt, wobei der Kanal nur mit dem ersten Bereich des ersten Strömungskanals in Fluidkommunikation steht.It is particularly advantageous if the first connection element is designed as a channel and the channel leads from the first region through the second region to the fluid inlet of the collector, wherein the channel is only in fluid communication with the first region of the first flow channel.

Auch ist es vorteilhaft, wenn das zweite Anschlusselement als Kanal ausgebildet ist und der Kanal vom Fluidauslass des Sammlers durch den ersten Bereich in den zweiten Bereich führt.It is also advantageous if the second connection element is designed as a channel and the channel leads from the fluid outlet of the collector through the first region into the second region.

Durch die Verwendung eines Rohres zum Anschluss eines Sammlers an den ersten Strömungskanal, kann der Kondensator trotz einer Anordnung des Sammlers außerhalb des Kondensators durch einen Scheibenstapel gebildet sein, der überwiegend aus identischen Scheibenelementen besteht.By using a tube to connect a header to the first flow channel, the condenser may be formed outside the condenser by a stack of discs consisting predominantly of identical disc elements, despite the arrangement of the header.

Das Rohr wird dabei durch eine Reihe von benachbart zueinander liegenden Scheibenelementen geführt. Hierbei wird das Rohr bevorzugt durch die Öffnungen der Scheibenelemente geführt. Das Rohr wird dabei so tief in den Scheibenstapel eingeführt, bis es in einen der Kanäle mündet, der dem gewünschten Strömungskanal zugeordnet ist. Im vorliegenden Fall einem Kanal des ersten Strömungskanals.The tube is guided through a series of adjacent disc elements. In this case, the tube is preferably guided through the openings of the disc elements. The tube is thereby inserted so deeply into the disc stack until it opens into one of the channels, which is assigned to the desired flow channel. In the present case a channel of the first flow channel.

Auch ist es zu bevorzugen, wenn das erste Anschlusselement als Rohr ausgebildet ist und das Rohr vom ersten Bereich durch den zweiten Bereich zum Fluideinlass des Sammlers führt, wobei das Rohr nur mit dem ersten Bereich des ersten Strömungskanals in Fluidkommunikation steht.It is also preferable if the first connection element is designed as a tube and the tube leads from the first region through the second region to the fluid inlet of the collector, wherein the tube is only in fluid communication with the first region of the first flow channel.

Um den Sammler an der für den gesamten Arbeitsprozess des Kondensators günstigsten Stelle zu integrieren, ist es besonders vorteilhaft, wenn der Sammler direkt an den Enthitzungs- und Kondensationsbereich angeschlossen ist. Dieser erste Bereich des Kondensators liegt in Strömungsrichtung des Kältemittels betrachtet vor dem zweiten Bereich, in welchem die Unterkühlung stattfindet.In order to integrate the collector at the most favorable for the entire work process of the capacitor body, it is particularly advantageous if the collector is connected directly to the Enthitzungs- and condensation area. This first region of the condenser, viewed in the flow direction of the refrigerant, is located in front of the second region in which the subcooling takes place.

Um das gesamte Kältemittel aus diesem ersten Bereich des ersten Strömungskanals in den Sammler zu leiten, ist das Rohr so dimensioniert, dass es durch alle Scheibenelemente des zweiten Bereiches hindurchgreift und in einen Kanal des ersten Bereichs mündet. Auf diese Weise wird das Kältemittel am zweiten Bereich vorbei direkt in den Sammler geleitet.In order to guide the entire refrigerant from this first region of the first flow channel into the collector, the tube is dimensioned so that it passes through all the disk elements of the second region and opens into a channel of the first region. In this way, the refrigerant is passed over the second area directly into the collector.

In einem weiteren bevorzugten Ausführungsbeispiel kann es vorgesehen sein, dass die den ersten Strömungskanal bildenden Kanäle seriell und/oder parallel von dem Kältemittel durchströmbar sind.In a further preferred embodiment it can be provided that the channels forming the first flow channel can be flowed through by the refrigerant in series and / or in parallel.

Durch eine serielle und/oder parallele Durchströmung können Vorteile, insbesondere hinsichtlich des zu realisierenden Wärmeübergangs, erreicht werden. Es können Bereiche erzeugt werden, in denen das Kältemittel im Gleichstrom oder im Gegenstrom zum Kühlmittel durch den ersten Strömungskanal strömt.By a serial and / or parallel flow advantages, especially with regard to the heat transfer to be realized, can be achieved. Areas can be created in which the refrigerant flows through the first flow channel in cocurrent or in countercurrent to the coolant.

Außerdem kann es vorteilhaft sein, wenn die den zweiten Strömungskanal bildenden Kanäle seriell und/oder parallel von dem Kühlmittel durchströmbar sind.In addition, it may be advantageous if the channels forming the second flow channel can be flowed through by the coolant in series and / or in parallel.

Ebenfalls, wie beim ersten Strömungskanal können Vorteile beim zu erzielenden Wärmeübergang erreicht werden. Insbesondere durch eine gezielte Beeinflussung der Durchströmungsrichtung des ersten und des zweiten Strömungskanals kann eine durchgehende Durchströmung im Gegenstrom des Kältemittels und des Kühlmittels erreicht werden.Likewise, as with the first flow channel, advantages can be achieved in the heat transfer to be achieved. In particular, by a targeted influencing of the flow direction of the first and the second flow channel, a continuous flow in countercurrent of the refrigerant and the coolant can be achieved.

Zusätzlich kann durch eine Beeinflussung des Durchströmungsprinzips eine vorteilhafte Gestaltung der Fluideinlässe und Fluidauslässe des Kondensators erreicht werden.In addition, an advantageous design of the fluid inlets and fluid outlets of the condenser can be achieved by influencing the flow-through principle.

Gemäß einer besonders günstigen Weiterbildung der Erfindung, kann es vorgesehen sein, dass ein Fluideinlass oder Fluidauslass des zweiten Strömungskanals ein zweites Rohr aufweist, das mit einem anderen Kanal des zweiten Strömungskanals in Fluidkommunikation steht.According to a particularly favorable development of the invention, it can be provided that a fluid inlet or fluid outlet of the second flow channel has a second tube which is in fluid communication with another channel of the second flow channel.

Durch die Verbindung des zweiten Strömungskanals mit einem Rohr in Funktion des Fluideinlasses oder Fluidauslasses kann erreicht werden, dass sowohl der Fluideinlass, als auch der Fluidauslass an einem gemeinsamen Endbereich des Scheibenstapels angeordnet werden können.By connecting the second flow channel with a tube as a function of the fluid inlet or fluid outlet, it can be achieved that both the fluid inlet and the fluid outlet can be arranged at a common end region of the disk stack.

Es ist weiterhin vorteilhaft, wenn der andere Kanal einer der letzten Kanäle des zweiten Strömungskanals ist, welcher der Einführseite des Rohrs in dem Scheibenstapel im Wesentlichen gegenüber liegt.It is also advantageous if the other channel is one of the last channels of the second flow channel, which lies substantially opposite the insertion side of the tube in the disc stack.

Auf diese Weise wird erreicht, dass das Kältemittel oder das Kühlmittel durch den gesamten Kondensator oder den darin vorgesehenen Strömungsweg strömt, bevor es über das Rohr wieder durch den ganzen Kondensator zurückströmt und am selben Endbereich des Scheibenstapels, an dem es in den Scheibenstapel geströmt ist auch wieder ausströmt.In this way it is achieved that the refrigerant or the coolant flows through the entire condenser or the flow path provided therein, before it flows back through the pipe again through the entire condenser and at the same end portion of the disk stack where it has flowed into the disk stack also emanates again.

Weiterhin ist es zu bevorzugen, wenn der zweite Strömungskanal seriell durchströmbar ist und ein Fluideinlass und ein Fluidauslass des zweiten Strömungskanals jeweils am gleichen Endbereich des Scheibenstapels angeordnet sind.Furthermore, it is preferable if the second flow channel can be flowed through in series and a fluid inlet and a fluid outlet of the second flow channel are each arranged at the same end region of the disk stack.

Durch eine Anordnung des Fluideinlasses und des Fluidauslasses am gleichen Endbereich des Scheibenstapels kann der Kondensator besonders kompakt konstruiert werden.By arranging the fluid inlet and the fluid outlet at the same end region of the disk stack, the condenser can be designed to be particularly compact.

In einer besonders günstigen Ausgestaltung der Erfindung ist es außerdem vorgesehen, dass der zweite Bereich des ersten Strömungskanals mit einem dritten Strömungskanal einen inneren Wärmeübertrager in Stapelscheibenbauweise bildet, wobei der erste und der dritte Strömungskanal von einem Kältemittel durchströmbar sind.In a particularly favorable embodiment of the invention, it is also provided that the second region of the first flow channel with a third flow channel forms an internal heat exchanger in stacked disk design, wherein the first and the third flow channel can be flowed through by a refrigerant.

Die Unterkühlungsstrecke des zweiten Bereichs wird in diesem Ausführungsbeispiel durch einen inneren Wärmeübertrager ersetzt. Die Unterkühlung des Kältemittels erfolgt hier nicht durch einen Wärmeübergang zwischen dem Kältemittel und dem Kühlmittel.The subcooling section of the second region is replaced in this embodiment by an internal heat exchanger. The subcooling of the refrigerant does not take place here by a heat transfer between the refrigerant and the coolant.

Durch einen inneren Wärmeübertrager kann die Abkühlung des Kältemittels im Kondensator noch einmal verstärkt werden, was zu einer insgesamt höheren Leistungsfähigkeit des Kondensators führt. In einem inneren Wärmeübertrager strömt dabei Kältemittel, in der Regel im Gegenstrom zueinander, in zwei unterschiedlichen Strömungskanälen.By means of an internal heat exchanger, the cooling of the refrigerant in the condenser can be amplified once again, which leads to an overall higher performance of the condenser. In this case, refrigerant flows in an internal heat exchanger, generally in countercurrent to one another, in two different flow channels.

Das Kältemittel, welches dabei in den beiden Strömungskanälen strömt, wird dem inneren Wärmeübertrager dabei aus unterschiedlichen Abschnitten des Kältemittelkreislaufes zugeführt, wodurch eine möglichst große Temperaturdifferenz zwischen den beiden Strömungskanälen erreicht wird.The refrigerant, which thereby flows in the two flow channels, is supplied to the inner heat exchanger from different sections of the refrigerant circuit, whereby the largest possible temperature difference between the two flow channels is achieved.

Weiterhin ist es zweckmäßig, wenn der erste Strömungskanal einen dritten Bereich aufweist, der auf den zweiten Bereich folgt und der Unterkühlung des Kältemittels dient, wobei der dritte Bereich einen dritten Strömungskanal für ein Fluid aufweist, wobei der erste und der dritte Strömungskanal zumindest abschnittsweise als Wärmeübertrager, vorzugsweise als innerer Wärmeübertrager in Stapelscheibenbauweise, ausgestaltbar sind.Furthermore, it is expedient if the first flow channel has a third region which follows the second region and the subcooling of the refrigerant serves, wherein the third region has a third flow channel for a fluid, wherein the first and the third flow channel at least in sections as a heat exchanger, preferably as an internal heat exchanger in stacked disk design, can be ausgestaltbar.

Die Anordnung eines inneren Wärmeübertragers nach dem zweiten Bereich, in welchem die Unterkühlung stattfindet, senkt die Temperatur des Kältemittels noch weiter ab. Es kommt zu einer stärkeren Unterkühlung des Kältemittels, als durch die reine Verwendung einer Unterkühlstrecke oder eines inneren Wärmeübertragers.The arrangement of an internal heat exchanger after the second area, in which the supercooling takes place, further lowers the temperature of the refrigerant. There is a greater undercooling of the refrigerant, as by the pure use of a subcooling or an internal heat exchanger.

Der Kondensator ist in diesem Fall so aufgebaut, dass im ersten Bereich, in welchem das Kältemittel enthitzt und kondensiert wird, der Wärmeübergang zwischen dem Kältemittel und dem Kühlmittel stattfindet. Im zweiten Bereich, in dem das Kältemittel nach dem Durchfluss durch den Sammler unterkühlt wird, findet der Wärmeübergang ebenfalls zwischen dem Kältemittel und dem Kühlmittel statt. Im dritten Bereich findet der Wärmeübergang dann zwischen dem Kältemittel in einem ersten Temperaturbereich und dem Kältemittel in einem zweiten Temperaturbereich statt.In this case, the condenser is constructed so that the heat transfer between the refrigerant and the refrigerant takes place in the first area in which the refrigerant is deprived and condensed. In the second area, in which the refrigerant is subcooled after the flow through the collector, the heat transfer also takes place between the refrigerant and the coolant. In the third region, the heat transfer then takes place between the refrigerant in a first temperature range and the refrigerant in a second temperature range.

Der zweite Strömungskanal des Kühlmittels ist dabei so durch den Kondensator geführt, dass nur der erste Bereich und der zweite Bereich durchströmt werden und das Kühlmittel im Anschluss daran aus dem Kondensator hinausgeleitet wird.The second flow channel of the coolant is guided through the condenser so that only the first region and the second region are flowed through and the coolant is subsequently led out of the condenser.

Der dritte Bereich des Scheibenstapels weist einen Fluideinlass und einen Fluidauslass auf, worüber der dritte Strömungskanal mit dem Kältemittel beströmt werden kann.The third region of the disk stack has a fluid inlet and a fluid outlet, via which the third flow channel can be flown with the refrigerant.

Gemäß einem weiteren bevorzugten Ausführungsbeispiel kann es vorgesehen sein, dass der dritte Strömungskanal unabhängig vom ersten Strömungskanal mit einem Kältemittel oder unabhängig vom zweiten Strömungskanal mit einem Kühlmittel versorgbar ist.According to a further preferred embodiment, it can be provided that the third flow channel can be supplied with a coolant independently of the first flow channel or with a coolant independently of the second flow channel.

Die unabhängige Versorgung des dritten Strömungskanals mit entweder einem Kühlmittel oder einem Kältemittel ist besonders vorteilhaft, da so eine höhere Temperaturdifferenz zwischen dem dritten Strömungskanal und dem ersten Strömungskanal erzielt werden kann. Insbesondere wenn dem dritten Strömungskanal ein zusätzlich abgekühltes Fluid zugeführt wird.The independent supply of the third flow channel with either a coolant or a refrigerant is particularly advantageous, since so a higher temperature difference between the third flow channel and the first flow channel can be achieved. In particular, if the third flow channel, an additionally cooled fluid is supplied.

Weiterhin ist es zu bevorzugen, wenn der Sammler über ein Rohr, welches durch einen Teil des Scheibenstapels führt und den Fluideinlass in den Sammler bildet, nur mit dem ersten Bereich des ersten Strömungskanals in Fluidkommunikation steht und der Fluidauslass des Sammlers über ein weiteres Rohr gebildet ist, welches durch einen Teil des Scheibenstapels führt und nur mit dem zweiten Bereich des ersten Strömungskanal in Fluidkommunikation steht.Furthermore, it is preferable if the collector is in fluid communication with only the first portion of the first flow passage via a pipe leading through a portion of the disk stack forming the fluid inlet into the accumulator and the fluid outlet of the accumulator is formed via another pipe which passes through a portion of the disk stack and is in fluid communication only with the second portion of the first flow channel.

Über diese Anbindung des Sammlers an den ersten und den zweiten Bereich des ersten Strömungskanals mittels Rohren, kann der Sammler außerhalb des Scheibenstapels platziert werden und gleichzeitig der einfache Aufbau des Scheibenstapels durch eine Verwendung von vielen identischen Scheibenelementen erreicht werden.Through this connection of the collector to the first and the second region of the first flow channel by means of pipes, the collector can be placed outside the disk stack and at the same time the simple construction of the disk stack can be achieved by using many identical disk elements.

Die Rohre sind dabei durch die Scheibenelemente der Bereiche des Scheibenstapels geführt, mit denen sie nicht in Fluidkommunikation stehen sollen, und münden dann in die Kanäle des Scheibenstapels, mit denen sie in Fluidkommunikation stehen. So kann dem Sammler effektiv das Kältemittel aus dem Bereich des ersten Strömungskanals zugeführt werden, in welchem das Kältemittel bereits vollständig kondensiert ist.The tubes are guided by the disc elements of the portions of the disc stack, with which they are not supposed to be in fluid communication, and then open into the channels of the disc stack, with which they are in fluid communication. Thus, the collector can be effectively supplied to the refrigerant from the region of the first flow channel, in which the refrigerant is already completely condensed.

Es kann weiterhin das Kältemittel, nach dem Durchströmen des Sammlers, dem Bereich des ersten Strömungskanals wieder zugeführt werden, welcher sich an den ersten Bereich anschließt. Dabei sind die Rohre so dimensioniert, dass das Kältemittel aus einem der Kanäle des ersten Strömungskanals in den Sammler abgeleitet wird und anschließend in den darauffolgenden Kanal des ersten Strömungskanals wieder eingeleitet wird. Die beiden Kanäle des ersten Strömungskanals stehen dabei nur über den Sammler miteinander in Fluidkommunikation.It can also be the refrigerant, after flowing through the collector, the area of the first flow channel again supplied, which adjoins the first region. The tubes are dimensioned so that the refrigerant is discharged from one of the channels of the first flow channel into the collector and then in the subsequent channel of the first flow channel again is initiated. The two channels of the first flow channel are only in fluid communication with each other via the collector.

Die Öffnungen des Scheibenelementes des Kanals, aus welchem das Kältemittel abgezweigt wird, sind dafür so verschlossen, dass kein Flüssigkeitsübertritt direkt in den darauffolgenden Kanal stattfinden kann.The openings of the disc element of the channel, from which the refrigerant is diverted, are so closed that no liquid can take place directly into the subsequent channel.

Ein weiteres bevorzugtes Ausführungsbeispiel der Erfindung sieht vor, dass der Fluideinlass und/oder der Fluidauslass des inneren Wärmeübertragers durch ein Rohr gebildet sind.A further preferred embodiment of the invention provides that the fluid inlet and / or the fluid outlet of the internal heat exchanger are formed by a tube.

Die Anbindung des inneren Wärmeübertragers über ein oder zwei Rohre ist deshalb vorteilhaft, weil auf diese Weise die einfache Aufbaustruktur des Scheibenstapels des Kondensators beibehalten werden kann. Das Kältemittel, welches durch den dritten Strömungskanal des inneren Wärmeübertragers strömt, kann durch ein Rohr gezielt in einen Kanal des dritten Strömungskanals geführt werden und auch gezielt aus einem Kanal des dritten Strömungskanals hinausgeleitet werden.The connection of the inner heat exchanger via one or two tubes is advantageous because in this way the simple structure of the disk stack stack of the capacitor can be maintained. The refrigerant, which flows through the third flow channel of the inner heat exchanger, can be selectively guided through a pipe into a channel of the third flow channel and also be selectively led out of a channel of the third flow channel.

Weiterhin ist es zu bevorzugen, wenn die Scheiben Öffnungen mit oder ohne Durchzug aufweisen, um eine Fluidverbindung zwischen benachbarten Kanälen zu erzeugen oder abzudichten.Further, it is preferable that the discs have apertures with or without passage to create or seal fluid communication between adjacent channels.

Wenn zueinander direkt benachbarte Scheibenelemente einander gegenüberliegende Öffnungen mit Durchzügen aufweisen, fließt das Fluid direkt in den übernächsten Kanal des Scheibenstapels. Hierdurch wird erreicht, dass ein Wechsel zwischen Kanäle, welche zum ersten Strömungskanal zählen und Kanälen, welche zum zweiten Strömungskanal zählen im Scheibenstapel erreicht wird. Dabei kann eine gleichmäßige Verteilung erzeugt werden, so dass auf einen Kanal des ersten Strömungskanals immer ein Kanal des zweiten Strömungskanals folgt. Auch davon abweichende Verteilungen können mit dieser Methode erzeugt werden.If directly adjacent disc elements have mutually opposite openings with passages, the fluid flows directly into the next but one channel of the disk stack. This ensures that a change between channels that belong to the first flow channel and channels that belong to the second flow channel is achieved in the disk stack. In this case, a uniform distribution can be generated so that a channel of the first flow channel always follows a channel of the second flow channel. Even deviating distributions can be generated with this method.

Außerdem ist es vorteilhaft, wenn die Rohre durch Öffnungen in den Scheibenelementen geführt sind und mit zumindest einem Teil der Scheibenelemente, insbesondere mit den Durchzügen, verlötet sind.Moreover, it is advantageous if the tubes are guided through openings in the disc elements and with at least a portion of the disc elements, in particular with the passages, are soldered.

Durch ein Einstecken der Rohre in die Öffnungen und ein Verlöten der Rohre mit den Scheibenelementen und insbesondere mit den Durchzügen, wird eine kompakte Baueinheit erreicht, die sich durch eine hohe Festigkeit auszeichnet. Vorteilhafterweise können die Rohre hier in einem einzigen Arbeitsschritt mit dem Scheibenstapel verlötet werden.By inserting the tubes into the openings and soldering the tubes with the disc elements and in particular with the passages, a compact unit is achieved, which is characterized by a high strength. Advantageously, the tubes can be soldered to the disc stack in a single operation here.

Dies ist insbesondere hinsichtlich eines optimierten Produktionsprozesses besonders vorteilhaft.This is particularly advantageous, in particular with regard to an optimized production process.

Außerdem ist es zu bevorzugen, wenn das erste Anschlusselement ein Rohr und das zweite Anschlusselement ein Flansch ist oder umgekehrt.In addition, it is preferable if the first connection element is a tube and the second connection element is a flange or vice versa.

Über eine Ausbildung des ersten und zweiten Anschlusselements wie oben beschrieben, ist eine vorteilhafte Anbindung des Sammlers an den Kondensator zu erreichen. Über einen Flansch lässt sich hierbei insbesondere eine sehr stabile Verbindung erzielen, während das Rohr zu einer gezielten Zuführung des Fluids in den Kondensator genutzt werden kann.By means of an embodiment of the first and second connecting element as described above, an advantageous connection of the collector to the capacitor can be achieved. In particular, a very stable connection can be achieved by means of a flange, while the tube can be used to selectively supply the fluid into the condenser.

Gemäß einer weiteren alternativen Ausführung kann es vorgesehen sein, dass der Sammler zur Filterung und/oder Trocknung des Kältemittels ausgebildet ist.According to a further alternative embodiment, it can be provided that the collector is designed for filtering and / or drying the refrigerant.

Neben der Aufgabe der Bevorratung, realisiert der Sammler vorteilhafterweise auch die Funktion der Trocknung des Kältemittels über geeignete Mittel zur Trocknung und weiterhin die Filterung des Kältemittels. Auf diese Weise kann dem Kältemittel einfach überschüssige Feuchtigkeit entzogen werden und es weiterhin von Verunreinigungen befreit werden. Die Integration dieser Funktionen in ein einziges Bauteil ist insbesondere hinsichtlich der Teilevielfalt und der Bauraumausnutzung vorteilhaft. Besonders vorteilhaft ist es, wenn der erste Abschnitt im zweiten Kanal mehrere nacheinander durchflossene Strömungswege aufweist, bei welchen die Strömungsrichtung jeweils abwechselnd umgekehrt ist.In addition to the task of stocking, the collector advantageously also implements the function of drying the refrigerant via suitable means for drying and further filtering the refrigerant. In this way, the refrigerant can be easily withdrawn excess moisture and continue to be freed of impurities. The integration of these functions in a single component is particularly advantageous in terms of the variety of parts and the space utilization. It is particularly advantageous if the first section in the second channel has a plurality of flow paths through which the flow direction is alternately reversed.

Auch ist es vorteilhaft, wenn der zweite Abschnitt im zweiten Kanal mehrere nacheinander durchflossene Strömungswege aufweist, bei welchen die Strömungsrichtung jeweils abwechselnd umgekehrt ist.It is also advantageous if the second section in the second channel has a plurality of flow paths through which the flow direction is alternately reversed in succession.

Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.Advantageous developments of the present invention are described in the subclaims and in the following description of the figures.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:

Fig.1
eine schematische Ansicht eines Kondensators, welcher einen Bereich zur Enthitzung des Kältemittels aufweist und einen Bereich zur Unterkühlung des Kältemittels, wobei ein Sammler unterhalb des Kondensators angeordnet ist,
Fig. 2
eine schematische Ansicht eines Kondensators, gemäß Figur 1, mit der Darstellung zweier Strömungskanäle, wobei das Kältemittel den Kondensator seriell durchströmt und das Kühlmittel den Kondensator parallel durchströmt,
Fig. 3
eine schematische Ansicht eines Kondensators, gemäß der Figuren 1 und 2, mit der Darstellung zweier Strömungskanäle, wobei das Kältemittel den Kondensator seriell durchströmt und das Kühlmittel den Kondensator seriell durchströmt,
Fig. 4
eine schematische Ansicht eines Kondensators, gemäß der Figuren 1 bis 3, mit der Darstellung zweier Strömungskanäle, wobei das Kältemittel den Kondensator seriell durchströmt und das Kühlmittel den Kondensator sowohl seriell, als auch parallel durchströmt,
Fig. 5
eine schematische Ansicht eines Kondensators, gemäß der Figuren 1 bis 4, mit der Darstellung zweier Strömungskanäle, wobei das Kältemittel den Kondensator seriell durchströmt und das Kühlmittel den Kondensator seriell durchströmt, wobei das Kühlmittel mittels eines Rohres durch den Kondensator geleitet wird,
Fig. 6
eine schematische Ansicht eines Kondensators, gemäß der Figuren 1 und 2, wobei der Bereich zur Unterkühlung des Kältemittels durch einen inneren Wärmeübertrager gebildet ist, mit der Darstellung zweier Strömungskanäle, wobei das Kältemittel den Kondensator seriell durchströmt und das Kühlmittel den Kondensator parallel durchströmt,
Fig. 7
eine schematische Ansicht eines Kondensators, wobei auf den Enthitzungsbereich ein Unterkühlungsbereich folgt, an welchen ein innerer Wärmeübertrager angeschlossen ist,
Fig. 8
eine Schnittansicht einer Verbindungsstelle, an welcher ein Rohr in einen der Kanäle innerhalb des Kondensators mündet, und
Fig. 9
eine Schnittansicht einer Verbindungsstelle, an welcher zwei Rohre in zueinander benachbarte Kanäle des Kondensators münden.
In the following the invention will be explained in detail by means of embodiments with reference to the drawings. In the drawings show:
Fig.1
a schematic view of a condenser, which has a region for desuperheating of the refrigerant and a region for subcooling of the refrigerant, wherein a collector is arranged below the capacitor,
Fig. 2
a schematic view of a capacitor, according to FIG. 1 with the representation of two flow channels, wherein the refrigerant flows through the condenser in series and the coolant flows through the condenser in parallel,
Fig. 3
a schematic view of a capacitor, according to the Figures 1 and 2 with the representation of two flow channels, wherein the refrigerant flows through the condenser in series and the coolant flows through the condenser in series,
Fig. 4
a schematic view of a capacitor, according to the FIGS. 1 to 3 with the representation of two flow channels, wherein the refrigerant flows through the condenser in series and the coolant flows through the condenser both serially and in parallel,
Fig. 5
a schematic view of a capacitor, according to the FIGS. 1 to 4 with the representation of two flow channels, wherein the refrigerant flows through the condenser in series and the coolant flows through the condenser in series, wherein the coolant is passed through the condenser by means of a tube,
Fig. 6
a schematic view of a capacitor, according to the Figures 1 and 2 , wherein the area for subcooling the refrigerant is formed by an internal heat exchanger, with the representation of two flow channels, wherein the refrigerant flows through the condenser in series and the coolant flows through the condenser in parallel,
Fig. 7
1 is a schematic view of a condenser, wherein the superconducting area is followed by a subcooling area, to which an internal heat exchanger is connected,
Fig. 8
a sectional view of a junction at which a tube opens into one of the channels within the capacitor, and
Fig. 9
a sectional view of a junction at which two tubes open into adjacent channels of the capacitor.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

In den nachfolgenden Figuren 1 bis 7 sind unterschiedliche Ausführungsformen eines Kondensators 1, 60, 70 in Stapelscheibenbauweise gezeigt. Es handelt sich dabei um Kondensatoren 1, 60, 70 zum Einsatz in einer Klimaanlage für Kraftfahrzeuge. Alle gezeigten Kondensatoren 1, 60, 70 sind aus einer Vielzahl von Scheibenelementen, welche aufeinander gestapelt einen Scheibenstapel 11, 68, 87 ergeben, gebildet.In the following FIGS. 1 to 7 different embodiments of a capacitor 1, 60, 70 are shown in stacked disc design. These are capacitors 1, 60, 70 for use in an air conditioning system for motor vehicles. All shown capacitors 1, 60, 70 are formed from a multiplicity of disc elements stacked on top of one another to form a slice stack 11, 68, 87.

Der wesentliche Vorteil des Aufbaus als Kondensator 1, 60, 70 in Stapelscheibenbauweise ist, dass die Scheibenelemente zum Großteil identisch sind und lediglich die äußeren Anschlussplatten sowie einzelne, im Stapel verbaute Umlenk- bzw. Blockadeplatten, welche die inneren Strömungskanäle umlenken oder blockieren, von der grundsätzlich identischen Form der Scheibenelemente abweichen. Dies ermöglicht eine kostengünstige und einfache Produktion.The essential advantage of the construction as a condenser 1, 60, 70 in stacked disk design is that the disk elements are largely identical and only the outer terminal plates and individual, built in the stack deflection or blocking plates, which deflect or block the inner flow channels of the differ fundamentally identical shape of the disc elements. This allows a low-cost and easy production.

In den Figuren 1 bis 7 sind die Kondensatoren 1, 60, 70 nur durch eine Prinzipskizze angedeutet. Die einzelnen Teilbereiche der Kondensatoren 1, 60, 70, wie etwa der Enthitzungsbereich 3, 80 oder der Unterkühlbereich 4, 81 sowie der Bereich eines inneren Wärmeübertragers 61, 82, sind in den Figuren nur als quaderförmige Elemente dargestellt.In the FIGS. 1 to 7 the capacitors 1, 60, 70 are indicated only by a schematic diagram. The individual portions of the capacitors 1, 60, 70, such as the Enthitzungsbereich 3, 80 or the subcooling 4, 81 and the region of an internal heat exchanger 61, 82 are shown in the figures only as cuboidal elements.

Jedes dieser quaderförmigen Elemente besteht in Wirklichkeit aus einer Vielzahl von Scheibenelementen. Diese Scheibenelemente werden aufeinander gestapelt und bilden durch eine spezielle Anordnung von Öffnungen, welche Durchzüge aufweisen können, eine Vielzahl von einzelnen Kanälen, welche aufgrund der Gestaltung der einzelnen Scheibenelemente zu Strömungskanälen zusammengefasst sind, welche entweder ein Kühlmittel oder ein Kältemittel führen.Each of these cuboid elements actually consists of a plurality of disc elements. These disk elements are stacked on top of one another and, by means of a special arrangement of openings which may have passages, form a multiplicity of individual channels which, due to the design of the individual disk elements, are combined to form flow channels which carry either a coolant or a refrigerant.

Dabei sind die Strömungskanäle des Kühlmittels sowie die Strömungskanäle des Kältemittels stets benachbart zueinander angeordnet. In einfachen Ausführungsfällen kann es sein, dass Kanäle für das Kältemittel und Kanäle für das Kühlmittel in einer gleich verteilt abwechselnden Reihenfolge angeordnet sind. Ebenso ist es vorstellbar, eine von der Gleichverteilung abweichende Verteilung von Kältemittel- zu Kühlmittelkanälen zu wählen. Es ist vorsehbar, den Wechselrhythmus zwischen Kühlmittel- und Kältemittelkanälen von einem Verhältnis 1 : 1 abweichend zu realisieren.The flow channels of the coolant and the flow channels of the refrigerant are always adjacent to each other. In simple embodiments, it may be that channels for the refrigerant and channels for the coolant in one equally distributed alternating order are arranged. Likewise, it is conceivable to choose a deviating from the uniform distribution distribution of refrigerant to coolant channels. It is conceivable to realize the alternating rhythm between coolant and coolant channels by a ratio of 1: 1.

Die Strömungskanäle des Kühlmittels bzw. des Kältemittels sind in den Figuren 1 bis 7 ebenso nur schematisch angedeutet. Jedes der quaderförmigen Elemente wird in den Figuren jeweils nur einmal von einem Kältemittel- bzw. Kühlmittelströmungskanal durchflossen. Diese Darstellung soll lediglich das Durchflussprinzip der einzelnen Kondensatoren 1, 60, 70 verdeutlichen und hat keine abgrenzende Wirkung.The flow channels of the coolant and the refrigerant are in the FIGS. 1 to 7 also indicated only schematically. Each of the cuboidal elements is traversed in the figures only once by a refrigerant or coolant flow channel. This illustration is intended to illustrate only the flow principle of the individual capacitors 1, 60, 70 and has no delimiting effect.

Die Strömungskanäle des Kältemittels 25, 64, 73, 79 sind jeweils durch eine gepunktete Linie dargestellt. Die Strömungskanäle des Kühlmittels 26, 42, 52, 67, 76 sind jeweils durch eine volle durchgezogene Linie dargestellt.The flow channels of the refrigerant 25, 64, 73, 79 are each represented by a dotted line. The flow channels of the coolant 26, 42, 52, 67, 76 are each represented by a solid solid line.

Die in den Figuren 1 bis 7 gezeigten Strömungsrichtungen des Kältemittels sowie des Kühlmittels stellen jeweils nur ein Beispiel dar und können in der Realität ebenso gut gegenläufig zu den in den Figuren 1 bis 7 gezeigten Richtungen ausgeführt sein.The in the FIGS. 1 to 7 shown flow directions of the refrigerant and the coolant are each only one example and can in reality just as in opposite directions to those in the FIGS. 1 to 7 be executed directions shown.

Die Figur 1 zeigt einen Kondensator 1, welcher aus einem Enthitzungsbereich 3 sowie einem Unterkühlbereich 4 besteht. Der Enthitzungsbereich 3 dient der Enthitzung eines Kältemittels sowie der Kondensation des Kältemittels aus seiner dampfförmigen Phase in eine flüssige Phase. Zum Zwecke der Enthitzung wird das Kältemittel in einen thermischen Austausch mit einem Kühlmittel gebracht, welches den Enthitzungsbereich 3 ebenfalls durchströmt. Nach unten hin an den Enthitzungsbereich 3 ist ein Unterkühlbereich 4 angeschlossen. In diesem Unterkühlbereich 4 wird das komplett flüssige Kältemittel durch einen weiteren thermischen Austausch mit einem Kühlmittel weiter abgekühlt.The FIG. 1 shows a condenser 1, which consists of a Enthitzungsbereich 3 and a subcooling 4. The Enthitzungsbereich 3 is used for desuperheating a refrigerant and the condensation of the refrigerant from its vapor phase into a liquid phase. For the purpose of desuperheating the refrigerant is brought into a thermal exchange with a coolant, which also flows through the Enthitzungsbereich 3. Down to the Enthitzungsbereich 3 a subcooling 4 is connected. In this subcooling region 4, the completely liquid refrigerant is further cooled by a further thermal exchange with a coolant.

Unterhalb des Kondensators 1 ist ein Sammler 2 angeordnet, welcher von dem Kältemittel durchströmt wird. Die Aufgabe des Sammlers 2 ist es, das Kältemittel zu bevorraten, zu filtrieren und zu trocknen. Durch das Einbringen eines Sammlers 2 in den Kältemittelkreislauf kann für eine stets konstante Kältemittelmenge im Kältemittelkreislauf gesorgt werden, da der Sammler 2 ein Ausgleichsreservoir darstellt, wodurch Kältemittelvolumenschwankungen im Kältemittelkreislauf ausgeglichen werden können.Below the condenser 1, a collector 2 is arranged, which is flowed through by the refrigerant. The task of the collector 2 is to store, filter and dry the refrigerant. By introducing a collector 2 in the refrigerant circuit can be provided for an always constant amount of refrigerant in the refrigerant circuit, since the collector 2 is a compensation reservoir, whereby refrigerant volume fluctuations in the refrigerant circuit can be compensated.

Der Sammler 2 weist an seinem Fluideinlass 12 ein Rohr 5 auf, welches durch den Unterkühlbereich 4 geführt ist und im Enthitzungsbereich 3 mit dem Strömungskanal des Kältemittels in Fluidkommunikation steht. Der Fluidauslass 6 des Sammlers 2 steht wiederum mit dem Strömungskanal des Kältemittels im Unterkühlbereich 4 in Fluidkommunikation. Auf diese Weise wird sichergestellt, dass das Kältemittel vollständig aus dem Enthitzungsbereich 3 in den Sammler 2 geleitet wird.The collector 2 has at its fluid inlet 12 a tube 5, which is guided through the sub-cooling region 4 and is in the decompression region 3 in fluid communication with the flow channel of the refrigerant. The fluid outlet 6 of the collector 2 is in turn in fluid communication with the flow channel of the refrigerant in the subcooling region 4. In this way, it is ensured that the refrigerant is completely conducted from the Enthitzungsbereich 3 in the collector 2.

Nach dem Durchströmen des Sammlers 2 wird das Kältemittel vollständig in den Unterkühlbereich 4 zurückgeleitet. Der Sammler 2 stellt somit den Fluidübertritt vom Enthitzungsbereich 3 in den Unterkühlbereich 4, insbesondere für das Kältemittel dar.After flowing through the collector 2, the refrigerant is completely returned to the subcooling 4. The collector 2 thus represents the passage of fluid from the desuperheating area 3 into the subcooling area 4, in particular for the refrigerant.

Am oberen Endbereich des Scheibenstapels 11 des Kondensators 1 sind Öffnungen 8, 9, 10 angeordnet. Diese können je nach Gestaltung der inneren Strömungskanäle Fluideinlässe sowie Fluidauslässe darstellen. Ebenfalls ist am unteren Ende des Scheibenstapels 11 eine Öffnung 7 gezeigt, welche je nach Gestaltung der inneren Strömungskanäle ebenfalls ein Fluideinlass oder ein Fluidauslass sein kann.At the upper end portion of the disk stack 11 of the capacitor 1 openings 8, 9, 10 are arranged. These can represent fluid inlets as well as fluid outlets, depending on the design of the inner flow channels. Also shown at the lower end of the disk stack 11 is an opening 7, which may also be a fluid inlet or a fluid outlet, depending on the design of the inner flow channels.

Die Figur 2 zeigt ebenfalls einen Kondensator 1, der dem in Figur 1 gezeigten Kondensator 1 im Wesentlichen entspricht. Zusätzlich zu der Figur 1 sind nun in Figur 2 Strömungskanäle 25, 26 für ein Kühlmittel und ein Kältemittel dargestellt. Das Kältemittel strömt durch einen am oberen Endbereich des Scheibenstapels 11 angeordneten Fluideinlass 21 in den Enthitzungsbereich 3 des Kondensators 1. Dort durchströmt es die durch die Scheibenelemente gebildeten Kanäle, welche dem Strömungskanal 25 des Kältemittels zugehörig sind.The FIG. 2 also shows a capacitor 1, which corresponds to the in FIG. 1 shown capacitor 1 corresponds substantially. In addition to the FIG. 1 are now in FIG. 2 Flow channels 25, 26 shown for a coolant and a refrigerant. The refrigerant flows through a arranged at the upper end portion of the disk stack 11 fluid inlet 21 in the Enthitzungsbereich 3 of the condenser 1. There it flows through the channels formed by the disc elements, which are associated with the flow channel 25 of the refrigerant.

Unter anderem strömt es dabei durch Öffnungen 24, welche zwischen den einzelnen Scheibenelementen angeordnet sind. Nach dem Durchströmen des Enthitzungsbereichs 3 strömt das Kältemittel über das Rohr 5 in den Sammler 2 hinein. Dort durchströmt es den Sammler 2 zum Zwecke der Bevorratung, Filtrierung und Trocknung und strömt anschließend über den Fluidauslass 6 des Sammlers 2 in den Unterkühlbereich 4 des Kondensators 1. Nach dem Durchströmen des Unterkühlbereichs 4 strömt das Kältemittel durch den Fluidauslass 23 aus dem Unterkühlbereich 4 hinaus.Among other things, it flows through openings 24, which are arranged between the individual disc elements. After flowing through the de-icing area 3, the refrigerant flows into the collector 2 via the pipe 5. There it flows through the collector 2 for the purpose of storage, filtration and drying and then flows through the fluid outlet 6 of the collector 2 into the subcooling region 4 of the condenser 1. After flowing through the subcooling region 4, the refrigerant flows out of the subcooling region 4 through the fluid outlet 23 ,

Das Kühlmittel strömt durch den Fluideinlass 20 am oberen Endbereich des Kondensators 1 in den Enthitzungsbereich 3 hinein. Im Gegensatz zum Kältemittel, welches die einzelnen Kanäle seriell durchströmt, durchströmt das Kühlmittel die einzelnen Kanäle des Enthitzungsbereichs 3 sowie des Unterkühlbereichs 4 parallel. Dazu wird das Kühlmittel durch innere Öffnungen 24, welche in einer annähernd geradlinigen gedachten Verlängerung zum Fluideinlass 20 des Kühlmittels liegen, von oben nach unten durch den Scheibenstapel 11 und verteilt sich dann über die Breite des Kondensators 1. Nachdem das Kühlmittel über die gesamte Breite des Kondensators 1 geströmt ist, strömt es dann durch eine Mehrzahl von Öffnungen 24 in den Scheibenelementen von unten nach oben durch den Fluidauslass 22 des Kühlmittels aus dem Kondensator 1 aus.The coolant flows through the fluid inlet 20 at the upper end portion of the condenser 1 into the dewarning area 3. In contrast to the refrigerant, which flows through the individual channels in series, the coolant flows through the individual channels of the Enthitzungsbereichs 3 and the subcooling 4 in parallel. For this purpose, the coolant through upper openings 24, which lie in an approximately rectilinear imaginary extension to the fluid inlet 20 of the coolant, from top to bottom through the disk stack 11 and then spreads across the width of the capacitor 1. After the coolant over the entire width of the Condenser 1, it then flows through a plurality of openings 24 in the disc elements from bottom to top through the fluid outlet 22 of the coolant from the condenser 1.

Durch die Ausführung des Strömungskanals 26 des Kühlmittels in paralleler Durchströmung und dem Strömungskanal 25 des Kältemittels in serieller Durchströmung ergeben sich im Kondensator 1 Bereiche, in denen das Kältemittel zum Kühlmittel im Gegenstrom strömt, aber auch Bereiche, in denen das Kühlmittel mit dem Kältemittel im Gleichstrom strömt.By the execution of the flow channel 26 of the coolant in parallel flow and the flow channel 25 of the refrigerant in serial flow arise in the condenser 1 areas in which the refrigerant to the coolant flows in countercurrent, but also areas where the refrigerant with the refrigerant in the DC flows.

Die Figur 3 zeigt einen ähnlichen Aufbau, wie er bereits in den Figuren 1 und 2 dargestellt wurde. Der Strömungskanal 25 des Kältemittels ist analog der Figur 2 durch den Kondensator 1 der Figur 3 angeordnet. Abweichend zur Figur 2 strömt das Kühlmittel in Figur 3 nun nicht mehr in einer parallelen Anordnung durch die Kanäle des Kondensators 1, sondern durchströmt den Kondensator 1 ebenso wie das Kältemittel seriell.The FIG. 3 shows a similar structure as it already in the Figures 1 and 2 was presented. The flow channel 25 of the refrigerant is analogous to FIG. 2 through the condenser 1 of FIG. 3 arranged. Deviating from FIG. 2 the coolant flows in FIG. 3 now no longer in a parallel arrangement through the channels of the condenser 1, but flows through the condenser 1 as well as the refrigerant in series.

Hierzu fließt das Kühlmittel durch den Fluideinlass 30 am unteren Bereich des Kondensators 1 in den Unterkühlbereich 4 hinein. Dort verteilt es sich über die Breite des Kondensators 1 und fließt über eine innere Öffnung 24 nach oben in den Enthitzungsbereich 3. Dort verteilt es sich ebenfalls über die gesamte Breite des Kondensators 1 und strömt nach oben hin durch eine weitere innere Öffnung 24 in den oberen Bereich des Enthitzungsbereichs 3 und strömt schließlich nach einer erneuten Verteilung über die Breite des Kondensators 1 durch den Fluidauslass 31 aus dem Kondensator 1 aus. Der Strömungskanal 32 des Kühlmittels verläuft in der Figur 3, also ebenso wie der Strömungskanal 25 des Kältemittels seriell durch die einzelnen Kanäle im Inneren des Kondensators 1. Durch die in Figur 3 gezeigte Darstellung befindet sich der Kältemittelstrom über den gesamten Kondensator 1 im Gegenstrom zum Kühlmittel.For this purpose, the coolant flows through the fluid inlet 30 at the lower region of the condenser 1 into the subcooling region 4. There it is distributed over the width of the capacitor 1 and flows through an inner opening 24 upwards into the Enthitzungsbereich 3. There it also spreads over the entire width of the capacitor 1 and flows upward through a further inner opening 24 in the upper Area of the Enthitzungsbereichs 3 and finally flows after a redistribution across the width of the capacitor 1 through the fluid outlet 31 from the condenser 1 from. The flow channel 32 of the coolant extends in the FIG. 3 , So as well as the flow channel 25 of the refrigerant in series through the individual channels in the interior of the condenser 1. By in FIG. 3 As shown, the refrigerant flow over the entire condenser 1 is in countercurrent to the coolant.

Die Figur 4 zeigt wieder einen Kondensator 1 analog der Figuren 1 bis 3. Der Kältemittelströmungskanal 25 ist analog der Figuren 2 und 3 ausgeführt. Abweichend zu den Figuren 2 und 3 ist nun der Strömungskanal 42 des Kühlmittels so innerhalb des Kondensators 1 angeordnet, dass es sowohl Bereiche gib, in den der Kondensator parallel durchströmt wird, als auch Bereiche, in denen er seriell durchströmt wird.The FIG. 4 again shows a capacitor 1 analogous to FIGS. 1 to 3 , The refrigerant flow channel 25 is analogous to Figures 2 and 3 executed. Deviating from the Figures 2 and 3 Now, the flow channel 42 of the coolant is disposed within the capacitor 1, that there are both areas in which the capacitor is flowed through in parallel, as well as areas in which it is passed through in series.

Hierzu strömt das Kühlmittel durch den Fluideinlass 40 in den Unterkühlbereich 4 des Kondensators 1 ein. Dort verteilt es sich sowohl über die Breite des Kondensators 1 als auch nach oben hin durch eine innere Öffnung 24 in den Enthitzungsbereich 3. Im Enthitzungsbereich 3 verteilt sich das Kühlmittel ebenfalls über die gesamte Breite des Kondensators 1. Der Kühlmittelstrom im Unterkühlbereich 4 fließt ebenfalls über eine innere Öffnung 24 nach oben hin in den Enthitzungsbereich 3, wo sich der Kühlmittelstrom aus dem Unterkühlbereich 4 und dem Enthitzungsbereich 3 wieder vereinigt. Gemeinsam fließt das Kühlmittel dort über eine weitere innere Öffnung 24 in den oberen Bereich des Enthitzungsbereichs 3 und verteilt sich dort wieder über die gesamte Breite des Kondensators 1 und strömt schließlich über den Fluidauslass 41 des Kühlmittels aus dem Kondensator 1 hinaus.For this purpose, the coolant flows through the fluid inlet 40 into the subcooling region 4 of the condenser 1. There it is distributed both over the width of the condenser 1 as well as upwardly through an inner opening 24 in the Enthitzungsbereich 3. In the desuperheating 3, the coolant is also distributed over the entire width of the condenser 1. The coolant flow in the subcooling 4 also flows over an inner opening 24 upwards into the Enthitzungsbereich 3, where the coolant flow from the sub-cooling region 4 and the Enthitzungsbereich 3 reunites. Together, the coolant flows there via a further inner opening 24 in the upper region of the Enthitzungsbereichs 3 and there again distributed over the entire width of the capacitor 1 and finally flows out of the condenser 1 via the fluid outlet 41 of the coolant.

Auf diese Weise ist der Kondensator 1 von dem Kühlmittel teilweise parallel und teilweise seriell durchströmt. Es ergeben sich so Bereiche, in denen das Kühlmittel mit dem Kältemittel im Gegenstrom strömt, sowie Bereiche, in denen das Kühlmittel mit dem Kältemittel im Gleichstrom strömt.In this way, the condenser 1 is partially flowed through in parallel and partially in series by the coolant. This results in areas in which the coolant flows with the refrigerant in countercurrent, as well as areas in which the coolant flows with the refrigerant in the DC flow.

Die Figur 5 zeigt ebenfalls einen Kondensator 1 analog der Ausführungen der Figuren 1 bis 4. Der Strömungskanal 25 des Kältemittels ist wieder unverändert zu den Figuren 2 bis 4 ausgeführt. Abweichend zu den vorausgegangenen Figuren ist nun das Kühlmittel rein seriell durch den Kondensator 1 geführt und wird an dem Kondensator durch einen, an einem seiner Endbereiche angeordnetem, Fluideinlass 50 und Fluidauslass 51 zu- und abgeführt.The FIG. 5 also shows a capacitor 1 analogous to the embodiments of FIGS. 1 to 4 , The flow channel 25 of the refrigerant is again unchanged from the FIGS. 2 to 4 executed. Notwithstanding the preceding figures, the coolant is now purely serially passed through the condenser 1 and is on the condenser by a, arranged at one of its end portions, fluid inlet 50 and fluid outlet 51 and removed.

Das Kühlmittel verteilt sich jedoch nicht wie in den vorausgegangenen Figuren über die Breite des Kondensators 1, sondern wird durch ein Rohr 53, welches an den Fluideinlass 50 angeschlossen ist, durch Öffnungen 54 in den Scheibenelementen nach unten hin in den Unterkühlbereich 4 des Kondensators 1 geführt. Erst im Unterkühlbereich 4 verlässt das Kühlmittel das Rohr 53 und verteilt sich über die Breite des Kondensators 1.However, the coolant is not distributed over the width of the condenser 1 as in the preceding figures, but is guided through a pipe 53, which is connected to the fluid inlet 50, through openings 54 in the disk elements down into the subcooling region 4 of the condenser 1 , Only in the subcooling region 4 does the coolant leave the tube 53 and spread over the width of the condenser 1.

Auf der gegenüberliegenden Seite des Kondensators 1 strömt das Kühlmittel wieder durch eine innere Öffnung 24 nach oben in den Enthitzungsbereich 3, wo es sich wieder über die Breite des Kondensators 1 verteilt. Es strömt dann durch eine weitere Öffnung 24 in den oberen Bereich der Enthitzungsstrecke und verteilt sich auch dort über die Breite des Kondensators 1, bevor es über den Fluidauslass 51 des Kühlmittels aus dem Kondensator 1 hinausfließt.On the opposite side of the condenser 1, the coolant flows again through an inner opening 24 in the Enthitzungsbereich 3, where it is distributed over the width of the capacitor 1 again. It then flows through a further opening 24 in the upper region of the Enthitzungsstrecke and is also distributed there across the width of the capacitor 1, before it flows out of the condenser 1 via the fluid outlet 51 of the coolant.

Das Kühlmittel fließt somit vollständig seriell durch die Bereiche des Kondensators 1. Das Kühlmittel, welches im Strömungskanal 52 fließt, fließt somit zum Kältemittel im Strömungskanal 25 zu jeder Zeit im Gegenstrom.The coolant thus flows completely serially through the regions of the condenser 1. The coolant flowing in the flow channel 52 thus flows countercurrently to the refrigerant in the flow channel 25 at all times.

Die Figur 6 zeigt einen Kondensator 60, welcher abweichend zu den Kondensatoren 1 der Figuren 1 bis 5 nun im oberen Bereich einen Enthitzungsbereich 3 aufweist und darunter angeordnet einen inneren Wärmeübertrager 61, welcher an die Stelle des Unterkühlbereichs 4 der Figuren 2 bis 5 tritt. Der Strömungskanal 25 des Kältemittels ist analog der Figuren 2 bis 5 durch den Kondensator 60 geführt.The FIG. 6 shows a capacitor 60, which unlike the capacitors 1 of FIGS. 1 to 5 now has a Enthitzungsbereich 3 in the upper part and arranged underneath an internal heat exchanger 61, which in place of the subcooling 4 of the FIGS. 2 to 5 occurs. The flow channel 25 of the refrigerant is analogous to FIGS. 2 to 5 passed through the capacitor 60.

Das Kühlmittel strömt durch einen Fluideinlass 65 an der Oberseite des Scheibenstapels 68 des Kondensators 60 in den Kondensator 60 hinein. Dort verteilt es sich durch eine innere Öffnung 24 in der Tiefe über den Enthitzungsbereich 3 und verteilt sich dort anschließend über die Breite des Kondensators 60, bevor es nach oben hin durch Öffnungen 24 und den Fluidauslass 66 wieder aus dem Kondensator 60 hinausströmt.The coolant flows into the condenser 60 through a fluid inlet 65 at the top of the disk stack 68 of the condenser 60. There, it is distributed through an inner opening 24 in depth via the Enthitzungsbereich 3 and then distributed there across the width of the capacitor 60 before it flows out through openings 24 and the fluid outlet 66 back out of the condenser 60.

In der Figur 6 ist der Enthitzungsbereich 3 parallel von dem Kühlmittel durchströmt. Der Enthitzungsbereich 3 ist weiterhin seriell von dem Kältemittel durch den Strömungskanal 25 des Kältemittels durchströmt, wodurch sich Bereiche des Gleichstroms und Bereiche des Gegenstroms zwischen dem Kältemittel und dem Kühlmittel einstellen.In the FIG. 6 is the Enthitzungsbereich 3 flows through the coolant in parallel. The desuperheating region 3 is further serially flowed through by the refrigerant through the flow channel 25 of the refrigerant, thereby adjusting portions of the direct current and portions of the counterflow between the refrigerant and the coolant.

Der Bereich 61, welcher den inneren Wärmeübertrager darstellt, wird nicht von dem Kühlmittel durchströmt. Stattdessen weist der innere Wärmeübertrager 61 einen dritten Strömungskanal 64 auf, welcher ebenfalls von dem Kältemittel durchströmt wird. Hierzu strömt das Kältemittel durch einen Fluideinlass 62 in den inneren Wärmeübertrager 61 und verteilt sich dort über die Breite des Kondensators 60, bevor es über den Fluidauslass 63 aus dem Kondensator 60 ausströmt. Im inneren Wärmeübertrager 61 befinden sich das Kältemittel im Strömungskanal 64 sowie das Kältemittel im Strömungskanal 25 im Gegenstrom zueinander. Auf diese Weise kann ein höherer Wärmeübergang zwischen den beiden Strömungskanälen 64, 25 erzielt werden.The region 61, which represents the inner heat exchanger, is not flowed through by the coolant. Instead, the inner heat exchanger 61 on a third flow channel 64, which is also traversed by the refrigerant. For this purpose, the refrigerant flows through a fluid inlet 62 into the inner heat exchanger 61 and is distributed over the width of the condenser 60 before it flows out of the condenser 60 via the fluid outlet 63. In the inner heat exchanger 61, the refrigerant in the flow channel 64 and the refrigerant in the flow channel 25 are in countercurrent to each other. In this way, a higher heat transfer between the two flow channels 64, 25 can be achieved.

Das Kältemittel, welches durch den Strömungskanal 64 des inneren Wärmeübertragers 61 strömt, stammt wie das Kältemittel im Strömungskanal 25 aus dem gleichen Kältemittelkreislauf. Das Kältemittel im Strömungskanal 64 unterscheidet sich von dem Kältemittel im Strömungskanal 25 im Wesentlichen durch seine Temperatur. Da darauf abgezielt ist, dass Kältemittel im Strömungskanal 25 innerhalb des inneren Wärmeübertragers 61 weiter abzukühlen, weist das Kältemittel im Strömungskanal 64 eine niedrigere Temperatur auf, wodurch dem Kältemittel im Strömungskanal 25 weiter Wärme entzogen werden kann.The refrigerant, which flows through the flow channel 64 of the inner heat exchanger 61, comes as the refrigerant in the flow channel 25 from the same refrigerant circuit. The refrigerant in the flow channel 64 differs from the refrigerant in the flow channel 25 substantially by its temperature. Since it is intended that refrigerant in the flow channel 25 within the inner Heat exchanger 61 continue to cool, the refrigerant in the flow channel 64 has a lower temperature, whereby the refrigerant in the flow channel 25 further heat can be withdrawn.

Die in Figur 6 gezeigte Ausführungsform stellt eine Alternative zu den in den Figuren 1 bis 5 gezeigten Ausführungen eines Kondensators 1 mit Unterkühlbereich 3 dar. Anstelle der Unterkühlung durch einen thermischen Übergang zwischen einem Kühlmittel und dem Kältemittel wird hier ein thermischer Übergang zwischen dem Kältemittel eines ersten Temperaturniveaus und dem Kältemittel eines zweiten Temperaturniveaus erzeugt.In the FIG. 6 embodiment shown represents an alternative to that in the FIGS. 1 to 5 Instead of subcooling by a thermal transition between a coolant and the refrigerant, here a thermal transition between the refrigerant of a first temperature level and the refrigerant of a second temperature level is generated.

Die Figur 7 zeigt nun einen Kondensator 70, welcher aus einem Scheibenstapel 87 besteht. Dabei ist der Kondensator 70 eine Kombination aus den Ausführungsbeispielen der Figuren 1 bis 6. An den oberen Enthitzungsbereich 80 schließt sich nach unten hin ein Unterkühlbereich 81 an. An den Unterkühlbereich 81 ist nach unten hin ein innerer Wärmeübertrager 82 angeschlossen.The FIG. 7 now shows a capacitor 70, which consists of a disk stack 87. In this case, the capacitor 70 is a combination of the embodiments of FIGS. 1 to 6 , At the upper Enthitzungsbereich 80 is followed at the bottom of a subcooling 81. An internal heat exchanger 82 is connected to the subcooling region 81 at the bottom.

Der obere Bereich des Kondensators 70, welcher aus dem Enthitzungsbereich 80 und dem Unterkühlbereich 81 besteht, wird von einem Kühlmittel entsprechend der Durchströmung, welche bereits in Figur 2 für das Kühlmittel gezeigt ist, durchströmt. Hierzu strömt ein Kühlmittel durch den Fluideinlass 74 in den Enthitzungsbereich 80 und verteilt sich dort über innere Öffnungen entlang der Tiefe des Kondensators 70 bis in den Unterkühlbereich 81. Es durchströmt dann gleichmäßig den Kondensator 70 in seiner Breite, bevor es am gegenüberliegenden Ende durch innere Öffnungen nach oben strömt und über den Fluidauslass 75 aus dem Kondensator 70 hinaus. Das Kühlmittel durchströmt den Kondensator 70 in seinem Strömungskanal 76 vollständig parallel.The upper portion of the condenser 70, which consists of the Enthitzungsbereich 80 and the subcooling 81, is a coolant according to the flow, which is already in FIG. 2 for the coolant is shown, flows through. For this purpose, a coolant flows through the fluid inlet 74 into the Enthitzungsbereich 80 and there is distributed through inner openings along the depth of the condenser 70 into the sub-cooling region 81. It then flows through the capacitor 70 in its width uniformly, before it at the opposite end by internal openings flows upward and out of the condenser 70 via the fluid outlet 75. The coolant flows through the condenser 70 in its flow channel 76 completely parallel.

Das Kältemittel strömt durch einen Fluideinlass 71 in den Enthitzungsbereich 80 ein und durchströmt den Enthitzungsbereich 80 seriell. Das Kältemittel strömt dann vom Enthitzungsbereich 80 über ein Rohr 84, welches durch den Unterkühlbereich 81 und den inneren Wärmeübertrager 82 führt, direkt in den Sammler 2. Vom Sammler 2 strömt das Kältemittel über das Rohr 83 zurück in den Unterkühlbereich 81 und verteilt sich dort über die Breite des Kondensators 70. Anschließend strömt es durch eine innere Öffnung vom Unterkühlbereich 81 in den darunter liegenden inneren Wärmeübertrager 82 und durchströmt die einzelnen Kanäle des inneren Wärmeübertragers 82 ebenfalls seriell, bevor es aus dem inneren Wärmeübertrager 82 über den Fluidauslass 72 aus dem Kondensator 70 hinausströmt.The refrigerant flows through a fluid inlet 71 into the Enthitzungsbereich 80 and flows through the Enthitzungsbereich 80 serially. The refrigerant then flows from the Enthitzungsbereich 80 via a pipe 84 which passes through the subcooling 81 and the inner heat exchanger 82, directly into the collector 2. From the collector second The refrigerant flows via the pipe 83 back into the subcooling region 81 and is distributed over the width of the capacitor 70 thereafter. It then flows through an inner opening from the subcooling 81 into the underlying inner heat exchanger 82 and also flows through the individual channels of the internal heat exchanger 82 serially before it flows out of the inner heat exchanger 82 via the fluid outlet 72 from the condenser 70.

Der innere Wärmeübertrager 82 wird weiterhin von einem Kältemittel durchströmt. Hierzu strömt ein Kältemittel über einen Fluideinlass 77, welcher als Rohr 85 ausgebildet sein kann, in den inneren Wärmeübertrager 82 hinein. Dort verteilt es sich über die Breite des inneren Wärmeübertragers 82 und strömt durch eine innere Öffnung in den oberen Bereich des inneren Wärmeübertragers 82. Dort verteilt es sich ebenfalls wieder über die Breite des Kondensators 70 und strömt schließlich über ein Rohr 86, welches durch den unteren Bereich des inneren Wärmeübertragers 82 führt, aus dem Kondensator 70 hinaus. Das Rohr 86 bildet somit auch den Fluidauslass 78 des Strömungskanals 79 des Kältemittels.The inner heat exchanger 82 is also traversed by a refrigerant. For this purpose, a refrigerant flows via a fluid inlet 77, which may be formed as a tube 85, into the internal heat exchanger 82. There it is distributed over the width of the inner heat exchanger 82 and flows through an inner opening in the upper region of the inner heat exchanger 82. There it also spreads again across the width of the capacitor 70 and finally flows through a tube 86 which passes through the lower Area of the internal heat exchanger 82 leads out of the condenser 70. The tube 86 thus also forms the fluid outlet 78 of the flow channel 79 of the refrigerant.

Die in den Figuren 1 bis 7 gezeigten Lagen der Fluideinlässe bzw. Fluidauslässe sind jeweils beispielhaft. Hierzu abweichende Orientierungen, etwa seitlich am Kondensator, sind ebenso vorsehbar wie die Anordnung eines Fluideinlasses oder -auslasses in einem mittleren Bereich der Kondensatoren. Vielmehr sollen die Figuren 1 bis 7 Ausführungsbeispiele zeigen, die verdeutlichen, dass es möglich ist, einen Kältemittelstrom und einen Kühlmittelstrom sowohl im Gleichstromprinzip als auch im Gegenstromprinzip durch die einzelnen Bereiche der Kondensatoren 1, 60, 70 zu führen. Hierdurch ergeben sich unterschiedliche Vorteile für die Anordnung der Fluideinlässe bzw. Fluidauslässe. Je nach dem vorgesehenen Einsatzgebiet der Kondensatoren 1, 60, 70 ist eine entsprechende innere Gestaltung des Scheibenstapels 11, 68, 87 der Kondensatoren 1, 60, 70 vorzunehmen.The in the FIGS. 1 to 7 shown positions of the fluid inlets or fluid outlets are each exemplary. Deviating orientations, for example laterally on the condenser, are just as conceivable as the arrangement of a fluid inlet or outlet in a middle region of the condensers. Rather, the FIGS. 1 to 7 Embodiments show that it is possible to lead a refrigerant flow and a coolant flow both in the DC principle as well as in the countercurrent principle by the individual regions of the capacitors 1, 60, 70. This results in different advantages for the arrangement of the fluid inlets or fluid outlets. Depending on the intended application of the capacitors 1, 60, 70, a corresponding internal design of the disk stack 11, 68, 87 of the capacitors 1, 60, 70 make.

Weiterhin sind die Kondensatoren 1, 60, 70 wahlweise aus einer Kombination von Enthitzungsbereich 3, 80, Unterkühlbereich 4, 81 und innerem Wärmeübertrager 61, 82 zu erzeugen. Dabei können je nach Einsatzzweck optimale Konfigurationen erstellt werden, die alle einem einfachen Aufbau aus einzelnen Scheibenelementen folgen und somit in ihrem Aufbau sehr flexibel sind.Furthermore, the capacitors 1, 60, 70 can be selectively produced from a combination of desuperheating area 3, 80, subcooling area 4, 81 and internal heat exchanger 61, 82. Optimal configurations can be created depending on the application all follow a simple structure of individual disc elements and thus are very flexible in their construction.

Die in den Figuren 1 bis 7 gezeigten Rohre sind ebenfalls kostengünstig herzustellen und werden im einfachsten Falle in die Scheibenstapel 11, 68, 87 eingeführt und führen dabei durch innere Öffnungen der Scheibenelemente. Vorteilhafterweise geschieht dies in einem frühen Teil des Produktionsprozesses, so dass die Scheibenelemente mit den einzelnen Rohren in einem Arbeitsgang verlötet werden können. Hierbei werden die Rohre insbesondere mit den Öffnungen, welche Durchzüge aufweisen, verlötet.The in the FIGS. 1 to 7 shown pipes are also inexpensive to manufacture and are introduced in the simplest case in the disk stack 11, 68, 87, thereby leading through inner openings of the disk elements. Advantageously, this is done in an early part of the production process, so that the disc elements can be soldered to the individual tubes in one operation. In this case, the tubes are in particular soldered to the openings which have passages.

Die Figur 8 zeigt einen Schnitt durch ein Anschlusselement, mit welchem beispielsweise der Sammler 2 an den jeweils unteren Bereich der Kondensatoren 1, 60 in den Figuren 1 bis 6 angeschlossen werden kann. Hierzu weist das Anschlusselement ein Rohr 90 auf, welches zwischen einem Fluideinlass 93 und einem Fluidauslass 94 einen Strömungskanal 96 ausbildet. Dieses Rohr 90 entspricht in den Figuren 1 bis 6 dem Rohr 5, welches den Sammler 2 mit dem unteren Teil des Enthitzungsbereichs 3 verbindet. Gleichzeitig steht der Sammler 2 über den Strömungskanal 97, welcher zwischen dem Fluideinlass 91 und dem Fluidauslass 92 gebildet ist, mit dem Unterkühlbereich 4 oder dem inneren Wärmeübertrager 61 in Fluidkommunikation.The FIG. 8 shows a section through a connecting element, with which, for example, the collector 2 to the respective lower portion of the capacitors 1, 60 in the FIGS. 1 to 6 can be connected. For this purpose, the connection element has a tube 90, which forms a flow channel 96 between a fluid inlet 93 and a fluid outlet 94. This tube 90 corresponds in the FIGS. 1 to 6 the pipe 5, which connects the collector 2 with the lower part of the Enthitzungsbereichs 3. At the same time, the collector 2 is in fluid communication via the flow channel 97, which is formed between the fluid inlet 91 and the fluid outlet 92, with the subcooling region 4 or the internal heat exchanger 61.

Hauptaufgabe des in Figur 8 gezeigten Anschlusselementes ist, dass Kältemittel aus unterschiedlichen Kanälen innerhalb der Kondensatoren 1, 60 aus dem Enthitzungsbereich 3 abzuleiten und anschließend dem Unterkühlbereich 4 oder dem inneren Wärmeübertrager 61, welcher unterhalb des Enthitzungsbereichs 3 angeordnet ist, wieder zuzuführen.Main task of in FIG. 8 connecting element shown is that refrigerant from different channels within the capacitors 1, 60 derive from the Enthitzungsbereich 3 and then the sub-cooling region 4 or the inner heat exchanger 61, which is arranged below the Enthitzungsbereichs 3, re-supply.

Das Rohr 90 greift dabei wie bereits beschrieben durch zumindest eines der Scheibenelemente der Kondensatoren 1, 60 hindurch. Der Kondensator ist in Figur 8 über das Bezugszeichen 95 bezeichnet. Zu erkennen ist insbesondere, dass der Strömungskanal 97 sich vollständig um das Rohr 90 herum erstreckt.As already described, the tube 90 engages through at least one of the disk elements of the capacitors 1, 60. The capacitor is in FIG. 8 designated by the reference numeral 95. It can be seen in particular that the flow channel 97 extends completely around the tube 90 around.

Die Figur 9 zeigt ein weiteres alternatives Anschlusselement, welches insbesondere in einer Anordnung entsprechend der Figur 7 zum Einsatz kommen kann. Hierbei ist ein erstes Rohr 100 parallel zu einem zweiten Rohr 101 angeordnet. Das Rohr 100 bildet einen Strömungskanal 106 aus, welcher zwischen einem Fluideinlass 102 und einem Fluidauslass 103 verläuft. Das Rohr 101 bildet gleichsam einen Strömungskanal 107 aus, welcher zwischen einem Fluideinlass 104 und einem Fluidauslass 105 verläuft. Der Kondensator ist in Figur 9 durch das Bezugszeichen 108 kenntlich gemacht.The FIG. 9 shows a further alternative connection element, which in particular in an arrangement according to the FIG. 7 can be used. In this case, a first tube 100 is arranged parallel to a second tube 101. The tube 100 forms a flow channel 106 which extends between a fluid inlet 102 and a fluid outlet 103. The tube 101 also forms a flow channel 107, which runs between a fluid inlet 104 and a fluid outlet 105. The capacitor is in FIG. 9 indicated by the reference numeral 108.

Hauptaufgabe des Anschlusselements der Figur 9 ist es, ein Fluid aus einem Bereich des Kondensators 1, 60, 70, 108 abzuleiten und dem Sammler 2 zuzuführen. Dies geschieht über das längere Rohr 101. Die Rückführung des Fluids aus dem Sammler 2 in den Kondensator 1, 60, 70, 108 geschieht über das kürzere Rohr 100. Durch die Länge der Rohre 100, 101 und damit sich ergebenden unterschiedlichen Höhen der Fluidauslässe 103, 105 ist es möglich, das Fluid auf unterschiedlichen Höhen relativ zum Kondensator 1, 60, 70, 108 gesehen aus dem Kondensator 1, 60, 70, 108 abzuleiten und diesem wieder zuzuführen.Main task of the connection element of FIG. 9 it is to discharge a fluid from a region of the condenser 1, 60, 70, 108 and supply it to the collector 2. This is done via the longer tube 101. The return of the fluid from the collector 2 into the condenser 1, 60, 70, 108 is done via the shorter tube 100. By the length of the tubes 100, 101 and thus resulting different heights of the fluid outlets 103rd , 105 it is possible to divert the fluid at different heights relative to the condenser 1, 60, 70, 108 from the condenser 1, 60, 70, 108 and feed it again.

Die in den Figuren 8 und 9 gezeigten Fluideinlässe und Fluidauslässe können je nach Strömungsrichtung auch jeweils umgekehrt angeordnet sein.The in the FIGS. 8 and 9 shown fluid inlets and fluid outlets can also be arranged reversed depending on the flow direction.

Claims (17)

  1. A condenser (1, 60, 70) of stacked plate design, having a first flow channel (25, 64, 73, 79) for a refrigerant and having a second flow channel (26, 31, 42, 52, 67) for a coolant, wherein a plurality of plate elements is provided, which form channels adjacent to each other between the plate elements when stacked on top of each other, wherein a first subset of the channels is associated with the first flow channel (25, 64, 73, 79) and a second subset of the channels is associated with the second flow channel (26, 31, 42, 52, 67), wherein the first flow channel (25, 64, 73, 79) has a first region (3, 80) for desuperheating and condensing the vaporous refrigerant and a second region (4, 81, 62) for subcooling the condensed refrigerant, having a receiver (2) for storing a refrigerant, wherein a refrigerant transfer from the first region (3, 80) to the second region (4, 81, 62) leads through the receiver (2), wherein the receiver (2) is in fluid communication with the first region (3, 80) by means of a first connection element which forms the fluid inlet (12) of the receiver (2), wherein a second connection element is in fluid communication with the second region (4, 81, 62) as a fluid outlet (6) of the receiver (2), characterised in that the first connection element or the second connection element is a tube (5) which passes through a number of plate elements by means of openings in plate elements.
  2. The condenser (1, 60, 70) as claimed in claim 1, characterised in that the first connection element (5) is designed as a tube and the tube leads from the first region (3, 80) through the second region (4, 81, 61) to the fluid inlet (12) of the receiver (2), wherein the tube is in fluid communication only with the first region (3, 80) of the first flow channel (25, 64, 73, 79).
  3. The condenser (1, 60, 70) as claimed in claim 1 or 2, characterised in that the second connection element (6) is designed as a tube and the tube leads from the fluid outlet of the receiver through the first region into the second region.
  4. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that a fluid inlet (50) or fluid outlet of the second flow channel (26, 31, 42, 52, 67) has a second tube (53) which is in fluid communication with another channel of the second flow channel (26, 31, 42, 52, 67).
  5. The condenser (1, 60, 70) as claimed in claim 4, characterised in that the other channel is one of the last channels of the second flow channel (26, 31, 42, 52, 67) which lies substantially opposite the insertion side of the tube (53) in the plate stack.
  6. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the second flow channel (52) allows flow in series and a fluid inlet (50) and a fluid outlet (51) of the second flow channel (52) are each arranged in the same end region of the plate stack.
  7. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the second region of the first flow channel (25) forms an internal heat exchanger (61) of stacked plate design with a third flow channel (64), wherein a refrigerant can flow through the first (25) and the third flow channel (64).
  8. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the first flow channel (73) has a third region (82) which follows the second region (4, 81) and is used to subcool the refrigerant, wherein the third region (82) has a third flow channel (79) for a fluid, wherein the first and the third flow channel can be configured at least partially as heat exchangers, preferably as internal heat exchangers (82) of stacked plate design.
  9. The condenser (1, 60, 70) as claimed in claim 8, characterised in that the third flow channel (79) can be supplied with a refrigerant independently of the first flow channel or with a coolant independently of the second flow channel.
  10. The condenser (1, 60, 70) as claimed in claim 7 to 9, characterised in that the receiver (2) is in fluid communication only with the first region (80) of the first flow channel (73) via a tube (84) which leads through part of the plate stack (87) and forms the fluid inlet into the receiver (2) and the fluid outlet of the receiver (2) is formed by another tube (83) which leads through part of the plate stack (87) and is in fluid communication only with the second region (81) of the first flow channel (73).
  11. The condenser (1, 60, 70) as claimed in claim 7 to 10, characterised in that the fluid inlet (77) and/or the fluid outlet (78) of the internal heat exchanger (82) is formed by a tube (85, 86).
  12. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the plates have openings (24) with or without a rim in order to produce or seal off a fluid connection between adjacent channels.
  13. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the tubes (5, 50, 83, 84, 86, 87) are passed through openings (24) in the plate elements and are brazed to at least a subset of the plate elements, in particular to the rims.
  14. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the first connection element is a tube and the second connection element is a flange or vice versa.
  15. The condenser (1, 60, 70) as claimed in one of the preceding claims, characterised in that the receiver (2) is designed to filter and/or dry the refrigerant.
  16. The condenser (1, 60, 70) as claimed in at least one of the preceding claims, characterised in that the first section in the second channel has a plurality of flow paths through which the fluid flows in succession and in which the flow direction is in each case alternately reversed.
  17. The condenser (1, 60, 70) as claimed in at least one of the preceding claims, characterised in that the second section in the second channel has a plurality of flow paths through which the fluid flows in succession and in which the flow direction is in each case alternately reversed.
EP13756157.7A 2012-09-21 2013-09-02 Condenser Active EP2909563B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012217090.1A DE102012217090A1 (en) 2012-09-21 2012-09-21 capacitor
PCT/EP2013/068092 WO2014044520A1 (en) 2012-09-21 2013-09-02 Condenser

Publications (2)

Publication Number Publication Date
EP2909563A1 EP2909563A1 (en) 2015-08-26
EP2909563B1 true EP2909563B1 (en) 2018-08-15

Family

ID=49085038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756157.7A Active EP2909563B1 (en) 2012-09-21 2013-09-02 Condenser

Country Status (6)

Country Link
US (1) US10060658B2 (en)
EP (1) EP2909563B1 (en)
KR (1) KR20150060779A (en)
CN (1) CN104641199B (en)
DE (1) DE102012217090A1 (en)
WO (1) WO2014044520A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000183B1 (en) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques CONDENSER WITH FRIGORIGENE FLUID RESERVE FOR AIR CONDITIONING CIRCUIT
DE102016001607A1 (en) * 2015-05-01 2016-11-03 Modine Manufacturing Company Liquid-to-refrigerant heat exchanger and method of operating the same
FR3059400A1 (en) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques HEAT EXCHANGER BETWEEN A REFRIGERANT FLUID AND A COOLANT LIQUID
CN109000389B (en) * 2017-11-03 2021-07-27 株式会社电装 Condenser and refrigeration system provided with same
CN107883616A (en) * 2017-11-29 2018-04-06 上海加冷松芝汽车空调股份有限公司 Overcold water-cooled condenser
EP3765800A1 (en) * 2018-03-13 2021-01-20 Carrier Corporation Condenser architecture with multiple segments
EP3572754B1 (en) * 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
EP3572753B1 (en) * 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
CN108731307A (en) * 2018-07-04 2018-11-02 浙江银轮机械股份有限公司 A kind of stacked condenser
JP2020016379A (en) * 2018-07-25 2020-01-30 株式会社デンソー Heat exchanger
DE112019005896T5 (en) * 2018-11-27 2021-08-05 Modine Manufacturing Company Heat exchanger for cooling multiple fluids

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160535C (en) * 1998-10-19 2004-08-04 株式会社荏原制作所 Solution heat exchanger for absorption refrigerating machine
FR2846733B1 (en) 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa CONDENSER, IN PARTICULAR FOR A CIRCUIT FOR CIMATING A MOTOR VEHICLE, AND CIRCUIT COMPRISING THE CONDENSER
FR2924490A1 (en) * 2007-11-29 2009-06-05 Valeo Systemes Thermiques CONDENSER FOR AIR CONDITIONING CIRCUIT WITH SUB-COOLING PART
FR2947041B1 (en) * 2009-06-23 2011-05-27 Valeo Systemes Thermiques CONDENSER WITH FRIGORIGENE FLUID RESERVE FOR AIR CONDITIONING CIRCUIT
FR2950682B1 (en) * 2009-09-30 2012-06-01 Valeo Systemes Thermiques CONDENSER FOR MOTOR VEHICLE WITH ENHANCED INTEGRATION
DE102010026507A1 (en) * 2010-07-07 2012-01-12 Behr Gmbh & Co. Kg Refrigerant condenser module
JP5960955B2 (en) 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company Vehicle capacitors
DE102011008429A1 (en) * 2011-01-12 2012-07-12 Behr Gmbh & Co. Kg Device for heat transfer for a vehicle
US8899062B2 (en) * 2011-02-17 2014-12-02 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
US9239193B2 (en) * 2011-02-17 2016-01-19 Delphi Technologies, Inc. Unitary heat pump air conditioner having a heat exchanger with an integral receiver and sub-cooler
DE102011005177A1 (en) * 2011-03-07 2012-09-13 Behr Gmbh & Co. Kg Condenser for heat engine and in refrigeration plants to liquefy exhaust steam and vaporous refrigerant, has collection container arranged between upper condenser section and lower under cooling section
KR101316859B1 (en) * 2011-12-08 2013-10-10 현대자동차주식회사 Condenser for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104641199A (en) 2015-05-20
CN104641199B (en) 2017-03-01
US10060658B2 (en) 2018-08-28
DE102012217090A1 (en) 2014-03-27
US20160161160A1 (en) 2016-06-09
EP2909563A1 (en) 2015-08-26
WO2014044520A1 (en) 2014-03-27
KR20150060779A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
EP2909563B1 (en) Condenser
EP2904335B1 (en) Condenser
EP2997318B1 (en) Condenser
EP1724536B1 (en) Heat exchanger with accumulator
EP3119623B1 (en) Heating and cooling module
DE19719251A1 (en) Distribution / collection box of an at least double-flow evaporator of a motor vehicle air conditioning system
EP3119622B1 (en) Heating/cooling module
EP2135025A1 (en) Heat exchanger for evaporating a liquid portion of a medium having a bypass for an evaporated portion of the medium
EP2711657A1 (en) Capacitor
EP2926073B1 (en) Heat exchanger
DE3918455A1 (en) Coolant liquefier for car air conditioning
DE4118289A1 (en) Compact heat exchange appts. - for refrigeration dryer in compressed air plant
DE102016002380A1 (en) flue gas condenser
EP2570754A2 (en) Multi channel evaporator system
WO2013092644A2 (en) Heat exchanger
WO1998050741A1 (en) Flat tube evaporator with vertical flat tubes for motor vehicles
DE2738752C2 (en) Heat pump system
EP2912393B1 (en) Capacitor
EP1065454A1 (en) Air-cooled condenser
WO2004001312A1 (en) Heat transmitter arrangement
WO2005050115A1 (en) Heat-exchanger device
DE10016080A1 (en) Condenser for condensation of vapor-form fluid has at least one bundle of parallel arranged tubes, through which first fluid flows and around which vapor-form fluid flows
DE102022201204A1 (en) heat exchanger module
DE102022211047A1 (en) Heat exchanger
WO2009015629A2 (en) Tube radiator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20180703

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1030280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013010876

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013010876

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

26N No opposition filed

Effective date: 20190516

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181015

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1030280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 11